WO2016052329A1 - アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法 - Google Patents

アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法 Download PDF

Info

Publication number
WO2016052329A1
WO2016052329A1 PCT/JP2015/077096 JP2015077096W WO2016052329A1 WO 2016052329 A1 WO2016052329 A1 WO 2016052329A1 JP 2015077096 W JP2015077096 W JP 2015077096W WO 2016052329 A1 WO2016052329 A1 WO 2016052329A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino
phosphazene compound
producing
compound
solvent
Prior art date
Application number
PCT/JP2015/077096
Other languages
English (en)
French (fr)
Inventor
吉憲 金澤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016551969A priority Critical patent/JP6292730B2/ja
Publication of WO2016052329A1 publication Critical patent/WO2016052329A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an amino-substituted phosphazene compound, a method for producing an electrolyte for a non-aqueous secondary battery, and a method for producing a non-aqueous secondary battery.
  • Patent Document 1 discloses a cyclic fluorinated phosphazene in which one halogen atom of a cyclic halogenated phosphazene is substituted with a dimethylamino group or a diethylamino group as an additive for an electrolyte solution for a lithium secondary battery. . It is described that this amino-substituted phosphazene compound exhibits excellent flame retardancy.
  • Patent Document 2 discloses a cyclic phosphazene compound having an amino group, an alkyl group, an alkoxy group or the like. It is described that when these cyclic phosphazene compounds are contained in the electrolyte solution of a lithium secondary battery, the flame-out time is short in overcharge evaluation of the battery.
  • An amino-substituted phosphazene compound can be produced by subjecting a fluorinated phosphazene compound and an amine compound to a nucleophilic substitution reaction in an organic solvent (see Patent Documents 1 and 2).
  • the organic solvent used for the reaction is usually an ether solvent such as diethyl ether or THF (tetrahydrofuran), t-BuOMe (methyl tertiary butyl ether), or acetonitrile.
  • amino-substituted phosphazene compounds are liquid and are purified and isolated by distillation after the reaction.
  • Amino-substituted phosphazene compounds are used in various applications, and high purity is particularly required when used in non-aqueous secondary battery electrolytes and the like.
  • the conventional production method has a problem that the obtained amino-substituted phosphazene compound easily interacts with an organic solvent, or the organic solvent due to azeotropy is unavoidably mixed and is difficult to purify with high purity. For this reason, even if a high-purity product is obtained by purification distillation, the high-purity product will take out the latter part of the distillation, resulting in low purification efficiency and energy efficiency. If precision distillation is performed to avoid this, the distillation time becomes long and the production efficiency deteriorates. In addition, existing equipment cannot be used, and a new precision distillation apparatus must be introduced, which is disadvantageous in terms of manufacturing costs.
  • THF usually used as an organic solvent easily generates a peroxide, and the conventional method is not suitable for distillation purification from the viewpoint of production safety.
  • a peroxide may be generated during storage until the amino-substituted phosphazene compound is used.
  • diethyl ether is a flammable solvent, it is desired to avoid its use in production.
  • the present invention has been made in view of such circumstances, and a method for producing an amino-substituted phosphazene compound, which obtains a high-purity amino-substituted phosphazene compound in a high yield by a relatively simple production process using a fluorinated phosphazene compound as a starting material. It is an issue to provide. Furthermore, it aims at providing the manufacturing method of the electrolyte solution for non-aqueous secondary batteries using this, and the manufacturing method of a non-aqueous secondary battery.
  • amino-substituted phosphazene compounds are liquid and have a sufficient difference in boiling point from the reaction solvent
  • amino-substituted phosphazene compounds have generally been subjected to removal and purification of the reaction solvent by distillation.
  • the present inventors since the present inventors have the above-mentioned problems in removing the organic solvent used in the reaction by distillation, the inventors have intensively studied a method for removing the organic solvent without using distillation. As a result, it was found that hydrolysis was difficult even when an aqueous solution was added to the amino-substituted phosphazene compound, which led to the present invention.
  • the above problem has been solved by the following means.
  • ⁇ 1> a step of reacting a fluorinated phosphazene compound and an amine compound in a reaction solvent to replace at least one fluorine atom of the fluorinated phosphazene compound with an amine compound;
  • a process for producing an amino-substituted phosphazene compound having ⁇ 2> The method for producing an amino-substituted phosphazene compound according to ⁇ 1>, wherein the amino-substituted phosphazene compound is represented by the following formula (1).
  • Y 1 represents —NR 1 R 2 .
  • Y 2 represents a fluorine atom or —NR 3 R 4 .
  • R 1 to R 4 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring.
  • n represents 1 or 2.
  • n 1 or 2.
  • ⁇ 4> The process for producing an amino-substituted phosphazene compound according to any one of ⁇ 1> to ⁇ 3>, wherein ClogP of the reaction solvent is 0.7 or less.
  • ⁇ 5> The amino-substituted phosphazene compound according to any one of ⁇ 1> to ⁇ 4>, wherein the reaction solvent is at least one of an amide solvent, a nitrile solvent, an ester solvent, a carbonate solvent, or an ether solvent.
  • ⁇ 6> The method for producing an amino-substituted phosphazene compound according to any one of ⁇ 1> to ⁇ 5>, wherein the reaction solvent is at least one selected from the following compound group.
  • ⁇ 7> The method for producing an amino-substituted phosphazene compound according to any one of ⁇ 1> to ⁇ 6>, wherein the pH of the aqueous solution is 7 or less.
  • ⁇ 8> The method for producing an amino-substituted phosphazene compound according to any one of ⁇ 1> to ⁇ 7>, wherein the total number of carbon atoms of the amine compound is 1 to 12.
  • Non-aqueous solution for preparing an electrolyte solution for a non-aqueous secondary battery containing an amino-substituted phosphazene compound via the method for producing an amino-substituted phosphazene compound according to any one of ⁇ 1> to ⁇ 8> A method for producing an electrolyte for a secondary battery.
  • a non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous secondary battery electrolyte is manufactured via the method for producing a non-aqueous secondary battery electrolyte solution according to ⁇ 9>.
  • the reaction solvent is dissolved in the aqueous solution, and phase separation occurs between the phase of the mixed solution and the phase of the amino-substituted phosphazene compound.
  • the amino-substituted phosphazene compound can be easily isolated. For this reason, it is not necessary to remove the organic solvent from the reaction solution by distillation, and the amino-substituted phosphazene compound can be obtained by a simple production process, which is excellent in productivity.
  • FIG. 1 is a 1 H-NMR spectrum of compound (1-1).
  • FIG. 2 is a 19 F-NMR spectrum of the compound (1-1).
  • the phosphazene is a compound having a —P ⁇ N— bond as a structural unit and may be either a chain or a cyclic structure, but in the present invention, a cyclic phosphazene compound is preferable.
  • said phosphorus atom is a pentavalent phosphorus atom.
  • Rx and Ry represent a hydrogen atom or a substituent.
  • the raw material fluorinated phosphazene compound is a compound in which at least one of Rx and Ry in the phosphazene compound is a fluorine atom, and all of Rx and Ry are preferably fluorine atoms.
  • An amino-substituted phosphazene compound is a compound in which at least one of Rx and Ry in the compound is an amino group (including not only an unsubstituted amino group but also a substituted amino group such as an alkylamino group and an arylamino group).
  • 1 to 3 of Rx and Ry in the compound are preferably amino groups, more preferably 1 or 2 are amino groups, and particularly preferably 1 is an amino group.
  • the amino-substituted phosphazene compound is preferably a cyclic phosphazene compound.
  • the amino-substituted phosphazene compound synthesized by the production method of the present invention is preferably represented by the following formula (1).
  • Y 1 represents —NR 1 R 2 .
  • Y 2 represents a fluorine atom or —NR 3 R 4 .
  • R 1 to R 4 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring.
  • n represents 1 or 2.
  • the group other than Y 1 and Y 2 is a fluorine atom among the halogen atoms as in the formula (1), for example, it is particularly high when applied as an additive (flame retardant) for an electrolyte solution of a lithium ion battery, for example. This is preferable because it contributes to imparting flame retardancy or maintaining battery performance.
  • R 1 and R 2 are preferably a substituent, and more preferably both are substituents.
  • substituents include the substituent T described later.
  • the substituent in R 1 and R 2 is preferably an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a heterocyclic group, more preferably an alkyl group, an alkenyl group, a cycloalkyl group, or an aryl group, an alkyl group, a cyclo An alkyl group and an aryl group are more preferable, and an alkyl group is particularly preferable.
  • the alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 8, more preferably 1 to 6, particularly preferably 1 to 4, particularly preferably 1 to 3, and most preferably 1 or 2.
  • Each of these groups may be further substituted with a substituent, and examples of such a substituent include the substituent T described later. However, in the present invention, an unsubstituted one is preferable.
  • the total number of carbon atoms of R 1 and R 2 is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 2 to 4.
  • R 1 and R 2 may be bonded to each other to form a ring, and the formed ring is preferably a 5- or 6-membered ring, and atoms other than one nitrogen atom already exist In addition to one nitrogen atom, it may further have a hetero atom, and examples thereof include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • the ring formed by combining R 1 and R 2 with each other include a pyrrolidine ring, a piperidine ring, a piperazine ring, a morpholine ring, a thiomorpholine ring, and a 4,4-dioxythiomorpholine ring.
  • R 3 and R 4 have the same meanings as R 1 and R 2 , and preferred ranges are also the same.
  • N 1 or 2, and 1 is particularly preferable.
  • fluorinated phosphazene compound and the amine compound which are starting materials used in the method for producing an amino-substituted phosphazene compound of the present invention, will be described.
  • fluorinated phosphazene compounds A preferred compound as the fluorinated phosphazene compound is a compound represented by the following formula (2).
  • n 1 or 2
  • 1 is particularly preferable.
  • Such fluorinated phosphazene compounds are hexafluorocyclotriphosphazene and octafluorocyclotetraphosphazene.
  • fluorinated phosphazene a commercially available product may be used, for example, Schmutzler, R .; Inorg. Synth. 9, 75 (1967) or by referring to this document.
  • the amine compound may be any compound as long as it has a —NH— partial structure.
  • the amine compound is preferably represented by the following formula (3).
  • R 1 and R 2 each independently represents a hydrogen atom or a substituent.
  • R 1, R 2 has the same meaning as R 1, R 2 in the formula (1), and preferred ranges are also the same.
  • amine compound examples include N-methylamine, N-ethylamine, N, N-dimethylamine, N, N-diethylamine, N-methyl-N-ethylamine, N-methyl-Nn-propylamine, N , N-di-n-propylamine, pyrrolidine, piperidine, N-methylpiperazine, morpholine, thiomorpholine, 4,4-dioxythiomorpholine and the like.
  • amine compounds based on the amino group shown in the specific examples of the amino-substituted phosphazene compounds are mentioned. Of these, N, N-dimethylamine, N, N-diethylamine, and N-methyl-N-ethylamine are particularly preferable.
  • the reaction solvent is preferably an organic solvent, and examples thereof include amide solvents, nitrile solvents, ether solvents, ester solvents, carbonate ester solvents, ketone solvents, sulfoxide solvents, urea solvents, and the like. Of these, amide solvents, nitrile solvents, ester solvents, and carbonic acid ester solvents are more preferred, amide solvents and nitrile solvents are more preferred, and amide solvents are most preferred. Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone and the like.
  • nitrile solvents include acetonitrile and propionitrile.
  • ether solvent include 1,2-dimethoxyethane, diethyl ether, diisopropyl ether, t-butyl methyl ether, dioxane, tetrahydrofuran, anisole, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and diethylene glycol diethyl ether.
  • ester solvent include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, and ⁇ -butyrolactone.
  • Examples of the carbonate solvent include ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, di-t-butyl carbonate, and propylene carbonate.
  • Examples of the ketone solvent include acetone, 2-butanone and 4-methyl-2-pentanone.
  • Examples of the sulfoxide solvent include dimethyl sulfoxide and sulfolane.
  • Examples of urea solvents include 1,3-dimethyl-2-imidazolidinone (N, N-dimethylimidazolidinone).
  • the reaction solvent used in the present invention is preferably hydrophilic.
  • ClogP is used as a hydrophilicity index.
  • ClogP is preferably 0.7 or less, which is highly compatible with an aqueous solution. 0.6 or less is more preferable, 0.5 or less is more preferable, 0.4 or less is particularly preferable, and 0.3 or less is most preferable.
  • the lower limit is not particularly limited, but is practically ⁇ 1.0 or more.
  • this invention dissolves and removes the organic solvent of a reaction solution in water after reaction, a hydrophilic and water-soluble organic solvent is preferable.
  • ClogP is ClogP of the estimated value of LogP by calculation, and in the present invention, the CLogP value is a ChemDraw Pro ver. Manufactured by CambridgeSoft. It is a value calculated by 12.0.
  • Log P means the common logarithm of the partition coefficient P (Partition Coefficient) and quantifies how a chemical substance is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a typical numerical value, and is expressed by the following formula.
  • C oil represents the molar concentration in the oil phase
  • C water represents the molar concentration in the aqueous phase.
  • the oil solubility increases when the LogP value increases to a positive value across 0, and the water solubility increases when the absolute value increases with a negative value.
  • LogP has a negative correlation with the water solubility of chemical substances and is widely used as a parameter for estimating hydrophilicity / hydrophobicity.
  • a basic reaction solvent is more preferable. Examples of such a reaction solvent include dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, and acetonitrile. Only one type of reaction solvent may be used, or two or more types may be used.
  • the pH of the aqueous solution is preferably 7 or less. By adjusting the pH to 7 or less, compatibility with the hydrophilic reaction solvent is good, and separation from the amino-substituted phosphazene compound layer, which is a hydrophobic product, is good. Further, the amino-substituted phosphazene compound, water or OH - can be suppressed degradation by nucleophiles such.
  • the pH is more preferably 6.5 or less, still more preferably 6 or less, and particularly preferably 5 or less. The lower limit is preferably 0 or more. If the pH of the aqueous solution exceeds 7, the salt of hydrogen fluoride and amine compound produced and precipitated by the substitution reaction is neutralized and dissolved again in the organic solvent, which is not preferable because the separation process becomes complicated.
  • examples of the aqueous solution include acidic aqueous solutions such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, oxalic acid, acetic acid, formic acid, phthalic acid, citric acid, and tartaric acid, aqueous solutions of these salts, or ordinary water or distillation. Water alone can also be used.
  • acid hydrochloric acid and phosphoric acid are more preferable, and hydrochloric acid is particularly preferable.
  • the pH of the aqueous solution is 7 or less, and examples of the cation include ammonium cation, magnesium, sodium, or potassium, and sodium or potassium is preferable.
  • cations are preferable because they have a high affinity with ether-based reaction solvents and the reaction solvents are easily transferred to the aqueous solution layer.
  • magnesium chloride aqueous solution potassium chloride aqueous solution, potassium dihydrogen phosphate aqueous solution, dipotassium hydrogen phosphate aqueous solution, sodium dihydrogen phosphate aqueous solution, disodium hydrogen phosphate aqueous solution, monopotassium oxalate, sodium acetate and the like can be mentioned.
  • Two or more of the acids and salts listed above may be used in combination.
  • the concentration of the acid in the acidic aqueous solution is preferably 12N or less, more preferably 8N or less, further preferably 6N or less, and most preferably 4N or less from the viewpoint of improving the mixing with the organic solvent.
  • N is the normality.
  • an equivalent amount of hydrogen fluoride (HF) is generated after substitution of the amino group.
  • a basic compound may be added.
  • the basic compound to be added includes organic and inorganic compounds, and an organic base is particularly preferable. Examples of the organic base include triethylamine and diisopropylethylamine.
  • the starting amine compound to be reacted with the fluorinated phosphazene compound may be used for neutralization.
  • Base a base that does not react with the fluorinated phosphazene compound is preferable, and either an organic or inorganic base may be used.
  • organic bases include triethylamine, N, N, N ′, N′-tetramethyl or ethylethylenediamine, and 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • Tertiary amine compounds nitrogen-containing aromatic heterocyclic compounds such as pyridine, tetraalkylhydrazine compounds such as tetramethylhydrazine, diazabicycloundecene, diazacyclononene, N, N-dialkylguanidine, proazaphospha And an atrane compound such as Tran (P (RzNCH 2 CH 2 ) 3 N, where Rz is an alkyl group).
  • the inorganic base include alkali metal salts and alkaline earth metal salts.
  • carbonates or hydrogen carbonates are preferable, and examples thereof include potassium carbonate, sodium carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
  • tertiary amine compounds nitrogen-containing aromatic heterocyclic compounds, diazabicycloundecene, and diazacyclononene are preferable.
  • examples of the compound that captures HF include a compound having a carbon-carbon unsaturated bond (double bond or triple bond) and a compound having a bond of silicon and oxygen.
  • cyclopentene, cyclohexene, propylene, 2- Examples include methylpropene, styrene, 1-hexene, bicyclo [2,2,1] hept-2-ene, 1-propyne, acetylene, 2-butene, and phenylacetylene.
  • the amount of the base or compound used to capture the generated HF is preferably equimolar to 1.5 molar, and equimolar to 1 relative to the theoretical amount produced by the reaction of the fluorinated phosphazene compound used with the amine compound. More preferred is a 2 molar amount.
  • the theoretical amount means, for example, that 1 mol of HF is generated when 1 equivalent of an amino group is introduced into 1 mol of fluorinated phosphazene, and thus 1 mol of HF is meant. When 2 equivalents of an amino group are introduced, 2 mol of HF is generated.
  • catalysts can be used to improve the reaction yield of the nucleophilic reaction of the amine compound with respect to the fluorine atom.
  • a catalyst include Lewis acids.
  • Lewis acids for example, BF 3 O (C 2 H 5 ) 2
  • a catalyst comprising a compound having a specific element M and an oxygen atom in the structure may be used for the synthesis reaction.
  • One type is preferred.
  • the amount of the catalyst used is preferably 0.01 to 5 mol, more preferably 0.01 to 3 mol, still more preferably 0.05 to 3 mol, and more preferably 0.25 to 1 mol with respect to 1 mol of the raw material fluorinated phosphazene compound.
  • One mole is particularly preferred.
  • the amount of amine compound used depends on the number of amine substitutions in the amine-substituted phosphazene compound to be produced.
  • the amount of amine compound used to introduce one amino group (1 equivalent) requires 1 mol of amine compound, and usually 1 to 1.3 mol is used.
  • the amine compound used as a raw material captures HF and becomes an HF salt of the amine compound. Therefore, considering this part, the amine compound is preferably 2 to 2.5 mol, more preferably 2 to 2.3 mol, and even more preferably 2 mol.
  • the amine compound is preferably 4 to 5 mol, more preferably 4 to 4.5 mol, and even more preferably 4 mol.
  • the amine compound gas When the amine compound is a gas, the amine compound gas may be introduced into the reaction solution, or a solution dissolved in the organic solvent of the present invention may be used. It is preferable to appropriately adjust the introduction rate in the case of introducing the amine compound gas into the reaction solution according to the reaction scale.
  • reaction it is preferable to add one of a raw material fluorinated phosphazene compound and an amine compound mixed with an organic solvent to the reaction vessel, and gradually add the other by dropping or introducing gas.
  • a salt or a compound for capturing HF or a catalyst it is preferable to add these to the reaction vessel from the beginning.
  • the reaction temperature when adding the other raw material to one raw material is preferably ⁇ 30 to 50 ° C., more preferably ⁇ 30 to 30 ° C., and the reaction temperature after adding the raw material is preferably ⁇ 10 to 100 ° C. -10 to 50 ° C is more preferable.
  • the reaction time is preferably within 24 hours, more preferably within 10 hours, further preferably within 5 hours, and particularly preferably within 3 hours.
  • reaction solution and the aqueous solution in the reaction vessel are mixed. Since the organic solvent (reaction solvent) used for the reaction is hydrophilic, it is dissolved in an aqueous solution. For this reason, the amino-substituted phosphazene compound exhibiting hydrophobicity is separated from the organic solvent used in the reaction, and only the amino-substituted phosphazene compound may be described as a mixed layer of an aqueous solution and a reaction solvent (hereinafter simply referred to as a mixed layer). ) And phase separation. Since the specific gravity (about 1.5) of the amino-substituted phosphazene compound is larger than the specific gravity of the mixed layer, it is separated below the mixed layer.
  • the reaction is carried out using a reaction vessel having a take-off cock at the bottom, and after the reaction, the amino-substituted phosphazene compound is taken out from here, or the reaction solution after the reaction is placed in a liquid-liquid extraction column such as a phase separator. And a method of transferring and separating.
  • the reaction solution after the reaction and the aqueous solution may be mixed by adding the aqueous solution to the reaction solution, or by adding the reaction solution after the reaction to the aqueous solution. There is no problem.
  • the temperature of the reaction solution and the mixed layer after the reaction when phase separation is performed by adding an aqueous solution is performed in order to perform phase separation satisfactorily and to suppress decomposition such as hydrolysis of the amino-substituted phosphazene compound as much as possible.
  • the temperature is preferably less than 30 ° C, more preferably 20 ° C or less, and still more preferably 10 ° C or less. If it exceeds 30 ° C., hydrolysis tends to occur, such being undesirable.
  • the lower limit is not particularly limited, but is preferably ⁇ 30 ° C. or higher, and more preferably ⁇ 10 ° C. or higher.
  • the amino-substituted phosphazene compound is a compound having a plurality of fluorine atoms with high water repellency and is considered not to contain moisture, but for higher purity, a dehydrating agent such as anhydrous magnesium sulfate is added in powder form.
  • a step of removing anhydrous magnesium sulfate after standing for a certain time and a step of removing water by adding brine saturated water may be provided.
  • an insoluble matter for example, HF salt of an amine compound
  • the isolated amino-substituted phosphazene compound does not substantially contain an organic solvent, but is used to separate a fluorinated phosphazene compound that is an unreacted raw material and an amino-substituted phosphazene compound that is substituted more than the desired number of substitutions. Then, it is preferable to provide a distillation step for purification. Thereby, it can be made still higher purity. Distillation may be carried out at normal pressure, that is, in the atmosphere, but from the viewpoint of productivity, distillation under reduced pressure is preferred. The pressure depends on the boiling point of the amino-substituted phosphazene compound to be obtained, but is preferably 500 mmHg or less, more preferably 300 mmHg or less. If the pressure is reduced too much, the purification efficiency decreases, so the lower limit of the pressure is preferably 3 mmHg or more.
  • the amino-substituted fluorinated phosphazene obtained by the production method of the present invention can be used for various applications. For example, it can be applied as a flame retardant for resins, electrolytes, lubricants, paints and the like applied to various electrical equipment and industrial products. Alternatively, it can also be used as an insecticide (see German Offenlegungsschrift 213991).
  • the amino-substituted phosphazene compound obtained by the production method of the present invention has high purity, it can be suitably used as a flame retardant in a non-aqueous electrolyte of a lithium secondary battery, and is a high-quality non-aqueous secondary battery. Can be obtained.
  • a substituent that does not specify substitution / unsubstitution means that the group may have an arbitrary substituent. . This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butynediynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclo
  • each group may be further substituted with the above-described substituent T.
  • substituent T For example, an aralkyl group in which an aryl group is substituted for an alkyl group.
  • the compound or substituent / linking group includes an alkyl group / alkylene group, alkenyl group / alkenylene group, alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
  • the electrolyte solution for non-aqueous secondary batteries is applied to the non-aqueous secondary battery according to the present invention.
  • the electrolyte used in the electrolytic solution is preferably a salt of a metal ion belonging to Group 1 or Group 2 of the periodic table.
  • the material is appropriately selected depending on the intended use of the electrolytic solution. For example, lithium salt, potassium salt, sodium salt, calcium salt, magnesium salt and the like can be mentioned. When used in a secondary battery or the like, lithium salt is preferable from the viewpoint of output.
  • the amino-substituted phosphazene compound produced by the production method of the present invention is used as a non-aqueous electrolyte for a lithium secondary battery, it is preferable to select a lithium salt as a metal ion salt.
  • the lithium salt is preferably a lithium salt usually used for an electrolyte of a non-aqueous electrolyte for a lithium secondary battery, and is not particularly limited. For example, those described below are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • the electrolyte in the electrolytic solution (preferably a metal ion belonging to Group 1 or Group 2 of the periodic table or a metal salt thereof) is added in such an amount that a preferable salt concentration described below in the method for preparing the electrolytic solution is obtained. It is preferable.
  • the salt concentration is appropriately selected depending on the purpose of use of the electrolytic solution, but is generally 10% by mass to 50% by mass, preferably 15% by mass to 30% by mass, based on the total mass of the electrolytic solution.
  • the molar concentration is preferably 0.5 mol / L to 1.5 mol / L.
  • concentration when evaluating as an ion density
  • the non-aqueous solvent used in the electrolyte solution of the present embodiment is preferably an aprotic organic solvent, and more preferably an aprotic organic solvent having 2 to 10 carbon atoms.
  • Such non-aqueous solvents include carbonate compounds, lactone compounds, chain or cyclic ether compounds, ester compounds, nitrile compounds, amide compounds, oxazolidinone compounds, nitro compounds, chain or cyclic sulfone or sulfoxide compounds, phosphoric acid. Examples include esters.
  • a compound having an ether bond, a carbonyl bond, an ester bond or a carbonate bond is preferable. These compounds may have a substituent, for example, the substituent T is mentioned.
  • non-aqueous solvent examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1,4-dioxane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, butyric acid Methyl, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, and ⁇ -butyrolactone is preferable.
  • a high viscosity (high dielectric constant) solvent such as ethylene carbonate or propylene carbonate.
  • a combination of (for example, relative dielectric constant ⁇ ⁇ 30) and a low viscosity solvent (for example, viscosity ⁇ 1 mPa ⁇ s) such as dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate is more preferable. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the non-aqueous solvent used in the present invention is not limited by the above examples.
  • the electrolyte solution preferably contains various functional additives.
  • the electrolytic solution may contain at least one selected from the above, a negative electrode film forming agent, a flame retardant, an overcharge preventing agent, and the like.
  • the content ratio of these functional additives in the nonaqueous electrolytic solution is not particularly limited, and is preferably 0.001% by mass to 10% by mass with respect to the entire nonaqueous electrolytic solution (including the electrolyte).
  • the method for producing an electrolyte solution for a non-aqueous secondary battery of the present invention may be carried out by preparing an electrolyte solution for a non-aqueous secondary battery containing the amino-substituted phosphazene compound via the method for producing an amino-substituted phosphazene compound. It can. Specifically, for example, each component is prepared by a conventional method by dissolving the above components in the non-aqueous electrolyte solvent, including an example in which a lithium salt is used as a metal ion salt.
  • non-water means that water is not substantially contained, and a trace amount of water may be contained as long as the effect of the invention is not hindered.
  • substantially not containing means that the concentration of water is 200 ppm (mass basis) or less, preferably 100 ppm or less, more preferably 20 ppm or less. Actually, it is difficult to make it completely anhydrous, and 1 ppm or more is included.
  • a lithium ion secondary battery according to a preferred embodiment of the present invention includes a nonaqueous secondary battery electrolyte according to the present invention, a positive electrode (positive electrode current collector, positive electrode active material layer) capable of inserting and releasing lithium ions, and And a negative electrode (negative electrode current collector, negative electrode active material layer) capable of inserting and releasing lithium ions or dissolving and depositing lithium ions.
  • the separator may be configured to be disposed between the positive electrode and the negative electrode, a current collecting terminal, and an outer case.
  • a protective element may be attached to at least one of the inside of the battery and the outside of the battery.
  • Electrode mixture The electrode mixture is obtained by applying a dispersion of an active material and a conductive agent, a binder, a filler, etc. on a current collector (electrode substrate).
  • the active material is a positive electrode active material. It is preferable to use a negative electrode mixture in which the positive electrode mixture and the active material are a negative electrode active material.
  • each component in the dispersion (electrode composition) constituting the electrode mixture will be described.
  • a lithium-containing transition metal oxide for the positive electrode active material.
  • a transition element M a one or more elements selected from Co, Ni, Fe, Mn, Cu and V
  • mixed element M b Group 1 element, Group 2 element of the metal periodic table other than lithium, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, etc.
  • the lithium-containing transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or V 2 O 5 as other transition metal oxides. , MnO 2 and the like.
  • a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
  • Examples of the lithium-containing transition metal oxides, oxides containing the above transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • Transition metal oxide represented by formula (MA) (layered rock salt structure)
  • lithium-containing transition metal oxides those represented by the following formula are preferable.
  • M 1 is as defined above M a.
  • a represents a number of 0 to 1.2, preferably 0.1 to 1.15, more preferably 0.6 to 1.1.
  • b represents a number of 1 to 3, and 2 is preferable.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably represented by the following formulas.
  • g has the same meaning as the above a, and the preferred range is also the same.
  • j represents a number of 0.1 to 0.9.
  • i represents a number from 0 to 1. However, 1-ji is 0 or more.
  • k has the same meaning as b above, and the preferred range is also the same.
  • Specific examples of the transition metal compounds represented by the formulas (MA-1) to (MA-7) include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85.
  • Co 0.01 Al 0.05 O 2 nickel cobalt lithium aluminum oxide [NCA]
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 nickel manganese lithium cobalt oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 lithium manganese nickelate
  • transition metal oxide represented by the formula (MA) partially overlaps, but when expressed in different notations, the following are also preferable examples.
  • M 2 is as defined above M a.
  • c represents a number of 0 to 2, preferably 0.6 to 1.5, more preferably 0.8 to 1.2.
  • d represents a number of 3 to 5, preferably 3.8 to 4.2, and more preferably 3.9 to 4.1.
  • the transition metal oxide represented by the formula (MB) is more preferably represented by the following formulas.
  • m has the same meaning as c, and the preferred range is also the same.
  • n is synonymous with d, and its preferable range is also the same.
  • p represents a number from 0 to 2.
  • Specific examples of the transition metal compound include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is more preferable.
  • e represents a number of 0 to 2, preferably 0.5 to 1.5, and more preferably 0.8 to 1.2.
  • f represents a number of 1 to 5, preferably 1 or 2.
  • M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • the M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • a positive electrode active material containing Ni and / or Mn atoms is preferably used, and a positive electrode active material containing both Ni and Mn atoms is more preferably used.
  • particularly preferable positive electrode active materials include the following.
  • LiNi 0.33 Co 0.33 Mn 0.33 O 2 LiNi 0.6 Co 0.2 Mn 0.2 O 2 LiNi 0.5 Co 0.3 Mn 0.2 O 2 LiNi 0.5 Mn 0.5 O 2 LiNi 0.5 Mn 1.5 O 4
  • the battery capacity can be increased, and even when used at a high potential, the capacity retention rate is high, which is particularly preferable.
  • the average particle size of the positive electrode active material used is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m. No particular limitation is imposed on the specific surface area, 0.01m 2 / g ⁇ 50m 2 / g is preferable in the BET method. Further, the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a well-known grinder or classifier is used.
  • a mortar, a ball mill, a vibration ball mill, a vibration mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill, a sieve, or the like is used.
  • the blending amount of the positive electrode active material is not particularly limited, but is preferably 60 to 98% by mass, more preferably 70 to 95% by mass in 100% by mass of the solid component in the dispersion (mixture) for constituting the active material layer. preferable.
  • Negative electrode active material those capable of reversibly inserting and releasing lithium ions are preferable, and there is no particular limitation.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
  • a metal complex oxide what can occlude and discharge
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by firing artificial graphite such as petroleum pitch, natural graphite, and vapor-grown graphite, and various synthetic resins such as polyacrylonitrile resin and furfuryl alcohol resin.
  • various carbon fibers such as polyacrylonitrile-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated polyvinyl alcohol-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, Examples thereof include mesophase microspheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material may have an interplanar spacing, density, and crystallite size as described in JP-A-62-222066, JP-A-2-6856, and 3-45473. preferable.
  • the carbonaceous material does not need to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, and the like. It can also be used.
  • the metal oxide and metal composite oxide which are negative electrode active materials used in the nonaqueous secondary battery of the present invention, preferably contain at least one of these.
  • amorphous oxides are preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used.
  • chalcogenite which is a reaction product of a metal element and an element of Group 16 of the periodic table.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of the crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. Is preferably 5 times or less, and particularly preferably has no crystalline diffraction line.
  • amorphous oxides and chalcogenides of semimetal elements are more preferable, and elements of Groups 13 to 15 of the periodic table, Al, Ga, Si, Sn , Ge oxide, Pb, Sb, Bi alone or in combination of two or more thereof, and chalcogenide are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be complex oxides (for example, Li 2 SnO 2 ) with lithium oxide.
  • the average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used together with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
  • the blending amount of the negative electrode active material is not particularly limited, but is preferably 60 to 98% by mass, more preferably 70 to 95% by mass in 100% by mass of the solid component.
  • the conductive material is preferably an electron conductive material that does not cause a chemical change in the configured secondary battery, and a known conductive material can be arbitrarily used.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • artificial graphite carbon black, acetylene black, ketjen black, carbon fiber and metal powder (copper, nickel, aluminum, silver (Japanese Patent Laid-Open No.
  • metal fibers or polyphenylene derivatives (described in JP-A-59-20971) can be included as one kind or a mixture thereof, among which graphite and acetylene
  • the amount of the conductive material added is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and in the case of carbon or graphite, 2 to 15% by mass is particularly preferable.
  • binder examples include polysaccharides, thermoplastic resins, and polymers having rubber elasticity. Among them, for example, starch, carboxymethyl cellulose, cellulose, diacetyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium alginate, polyacrylic acid, sodium polyacrylate, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, poly Water-soluble polymers such as acrylonitrile, polyacrylamide, polyhydroxy (meth) acrylate, styrene-maleic acid copolymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride Ride-tetrafluoroethylene-hexafluoropropylene copolymer, poly (Meth)
  • Binders can be used alone or in combination of two or more.
  • the amount of the binder added is small, the holding power and cohesive force of the electrode mixture are weakened. If the amount is too large, the electrode volume increases and the capacity per electrode unit volume or unit mass decreases. For this reason, the addition amount of the binder is preferably 1 to 30% by mass, and more preferably 2 to 10% by mass.
  • the electrode compound material may contain the filler.
  • the material forming the filler is preferably a fibrous material that does not cause a chemical change in the secondary battery of the present invention.
  • fibrous fillers made of materials such as olefin polymers such as polypropylene and polyethylene, glass, and carbon are used.
  • the addition amount of the filler is not particularly limited, but is preferably 0 to 30% by mass in the dispersion.
  • the positive / negative current collector an electron conductor that does not cause a chemical change is preferably used.
  • the current collector for the positive electrode in addition to aluminum, stainless steel, nickel, titanium and the like, those obtained by treating the surface of aluminum or stainless steel with carbon, nickel, titanium or silver are preferable. Those whose surfaces are treated with carbon, nickel, titanium or silver are preferred.
  • the negative electrode current collector aluminum, copper, copper alloy, stainless steel, nickel and titanium are preferable, and aluminum, copper and copper alloy are more preferable.
  • a film sheet shape is usually used, but a net, a punched material, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • An electrode mixture of the lithium secondary battery is formed by a member appropriately selected from these materials.
  • the separator used in the non-aqueous secondary battery may be made of a material that mechanically insulates the positive electrode and the negative electrode, ion permeability, and oxidation / reduction resistant at the contact surface between the positive electrode and the negative electrode.
  • a material a porous polymer material, an inorganic material, an organic-inorganic hybrid material, glass fiber, or the like is used.
  • These separators preferably have a shutdown function for ensuring reliability, that is, a function of closing a gap at 80 ° C. or higher to increase resistance and blocking current, and a closing temperature is 90 ° C. or higher and 180 ° C. or lower. It is preferable.
  • the shape of the holes of the separator is usually circular or elliptical, and the size is 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m. Furthermore, it may be a rod-like or irregular-shaped hole as in the case of making by a stretching method or a phase separation method.
  • the ratio of these gaps, that is, the porosity, is 20% to 90%, preferably 35% to 80%.
  • the polymer material may be a single material such as a cellulose nonwoven fabric, polyethylene, or polypropylene, or may be a material using two or more composite materials. What laminated
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used, and those having a particle shape or fiber shape are used.
  • a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used.
  • the thin film shape those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • alumina particles having a 90% particle diameter of less than 1 ⁇ m are formed on both surfaces of the positive electrode as a porous layer using a fluororesin binder.
  • the non-aqueous secondary battery manufacturing method of the present invention includes a positive electrode, a negative electrode, and a non-aqueous secondary battery electrolyte solution via the non-aqueous secondary battery electrolyte manufacturing method of the present invention.
  • a secondary battery is produced.
  • a positive electrode active material mixture and a negative electrode active material mixture are applied (coated), dried, and compressed on a current collector to obtain a positive electrode and a negative electrode, respectively, and a separator is interposed between the positive electrode and the negative electrode
  • a step of accommodating these in the battery case, a step of accommodating the nonaqueous electrolyte produced by the method for producing an electrolyte for a nonaqueous secondary battery of the present invention, and a step of sealing the battery case And can be manufactured.
  • the shape of the nonaqueous secondary battery include a sheet shape, a square shape, a cylinder shape, and the like, and the method for producing a nonaqueous secondary battery of the present invention can be applied to any shape.
  • Example 1 Add 30 ml of N-methylpyrrolidone and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene to a 300 ml three-necked flask with a take-off cock at the bottom and keep it at ⁇ 10 ° C. to 0 ° C. in an ice / methanol cryogen bath. However, 7.21 g (160 mmol) of dimethylamine gas (manufactured by Aldrich) was bubbled at a rate of 0.3 g / min.
  • Example 2 To a 300 ml three-necked flask with a take-off cock at the bottom, 35 ml of dimethylacetamide and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene were added, and kept at ⁇ 10 ° C. to 0 ° C. in an ice / methanol cryogen bath. Dimethylamine gas 7.21 g (160 mmol) (manufactured by Aldrich) was bubbled at a rate of 0.3 g / min.
  • Example 3 To a 300 ml three-necked flask with a take-off cock at the bottom, 30 ml of N, N-dimethylimidazolidinone and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene are added, and kept at 10 to 20 ° C. in a water bath. Then, 9.46 g (160 mmol) of methylethylamine (Aldrich) was added dropwise over 10 minutes. Thereafter, 150 ml of 2N HCl was added to the reaction solution at 10 ° C., and the compound (1-2) separated in the lower layer was separated by opening the cock to obtain a crude product.
  • N, N-dimethylimidazolidinone and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene are added, and kept at 10 to 20 ° C. in a water bath. Then, 9.46 g (160 mmol) of methyl
  • the crude product was purified by distillation at 120 mmHg and 65 to 69 ° C. to obtain 12.22 g of a colorless and transparent compound (1-2).
  • the yield was 53%.
  • the amount of solvent remaining before purification by distillation was confirmed by gas chromatography, no reaction solvent was detected. Further, no residual solvent was detected even after distillation purification.
  • Example 4 To a 300 ml three-necked flask having a take-off cock at the bottom, 30 ml of N-methylpyrrolidone and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene were added, and diethylamine 11 70 g (160 mmol) (Aldrich) was added dropwise over 10 minutes. Thereafter, 150 ml of 1N HCl was added to the reaction solution at 10 ° C., and the compound (1-3) separated in the lower layer was separated by opening the cock to obtain a crude product. Next, the crude product was purified by distillation at 10 mmHg and 50 to 55 ° C. to obtain 12.06 g of a colorless and transparent compound (1-3). The yield was 50%. When the amount of solvent remaining before purification by distillation was confirmed by gas chromatography, no reaction solvent was detected. Further, no residual solvent was detected even after distillation purification.
  • Example 5 To a 300 ml three-necked flask with a take-off cock at the bottom, add 30 ml of dimethoxyethane and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene, and maintain at ⁇ 10 ° C. to 0 ° C. in an ice / methanol cryogen bath. Dimethylamine gas 7.21 g (160 mmol) (manufactured by Aldrich) was bubbled at a rate of 0.3 g / min.
  • Example 6 To a 300 ml three-necked flask having a take-off cock at the bottom, 30 ml of acetonitrile and 20.0 g (80 mmol) of hexafluorocyclotriphosphazene were added, and 11.70 g of diethylamine was kept at 0 ° C. to 10 ° C. in an ice-water bath ( 160 mmol) (manufactured by Aldrich) was added dropwise over 10 minutes. Thereafter, 150 ml of 1N HCl was added to the reaction solution at 10 ° C., and the compound (1-3) separated in the lower layer was separated by opening the cock to obtain a crude product.
  • the crude product was purified by distillation at 10 mmHg and 50 to 55 ° C. to obtain 13.26 g of a colorless and transparent compound (1-3).
  • the yield was 55%.
  • the amount of residual solvent before purification by distillation was confirmed by gas chromatography, 4% by mass was detected. Subsequent distillation purification did not detect the residual solvent.
  • the residue was transferred to a 30 ml flask and further purified by distillation at 120 mmHg and 59 ° C. to obtain 7.77 g of a colorless and transparent compound (1-1).
  • the yield was 45%.
  • the residue was purified by distillation, and a residual solvent amount of 4% by mass was detected.
  • the solvent residual amount before distillation purification in Table 1 indicates the solvent residual amount when the reaction solvent is distilled off under reduced pressure and concentrated under reduced pressure.
  • HFP hexafluorocyclotriphosphazene
  • DMA dimethylamine
  • MEA methyl ethylamine
  • DEA diethylamine
  • NMP N-methylpyrrolidone
  • DMAc dimethylacetamide
  • DME dimethoxyethane
  • AN acetonitrile
  • DMAc dimethylacetamide
  • THF tetrahydrofuran
  • the yield is an isolated yield based on the raw material hexafluorocyclotriphosphazene.
  • the solvent residual amount (% by mass) is the amount of organic solvent contained in the isolated compound, and is represented by the following formula.
  • Residual amount of solvent [total mass of organic solvent / mass of isolated compound collected for measurement) ⁇ 100]
  • the amount of the organic solvent contained in the isolated compound was measured as follows.
  • the compounds (1-1) to (1-3) were analyzed by gas chromatography (GC-2010, SHIMADZU), and the residual solvent was quantified.
  • the measurement conditions at the time of analysis are the following conditions.
  • Examples 1 to 6 since there is no solvent distillation step, there is no azeotropic problem, and the residual amount of solvent before distillation purification contained in the amino-substituted phosphazene compound immediately after the two-phase separation was 4% by mass or less, and in particular, Examples 1 to 4 were all 0% by mass. Even after distillation purification, the residual amount of solvent was 0% by mass, and good results were obtained.
  • Examples 1 to 6 when the aqueous solution was added to the reaction solution after the reaction, the reaction solvent and the aqueous solution were uniformly mixed, and separation of this mixed phase and the phase containing only the substantially amino-substituted phosphazene compound was easy. It was.
  • Comparative Example 1 since the ClogP contains a reaction solvent of 0.7 or more, it is difficult to take out the amino-substituted phosphazene compound as a phase of only the substantially amino-substituted phosphazene compound even if an aqueous solution is added to the reaction solution. .
  • the concentration step as in Comparative Example 1 is not necessary, and the manufacturing process can be greatly simplified and the time can be shortened.
  • test No. 116 of Example 1 in the pamphlet of International Publication No. 2013/047342 the compound (1-1) used is the compound obtained in Example 1, Example 2 and Comparative Example 1 of the present invention ( Test No. described in International Publication No. 2013/047342 except that it was replaced with 1-1).
  • 116, test no. 116A and 116B (using the compound (1-1) obtained in Example 1 and Example 2 of the present invention, respectively) and Test No. 116C (using the compound (1-1) obtained in Comparative Example 1 of the present invention) was prepared and evaluated in the same manner as in Example 1 of International Publication No. 2013/047342.
  • test no. Compared to 116C test no. It was confirmed that 116A and 116B were excellent in all of flame retardancy, cycle characteristics, and rate characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

 フッ素化ホスファゼン化合物とアミン化合物とを反応溶媒中で反応させてフッ素化ホスファゼン化合物のフッ素原子の少なくとも1つをアミン化合物で置換する工程と、反応後の反応溶液と水溶液を混合して、アミノ置換ホスファゼン化合物の相、及び水溶液と反応溶媒との混合液の相に分離させる工程と、分離したアミノ置換ホスファゼン化合物を単離する工程と、を有するアミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法及び非水二次電池の製造方法。

Description

アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法
 本発明は、アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法に関する。
 近年、P(リン)-N(窒素)二重結合を構成単位として有し、P原子にハロゲン原子が結合したハロゲン化ホスファゼン化合物は、様々な材料に優れた難燃性を付与することができる化合物として注目されており、その置換体およびその製造方法が研究されている。例えば、特許文献1には、リチウム二次電池用電解液の添加剤として、環状ハロゲン化ホスファゼンの1つのハロゲン原子がジメチルアミノ基またはジエチルアミノ基で置換された環状のフッ素化ホスファゼンが開示されている。このアミノ置換ホスファゼン化合物によれば、優れた難燃性を示すことが記載されている。
 また、特許文献2には、アミノ基、アルキル基、アルコキシ基等を有する環状ホスファゼン化合物が開示されている。これらの環状ホスファゼン化合物をリチウム二次電池の電解液に含有させることにより、電池の過充電評価において消炎時間が短いことが記載されている。
特開2013-235830号公報 国際公開第2013/047342号パンフレット
 本発明者らは、このように従来の難燃性に優れたアミノ置換ホスファゼン化合物を工業的に大量に製造する際に、下記の改善すべき点があることがわかった。
 アミノ置換ホスファゼン化合物は、フッ素化ホスファゼン化合物とアミン化合物とを有機溶媒中で求核置換反応させることによって製造することができる(特許文献1、2参照)。反応に使用する有機溶媒は、通常、ジエチルエーテルやTHF(テトラヒドロフラン)等のエーテル溶媒や、t-BuOMe(メチル ターシャリーブチルエーエル)、アセトニトリルが用いられている。アミノ置換ホスファゼン化合物の多くは液体であり、反応後に蒸留で精製単離される。
 アミノ置換ホスファゼン化合物は様々な用途に用いられ、非水二次電池用電解液等に用いる場合は、高純度が特に要求される。しかし、従来の製造法では、得られたアミノ置換ホスファゼン化合物は有機溶媒と相互作用しやすいためか、共沸による有機溶媒の混入が避けられず、高純度に精製し難いという問題がある。そのため、精製蒸留によって高純度なものが得られても、高純度なものは、蒸留の後段部分を取り出すことになり、精製効率・エネルギー効率が低くなる。これを回避するために精密蒸留を行うと蒸留時間が長くなり、生産効率が悪くなる。しかも、既存の設備が使用できず、新たな精密蒸留装置の導入が必要となり、製造コスト面でも不利になる。
 また、通常、有機溶媒に使用されているTHFは過酸化物が生成しやすく、従来の方法では、製造上の安全性の観点から蒸留精製には不向きであった。しかも、THFが、得られたアミノ置換ホスファゼン化合物に比較的多量に残留していると、アミノ置換ホスファゼン化合物が使用されるまでの保管中に過酸化物が生じることがある。このような純度が十分でないアミノ置換ホスファゼン化合物を、例えば二次電池の電解液に用いると、電池特性が劣化する。
 一方、ジエチルエーテルは、引火性の溶媒であるため製造における使用は回避したい。
 このように、ホスファゼン化合物の電池や電子材料の難燃剤としての利用が広がる中、合成方法の多様化や高純度品の収率向上などに対応しうる製造技術面での改良が求められる。
 本発明は、かかる事情に鑑みてなされたものであり、フッ素化ホスファゼン化合物を出発物質として比較的簡便な製造工程で高純度なアミノ置換ホスファゼン化合物を高収率で得るアミノ置換ホスファゼン化合物の製造方法を提供することを課題とする。さらにこれを利用した非水二次電池用電解液の製造方法および非水二次電池の製造方法を提供することを課題とする。
 P-N二重結合を有するホスファゼン化合物のリン原子に塩素原子が結合したものは、水によって加水分解が起こることが知られている。このことから、同じ環状骨格を有し、リン原子にハロゲン原子が結合したフッ素化ホスファゼン化合物やハロゲン原子の一部がアミノ基で置換されたアミノ置換ホスファゼン化合物においても加水分解を避けるため、従来、後処理で水を加えて抽出する操作は行われていなかった。また、アミノ置換ホスファゼン化合物は液体であり、反応溶媒との沸点差が十分あるため、アミノ置換ホスファゼン化合物は、一般的に蒸留で反応溶媒の除去および精製が行われてきた。しかし、本発明者らは、反応に使用する有機溶媒の蒸留による除去に上記のような問題があることから、蒸留によらない有機溶媒の除去方法について鋭意検討を重ねた。この結果、アミノ置換ホスファゼン化合物に水溶液を加えても加水分解しにくいことがわかり、本発明をなすに至った。
 上記の課題は以下の手段により解決された。
<1>フッ素化ホスファゼン化合物とアミン化合物とを反応溶媒中で反応させてフッ素化ホスファゼン化合物のフッ素原子の少なくとも1つをアミン化合物で置換する工程と、
 反応後の反応溶液と水溶液を混合して、アミノ置換ホスファゼン化合物の相、および、水溶液と反応溶媒との混合液の相に分離させる工程と、
 分離したアミノ置換ホスファゼン化合物を単離する工程と、
を有するアミノ置換ホスファゼン化合物の製造方法。
<2>アミノ置換ホスファゼン化合物が、下記式(1)で表される<1>に記載のアミノ置換ホスファゼン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Yは-NRを表す。Yはフッ素原子または-NRを表す。R~Rは各々独立に水素原子または置換基を表す。ここで、RとR、RとRが互いに結合して環を形成していてもよい。nは1または2を表す。
<3>フッ素化ホスファゼン化合物が、下記式(2)で表される<1>または<2>に記載のアミノ置換ホスファゼン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000005
 式(2)中、nは1または2を表す。
<4>反応溶媒のClogPが、0.7以下である<1>~<3>のいずれか1つに記載のアミノ置換ホスファゼン化合物の製造方法。
<5>反応溶媒が、アミド溶媒、ニトリル溶媒、エステル溶媒、炭酸エステル溶媒、またはエーテル溶媒の少なくとも1種である<1>~<4>のいずれか1つに記載のアミノ置換ホスファゼン化合物。
<6>反応溶媒が、下記化合物群から選ばれる少なくとも1つである<1>~<5>のいずれか1つに記載のアミノ置換ホスファゼン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000006
<7>水溶液のpHが7以下である<1>~<6>のいずれか1つに記載のアミノ置換ホスファゼン化合物の製造方法。
<8>アミン化合物の総炭素数が1~12である<1>~<7>のいずれか1つに記載のアミノ置換ホスファゼン化合物の製造方法。
<9> <1>~<8>のいずれか1つに記載のアミノ置換ホスファゼン化合物の製造方法を経由して、アミノ置換ホスファゼン化合物を含有する非水二次電池用電解液を調製する非水二次電池用電解液の製造方法。
<10> <9>に記載の非水二次電池用電解液の製造方法を経由して、正極と負極と非水二次電池用電解液とを具備する非水二次電池を作製する非水二次電池の製造方法。
 本発明によれば、反応後の反応溶液と水溶液を混合することにより、反応溶媒が水溶液に溶解し、この混合液の相と、アミノ置換ホスファゼン化合物の相とに相分離が起こるため、生成物であるアミノ置換ホスファゼン化合物を容易に単離することができる。このため、反応溶液から有機溶媒を蒸留で除去する必要がなく、簡便な製造工程でアミノ置換ホスファゼン化合物を得ることができるので、生産性に優れている。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、化合物(1-1)のH-NMRスペクトル図である。 図2は、化合物(1-1)の19F-NMRスペクトル図である。
 以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 以下、本発明の好ましい実施形態を中心に本発明について詳細に説明する。
<<アミノ置換ホスファゼン化合物の製造方法>>
 ホスファゼンとは、-P=N-結合を構成単位として有する化合物であり、鎖状または環状構造のいずれでもよいが、本発明では、環状ホスファゼン化合物が好ましい。
 なお、上記のリン原子は、5価のリン原子である。-P=N-結合は、結合部分のみを示したものであって、リン原子上の置換基を記載すると、-P(Rx)(Ry)=N-と表現される。ここで、RxおよびRyは水素原子または置換基を表す。
 本発明において、原料のフッ素化ホスファゼン化合物は、ホスファゼン化合物中のRx、Ryの少なくとも1つがフッ素原子である化合物であり、RxおよびRyの全てがフッ素原子であるものが好ましい。
 また、アミノ置換ホスファゼン化合物は、化合物中のRxおよびRyの少なくとも1つがアミノ基(無置換のアミノ基だけでなく、アルキルアミノ基、アリールアミノ基などの置換アミノ基も包含する)である化合物であり、本発明では、化合物中のRxおよびRyの1~3つがアミノ基であるものが好ましく、1または2つがアミノ基であるものがより好ましく、1つがアミノ基であるものが、特に好ましい。
<アミノ置換ホスファゼン化合物>
 アミノ置換ホスファゼン化合物は、環状ホスファゼン化合物が好ましい。
 本発明の製造方法で合成されるアミノ置換ホスファゼン化合物は、好ましくは下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Yは-NRを表す。Yはフッ素原子または-NRを表す。R~Rは各々独立に水素原子または置換基を表す。ここで、RとR、RとRが互いに結合して互いに結合して環を形成していてもよい。nは1または2を表す。
 式(1)のように、YおよびY以外の基がハロゲン原子の中でもフッ素原子であると、例えば、リチウムイオン電池の電解液の添加剤(難燃剤)として適用した際に、特に高い難燃性の付与、あるいは電池性能の維持に資するため、好ましい。
 本発明では、R、Rは少なくとも一方が置換基であるものが好ましく、両方が置換基であるものがより好ましい。このような置換基としては、後述の置換基Tが挙げられる。
 R、Rにおける置換基としては、アルキル基、アルケニル基、シクロアルキル基、アリール基、ヘテロ環基が好ましく、アルキル基、アルケニル基、シクロアルキル基、アリール基がより好ましく、アルキル基、シクロアルキル基、アリール基がさらに好ましく、アルキル基が特に好ましい。また、アルキル基の炭素数は1~12が好ましく、1~8がより好ましく、1~6がさら好ましく、1~4が特に好ましく、1~3がなかでも好ましく、1または2が最も好ましい。
 これらの各基はさらに置換基で置換されていてもよく、このような置換基としては、後述の置換基Tが挙げられる。ただし、本発明においては、無置換のものが好ましい。
 RとRの炭素数の合計は1~12が好ましく、1~6がより好ましく、2~4が特に好ましい。
 RとRは互いに結合して環を形成してもよく、形成される環としては、5または6員環が好ましく、1つの窒素原子以外に、環を構成する原子は、既に存在する1つの窒素原子以外にさらにヘテロ原子を有してもよく、例えば、酸素原子、硫黄原子または窒素原子が挙げられる。
 RとRが互いに結合して形成される環は、例えば、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環、4,4-ジオキシチオモルホリン環が挙げられる。
 R、RはR、Rと同義であり、好ましい範囲も同じである。
 nは、1または2を表し、1が特に好ましい。
 アミノ置換ホスファゼン化合物の好ましい具体例(1-1)~(1-3)を以下に示す。ただし、以下の化合物の例示により本発明はなんら制限を受けるものではない。
Figure JPOXMLDOC01-appb-C000008
 上記以外に、N-メチルアミノペンタフルオロシクロトリホスファゼン、N-エチルアミノペンタフルオロシクロトリホスファゼン、N-n-プロピルアミノペンタフルオロシクロトリホスファゼン、N-メチル-N-n-プロピルアミノペンタフルオロシクロトリホスファゼン、N-エチル-N-n-プロピルアミノペンタフルオロシクロトリホスファゼン、N,N-ジn-プロピルアミノペンタフルオロシクロトリホスファゼン、ピロリジン-1-イルペンタフルオロシクロトリホスファゼン、ピペラジン-1-イルペンタフルオロシクロトリホスファゼン、モルホリン-1-イルペンタフルオロシクロトリホスファゼン、1,3-ビス(N,N-ジメチルアミノ)テトラフルオロシクロトリホスファゼン、1,3-ビス(N,N-ジエチルアミノ)テトラフルオロシクロトリホスファゼン、N-エチルアミノヘプタフルオロシクロテトラホスファゼン、N,N-ジメチルアミノヘプタフルオロシクロテトラホスファゼン、N,N-ジエチルアミノヘプタフルオロシクロテトラホスファゼン、N-メチル-N-エチルアミノヘプタフルオロシクロテトラホスファゼン、N,N-ジエチルアミノヘプタフルオロシクロテトラホスファゼン、1,3-ビス(N,N-ジメチルアミノ)ヘキサフルオロシクロテトラホスファゼン、1,3-ビス(N,N-ジエチルアミノ)ヘキサフルオロシクロテトラホスファゼンが挙げられる。
 次に、本発明のアミノ置換ホスファゼン化合物の製造方法に使用する出発物質であるフッ素化ホスファゼン化合物およびアミン化合物について説明する。
<フッ素化ホスファゼン化合物>
 フッ素化ホスファゼン化合物として好ましい化合物は、下記式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、nは、1または2を表し、1が特に好ましい。
 このようなフッ素化ホスファゼン化合物は、ヘキサフルオロシクロトリホスファゼン、オクタフルオロシクロテトラホスファゼンである。
 フッ素化ホスファゼンは、市販品を用いてもよいし、例えば、Schmutzler,R.,Inorg.Synth.,9,75(1967)に記載の方法やこの文献を参照することで合成できる。
<アミン化合物>
 アミン化合物は、-NH-の部分構造を有するものであればどのような化合物でも構わないが、本発明では、好ましくは、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000010
 式(3)中、RおよびRは各々独立に水素原子または置換基を表す。
 ここで、R、Rは式(1)におけるR、Rと同義であり、好ましい範囲も同じである。
 アミン化合物の具体例としては、N-メチルアミン、N-エチルアミン、N,N-ジメチルアミン、N,N-ジエチルアミン、N-メチル-N-エチルアミン、N-メチル-N-n-プロピルアミン、N,N-ジ-n-プロピルアミン、ピロリジン、ピペリジン、N-メチルピペラジン、モルホリン、チオモルホリン、4,4-ジオキシチオモルホリンなどが挙げられる。これ以外に、アミノ置換ホスファゼン化合物の具体例で示したアミノ基に基づくアミン化合物が挙げられる。これらのなかでも、N,N-ジメチルアミン、N,N-ジエチルアミン、N-メチル-N-エチルアミンが特に好ましい。
<反応溶媒>
 反応溶媒としては、有機溶媒が好ましく、アミド溶媒、ニトリル溶媒、エーテル溶媒、エステル溶媒、炭酸エステル溶媒、ケトン溶媒、スルホキシド溶媒、尿素溶媒等が挙げられる。なかでもアミド溶媒、ニトリル溶媒、エステル溶媒、炭酸エステル溶媒がより好ましく、アミド溶媒、ニトリル溶媒がさらに好ましく、アミド溶媒が最も好ましい。
 アミド溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドまたはN-メチルピロリドン、N-エチルピロリドンなどが挙げられる。
 ニトリル溶媒としては、アセトニトリル、プロピオニトリルなどが挙げられる。
 エーテル溶媒としては、1,2-ジメトキシエタン、ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、ジオキサン、テトラヒドロフラン、アニソール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルまたはジエチレングリコールジエチルエーテルなどが挙げられる。
 エステル溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、またはγ-ブチロラクトン等が挙げられる。
 炭酸エステル溶媒としては、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-t-ブチルカーボネート、プロプレンカーボネート、などが挙げられる。
 ケトン溶媒としては、アセトン、2-ブタノンまたは4-メチル-2-ペンタノンなどが挙げられる。
 スルホキシド溶媒としては、ジメチルスルホキシド、スルホランなどが挙げられる。
 尿素溶媒としては、1,3-ジメチル-2-イミダゾリジノン(N,N-ジメチルイミダゾリジノン)が挙げられる。
 本発明に用いる反応溶媒は、親水性が好ましい。親水性の指標としてClogPを用いる。ClogPは、水溶液との相溶性が高い0.7以下が好ましい。0.6以下がより好ましく、0.5以下がさらに好ましく、0.4以下が特に好ましく、0.3以下が最も好ましい。
 下限は特に制限はないが、-1.0以上が現実的である。
 なかでも、本発明は、反応後に反応溶液の有機溶媒を水に溶解させ、除去することから親水性で、かつ水溶性の有機溶媒が好ましい。
 ここで、ClogPは計算によるLogPの推算値のClogPであり、本発明では、CLogP値は、CambridgeSoft社製ChemDraw Pro ver.12.0により計算された値である。
 なお、LogPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある化学物質が油(一般的に1-オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、次式で表される。
      LogP = Log(Coil/Cwater
 上記式において、Coilは油相中のモル濃度を表し、Cwaterは水相中のモル濃度を表す。LogPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増す。LogPは化学物質の水溶性と負の相関があり、親疎水性を見積るパラメータとして広く利用されている。
 このような反応溶媒として下記(4-1)~(4-10)が好ましい。各化合物の下にClogPを記載する。
Figure JPOXMLDOC01-appb-C000011
 なかでも、ジメチルアセトアミド(4-1)[ClogP:-0.802]、N-メチルピロリドン(4-2)[ClogP:-0.397]、N-エチルピロリドン(4-3)[ClogP:0.132]、アセトニトリル(4-4)[ClogP:-0.394]、プロピレンカーボネート(4-5)[ClogP:-0.383]、ジメトキシエタン(4-6)[ClogP:-0.044]、ジメチルカーボネート(4-7)[ClogP:0.102]がより好ましい。
 水溶液の層への移動のし易さの観点から、塩基性の反応溶媒がさらに好ましい。このような反応溶媒として、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、アセトニトリルが挙げられる。
 反応溶媒は1種のみを用いてもよく、2種以上を用いてもよい。
 ジメチルアセトアミド(沸点165℃)、N-メチルピロリドン(202℃)、N-エチルピロリドン(218℃)等の高沸点の反応溶媒を用いれば極性が高いため、触媒等の添加剤の溶解性もよく、アミノ置換ホスファゼン化合物の製造用反応溶媒として有用である。
<水溶液>
 水溶液のpHは7以下が好ましい。pH7以下とすることにより、親水性の反応溶媒との相溶性が良く、疎水性の生成物であるアミノ置換ホスファゼン化合物層との分離が良好となる。また、アミノ置換ホスファゼン化合物の、水またはOH等の求核種による分解を抑えることができる。
 pHは6.5以下がより好ましく、6以下が更に好ましく、5以下が特に好ましい。下限は0以上が好ましい。水溶液のpHが7を超えると、置換反応によって生成し沈殿させたフッ化水素とアミン化合物との塩が中和されて、再度有機溶媒に溶解するので、分離工程が複雑となるため好ましくない。
 本発明において、水溶液としては、例えば、塩酸、硫酸、リン酸、硝酸、シュウ酸、酢酸、ギ酸、フタル酸、クエン酸、酒石酸等の酸性水溶液、これらの塩の水溶液、または通常の水や蒸留水単体も用いることができる。酸としては、塩酸、リン酸がより好ましく、塩酸が特に好ましい。
 塩の水溶液を用いる場合は、水溶液のpHは7以下となる塩であり、陽イオンとしてはアンモニウムカチオン、マグネシウム、ナトリウム、またはカリウムなどが挙げられ、ナトリウムまたはカリウムが好ましい。これらの陽イオンは、エーテル系の反応溶媒と親和性が高く、反応溶媒が水溶液層に移動し易くなるため好ましい。例えば、塩化マグネシウム水溶液、塩化カリウム水溶液、リン酸二水素カリウム水溶液、リン酸水素二カリウム水溶液、リン酸二水素ナトリウム水溶液、リン酸水素二ナトリウム水溶液、シュウ酸一カリウム、酢酸ナトリウム等が挙げられる。また、上記に挙げた酸および塩を2種以上併用してもよい。
 酸性水溶液中の酸の濃度は、有機溶媒との混合を良好にする観点から、12N以下が好ましく、8N以下がより好ましく6N以下がさらに好ましく、4N以下が最も好ましい。
 なお、Nは規定度である。
 本発明における反応では、アミノ基の置換後に当量のフッ化水素(HF)が発生する。生成するフッ化水素を中和するために、塩基性化合物を添加してもよい。添加する塩基性化合物としては、有機、無機化合物があるが、有機塩基が特に好ましい。有機塩基としては、トリエチルアミン、ジイソプロピルエチルアミンなどが挙げられる。アミン置換反応の場合は、フッ素化ホスファゼン化合物と反応させる原料のアミン化合物を中和に用いてもよい。
<反応に使用するその他の化合物>
 本発明の製造方法において、上記以外に、反応の進行とともに生じるHFを中和するための塩基もしくは化合物、反応を促進するための触媒を使用してもよい。
(生じたHFを捕獲する塩基もしくは化合物)
 塩基としては、フッ素化ホスファゼン化合物と反応しない塩基が好ましく、有機もしくは無機の塩基のいずれでも構わない。
 このような塩基のうち、有機塩基としては、トリエチルアミン、N,N,N’,N’-テトラメチルもしくはエチルエチレンジアミン、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)のような第三級アミン化合物、ピリジンのような含窒素芳香族ヘテロ環化合物、テトラメチルヒドラジンのようなテトラアルキルヒドラジン化合物、ジアザビシクロウンデセン、ジアザシクロノネン、N,N-ジアルキルグアニジン、プロアザフォスファトラン(P(RzNCHCHN、ここでRzはアルキル基)のようなアトラン化合物などが挙げられる。
 無機塩基としては、アルカリ金属塩またはアルカリ土類金属塩が挙げられ、このうち炭酸塩もしくは炭酸水素塩が好ましく、例えば、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムが挙げられる。
 上記のうち、第三級アミン化合物、含窒素芳香族ヘテロ環化合物、ジアザビシクロウンデセン、ジアザシクロノネンが好ましい。
 一方、HFを捕獲する化合物としては、炭素-炭素不飽和結合(二重結合または三重結合)を有する化合物、ケイ素と酸素の結合を有する化合物が挙げられ、例えば、シクロペンテン、シクロヘキセン、プロピレン、2-メチルプロペン、スチレン、1-ヘキセン、ビシクロ[2,2,1]ヘプト-2-エン、1-プロピン、アセチレン、2-ブテン、フェニルアセチレンが挙げられる。
 生じたHFを捕獲する塩基もしくは化合物の使用量は、使用するフッ素化ホスファゼン化合物とアミン化合物の反応で生じる理論量に対して、等モル量~1.5モル量が好ましく、等モル量~1.2モル量がより好ましい。
 ここで、理論量とは、例えば、1モルのフッ素化ホスファゼンに1当量のアミノ基を導入する場合、1モルのHFが生成することから、この1モルのHFを意味する。なお、2当量のアミノ基を導入する場合は、2モルのHFが生成する。
(触媒)
 本発明の製造方法では、フッ素原子に対するアミン化合物の求核反応の反応収率を向上させるために、各種の触媒を使用することもできる。
 このような触媒としてはルイス酸が挙げられ、例えば、BFO(C、AlBr、AlCl、AlClF、ZnI、MgCl、LiCl、LiBr、SnCl、CuCl、FeCl、FeCl、ZnCl、シリルクロリド化合物、MnCl、CoCl、NiCl、ZrOCl、ZrCl、SrCl、InCl、HfOCl、GaCl、CAlCl、BiCl、TiCl、GeCl、SbCl、FeBr、VCl、MoCl、BCl、BBr3、Cu(OSOCF、Ln(OSOCF、Fe(SO、ZrCl、Zr(SO、ZnSO、Fe(NO、Ni(NO、Mg(OAc)、Fe(OAc)、Co(OAc)等が使用できる。
 また、本発明のアミノ置換ホスファゼン化合物の製造方法には、その合成反応に特定元素Mと酸素原子とを構造中に有する化合物からなる触媒を用いてもよい。このような触媒として酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化ジルコニウム、酸化バナジウム、酸化リチウム、酸化カルシウム、Zr=O(OH)、酸化モリブデン、酸化ケイ素、および酸化ホウ素からなる群から選ばれる少なくとも一種が好ましい。
 触媒の使用量は、原料のフッ素化ホスファゼン化合物1モルに対して0.01~5モルが好ましく、0.01~3モルがより好ましく、0.05~3モルがさらに好ましく、0.25~1モルが特に好ましい。
<その他の反応条件>
 アミン化合物の使用量は、製造するアミン置換ホスファゼン化合物のアミン置換数により異なる。アミノ基を1個(1当量)導入するのに必要なアミン化合物の使用量は、1モルのアミン化合物が必要であり、通常は、1~1.3モル使用される。ただし、反応進行とともにHFが生じることから、生じたHFを捕獲する塩基もしくは化合物を使用しない場合、原料として使用するアミン化合物が、HFを捕獲し、アミン化合物のHF塩となる。このため、この部分を考慮すると、アミン化合物は、2~2.5モルが好ましく、2~2.3モルがより好ましく、2モルがさらに好ましい。
 なお、アミノ基を2個(2当量)導入する場合は、アミン化合物は、4~5モルが好ましく、4~4.5モルがより好ましく、4モルがさらに好ましい。
 アミン化合物が、気体の場合、アミン化合物のガスを反応液に導入してもよく、また、本発明の有機溶媒に溶解された溶液を使用してもよい。
 アミン化合物のガスを反応液に導入する場合の導入速度は、反応スケールに応じて適宜調整することが好ましい。
 反応は、反応容器に、原料のフッ素化ホスファゼン化合物およびアミン化合物のいずれか一方を有機溶媒と混合して加え、他方を滴下もしくはガス導入で、徐々に加えるのが好ましい。ただし、HFを捕獲する塩もしくは化合物、触媒を使用する場合は、これらを最初から反応容器に加えておくのが好ましい。
 一方の原料に、他方の原料を加える際の反応温度は、-30~50℃が好ましく、-30~30℃がより好ましく、原料を加えた後の反応温度は、-10~100℃が好ましく、-10~50℃がより好ましい。
 反応時間は、24時間以内が好ましく、10時間以内がより好ましく、5時間以内がさらに好ましく、3時間以内が特に好ましい。
 反応終了後、反応容器中の反応溶液と水溶液を混合する。反応に使用する有機溶媒(反応溶媒)は親水性であるため、水溶液に溶解する。このため、疎水性を示すアミノ置換ホスファゼン化合物は、反応に使用した有機溶媒から分離し、アミノ置換ホスファゼン化合物のみが、水溶液と反応溶媒との混合層(以下、単に混合層と記載する場合がある)と相分離を起こす。アミノ置換ホスファゼン化合物の比重(1.5程度)は、混合層の比重より大きいため、混合層の下方に分離する。
 単離する方法としては、下部に取り出しコックを有する反応容器を用いて反応させ、反応後ここからアミノ置換ホスファゼン化合物を取り出す方法、あるいは反応後の反応溶液をフェーズセパレータなどの液液抽出用カラムに移して分離する方法等が挙げられる。
 なお、反応後の反応溶液と水溶液との混合は、反応溶液に水溶液を加えることにより行っても良いし、水溶液に反応後の反応溶液を加えることにより行っても良く、いずれの方法であっても問題ない。
 水溶液を加えて相分離させる時の、反応後の反応溶液および混合層の温度は、相分離を良好に行うため、および、得られたアミノ置換ホスファゼン化合物が加水分解等の分解をできる限り抑えるため、30℃未満が好ましく、20℃以下がより好ましく、10℃以下がさらに好ましい。30℃を超えると加水分解が生じやすくなるので好ましくない。
 なお、下限は特に限定されないが、-30℃以上が好ましく、-10℃以上がより好ましい。
 本発明では、反応溶媒を除去するための蒸留工程が必要ないため、生産性が向上する。
 反応後、アミノ置換ホスファゼン化合物は撥水性の高いフッ素原子を複数有する化合物であり、水分は含まれていないと考えられるが、より高純度とするため、無水硫酸マグネシウムなどの脱水剤を紛体で加え、一定時間放置後無水硫酸マグネシウムを除去する工程やブライン飽和水を添加して水分を除去する工程を設けてもよい。
 また、反応液中に不溶物(例えばアミン化合物のHF塩など)が生じた場合、この不溶物を濾過して取り除いてから、水溶液を添加してアミン置換ホスファゼン化合物を単離するのが好ましい。
 単離したアミノ置換ホスファゼン化合物は実質的に有機溶媒を含んでいないが、未反応の原料であるフッ素化ホスファゼン化合物や目的とする置換数以上に置換したアミノ置換ホスファゼン化合物を分離するため、本発明では、蒸留工程を設けて精製するのが好ましい。これにより、さらに高純度にすることができる。蒸留は、常圧、すなわち、大気下で蒸留しても構わないが、生産性の観点で、減圧蒸留するのが好ましい。
 圧力は、得られるアミノ置換ホスファゼン化合物の沸点にもよるが、500mmHg以下が好ましく、300mmHg以下がより好ましい。減圧しすぎると、精製効率が低下するため、圧力の下限は、3mmHg以上が好ましい。
 本発明の製造方法で得られるアミノ置換フッ素化ホスファゼンは様々な用途に用いることができる。例えば、各種電気機器や工業製品に適用される樹脂、電解液、潤滑剤、塗料等の難燃剤として適用することができる。あるいは、殺虫剤として利用することもできる(独国公開特許公報第2139691号明細書等参照)。特に本発明の製造方法で得られたアミノ置換ホスファゼン化合物は、高純度であるため、リチウム二次電池の非水電解液に難燃剤として好適に用いることができ、高品質な非水二次電池を得ることができる。
 本明細書において、特段の断りがない限り、置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブチンジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシ基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、各基は、上記の置換基Tでさらに置換されていてもよい。例えば、アルキル基にアリール基が置換されたアラルキル基などである。
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基等を含む場合、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
<非水二次電池用電解液>
(電解質)
 本発明にかかる非水二次電池には、非水二次電池用の電解液が適用される。電解液に用いる電解質は周期律表第1族または第2族に属する金属イオンの塩であることが好ましい。その材料は電解液の使用目的により適宜選択される。例えば、リチウム塩、カリウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩などが挙げられ、二次電池などに使用される場合には、出力の観点からリチウム塩が好ましい。本発明の製造方法で製造したアミノ置換ホスファゼン化合物をリチウム二次電池用非水電解液として用いる場合には、金属イオンの塩としてリチウム塩を選択することが好ましい。リチウム塩としては、リチウム二次電池用非水電解液の電解質に通常用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
 (L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。
 (L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。
 (L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウム塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
 電解液における電解質(好ましくは周期律表第1族または第2族に属する金属のイオンもしくはその金属塩)は、以下に電解液の調製法で述べる好ましい塩濃度となるような量で添加されることが好ましい。塩濃度は電解液の使用目的により適宜選択されるが、一般的には電解液全質量中に10質量%~50質量%であり、好ましくは15質量%~30質量%である。モル濃度としては0.5mol/L~1.5mol/Lが好ましい。なお、イオンの濃度として評価するときには、その好適に適用される金属との塩換算で算定されればよい。
(非水溶剤)
 本実施形態の電解液に用いられる非水溶剤としては、非プロトン性有機溶媒であることが好ましく、なかでも炭素数2~10の非プロトン性有機溶媒であることが好ましい。
 このような非水溶剤としては、カーボネート化合物、ラクトン化合物、鎖状もしくは環状のエーテル化合物、エステル化合物、ニトリル化合物、アミド化合物、オキサゾリジノン化合物、ニトロ化合物、鎖状または環状のスルホンもしくはスルホキシド化合物、リン酸エステルが挙げられる。
 なお、好ましい結合で示せば、エーテル結合、カルボニル結合、エステル結合またはカーボネート結合を有する化合物が好ましい。これらの化合物は置換基を有していてもよく、例えば置換基Tが挙げられる。
 非水溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、γ-ブチロラクトン、γ-バレロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、リン酸トリメチル、ジメチルスルホキシドあるいはジメチルスルホキシドリン酸などが挙げられる。これらは、一種単独で用いても2種以上を併用してもよい。中でも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネート、γ-ブチロラクトンからなる群のうちの少なくとも1種が好ましく、特に、エチレンカーボネートあるいはプロピレンカーボネートなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)とジメチルカーボネート、エチルメチルカーボネートあるいはジエチルカーボネートなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 しかしながら、本発明に用いられる非水溶剤は、上記例示によって限定されるものではない。
(機能性添加剤)
 電解液には、難燃性の向上、サイクル特性の良化、容量特性の改善などのため、各種の機能性添加剤を含有させることが好ましい。
 また、電解液には、上記のものを始め、負極被膜形成剤、難燃剤、過充電防止剤等から選ばれる少なくとも1種を含有していてもよい。非水電解液中におけるこれら機能性添加剤の含有割合は特に限定はなく、非水電解液全体(電解質を含む)に対し、それぞれ、0.001質量%~10質量%が好ましい。これらの化合物を添加することにより、過充電による異常時に電池の破裂を抑制する、および高温保存後の容量維持特性やサイクル特性を向上することができる。
<<非水二次電池用電解液の製造方法>>
 本発明の非水二次電池用電解液の製造方法は、上記アミノ置換ホスファゼン化合物の製造方法を経由して、これを含有する非水二次電池用電解液を調製することにより実施することができる。具体的には、例えば、金属イオンの塩としてリチウム塩を用いた例を含め、上記各成分を上記非水電解液溶媒に溶解して、常法により調製される。
 本発明において、「非水」とは水を実質的に含まないことをいい、発明の効果を妨げない範囲であれば微量の水を含んでいてもよい。ここで、実質的に含まないとは、水の濃度が200ppm(質量基準)以下であり、100ppm以下が好ましく20ppm以下がより好ましい。なお、現実的には、完全に無水とすることは困難であり、1ppm以上は含まれる。
<非水二次電池>
 本発明の非水二次電池の製造方法は、上記非水二次電池用電解液の製造方法を経由して、正極と負極と上記非水二次電池用電解液とを具備する電池を作製することで実施することができる。
 本発明にかかる好ましい実施形態のリチウムイオン二次電池は、上記本発明の非水二次電池用電解液と、リチウムイオンの挿入放出が可能な正極(正極集電体,正極活物質層)と、リチウムイオンの挿入放出または溶解析出が可能な負極(負極集電体,負極活物質層)とを備える。これら必須の部材に加え、電池が使用される目的、電位の形状などを考慮し、正極と負極の間に配設されるセパレータ、集電端子、および外装ケース等を含んで構成されてもよい。必要に応じて、電池の内部及び電池の外部の少なくともいずれかに保護素子を装着してもよい。このような構造とすることにより、電解液内でリチウムイオンの授受が生じ、充電、放電を行うことができ、回路配線を介して動作機構を介して運転あるいは蓄電を行うことができる。以下、これらの各部材について述べる。
(電極合材)
 電極合材は、集電体(電極基材)上に活物質と導電剤、結着剤、フィラーなどの分散物を塗布したものであり、リチウム電池においては、活物質が正極活物質である正極合材と活物質が負極活物質である負極合材が使用されることが好ましい。次に、電極合材を構成する分散物(電極用組成物)中の各成分等について説明する。
・正極活物質
 正極活物質にはリチウム含有遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1族の元素、第2族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。この、リチウム含有遷移金属酸化物としては、例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、上記特定遷移金属酸化物を用いることが好ましい。
 リチウム含有遷移金属酸化物としては、上記遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物は、中でも下式で表されるものが好ましい。
  Li     ・・・ (MA)
 式中、Mは上記Mと同義である。aは0~1.2の数を表し、0.1~1.15が好ましく、0.6~1.1がより好ましい。bは1~3の数を表し、2が好ましい。Mの一部は上記混合元素Mで置換されていてもよい。上記式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。
 本遷移金属酸化物は下記の各式で表されるものがより好ましい。
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
 式(MA-1)~(MA-7)において、gは上記aと同義であり、好ましい範囲も同じである。jは0.1~0.9の数を表す。iは0~1の数を表す。ただし、1-j-iは0以上である。kは上記bと同義であり、好ましい範囲も同じである。
 式(MA-1)~(MA-7)で表される遷移金属化合物の具体例としては、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.01Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z≧0.05,x+y+z=1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
  Li     ・・・ (MB)
 式中、Mは上記Mと同義である。cは0~2の数を表し、0.6~1.5が好ましく、0.8~1.2がより好ましい。dは3~5の数を表し、3.8~4.2が好ましく、3.9~4.1がより好ましい。
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものがより好ましい。
 (MB-1)  LiMn
 (MB-2)  LiMnAl2-p
 (MB-3)  LiMnNi2-p
 式(MB-1)~(MB-3)において、mはcと同義であり、好ましい範囲も同じである。nはdと同義であり、好ましい範囲も同じである。pは0~2の数を表す。上記遷移金属化合物の具体例としては、LiMn、LiMn1.5Ni0.5が挙げられる。
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
 高容量、高出力の観点で上記のうちNiを含む電極がさらに好ましい。
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものがより好ましい。
  Li(PO ・・・ (MC)
 式中、eは0~2の数を表し、0.5~1.5が好ましく、0.8~1.2がより好ましい。fは1~5の数を表し、1~2が好ましい。
 上記MはV、Ti、Cr、Mn、Fe、Co、NiおよびCuから選択される一種以上の元素を表す。上記Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す上記a、c、g、m、e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。上記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
 なかでも本発明においては、Niおよび/またはMn原子を含有する正極活物質を用いることが好ましく、NiおよびMn原子両方を含有する正極活物質を用いることがより好ましい。
 特に好ましい正極活物質の具体例としては下記が挙げられる。
  LiNi0.33Co0.33Mn0.33
  LiNi0.6Co0.2Mn0.2
  LiNi0.5Co0.3Mn0.2
  LiNi0.5Mn0.5
  LiNi0.5Mn1.5
 これらは高電位で使用できるため電池容量を大きくすることができ、また高電位で使用しても容量維持率が高いため、特に好ましい。
 非水二次電池において、用いられる正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。比表面積としては特に限定されないが、BET法で0.01m/g~50m/gが好ましい。また、正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHは、7以上12以下が好ましい。
 正極活物質を所定の粒子サイズにするには、良く知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、振動ボールミル、振動ミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが用いられる。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤で洗浄した後に使用してもよい。
 正極活物質の配合量は特に限定されないが、活物質層を構成するための分散物(合剤)中、固形成分100質量%において、60~98質量%が好ましく、70~95質量%がより好ましい。
・負極活物質
 負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものが好ましく、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、および、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。
 これらは、1種を単独で用いても、2種以上を任意の組み合わせおよび比率で併用しても良い。なかでも炭素質材料またはリチウム複合酸化物が信頼性の点から好ましく用いられる。
 また、金属複合酸化物としては、リチウムを吸蔵、放出可能であるものが好ましく、構成成分としてチタンおよび/またはリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、およびポリアクリロニトリル系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、ポリアクリロニトリル系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水ポリビニルアルコール系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載されているような面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報に記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報に記載の被覆層を有する黒鉛等を用いることもできる。
 本発明の非水二次電池において用いられる負極活物質である金属酸化物および金属複合酸化物は、これらの少なくとも1種を含んでいることが好ましい。金属酸化物および金属複合酸化物は、なかでも非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線のうち最も強い強度は、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下が好ましく、5倍以下がより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物およびカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物およびカルコゲナイドがより好ましく、周期律表第13族~15族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、およびカルコゲナイドが特に好ましい。好ましい非晶質酸化物およびカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物(例えば、LiSnO)であってもよい。
 上記負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオンまたはリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。
 電極合材をなす分散物(合剤)中、負極活物質の配合量は特に限定されないが、固形成分100質量%において、60~98質量%が好ましく、70~95質量%がより好ましい。
・導電材
 導電材は、構成された二次電池において、化学変化を起こさない電子伝導性材料が好ましく、公知の導電材を任意に用いることができる。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や金属粉(銅、ニッケル、アルミニウム、銀(特開昭63-148554号公報等に記載)、金属繊維あるいはポリフェニレン誘導体(特開昭59-20971号公報に記載)などの導電性材料を1種またはこれらの混合物として含ませることができる。その中でも、黒鉛とアセチレンブラックの併用が特に好ましい。上記導電材の添加量は、1~50質量%が好ましく、2~30質量%がより好ましい。カーボンや黒鉛の場合は、2~15質量%が特に好ましい。
・結着剤
 結着剤としては、多糖類、熱可塑性樹脂およびゴム弾性を有するポリマーなどが挙げられる。その中でも、例えば、デンプン、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリロニトリル、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン-マレイン酸共重合体等の水溶性ポリマー、ポリビニルクロライド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル-アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンが好ましく、ポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンがより好ましい。
 結着剤は、一種単独または二種以上を混合して用いることができる。結着剤の添加量が少ないと、電極合剤の保持力・凝集力が弱くなる。多すぎると電極体積が増加し電極単位体積あるいは単位質量あたりの容量が減少する。このような理由で結着剤の添加量は1~30質量%が好ましく、2~10質量%がより好ましい。
・フィラー
 電極合材は、フィラーを含んでいてもよい。フィラーを形成する材料は、本発明の二次電池において、化学変化を起こさない繊維状材料が好ましい。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの材料からなる繊維状のフィラーが用いられる。フィラーの添加量は特に限定されないが、分散物中、0~30質量%が好ましい。
・集電体
 正・負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましい。
 負極の集電体としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
 上記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。上記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 これらの材料から適宜選択した部材によりリチウム二次電池の電極合材が形成される。
(セパレータ)
 非水二次電池に用いられるセパレータは、正極と負極を電子的に絶縁する機械的強度、イオン透過性、及び正極と負極の接触面で酸化・還元耐性のある材料で構成されていることが好ましい。このような材料として多孔質のポリマー材料や無機材料、有機無機ハイブリッド材料、あるいはガラス繊維などが用いられる。これらセパレータは信頼性確保のためのシャットダウン機能、すなわち、80℃以上で隙間を閉塞して抵抗を上げ、電流を遮断する機能を持つことが好ましく、閉塞温度は90℃以上、180℃以下であることが好ましい。
 上記セパレータの孔の形状は、通常は円形や楕円形で、大きさは0.05μm~30μmであり、0.1μm~20μmが好ましい。さらに延伸法、相分離法で作った場合のように、棒状や不定形の孔であってもよい。これらの隙間の占める比率すなわち気孔率は、20%~90%であり、35%~80%が好ましい。
 上記ポリマー材料としては、セルロース不織布、ポリエチレン、ポリプロピレンなどの単一の材料を用いたものでも、2種以上の複合化材料を用いたものであってもよい。孔径、気孔率や孔の閉塞温度などを変えた2種以上の微多孔フィルムを積層したものが、好ましい。
 上記無機材料としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状もしくは繊維形状のものが用いられる。形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01μm~1μm、厚さが5μm~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、上記無機物の粒子を含有する複合多孔層を樹脂製の結着剤を用いて正極および/または負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子をフッ素樹脂の結着剤を用いて多孔層として形成させることが挙げられる。
<<非水二次電池の製造方法>>
 本発明の非水二次電池の製造方法は、本発明の非水二次電池用電解液の製造方法を経由して、正極と負極と非水二次電池用電解液とを具備する非水二次電池を作製する。
 例えば、正極活物質合剤および負極活物質合剤を、それぞれ集電体上に、塗布(コート)、乾燥、および圧縮して正極および負極を得る工程と、セパレータを正極および負極の間に介在させるとともに、これらを電池ケースに収容する工程と、本発明の非水二次電池用電解液の製造方法により製造された非水電解液を電池ケースに収容する工程と、電池ケースを封口する工程と、で作製することができる。非水二次電池の形状としては、シート状、角型、シリンダー状などが挙げられ、本発明の非水二次電池の製造方法はいずれの形にも適用できる。
 以下に、本発明を実施例により詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
<実施例1>
 下部に取り出しコックを有する300ml容の3つ口フラスコに、N-メチルピロリドン30ml、ヘキサフルオロシクロトリホスファゼン20.0g(80mmol)を添加し、氷/メタノール寒剤浴で-10℃~0℃に保ちながら、ジメチルアミンガス7.21g(160mmol)(Aldrich社製)を0.3g/minの速度でバブリングした。その後、0℃の反応液に1N HCl 100mlを加え、下層に分離した化合物(1-1)を、コックを開いて分取し、粗体を得た。次に、粗体を120mmHg、61℃で蒸留精製を行い、無色透明の化合物(1-1)を11.88g得た。収率は54%であった。蒸留精製前の溶媒残存量をガスクロマトグラフィーで確認したところ、反応溶媒は検出されなかった。さらに蒸留精製後も溶媒残存量は検出されなかった。
 得られた化合物(1-1)のH-NMR、19F-NMRスペクトルを図1および図2に示す。得られた化合物(1-1)は、ヘキサフルオロシクロトリホスファゼンの1つのフッ素原子がジメチルアミノ基に置換された1置換体であった。
<実施例2>
 下部に取り出しコックを有する300ml容の3つ口フラスコに、ジメチルアセトアミド35ml、ヘキサフルオロシクロトリホスファゼン20.0g(80mmol)を添加し、氷/メタノール寒剤浴で-10℃~0℃に保ちながら、ジメチルアミンガス7.21g(160mmol)(Aldrich社製)を0.3g/minの速度でバブリングした。その後、0℃の反応液に1N HCl 150mlを加え、下層に分離した化合物(1-1)を、コックを開いて分取し、粗体を得た。次に、粗体を120mmHg、60℃で蒸留精製を行い、無色透明の化合物(1-1)を11.23g得た。収率は51%であった。蒸留精製前の溶媒残存量をガスクロマトグラフィーで確認したところ、反応溶媒は検出されなかった。さらに蒸留精製後も溶媒残存量は検出されなかった。
<実施例3>
 下部に取り出しコックを有する300ml容の3つ口フラスコに、N,N-ジメチルイミダゾリジノン30ml、ヘキサフルオロシクロトリホスファゼン20.0g(80mmol)を添加し、水浴で10℃~20℃に保ちながら、メチルエチルアミン9.46g(160mmol)(Aldrich社製)を10分かけて滴下した。その後、10℃の反応液に2N HCl 150mlを加え、下層に分離した化合物(1-2)を、コックを開いて分取し、粗体を得た。次に、粗体を120mmHg、65~69℃で蒸留精製を行い、無色透明の化合物(1-2)を12.22g得た。収率は53%であった。蒸留精製前の溶媒残存量をガスクロマトグラフィーで確認したところ、反応溶媒は検出されなかった。さらに蒸留精製後も溶媒残存量は検出されなかった。
<実施例4>
 下部に取り出しコックを有する300ml容の3つ口フラスコに、N-メチルピロリドン30ml、ヘキサフルオロシクロトリホスファゼン20.0g(80mmol)を添加し、氷水浴で0℃~10℃に保ちながら、ジエチルアミン11.70g(160mmol)(Aldrich社製)を10分かけて滴下した。その後、10℃の反応液に1N HCl 150mlを加え、下層に分離した化合物(1-3)を、コックを開いて分取し、粗体を得た。次に、粗体を10mmHg、50~55℃で蒸留精製を行い、無色透明の化合物(1-3)を12.06g得た。収率は50%であった。蒸留精製前の溶媒残存量をガスクロマトグラフィーで確認したところ、反応溶媒は検出されなかった。さらに蒸留精製後も溶媒残存量は検出されなかった。
<実施例5>
 下部に取り出しコックを有する300ml容の3つ口フラスコに、ジメトキシエタン30ml、ヘキサフルオロシクロトリホスファゼン20.0g(80mmol)を添加し、氷/メタノール寒剤浴で-10℃~0℃に保ちながら、ジメチルアミンガス7.21g(160mmol)(Aldrich社製)を0.3g/minの速度でバブリングした。その後、0℃の反応液に0.5mol/l KCl 100mlを加え、下層に分離した化合物(1-1)を、コックを開いて分取し、粗体を得た。次に、粗体を120mmHg、61℃で蒸留精製を行い、無色透明の化合物(1-1)を11.43g得た。収率は52%であった。蒸留精製前の溶媒残存量をガスクロマトグラフィーで確認したところ、2質量%検出された。その後蒸留精製すると、溶媒残存量は検出されなかった。
<実施例6>
 下部に取り出しコックを有する300ml容の3つ口フラスコに、アセトニトリル30ml、ヘキサフルオロシクロトリホスファゼン20.0g(80mmol)を添加し、氷水浴で0℃~10℃に保ちながら、ジエチルアミン11.70g(160mmol)(Aldrich社製)を10分かけて滴下した。その後、10℃の反応液に1N HCl 150mlを加え、下層に分離した化合物(1-3)を、コックを開いて分取し、粗体を得た。次に、粗体を10mmHg、50~55℃で蒸留精製を行い、無色透明の化合物(1-3)を13.26g得た。収率は55%であった。蒸留精製前の溶媒残存量をガスクロマトグラフィーで確認したところ、4質量%検出された。その後蒸留精製すると、溶媒残存量は検出されなかった。
<比較例1>
 300mlの3つ口フラスコに、ジエチルエーテル79ml、ヘキサフルオロシクロトリホスファゼン15.66g(63mmol)を添加し、反応溶液にジメチルアミン溶液(2M in THF、アルドリッチ社製)63ml(126mmol)を0℃で1時間かけて滴下した。その後、反応液を室温で一晩(16時間)攪拌した。溶液から沈殿物を分離後、ジエチルエーテル50mlで洗浄した。次に120mmHg、30℃で2時間かけて反応溶媒を減圧留去した。残留物を30mlフラスコに移動した後、さらに120mmHg、59℃で蒸留精製を行い、無色透明の化合物(1-1)を7.77g得た。収率は45%であった。また、溶媒残存量をガスクロマトグラフィーで確認したところ、14質量%のTHFを含有していた。その後蒸留精製すると、溶媒残存量が4質量%検出された。表1における蒸留精製前溶媒残存量は、反応溶媒を減圧留去し、減圧濃縮した時点の溶媒残存量を示す。
Figure JPOXMLDOC01-appb-T000012
<表中の略称>
HFP:ヘキサフルオロシクロトリホスファゼン
DMA:ジメチルアミン
MEA:メチルエチルアミン
DEA:ジエチルアミン
NMP:N-メチルピロリドン
DMAc:ジメチルアセトアミド
DME:ジメトキシエタン
AN:アセトニトリル
DMAc:ジメチルアセトアミド
DMI:N,N-ジメチルイミダゾリジノン
EtO:ジエチルエーテル
THF:テトラヒドロフラン
 なお、収率は、原料のヘキサフルオロシクロトリホスファゼンを基準にした単離収率である。
 溶媒残存量(質量%)とは、単離した化合物中に含まれる有機溶媒量であり、以下の式で表される。
 溶媒残存量(質量%)=[有機溶媒の総質量/単離した化合物を測定用に採取した質量)×100]
(溶媒残存量の測定)
 単離した化合物中に含まれる有機溶媒量は、次のようにして測定した。化合物(1-1)~(1-3)を、ガスクロマトグラフィー(GC-2010,SHIMADZU)を用いて分析し、残留溶媒を定量することより行った。本実施例では、分析時の測定条件は、以下の条件である。
 カラム: DB-5(30m×0.25mm×0.25μm)
 検出器: TCD(Thermal Conductivity Detector:熱伝導検出器)
 電流:80mA
 注入量:1~5μl
 キャリアガス:He 1ml/min
 チャートスピード:5mm/min
 カラム温度:35℃→280℃(10℃/min)
 Injection Temp:280℃
 表1からわかるように、実施例1~6は、溶媒蒸留する工程がないため、共沸の問題もなく、2相分離した直後のアミノ置換ホスファゼン化合物に含まれる蒸留精製前での溶媒残存量は4質量%以下であり、なかでも実施例1~4はいずれも0質量%であった。蒸留精製した後も、溶媒残存量は0質量%と良好な結果を得た。なお、実施例1~6では、反応後の反応溶液に水溶液を加えた際、反応溶媒と水溶液が均一に混合し、この混合相と、実質アミノ置換ホスファゼン化合物のみの相の分離が容易であった。これは、ClogPが0.7以下の反応溶媒を使用したことで、実質アミノ置換ホスファゼン化合物のみの相分離が可能となり、蒸留精製前溶媒残存量が少なかったと思われる。
 一方、反応後の反応溶液に水溶液を加えて相分離する工程を行わない比較例1では、蒸留精製前溶媒残存量が14質量%と多く、蒸留精製後でも溶媒残存量が4質量%であった。なお、比較例1では、ClogPが0.7以上の反応溶媒を含むことから、反応溶液に水溶液を加えても、実質アミノ置換ホスファゼン化合物のみの相としてアミノ置換ホスファゼン化合物を取り出すことは困難である。
 このように、本発明では、分離工程および蒸留精製工程のみであり、比較例1のような濃縮工程が必要なく、大幅な製造工程の簡略化および時間短縮が可能である。
(非水二次電池の評価)
 国際公開2013/047342号パンフレットにおける実施例1の試験No.116において、使用されている化合物(1-1)を、本発明の実施例1、実施例2および比較例1で得られた化合物(1-1)に置き換えた以外は、国際公開第2013/047342号パンフレットに記載の試験No.116と同様にして、試験No.116A、116B(それぞれ本発明の実施例1、実施例2で得られた化合物(1-1)を使用した)および試験No.116C(本発明の比較例1で得られた化合物(1-1)を使用した)を作製し、国際公開2013/047342号パンフレットの実施例1と同様の評価を行った。この結果、試験No.116Cと比較し、試験No.116Aおよび116Bは、難燃性、サイクル特性、およびRate特性のいずれも優れていることを確認した。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年9月29日に日本国で特許出願された特願2014-199363に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (10)

  1.  フッ素化ホスファゼン化合物とアミン化合物とを反応溶媒中で反応させて該フッ素化ホスファゼン化合物のフッ素原子の少なくとも1つをアミン化合物で置換する工程と、
     前記反応後の反応溶液と水溶液を混合して、前記アミノ置換ホスファゼン化合物の相、および前記水溶液と前記反応溶媒との混合液の相に分離させる工程と、
     前記分離した前記アミノ置換ホスファゼン化合物を単離する工程と、
    を有するアミノ置換ホスファゼン化合物の製造方法。
  2.  前記アミノ置換ホスファゼン化合物が、下記式(1)で表される請求項1に記載のアミノ置換ホスファゼン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Yは-NRを表す。Yはフッ素原子または-NRを表す。R~Rは各々独立に水素原子または置換基を表す。ここで、RとR、RとRが互いに結合して環を形成していてもよい。nは1または2を表す。
  3.  前記フッ素化ホスファゼン化合物が、下記式(2)で表される請求項1または2に記載のアミノ置換ホスファゼン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、nは1または2を表す。
  4.  前記反応溶媒のClogPが、0.7以下である請求項1~3のいずれか1項に記載のアミノ置換ホスファゼン化合物の製造方法。
  5.  前記反応溶媒が、アミド溶媒、ニトリル溶媒、エステル溶媒、炭酸エステル溶媒、またはエーテル溶媒の少なくとも1種である請求項1~4のいずれか1項に記載のアミノ置換ホスファゼン化合物の製造方法。
  6.  前記反応溶媒が、下記化合物群から選ばれる少なくとも1つである請求項1~5のいずれか1項に記載のアミノ置換ホスファゼン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
  7.  前記水溶液のpHが7以下である請求項1~6のいずれか1項に記載のアミノ置換ホスファゼン化合物の製造方法。
  8.  前記アミン化合物の総炭素数が1~12である請求項1~7のいずれか1項に記載のアミノ置換ホスファゼン化合物の製造方法。
  9.  請求項1~8のいずれか1項に記載のアミノ置換ホスファゼン化合物の製造方法を経由して、前記アミノ置換ホスファゼン化合物を含有する非水二次電池用電解液を調製する非水二次電池用電解液の製造方法。
  10.  請求項9に記載の非水二次電池用電解液の製造方法を経由して、正極と負極と前記非水二次電池用電解液とを具備する非水二次電池を作製する非水二次電池の製造方法。
PCT/JP2015/077096 2014-09-29 2015-09-25 アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法 WO2016052329A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551969A JP6292730B2 (ja) 2014-09-29 2015-09-25 アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199363 2014-09-29
JP2014199363 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052329A1 true WO2016052329A1 (ja) 2016-04-07

Family

ID=55630367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077096 WO2016052329A1 (ja) 2014-09-29 2015-09-25 アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法

Country Status (2)

Country Link
JP (1) JP6292730B2 (ja)
WO (1) WO2016052329A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636851A (zh) * 2022-09-13 2023-01-24 云南云天化股份有限公司 一种单烷氧基取代的五氟环三磷腈的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1388430A (en) * 1971-08-07 1975-03-26 Basf Ag Pesticidal substituted fluorophosphazenes
JP2012136451A (ja) * 2010-12-25 2012-07-19 Miki Riken Kogyo Kk アミノホスファゼンの精製方法およびその精製方法によって得られるアミノホスファゼンならびにそのアミノホスファゼンを用いた繊維の難燃加工方法および難燃加工繊維
JP2013235830A (ja) * 2012-05-04 2013-11-21 Samsung Sdi Co Ltd リチウム二次電池用電解液およびこれを含むリチウム二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1388430A (en) * 1971-08-07 1975-03-26 Basf Ag Pesticidal substituted fluorophosphazenes
JP2012136451A (ja) * 2010-12-25 2012-07-19 Miki Riken Kogyo Kk アミノホスファゼンの精製方法およびその精製方法によって得られるアミノホスファゼンならびにそのアミノホスファゼンを用いた繊維の難燃加工方法および難燃加工繊維
JP2013235830A (ja) * 2012-05-04 2013-11-21 Samsung Sdi Co Ltd リチウム二次電池用電解液およびこれを含むリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EVANS, T. L. ET AL.: "The partial aminolysis of (NPF2)3,4", INORGANIC CHEMISTRY, vol. 18, no. 9, 1979, pages 2342 - 2344 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636851A (zh) * 2022-09-13 2023-01-24 云南云天化股份有限公司 一种单烷氧基取代的五氟环三磷腈的制备方法
CN115636851B (zh) * 2022-09-13 2024-06-04 云南云天化股份有限公司 一种单烷氧基取代的五氟环三磷腈的制备方法

Also Published As

Publication number Publication date
JP6292730B2 (ja) 2018-03-14
JPWO2016052329A1 (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
CN110520431B (zh) 磷酰亚胺盐的制造方法、包含该盐的非水电解液的制造方法和非水二次电池的制造方法
KR102498193B1 (ko) 비수전해액 전지용 전해액 및 그것을 이용한 비수전해액 전지
KR20200094782A (ko) 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지
WO2016002774A1 (ja) イオン性錯体、非水電解液電池用電解液、非水電解液電池及びイオン性錯体の合成法
JP2019106362A (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
EP3165528A1 (en) Ionic complex, electrolyte for nonaqueous electrolyte battery, nonaqueous electrolyte battery and ionic complex synthesis method
WO2019117101A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6130637B2 (ja) 非水二次電池用電解液及び二次電池
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP6292727B2 (ja) アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法
WO2015016187A1 (ja) 非水二次電池用電解液および非水二次電池
WO2015098624A1 (ja) 環状スルホン酸エステル化合物、非水電解液、これを用いたリチウムイオン二次電池
JP2014235986A (ja) 非水二次電池用電解液および非水二次電池
US10461367B2 (en) Manufacturing method for amino-substituted phosphazene compound, manufacturing method for electrolyte solution for nonaqueous secondary battery, and manufacturing method for nonaqueous secondary battery
JP5516673B2 (ja) ベンゼンスルホン酸エステル、それを用いたリチウム二次電池用電解液、及びそれを用いたリチウム二次電池
WO2013137331A1 (ja) 非水二次電池用電解液及び二次電池
JP6182113B2 (ja) アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法
KR20140100873A (ko) 인 함유 화합물, 이의 제조 방법, 그리고 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
JP6270634B2 (ja) 活物質、それを用いたナトリウムイオン電池およびリチウムイオン電池
JP6292730B2 (ja) アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法
JP6799617B2 (ja) 非水二次電池用電解液、非水二次電池及び金属錯体
JP2016069315A (ja) アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法
JP2016069316A (ja) アミノ置換ホスファゼン化合物の製造方法、非水二次電池用電解液の製造方法および非水二次電池の製造方法
JP2010027629A (ja) 非水電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847994

Country of ref document: EP

Kind code of ref document: A1