WO2016052238A1 - 細胞培養観察装置および方法 - Google Patents

細胞培養観察装置および方法 Download PDF

Info

Publication number
WO2016052238A1
WO2016052238A1 PCT/JP2015/076554 JP2015076554W WO2016052238A1 WO 2016052238 A1 WO2016052238 A1 WO 2016052238A1 JP 2015076554 W JP2015076554 W JP 2015076554W WO 2016052238 A1 WO2016052238 A1 WO 2016052238A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
observation
cell
cells
unit
Prior art date
Application number
PCT/JP2015/076554
Other languages
English (en)
French (fr)
Inventor
兼太 松原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15847723.2A priority Critical patent/EP3202888B1/en
Publication of WO2016052238A1 publication Critical patent/WO2016052238A1/ja
Priority to US15/439,318 priority patent/US10344255B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/50Means for positioning or orientating the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to a cell culture observation apparatus and method for observing a plurality of culture containers and operating each culture container.
  • the automatic culture observation device automatically performs various operations such as medium replacement, addition of drugs, and detachment and removal of cells from the culture vessel, and also automatically observes the cells in the culture vessel. It is configured to be
  • Patent Document 1 proposes limiting imaging of cells during medium replacement.
  • Patent Document 2 it is proposed that in suspension culture, the circulation of the culture solution is temporarily stopped in accordance with the timing at which imaging is performed to avoid image fluctuation.
  • Patent Document 1 and Patent Document 2 it has been proposed to limit the imaging of cells to be operated or to limit the operations on the cells to be observed. In contrast, it has been proposed not to perform observation and manipulation at the same time, but for example, when observing a culture vessel to be observed and operating in a culture vessel other than the culture vessel, the effect on the image is None is considered.
  • the place where the operation is performed on the cell and the place where the cell is observed are relatively close. There is a possibility that an operation other than the container affects the imaging of the culture container to be observed.
  • Patent Document 1 and Patent Document 2 in a simple method in which no operation is performed during observation of cells in a predetermined culture container, when a large number of culture containers are used, During the observation of the culture container, since it is not possible to perform operations on all other culture containers, it becomes a factor that hinders throughput.
  • the present invention is capable of capturing an image free from blur caused by operations on a culture vessel, and capable of improving the throughput of processing of a plurality of culture vessels.
  • the purpose is to provide.
  • the cell culture observation apparatus of the present invention includes a cell observation unit for observing cells in a plurality of culture containers for culturing cells for each culture container, an operation unit for performing a plurality of operations on each culture container, An operation content determination unit that determines the content of an operation that can be performed on a culture vessel other than the culture vessel to be observed during the observation of the culture vessel to be observed among the operations is provided. .
  • the operation content determination unit can determine the content of operations that can be performed based on the observation conditions of the culture vessel to be observed.
  • the observation conditions preferably include at least one of an exposure time of an imaging element that images a cell, a magnification of an optical system that observes the cell, a cell imaging interval, a cell imaging frequency, and a cell observation technique. .
  • the observation method preferably includes at least one of bright field observation, phase difference observation, differential interference observation, and fluorescence observation.
  • the operation content determination unit can further determine the content of the operation that can be performed based on the cell type.
  • the operation content determination unit can further determine the content of operations that can be performed based on the cell culture conditions.
  • the culture conditions preferably include at least one of planar culture, suspension culture, three-dimensional culture, type of scaffold, type of medium, and type of drug added to the medium.
  • the operation content determination unit can calculate a determination value based on the observation condition, and determine the content of the operation that can be performed based on the determination value.
  • the contents of the operation preferably include at least one of medium replacement, addition of a drug to the medium, transport of the culture container, cell passage operation, and cell detachment operation.
  • a transport unit for transporting the culture container can be provided between the culture unit for culturing cells and the observation unit.
  • a display control unit that displays the contents of the operations that can be performed can be provided.
  • control unit that determines the observation timing of the observation target culture vessel and the operation timing for a culture vessel other than the observation target culture vessel based on the content of the operation determined by the operation content determination unit.
  • the cell culture observation method of the present invention is a cell culture observation method in which cells in a plurality of culture containers for culturing cells are observed for each culture container and a plurality of operations are performed on each culture container. Among these, during the observation of the culture vessel to be observed, the contents of operations that can be performed on the culture vessels other than the culture vessel to be observed are determined.
  • the cell culture observation apparatus and method of the present invention when observing cells in a plurality of culture containers for each culture container and performing a plurality of operations on each culture container, the observation is performed among the plurality of operations.
  • the contents of operations that can be performed on the culture vessel other than the target culture vessel are determined, so the cells in the target culture vessel are being observed.
  • the block diagram which shows schematic structure of one Embodiment of the cell culture observation apparatus of this invention.
  • the figure which shows an example of the table which matched various observation conditions and a score
  • Timing chart showing observation timing and operation timing of culture vessel A to culture vessel D
  • the figure which shows an example of the table which matched the kind of cell, culture conditions (the kind of culture medium, the kind of scaffold, and the culture method), and a score.
  • Timing chart showing the observation timing and operation timing of each culture container when all operations are not performed for other culture containers during observation of the culture container to be observed
  • FIG. 1 is a block diagram showing a schematic configuration of a cell culture observation apparatus 1 of the present embodiment.
  • a culture unit that cultures cells, an operation unit that performs operations on the cells, and a cell observation unit that observes cells are integrally configured in one housing.
  • a culture unit 10 an operation unit 20, a cell observation unit 30, and an overall control unit 40 are provided.
  • An input device 2 and a display device 3 are connected to the cell culture observation device 1.
  • the culture unit 10 is for culturing cells.
  • Examples of cells to be cultured include pluripotent stem cells such as iPS cells and ES cells, nerves induced to differentiate from stem cells, skin, heart muscle or liver cells, or skin, retina, heart muscle, blood cells, nerves extracted from the human body. Or organ cells.
  • the culture unit 10 contains a plurality of culture containers in which cells to be cultured are seeded in a culture medium.
  • the culture unit 10 includes a stage 11 and a transport unit 12.
  • Stage 11 is where a culture vessel in which cells to be cultured are seeded is installed.
  • the stage 11 may include a mechanism for shaking the culture container.
  • the transport unit 12 is installed on the stage 11 when performing operations such as medium exchange, drug addition, cell detachment or passage on the culture container, or taking an image of cells in the culture container.
  • the culture container is transported to the rotary table 21 in the operation unit 20, and conversely, the culture container installed on the rotary table 21 is transported onto the stage 11.
  • a robot arm may be provided, and a culture container may be gripped and transported by the robot arm, or a transport belt and a driving mechanism thereof may be provided. It is good also as a structure which conveys a container.
  • the culture control unit 13 controls the entire culture unit 10, and controls the operation of the transport unit 12, the culture conditions in the culture unit 10, and the like. Specifically, the culture control unit 13 controls culture conditions such as temperature, humidity, light source illuminance, oxygen concentration, carbon dioxide concentration, and stage 11 shaking conditions in the culture unit 10. In addition, about a structure for adjusting these culture conditions, a well-known structure can be used.
  • the operation unit 20 includes a rotary table 21, a medium exchange unit 22, a drug addition unit 23, a cell moving unit 24, a rotary table drive unit 25, and a container transport control unit 26.
  • the rotary table 21 is provided with a circular table, and a plurality of culture vessels A to D are arranged on the circular table.
  • the turntable 21 is rotated in the direction of arrow A by the turntable drive mechanism, and the culture container is transported between the culture unit 10 and the cell observation unit 30 by this rotation.
  • the rotary table 21 corresponds to the transport unit of the present invention.
  • the rotary table drive unit 25 rotates the rotary table 21 based on the control signal output from the container transport control unit 26.
  • the container transport control unit 26 controls the rotation table driving unit 25, and when the culture container is transported between the stage 11 of the culture unit 10 and the rotary table 21, the cell observation unit 30 performs observation.
  • the rotary table 21 is rotated when the target culture vessel is switched.
  • the medium exchange unit 22 exchanges the medium in the culture containers A to D installed on the rotary table 21.
  • the medium exchange unit 22 includes a suction supply mechanism for sucking and discarding the medium in the culture containers A to D with a pipette nozzle, or sucking a new medium into the culture container by sucking with a pipette nozzle, for example. What is necessary is just composition.
  • the drug addition unit 23 adds a drug to the culture containers A to D installed on the rotary table 21.
  • Examples of the drug added by the drug adding unit 23 include trypsin for detaching cells from the culture container, but other drugs may be used.
  • the drug addition unit 23 may be configured to include a suction supply mechanism that sucks a drug by a pipette nozzle and supplies the drug into the culture container.
  • the cell moving unit 24 moves the cells when seeding the cells in the culture container, when detaching the cells in the culture container, or when passing the cells in the culture container.
  • the cell moving unit 24 may be configured to include a suction supply mechanism that sucks cells with a pipette nozzle and moves and supplies the cells to a culture container for seeding or a culture container for subculture.
  • the operations of the medium exchange unit 22, the drug addition unit 23, and the cell movement unit 24 are controlled by the overall control unit 40. Further, when performing various operations such as the medium exchange described above on any one of the plurality of culture containers installed on the rotary table 21, the culture container to be operated is rotated. The table 21 is conveyed to a predetermined position, and the above-described operation is performed at the predetermined position.
  • the cell observation unit 30 includes an imaging unit 31 and a cell observation stage 34, and the imaging unit 31 includes an optical system mechanism unit 32 and an imaging control unit 33.
  • the optical system mechanism unit 32 is configured to be able to switch between bright field observation, phase difference observation, differential interference observation, and fluorescence observation, and includes a light source and optical elements used for each observation method. It is.
  • the optical system mechanism section 32 includes an image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) sensor or a CCD (Charge-Coupled Device) sensor, and an image signal obtained by imaging cells in the culture vessel from the image sensor. Is output.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the imaging control unit 33 controls the entire imaging unit 31, and performs switching control of the above-described four observation methods by switching, for example, a light source or an optical element to be used.
  • the imaging control unit 33 controls the magnification of the optical system of the optical system mechanism unit 32 and controls the operation of the imaging device. Specifically, the imaging control unit 33 controls the exposure time of the imaging device, the imaging interval by the imaging device, and the number of times of imaging by the imaging device.
  • the observation conditions such as the optical magnification, the observation method, and the operation of the image sensor described above are set and registered in advance for each culture vessel, and are stored in the overall control unit 40 described later.
  • the imaging control unit 33 acquires the observation conditions for each culture vessel from the overall control unit 40, and controls the optical system mechanism unit 32 so that an image is captured under the observation conditions corresponding to the culture vessel to be observed.
  • the cell observation stage 34 is provided with a culture container to be observed by the imaging unit 31.
  • the culture container to be observed is transported from the rotary table 21 onto the cell observation stage 34 by a predetermined transport mechanism (not shown) based on the control signal output from the overall control unit 40.
  • the cell observation stage 34 is provided in the vicinity of the rotary table 21, and the culture container to be observed is transported by the rotary table 21 to the vicinity of the cell observation stage 34, and then from the rotary table 21 to the cell observation stage. 34 is conveyed.
  • the overall control unit 40 controls the entire cell culture observation apparatus 1.
  • the overall control unit 40 of the present embodiment controls the timing of operation such as medium exchange for a predetermined culture container and the timing of capturing a cell image in the cell observation unit 30.
  • the overall control unit 40 includes an operation content determination unit 41.
  • the operation content determination unit 41 determines the content of operations that can be performed on a culture vessel other than the culture vessel to be observed during observation of the culture vessel to be observed. As described above, the contents of the operation that can be performed on the culture container other than the culture container to be observed are determined while observing the culture container to be observed. This is because when the operation is performed on the cell, the captured cell image may be affected.
  • the operation content determination unit 41 of the present embodiment determines the content of operations that can be performed on other culture vessels other than the culture vessel based on the observation conditions of the culture vessel to be observed. Is.
  • the reason why the contents of operations that can be performed on other culture vessels are determined based on the observation conditions in this way is because the sensitivity of image fluctuations caused by operations on other culture vessels changes depending on the observation conditions. .
  • the fluctuation of the image is caused by the fluctuation of the position of the culture container to be observed due to an operation on another culture container.
  • the operation content determination part 41 of this embodiment determines the content of operation to another culture container based on observation conditions from such a viewpoint.
  • the operation content determination unit 41 is preset with a table associating various observation conditions and scores as shown in FIG.
  • the observation conditions are set and registered in advance in the overall control unit 40 for each culture container, and the operation content determination unit 41 acquires the observation conditions set for each culture container, and is based on the observation conditions.
  • the score is acquired with reference to the table shown in FIG. And based on the total of the score, the content of operation which can be performed with respect to culture containers other than the culture container of the observation object is determined during observation of the culture container of the observation object.
  • this score corresponds to the determination value of the present invention.
  • the score of the table shown in FIG. 2 is set so as to increase as the observation condition has a higher sensitivity of the image fluctuation to the position fluctuation of the observation target culture vessel. For example, as the optical magnification is higher, the sensitivity of image fluctuation is higher, so a higher score is given as the magnification is higher. Also, the longer the exposure time of the image sensor, the greater the sensitivity of image fluctuation, so a longer score results in a longer score.
  • phase difference observation and differential interference observation observe diffracted light and interference light, and therefore have higher sensitivity to image fluctuations than fluorescence observation and bright field observation.
  • fluorescence observation has a lower light intensity than bright field observation, the sensitivity of image fluctuation is higher than that of bright field observation. Therefore, the largest score is given to phase difference observation and differential interference observation, the next largest score is given to fluorescence observation, and the smallest score is given to bright field observation.
  • the imaging interval is a time interval between the N-th shooting and the (N + 1) -th shooting in time-lapse shooting.
  • the shooting interval pays attention to the change of the shooting target, so the imaging interval is short. The bigger the time, the higher the score.
  • the exposure time becomes shorter as the number of times of imaging within a certain time is increased. Therefore, as the number of times of imaging is increased, the sensitivity of image fluctuation becomes lower. Therefore, a smaller score is given as the number of imaging is increased. For example, if the number of times of imaging within a certain time is 1, the score is “2”. If the number of times of imaging is 2 to 4, the score is “1” and the number of times of imaging is 5 or more. In this case, the score may be set to “0”.
  • the number of times of imaging here means the number of times of imaging within a certain time as described above. For example, when imaging is performed once with an exposure time of 100 ms, or repeated 10 times at 1 ns intervals with an exposure time of 10 ms. And taking these images and adding these images.
  • the operation content determination unit 41 calculates the total score based on the observation conditions set for each culture vessel as described above, and determines the content of the operation that can be performed based on the total score.
  • the total score is 3 or less, since the sensitivity of image fluctuation is low, all operations on other culture vessels can be performed. Further, when the total score is 7 or more, since the sensitivity of image fluctuation is high, all operations on other culture vessels cannot be performed. In addition, when the total score is 4 or more and 6 or less, the sensitivity of image fluctuation is moderate. Therefore, the culture vessel can be transported by the medium exchange, the drug addition, and the turntable 21, and the operation target It is assumed that cell detachment operation and subculture operation, which may cause a large change in position of the culture vessel or the culture vessel to be observed, cannot be performed.
  • the calculation method of the total value of the score will be described by giving an example of specific observation conditions of the culture vessel.
  • the observation condition of the culture vessel A is that the optical magnification is 4 times, the exposure time is 10 ms, the observation method is phase difference observation, and the imaging interval is 15 minutes, the optical magnification score is “ Since the score of the exposure time is “0”, the score of the observation method is “2”, and the score of the imaging interval is “2”, the total score is “4”. Therefore, in this case, the operation content determination unit 41 can perform operations on the culture vessels B to D other than the culture vessel A while observing the culture vessel A. It is determined that the culture container is transported by 21, and it is determined that the cell detachment operation or the passage operation cannot be performed.
  • the operation content determination unit 41 determines that all operations cannot be performed on the culture vessels A and C to D other than the culture vessel B while the culture vessel B is being observed.
  • the operation content determination unit 41 determines that all operations can be performed on the culture vessels A to B, D other than the culture vessel C while the culture vessel C is being observed.
  • the overall control unit 40 controls the observation timing of the observation target culture vessel and the operation timing for the culture vessels other than the observation target culture vessel based on the determination content in the operation content determination unit 41. That is, when imaging the predetermined observation target culture container, the overall control unit 40 is configured to perform only the executable operations determined based on the observation conditions for the other culture containers. The operation determined to be impossible is controlled to be performed at a timing other than the observation timing. Note that specific examples of observation timing and operation timing control will be described in detail later. In the present embodiment, the overall control unit 40 corresponds to the control unit of the present invention.
  • the overall control unit 40 includes a display control unit 42.
  • the display control unit 42 displays on the display device 3 the image of the cell imaged by the imaging unit 31 of the cell observation unit 30, the content of the operation that can be performed determined by the operation content determination unit 41, the observation conditions for each culture vessel, and the like. It is what is displayed.
  • the display device 3 is configured by a display device such as a liquid crystal display.
  • the input device 2 includes a mouse, a keyboard, and the like, and accepts setting input by the user.
  • the input device 2 in this embodiment accepts setting and changing of observation conditions for each culture vessel, and accepting setting and changing of scores in the table shown in FIG.
  • the display device 3 may also serve as an input device by configuring the display device 3 with a touch panel screen and allowing the setting to be input by pressing the screen.
  • a plurality of culture containers in which cells to be cultured are seeded are installed on the stage 11 of the culture unit 10, and culture is started (S10).
  • the operation content determination unit 41 acquires the observation conditions for each culture vessel (S12). Note that the observation conditions for each culture vessel are set and registered in advance in the overall control unit 40 by the user as described above.
  • the operation content determination unit 41 Based on the obtained observation conditions for each culture container, the operation content determination unit 41 performs the operation on the other culture container other than the culture container while observing the observation target culture container.
  • the content of the possible operation is determined (S14). That is, when observing a predetermined culture container, the contents of operations that can be performed on other culture containers are determined.
  • the overall control unit 40 determines the observation timing of the observation target culture vessel and the operation timing for the culture vessel other than the observation target culture vessel based on the contents of the executable operation determined by the operation content determination unit 41. Determine (S16). That is, during observation of the culture vessel to be observed, the observation timing and operation timing for each culture vessel are determined so that only the contents of the operation determined to be executable are performed for the other culture vessels. A specific example of observation timing and operation timing for each culture vessel will be described in detail later.
  • the overall control unit 40 outputs a control signal to the cell observation unit 30 based on the observation timing for each culture vessel determined as described above, and the cell observation unit 30 observes based on the input control signal.
  • An image of the cells in the culture container is taken (S18).
  • the overall control unit 40 outputs a control signal to the operation unit 20 based on the operation timing for each culture vessel determined as described above, and the operation unit 20 outputs each culture vessel based on the input control signal. (S20).
  • the rotary table drive unit 25 rotates the rotary table 21 based on control signals from the overall control unit 40 and the container transport control unit 26, and the rotary table 21 corresponds to the observation timing of each culture vessel.
  • the culture vessels on the turntable 21 are sequentially placed on the cell observation stage 34, and images of cells in each culture vessel are sequentially taken.
  • the operation unit 20 transfers the culture container by the rotary table 21, exchanges the medium, adds the drug, or moves the cell to the culture container other than the observation target culture container.
  • the operation of (peeling operation or passaging operation) is performed. At this time, only the content of the operation that is determined to be executable by the operation content determination unit 41 is performed.
  • FIG. 4 is a timing chart showing the observation timing and operation timing of the four culture vessels A to D.
  • imaging observation
  • conveyance of the culture container after the image is taken by the rotary table 21, cell peeling operation, medium replacement, and culture container replacement after culture medium replacement
  • the timing chart in the case of conveying by the turntable 21 repeatedly in this order about each culture container is shown.
  • the contents of operations that can be performed in the operation content determination unit 41 are determined based on the observation conditions of the culture containers A to D.
  • the cultures to be observed are observed for all the culture containers A to D. This is an example when it is determined that an operation other than the cell peeling operation can be performed while observing the container.
  • the imaging (observation) timing of each culture vessel A to D is controlled to be a timing other than the timing of the cell detachment operation of each culture vessel.
  • FIG. 6 is a timing chart showing the observation timing and operation timing of each culture container when all the operations are not performed for the other culture containers during observation of the observation target culture container. In this case, it can be seen that the throughput is clearly reduced as compared with the timing chart shown in FIG.
  • the present invention is not limited to such a case, for example, among a plurality of culture vessels.
  • the present invention can also be applied to a case where a predetermined culture vessel is selected and set as an observation target, and imaging is performed. In this case, the culture vessel other than the selected observation target culture vessel is observed. The operations that can be performed are determined based on the observation conditions of the target culture vessel.
  • the score is acquired based on the observation conditions such as the optical magnification, and the content of the operation on the culture container is determined based on the total score.
  • the score may be acquired based on the cell type and culture conditions, and the total may be calculated including this score.
  • FIG. 5 shows an example of a table in which cell types and culture conditions (medium type, scaffold type and culture method) and scores are associated with each other.
  • the adhesive force to the culture container differs depending on the type of cell, so that the sensitivity of image fluctuation to the position fluctuation of the culture container differs.
  • iPS cells and ES cells have relatively weak adhesion to culture vessels
  • mesenchymal stem cells have relatively strong adhesion to culture vessels. Therefore, when the cell type is an iPS cell and an ES cell, the score is set to “2”, and when the cell type is a mesenchymal stem cell, the score is set to “1”.
  • the score is set to “0”.
  • the adhesive force of cells varies depending on the type of scaffold. Therefore, a score is set according to the type of scaffold.
  • the sensitivity of image fluctuation to the position fluctuation of the culture container differs. Therefore, different scores are set according to the type of medium.
  • the sensitivity of the image change to the position change of the culture container also differs. Specifically, the cells are relatively difficult to move in the case of planar culture, but the cells are relatively easy to move in the case of suspension culture. Therefore, in the case of planar culture, the score is set to “0”. In the case of suspension culture, the score is set to “4”. In the table shown in FIG.
  • the scores for planar culture and suspension culture are shown, but the scores for three-dimensional culture may be included.
  • the score may be set to “1”, for example.
  • a score may be set according to the type of drug added to the medium.
  • the score is set to “0”, for example.
  • the score is set to “4”.
  • the information on the cell type and culture conditions is set and input by the user using the input device 2.
  • the user may be able to additionally register the cell type and culture conditions and the corresponding score in the table.
  • the observation timing and operation timing of each culture container were controlled based on the determination result in the operation content determination part 41, it is not restricted to this, For example, a culture medium
  • the operation content determined by the operation content determination unit 41 is displayed on the display device 3, and the display is viewed.
  • the user may not perform any operation other than the operation determined to be possible for a culture container other than the culture container.
  • the operation content to the culture container other than the observation target is limited. In other words, the operation is not performed on the culture container other than the observation target. While a possible operation is performed, observation of the culture vessel to be observed is prohibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

複数の培養容器の観察と各培養容器に対する操作とを行う細胞培養観察装置および方法において、培養容器への操作に起因するブレなどのない画像を撮像し、かつ複数の培養容器の処理のスループットを向上させる。細胞を培養する複数の培養容器内の細胞を培養容器毎に観察する細胞観察部30と、各培養容器に対して複数の操作を行う操作部20と、上記複数の操作のうち、観察対象とする培養容器の観察中にその観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定する操作内容判定部41とを備える。

Description

細胞培養観察装置および方法
 本発明は、複数の培養容器の観察と各培養容器に対する操作とを行う細胞培養観察装置および方法に関するものである。
 近年、細胞の大量培養を行うための自動培養観察装置の開発が進められている。自動培養観察装置においては、培地の交換、薬剤の添加、および培養容器からの細胞の剥離および除去などの種々の操作が自動的に行われ、かつ培養容器内の細胞の観察も自動的に行われるように構成されている。
 現在、このような自動培養観察装置においては、細胞に対して操作を行う細胞操作部と培養容器内の細胞を観察する細胞観察部とが、ユニット単位で分かれていることが一般的であるが、自動培養観察装置の小型化に伴い、上述した細胞操作部と細胞観察部が一体化されたものも提案されている。
 しかしながら、このような一体化された自動培養観察装置において、所定の培養容器内の細胞を観察しているときにその培養容器に対して操作を行なうと、撮像された画像がブレるなど明瞭な画像が得られない場合がある。
 そこで、たとえば特許文献1においては、培地交換中における細胞の撮像を制限することが提案されている。また、特許文献2においては、浮遊培養において、撮像を行なうタイミングに合わせて一時的に培養液の循環を停止させ、画像の揺らぎを回避することが提案されている。
特開2006-11415号公報 特開2006-314214号公報
 しかしながら、特許文献1および特許文献2においては、操作対象の細胞の撮像を制限したり、また観察対象の細胞に対する操作を制限したりすることは提案されているが、すなわち、所定の培養容器に対して観察と操作とを同時に行わないようにすることが提案されているが、たとえば観察対象の培養容器を観察中に、その培養容器以外の培養容器で操作を行った場合における画像に対する影響は何も考慮されていない。
 そして、上述したような細胞操作部と細胞観察部とが一体化された装置を考えた場合、細胞に対して操作を行う場所と細胞を観察する場所とが比較的近いので、観察対象の培養容器以外に対する操作が、観察対象の培養容器の撮像に影響を及ぼす可能性がある。
 また、特許文献1や特許文献2に記載のように、所定の培養容器の細胞の観察中には操作は行なわないという単純な手法では、培養容器の数が大量である場合には、所定の培養容器の観察中は、他の全ての培養容器に対する操作を行うことができないので、スループットを阻害する要因となってしまう。
 本発明は、上記の問題に鑑み、培養容器に対する操作に起因するブレなどのない画像を撮像することができ、かつ複数の培養容器の処理のスループットを向上させることができる細胞培養観察装置および方法を提供することを目的とする。
 本発明の細胞培養観察装置は、細胞を培養する複数の培養容器内の細胞を培養容器毎に観察する細胞観察部と、各培養容器に対して複数の操作を行う操作部と、上記複数の操作のうち、観察対象とする培養容器の観察中にその観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定する操作内容判定部とを備えたことを特徴とする。
 また、操作内容判定部が、観察対象とする培養容器の観察条件に基づいて、実施可能な操作の内容を判定することができる。
 また、観察条件には、細胞を撮像する撮像素子の露光時間、細胞を観察する光学系の倍率、細胞の撮像間隔、細胞の撮像回数および細胞の観察手法の少なくともうち1つが含まれることが好ましい。
 また、観察手法には、明視野観察、位相差観察、微分干渉観察および蛍光観察のうち少なくとも1つが含まれることが好ましい。
 また、操作内容判定部は、さらに細胞の種類に基づいて、実施可能な操作の内容を判定することができる。
 また、操作内容判定部は、さらに細胞の培養条件に基づいて、実施可能な操作の内容を判定することができる。
 また、培養条件には、平面培養、浮遊培養、立体培養、足場の種類、培地の種類、培地に添加する薬剤の種類の少なくとも1つが含まれることが好ましい。
 また、操作内容判定部は、観察条件に基づいて判定値を算出し、その判定値に基づいて実施可能な操作の内容を判定することができる。
 また、操作の内容には、培地交換、培地への薬剤添加、培養容器の搬送、細胞の継代操作および細胞の剥離操作の少なくとも1つが含まれることが好ましい。
 また、細胞を培養する培養部と観察部との間において培養容器を搬送する搬送部を設けることができる。
 また、上記実施可能な操作の内容を表示させる表示制御部を備えることができる。
 また、操作内容判定部において判定された操作の内容に基づいて、観察対象の培養容器の観察タイミングと観察対象の培養容器以外の培養容器に対する操作タイミングとを決定する制御部を備えることができる。
 本発明の細胞培養観察方法は、細胞を培養する複数の培養容器内の細胞を培養容器毎に観察し、かつ各培養容器に対して複数の操作を行う細胞培養観察方法において、上記複数の操作のうち、観察対象とする培養容器の観察中にその観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定することを特徴とする。
 本発明の細胞培養観察装置および方法によれば、複数の培養容器内の細胞を培養容器毎に観察し、かつ各培養容器に対して複数の操作を行う際、上記複数の操作のうち、観察対象とする培養容器の観察中にその観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定するようにしたので、観察対象の培養容器の細胞を観察中であっても、観察される画像に影響を及ぼさない程度の操作を判定し、その操作を他の培養容器に対して行うことができるので、培養容器に対する操作に起因するブレなどのない画像を撮像することができ、かつ複数の培養容器の処理のスループットを向上させることができる。
本発明の細胞培養観察装置の一実施形態の概略構成を示すブロック図 種々の観察条件とスコアとを対応づけたテーブルの一例を示す図 本発明の細胞培養観察装置の一実施形態の作用を説明するためのフローチャート 培養容器A~培養容器Dの観察タイミングおよび操作タイミングを示すタイミングチャート 細胞の種類および培養条件(培地の種類、足場の種類および培養方法)とスコアとを対応づけたテーブルの一例を示す図 観察対象の培養容器の観察中は、他の培養容器について、全ての操作を行わないようにした場合における各培養容器の観察タイミングおよび操作タイミングを示すタイミングチャート
 以下、本発明の細胞培養観察装置の一実施形態について、図面を参照しながら詳細に説明する。図1は、本実施形態の細胞培養観察装置1の概略構成を示すブロック図である。
 本実施形態の細胞培養観察装置1は、細胞を培養する培養部と、細胞に対して操作を行う操作部と、細胞を観察する細胞観察部とが1つの筐体内に一体的に構成されたものであり、具体的には、図1に示すように、培養部10と、操作部20と、細胞観察部30と、全体制御部40とを備えている。そして、細胞培養観察装置1には、入力装置2および表示装置3が接続されている。
 培養部10は、細胞の培養を行うものである。培養対象の細胞としては、たとえばiPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋または肝臓の細胞、もしくは人体から取り出された皮膚、網膜、心筋、血球、神経または臓器の細胞などがある。
 培養部10内には、培養対象の細胞を培地に播種した培養容器が複数収容されている。培養部10は、ステージ11と、搬送部12とを備えている。
 ステージ11は、培養対象の細胞が播種された培養容器が設置されるものである。ステージ11は、培養容器を振盪させる機構を備えていてもよい。
 搬送部12は、培養容器に対して培地交換、薬剤添加または細胞の剥離や継代などの操作を行ったり、培養容器内の細胞の画像を撮像したり際に、ステージ11上に設置された培養容器を操作部20における回転テーブル21まで搬送したり、逆に回転テーブル21上に設置された培養容器をステージ11上に搬送したりするものである。搬送部12の構成としては、たとえばロボットアームを備えたものとし、培養容器をロボットアームによって掴んで搬送する構成としてもよいし、搬送ベルトとその駆動機構とを備えたものとし、搬送ベルトによって培養容器を搬送する構成としてもよい。
 培養制御部13は、培養部10全体を制御するものであり、搬送部12の動作および培養部10における培養条件などを制御するものである。具体的には、培養制御部13は、培養部10内の温度、湿度、光源の照度、酸素濃度、二酸化炭素濃度およびステージ11の振盪条件などの培養条件を制御するものである。なお、これらの培養条件を調整するための構成については、公知な構成を用いることができる。
 操作部20は、回転テーブル21と、培地交換部22と、薬剤添加部23と、細胞移動部24と、回転テーブル駆動部25と、容器搬送制御部26とを備えている。
 回転テーブル21は、図1に示すように、円形のテーブルを備えたものであり、この円形テーブル上に複数の培養容器A~Dが配列される。回転テーブル21は、回転テーブル駆動機構によって矢印A方向に回転するものであり、この回転によって培養部10と細胞観察部30と間において、培養容器が搬送される。なお、本実施形態においては、回転テーブル21が、本発明の搬送部に相当するものである。
 回転テーブル駆動部25は、容器搬送制御部26から出力された制御信号に基づいて、回転テーブル21を回転させるものである。また、容器搬送制御部26は、回転テーブル駆動部25を駆動制御するものであり、培養部10のステージ11と回転テーブル21との間において培養容器を搬送する際や、細胞観察部30において観察対象とする培養容器を切り替える場合に回転テーブル21を回転させるものである。
 培地交換部22は、回転テーブル21上に設置された培養容器A~D内の培地を交換するものである。培地交換部22としては、たとえば培養容器A~D内の培地をピペットノズルによって吸引して廃棄したり、新しい培地をピペットノズルによって吸引して培養容器内に供給したりする吸引供給機構を備えた構成とすればよい。
 薬剤添加部23は、回転テーブル21上に設置された培養容器A~Dに対して薬剤を添加するものである。薬剤添加部23によって添加される薬剤としては、たとえば細胞を培養容器から剥離するためのトリプシンなどがあるが、その他の薬剤でもよい。薬剤添加部23としては、薬剤をピペットノズルによって吸引して培養容器内に供給する吸引供給機構を備えた構成とすればよい。
 細胞移動部24は、培養容器内に細胞を播種する際、培養容器内の細胞を剥離する際または培養容器内の細胞の継代を行う際に、細胞を移動させるものである。細胞移動部24としては、たとえば細胞をピペットノズルによって吸引し、播種先の培養容器や継代培養を行う培養容器まで細胞を移動させて供給する吸引供給機構を備えた構成とすればよい。
 なお、培地交換部22、薬剤添加部23および細胞移動部24の構成については、既に公知な構成を用いることができる。
 また、培地交換部22、薬剤添加部23および細胞移動部24の動作は、全体制御部40によって制御される。また、回転テーブル21上に設置された複数の培養容器のうちのいずれかの培養容器に対して上述した培地交換などの種々の操作を行う際には、その操作対象とする培養容器は、回転テーブル21によって所定の位置まで搬送され、その所定の位置において上述した操作が行われる。
 細胞観察部30は、撮像部31と、細胞観察用ステージ34とを備えており、撮像部31は、光学系機構部32と、撮像制御部33とを備えている。
 光学系機構部32は、明視野観察、位相差観察、微分干渉観察および蛍光観察を切り替えて行うことが可能なように構成されており、各観察手法に用いられる光源や光学素子を備えたものである。また、光学系機構部32は、CMOS(Complementary Metal-Oxide Semiconductor)センサやCCD(Charge-Coupled Device)センサなどの撮像素子を備えており、この撮像素子から培養容器内の細胞を撮像した画像信号が出力される。
 撮像制御部33は、撮像部31全体を制御するものであり、たとえば使用する光源や光学素子などを切り替えることによって上述した4つの観察手法の切り替え制御を行うものである。また、撮像制御部33は、光学系機構部32の光学系の倍率を制御したり、撮像素子の動作を制御したりするものである。具体的には、撮像制御部33は、撮像素子の露光時間、撮像素子による撮像間隔および撮像素子による撮像回数を制御するものである。
 上述した光学倍率、観察手法および撮像素子の動作などの観察条件は、培養容器毎に予め設定登録されるものであり、後述する全体制御部40に記憶される。撮像制御部33は、全体制御部40から培養容器毎の観察条件を取得し、観察対象の培養容器に応じた観察条件で撮像されるように光学系機構部32を制御するものである。
 細胞観察用ステージ34は、撮像部31による観察対象の培養容器が設置されるものである。観察対象とする培養容器は、全体制御部40から出力された制御信号に基づいて、所定の搬送機構(図示省略)によって回転テーブル21から細胞観察用ステージ34上に搬送される。細胞観察用ステージ34は、回転テーブル21の近傍に設けられており、観察対象の培養容器は、細胞観察用ステージ34の近傍まで回転テーブル21によって搬送された後、回転テーブル21から細胞観察用ステージ34上に搬送される。
 全体制御部40は、細胞培養観察装置1全体を制御するものである。特に、本実施形態の全体制御部40は、所定の培養容器に対する培地交換などの操作のタイミングや細胞観察部30における細胞の画像の撮像タイミングを制御するものである。
 また、全体制御部40は、操作内容判定部41を備えている。操作内容判定部41は、観察対象とする培養容器の観察中にその観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定するものである。このように観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定するのは、上述したように、観察対象の培養容器を観察中に、その培養容器以外の培養容器に対して操作を行った場合、撮像された細胞の画像に影響を及ぼす場合があるからである。
 具体的には、本実施形態の操作内容判定部41は、観察対象とする培養容器の観察条件に基づいて、その培養容器以外の他の培養容器に対して実施可能な操作の内容を判定するものである。
 このように観察条件に基づいて他の培養容器に対して実施可能な操作の内容を判定するのは、観察条件によって、他の培養容器に対する操作に起因する画像の変動の感度が変わるからである。なお、この画像の変動は、他の培養容器に対する操作に起因して観察対象の培養容器の位置が変動することによって生じるものである。
 たとえば光学倍率が高いほど、他の培養容器への操作に起因する位置変動に対する画像変動の感度が高くなる。また、撮像素子の露光時間が長いほど上記位置変動に対する画像変動の感度は高くなる。また、明視野観察よりも位相差観察のほうが上記位置変動に対する画像変動の感度は高くなる。本実施形態の操作内容判定部41は、このような観点から観察条件に基づいて他の培養容器への操作の内容を判定する。
 より具体的には、操作内容判定部41には、図2に示すような、種々の観察条件とスコアとを対応づけたテーブルが予め設定されている。観察条件は、上述したように全体制御部40に培養容器毎に予め設定登録されており、操作内容判定部41は、その培養容器毎に設定された観察条件を取得し、その観察条件に基づいて、図2に示すテーブルを参照してスコアを取得する。そして、そのスコアの総計に基づいて、観察対象の培養容器の観察中において、その観察対象の培養容器以外の培養容器に対して実施可能な操作の内容を判定する。なお、本実施形態においては、このスコアが、本発明の判定値に相当するものである。
 図2に示すテーブルのスコアは、上述した観察対象の培養容器の位置変動に対する画像変動の感度が大きい観察条件ほど大きくなるように設定されている。たとえば光学倍率は、高倍率であるほど画像変動の感度が大きくなるので、高倍率なほど大きいスコアが与えられる。また、撮像素子の露光時間は、長いほど画像変動の感度が大きくなるので、露光時間が長時間なほど大きいスコアが与えられる。
 また、観察手法については、位相差観察や微分干渉観察は、回折光や干渉光を観察するので、蛍光観察や明視野観察よりも画像変動の感度が高い。また、蛍光観察は、明視野観察よりも光強度が弱いので、明視野観察よりも画像変動の感度が高い。したがって、位相差観察や微分干渉観察に最も大きなスコアを与え、次に大きいスコアを蛍光観察に与え、明視野観察に最も小さいスコアを与える。
 また、撮像間隔とはタイムラプス撮影におけるN回目とN+1回目の撮影の時間間隔のことであり、その時間間隔が短い場合は、撮影対象の変化に注意を払う撮影であることから、撮像間隔が短時間なほど大きいスコアが与えられている。
 また、撮像回数については、たとえば一定時間内における撮像回数が多いほど露光時間が短くなることになるので、露光時間と同様に、撮像回数が多いほど画像変動の感度が低くなる。したがって、撮像回数が多いほど小さいスコアを与える。たとえば、一定時間内における撮像回数が1回である場合には、スコアを「2」とし、撮像回数が2~4回である場合には、スコアを「1」とし、撮像回数が5回以上である場合には、スコアを「0」とすればよい。なお、ここでいう撮像回数とは、上述したように一定時間内における撮像回数を意味しており、たとえば露光時間を100msとして1回撮影する場合や、露光時間を10msとして1ns間隔で10回繰り返して撮像してこれらの画像を加算する場合などがある。
 そして、操作内容判定部41は、上述したように培養容器毎に設定された観察条件に基づいてスコアの総計を算出し、そのスコアの総計に基づいて実施可能な操作の内容を判定する。
 具体的には、たとえば、スコアの総計が3以下である場合には、画像変動の感度が低いので、他の培養容器に対する全ての操作を実施可能とする。また、スコアの総計が7以上である場合には、画像変動の感度が高いので、他の培養容器に対する全ての操作を実施不可能とする。また、スコアの総計が、4以上6以下である場合には、画像変動の感度は中程度であるので、培地交換、薬剤添加および回転テーブル21により培養容器の搬送は実施可能とし、操作対象の培養容器や観察対象の培養容器の位置変動が大きくなる可能がある細胞の剥離操作や継代操作は実施不可能とする。
 以下、具体的な培養容器の観察条件の例を挙げて、スコアの総計値の算出方法について説明する。たとえば培養容器Aの観察条件が、光学倍率が4倍であり、露光時間が10msであり、観察手法が位相差観察であり、撮像間隔が15分である場合には、光学倍率のスコアが「0」、露光時間のスコアが「0」、観察手法のスコアが「2」、撮像間隔のスコアが「2」となるので、スコアの総計は「4」である。したがって、操作内容判定部41は、この場合、培養容器Aを観察中において、培養容器A以外の他の培養容器B~Dに対して実施可能な操作内容は、培地交換、薬剤添加および回転テーブル21による培養容器の搬送と判定し、細胞の剥離操作や継代操作は実施不可能であると判定する。
 また、たとえば培養容器Bの観察条件が、光学倍率が40倍であり、露光時間が100msであり、観察手法が位相差観察であり、撮像間隔が15分である場合には、光学倍率のスコアが「3」、露光時間のスコアが「1」、観察手法のスコアが「2」、撮像間隔のスコアが「2」となるので、スコアの総計は「8」である。したがって、操作内容判定部41は、この場合、培養容器Bを観察中において、培養容器B以外の他の培養容器A,C~Dに対して全ての操作が実施不可能と判定する。
 また、たとえば培養容器Cの観察条件が、光学倍率が10倍であり、露光時間が10msであり、観察手法が明視野観察であり、撮像間隔が15分である場合には、光学倍率のスコアが「1」、露光時間のスコアが「0」、観察手法のスコアが「0」、撮像間隔のスコアが「2」となるので、スコアの総計は「3」である。したがって、操作内容判定部41は、この場合、培養容器Cを観察中において、培養容器C以外の他の培養容器A~B,Dに対して全ての操作が実施可能と判定する。
 そして、全体制御部40は、操作内容判定部41における判定内容に基づいて、観察対象の培養容器の観察タイミングおよび観察対象の培養容器以外の培養容器に対する操作タイミングを制御するものである。すなわち、全体制御部40は、所定の観察対象の培養容器を撮像する際には、それ以外の培養容器に対して、観察条件に基づいて判定された実施可能な操作のみが行われるようにし、実施不可能と判定された操作については、上記観察タイミング以外のタイミングで行うように制御するものである。なお、具体的な観察タイミングと操作タイミングの制御の例については、後で詳述する。また、本実施形態においては、全体制御部40が本発明の制御部に相当するものである。
 図1に戻り、全体制御部40は、表示制御部42を備えている。表示制御部42は、細胞観察部30の撮像部31において撮像された細胞の画像、操作内容判定部41において判定された実施可能な操作の内容および培養容器毎の観察条件などを表示装置3に表示させるものである。表示装置3は、液晶ディスプレイなどの表示デバイスによって構成されるものである。
 入力装置2は、マウスやキーボードなどを備えたものであり、ユーザによる設定入力を受け付けるものである。本実施形態における入力装置2は、培養容器毎の観察条件の設定および変更を受け付けたり、図2に示すテーブルにおけるスコアの設定および変更を受け付けたりするものである。なお、表示装置3をタッチパネル画面で構成し、画面を押圧することにより設定を入力可能とすることによって、表示装置3が入力装置を兼ねてもよい。
 次に、本実施形態の細胞培養観察装置1の作用について、図3に示すフローチャートを参照しながら説明する。
 まず、培養部10のステージ11上に、培養対象の細胞が播種された複数の培養容器が設置され、培養が開始される(S10)。
 そして、所定の培養期間が経過した時点において、各培養容器内の細胞の画像の撮像および各培養容器に対して培地の交換などの操作を行う場合には、たとえばユーザによる入力装置2を用いた指示入力に応じて、操作内容判定部41によって培養容器毎の観察条件が取得される(S12)。なお、培養容器毎の観察条件については、上述したように予めユーザにより全体制御部40に設定登録されている。
 操作内容判定部41は、取得した培養容器毎の観察条件に基づいて、各培養容器に対する操作のうち、観察対象の培養容器を観察中において、その培養容器以外の他の培養容器に対して実施可能な操作の内容を判定する(S14)。すなわち、所定の培養容器を観察している際に、他の培養容器に対して実施可能な操作の内容を判定する。
 そして、全体制御部40は、操作内容判定部41において判定された実施可能な操作の内容に基づいて、観察対象の培養容器の観察タイミングと観察対象の培養容器以外の培養容器に対する操作タイミングとを決定する(S16)。すなわち、観察対象の培養容器の観察中においては、他の培養容器については、実施可能と判定された操作の内容のみが行われるように培養容器毎の観察タイミングと操作タイミングとが決定される。なお、培養容器毎の観察タイミングと操作タイミングの具体的な例については、後で詳述する。
 次いで、全体制御部40は、上述したように決定した培養容器毎の観察タイミングに基づいて細胞観察部30に制御信号を出力し、細胞観察部30は、入力された制御信号に基づいて観察対象の培養容器内の細胞の画像を撮像する(S18)。一方、全体制御部40は、上述したように決定した培養容器毎の操作タイミングに基づいて操作部20に制御信号を出力し、操作部20は、入力された制御信号に基づいて、各培養容器に対して操作を行う(S20)。
 より具体的には、全体制御部40および容器搬送制御部26からの制御信号に基づいて、回転テーブル駆動部25が回転テーブル21を回転させ、回転テーブル21は、各培養容器の観察タイミングに応じて回転し、回転テーブル21上の培養容器が細胞観察用ステージ34に順次設置されて各培養容器内の細胞の画像の撮像が順次行われる。
 一方、全体制御部40からの制御信号に基づいて、操作部20において、観察対象の培養容器以外の培養容器に対して、回転テーブル21による培養容器の搬送、培地交換、薬剤添加または細胞の移動(剥離操作または継代操作)の操作が行われるが、この際、操作内容判定部41において実施可能と判定された操作の内容のみが行われる。
 上述したようにして、観察対象の培養容器の撮像とその培養容器以外の培養容器に対する操作とが行われ、観察対象に設定された全ての培養容器の撮像が終了した時点で、一連の撮像処理および操作を終了する(S22,YES)。
 そして、上述したような培養容器内の細胞の画像の撮像および培養容器に対する処理は、一定間隔または予めユーザによって設定された間隔で繰り返して行われる。そして、培養容器内の細胞の培養が終了した時点で処理を終了する(S24,YES)。
 ここで、本実施形態の細胞培養観察装置1における各培養容器の観察タイミングおよび操作タイミングの具体的な例を説明する。図4は、4つの培養容器A~培養容器Dの観察タイミングおよび操作タイミングを示すタイミングチャートである。この例は、培養容器内の細胞の画像の撮像(観察)と、画像を撮像後の培養容器の回転テーブル21による搬送と、細胞の剥離操作と、培地交換と、培地交換後の培養容器の回転テーブル21による搬送とを、各培養容器についてそれぞれこの順に繰り返して行う場合のタイミングチャートを示している。
 そして、この例は、培養容器A~Dのそれぞれの観察条件に基づいて、操作内容判定部41において実施可能な操作の内容を判定した結果、全ての培養容器A~Dについて、観察対象の培養容器を観察中において、細胞の剥離操作以外の操作を実施可能であると判定された場合の例である。
 図4に示すように、各培養容器A~Dの撮像(観察)タイミングは、各培養容器の細胞剥離操作のタイミング以外のタイミングとなるように制御されている。このように制御することによって、所定の培養容器の観察中においても、他の培養容器について、細胞剥離以外の培地交換や培養容器の搬送を行うことができるので、短時間でより多くの培養容器の処理を行うことが可能である。なお、図6は、観察対象の培養容器の観察中は、他の培養容器について、全ての操作を行わないようにした場合における各培養容器の観察タイミングおよび操作タイミングを示すタイミングチャートである。この場合、図4に示すタイミングチャートと比較して明らかにスループットが落ちてしまうのがわかる。
 なお、上記実施形態の説明では、全ての培養容器A~Dが順次、観察対象に設定されて撮像が行われる場合について説明したが、このような場合に限らず、たとえば複数の培養容器のうち所定の培養容器が選択されて観察対象に設定されて撮像が行われる場合にも本発明は適用可能であり、その場合にも、選択された観察対象の培養容器以外の培養容器については、観察対象の培養容器の観察条件に基づいて実施可能な操作が決定される。
 また、上記実施形態の細胞培養観察装置1においては、光学倍率などの観察条件に基づいてスコアを取得し、そのスコアの総計に基づいて培養容器に対する操作の内容を判定するようにしたが、これに限らず、細胞の種類および培養条件に基づいてスコアを取得し、このスコアも含めて総計を計算するようにしてもよい。
 図5は、細胞の種類および培養条件(培地の種類、足場の種類および培養方法)とスコアとを対応づけたテーブルの一例を示すものである。具体的には、たとえば細胞の種類については、細胞の種類によって培養容器に対する接着力が異なるので、培養容器の位置変動に対する画像変動の感度が異なる。たとえばiPS細胞およびES細胞は相対的に培養容器に対する接着力が弱く、間葉系幹細胞は相対的に培養容器に対する接着力が強い。したがって、細胞の種類がiPS細胞およびES細胞である場合には、スコアを「2」に設定し、間葉系幹細胞である場合には、スコアを「1」に設定する。また、iPS細胞、ES細胞および間葉系幹細胞以外の細胞である場合には、スコアを「0」に設定する。また、足場の種類についても、足場の種類によって細胞の接着力が異なる。したがって、足場の種類に応じてスコアを設定する。
 また、培地の種類については、培地の粘性などによって細胞の動き易さが異なるので、培養容器の位置変動に対する画像変動の感度が異なる。したがって、培地の種類に応じてそれぞれ異なるスコアを設定する。また、培養方法についても、培養方法によって細胞の動き易さが異なるので、培養容器の位置変動に対する画像変動の感度が異なる。具体的には、平面培養の場合には相対的に細胞は動きにくいが、浮遊培養の場合には相対的に細胞は動きやすい。したがって、平面培養である場合には、スコアを「0」に設定する。また、浮遊培養である場合には、スコアを「4」に設定する。なお、図5に示すテーブルにおいては、平面培養と浮遊培養の場合のスコアを示しているが、立体培養のスコアを含めるようにしてもよい。立体培養の場合には、細胞は足場に接着されるため浮遊培養よりは変動しにくいが、重層すると平面培養よりは変動に弱いと考えられるため、たとえばスコアは「1」に設定すればよい。
 また、培養条件の1つとして、培地に添加する薬剤の種類に応じてスコアを設定するようにしてもよい。この場合、たとえば増殖および成長を促す薬剤を添加した場合には、足場に接着する力が充分あると考えられるため、たとえばスコアは「0」に設定する。また、足場から剥離を促す薬剤を添加した場合には、細胞が足場から剥離されて浮遊培養の場合と同様になるので、スコアは「4」に設定する。
 なお、細胞の種類および培養条件の情報については、ユーザによって入力装置2を用いて設定入力される。また、細胞の種類および培養条件とそれに対応するスコアをユーザがテーブルに追加登録できるようにしもてよい。
 また、上記実施形態の細胞培養観察装置1においては、操作内容判定部41における判定結果に基づいて、各培養容器の観察タイミングおよび操作タイミングを制御するようにしたが、これに限らず、たとえば培地交換、薬剤添加、または細胞の剥離操作や継代操作などを手動で行う場合には、操作内容判定部41によって実施可能と判定された操作の内容を表示装置3に表示させ、その表示を見たユーザが、所定の培養容器の観察中においては、その培養容器以外の培養容器に対して実施可能と判定された操作以外の操作を行わないようにしてもよい。
 また、上記実施形態においては、観察対象の培養容器の観察中において、観察対象以外の培養容器への操作内容を制限するようにしたが、言い換えれば、観察対象以外の培養容器に対して実施不可能な操作が行われている間は、観察対象の培養容器の観察を禁止していることになる。
1   細胞培養観察装置
2   入力装置
3   表示装置
10  培養部
11  ステージ
12  搬送部
13  培養制御部
20  操作部
21  回転テーブル
22  培地交換部
23  薬剤添加部
24  細胞移動部
25  回転テーブル駆動部
26  容器搬送制御部
30  細胞観察部
31  撮像部
32  光学系機構部
33  撮像制御部
34  細胞観察用ステージ
40  全体制御部
41  操作内容判定部
42  表示制御部

Claims (13)

  1.  細胞を培養する複数の培養容器内の前記細胞を培養容器毎に観察する細胞観察部と、
     前記各培養容器に対して複数の操作を行う操作部と、
     前記複数の操作のうち、観察対象とする前記培養容器の観察中に該観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定する操作内容判定部とを備えたことを特徴とする細胞培養観察装置。
  2.  前記操作内容判定部が、前記観察対象とする培養容器の観察条件に基づいて、前記実施可能な操作の内容を判定する請求項1記載の細胞培養観察装置。
  3.  前記観察条件に、前記細胞を撮像する撮像素子の露光時間、前記細胞を観察する光学系の倍率、前記細胞の撮像間隔、前記細胞の撮像回数および前記細胞の観察手法の少なくともうち1つが含まれる請求項2記載の細胞培養観察装置。
  4.  前記観察手法に、明視野観察、位相差観察、微分干渉観察および蛍光観察のうち少なくとも1つが含まれる請求項3記載の細胞培養観察装置。
  5.  前記操作内容判定部が、さらに前記細胞の種類に基づいて、前記実施可能な操作の内容を判定する請求項2から4いずれか1項記載の細胞培養観察装置。
  6.  前記操作内容判定部が、さらに前記細胞の培養条件に基づいて、前記実施可能な操作の内容を判定する請求項2から5いずれか1項記載の細胞培養観察装置。
  7.  前記培養条件に、平面培養、浮遊培養、立体培養、足場の種類、培地の種類、培地に添加する薬剤の種類の少なくとも1つが含まれる請求項6記載の細胞培養観察装置。
  8.  前記操作内容判定部が、前記観察条件に基づいて判定値を算出し、該判定値に基づいて前記実施可能な操作の内容を判定する請求項2から7いずれか1項記載の細胞培養観察装置。
  9.  前記操作の内容に、培地交換、培地への薬剤添加、培養容器の搬送、細胞の継代操作および細胞の剥離操作の少なくとも1つが含まれている請求項1から8いずれか1項記載の細胞培養観察装置。
  10.  前記細胞を培養する培養部と前記観察部との間において前記培養容器を搬送する搬送部を備えた請求項1から9いずれか1項記載の細胞培養観察装置。
  11.  前記実施可能な操作の内容を表示させる表示制御部を備えた請求項1から10いずれか1項記載の細胞培養観察装置。
  12.  前記操作内容判定部において判定された操作の内容に基づいて、前記観察対象の培養容器の観察タイミングと前記観察対象の培養容器以外の培養容器に対する操作タイミングとを決定する制御部を備えた請求項1から11いずれか1項記載の細胞培養観察装置。
  13.  細胞を培養する複数の培養容器内の前記細胞を培養容器毎に観察し、かつ前記各培養容器に対して複数の操作を行う細胞培養観察方法において、
     前記複数の操作のうち、観察対象とする前記培養容器の観察中に該観察対象とする培養容器以外の培養容器に対して実施可能な操作の内容を判定することを特徴とする細胞培養観察方法。
PCT/JP2015/076554 2014-09-30 2015-09-17 細胞培養観察装置および方法 WO2016052238A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15847723.2A EP3202888B1 (en) 2014-09-30 2015-09-17 Cell culture observation device and method
US15/439,318 US10344255B2 (en) 2014-09-30 2017-02-22 Cell culture observation device and method to determine a content operation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200942 2014-09-30
JP2014200942A JP6277103B2 (ja) 2014-09-30 2014-09-30 細胞培養観察装置および方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/439,318 Continuation US10344255B2 (en) 2014-09-30 2017-02-22 Cell culture observation device and method to determine a content operation

Publications (1)

Publication Number Publication Date
WO2016052238A1 true WO2016052238A1 (ja) 2016-04-07

Family

ID=55630278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076554 WO2016052238A1 (ja) 2014-09-30 2015-09-17 細胞培養観察装置および方法

Country Status (4)

Country Link
US (1) US10344255B2 (ja)
EP (1) EP3202888B1 (ja)
JP (1) JP6277103B2 (ja)
WO (1) WO2016052238A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011415A (ja) * 2004-05-26 2006-01-12 Olympus Corp 培養顕微鏡、及び、培養顕微鏡を制御するコンピュータプログラム
JP2006171227A (ja) * 2004-12-14 2006-06-29 Olympus Corp 観察装置
JP2006314214A (ja) * 2005-05-10 2006-11-24 Olympus Corp 細胞観察装置、細胞観察方法、及び細胞観察プログラム
JP2009291103A (ja) * 2008-06-04 2009-12-17 Kawasaki Heavy Ind Ltd 自動細胞培養装置
JP2010220511A (ja) * 2009-03-23 2010-10-07 Nikon Corp 培養観察装置及び情報管理方法
JP2012200181A (ja) * 2011-03-24 2012-10-22 Nikon Corp 培養装置、培養管理方法およびプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202291B1 (en) * 2007-09-03 2019-02-27 Nikon Corporation Culture apparatus, culture information management method, and program
WO2009050886A1 (ja) * 2007-10-19 2009-04-23 Nikon Corporation プログラム、コンピュータおよび培養状態解析方法
WO2012050645A2 (en) * 2010-06-25 2012-04-19 Purdue Research Foundation Pathogen detection
EP2690168B1 (en) * 2011-03-24 2019-08-07 Nikon Corporation Culture apparatus, culture apparatus system, culture operation management method and program
US20140363838A1 (en) * 2013-06-11 2014-12-11 William Marsh Rice University Microperfusion imaging platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011415A (ja) * 2004-05-26 2006-01-12 Olympus Corp 培養顕微鏡、及び、培養顕微鏡を制御するコンピュータプログラム
JP2006171227A (ja) * 2004-12-14 2006-06-29 Olympus Corp 観察装置
JP2006314214A (ja) * 2005-05-10 2006-11-24 Olympus Corp 細胞観察装置、細胞観察方法、及び細胞観察プログラム
JP2009291103A (ja) * 2008-06-04 2009-12-17 Kawasaki Heavy Ind Ltd 自動細胞培養装置
JP2010220511A (ja) * 2009-03-23 2010-10-07 Nikon Corp 培養観察装置及び情報管理方法
JP2012200181A (ja) * 2011-03-24 2012-10-22 Nikon Corp 培養装置、培養管理方法およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202888A4 *

Also Published As

Publication number Publication date
US10344255B2 (en) 2019-07-09
EP3202888A1 (en) 2017-08-09
JP6277103B2 (ja) 2018-02-07
US20170158998A1 (en) 2017-06-08
EP3202888A4 (en) 2017-10-18
JP2016067292A (ja) 2016-05-09
EP3202888B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
De la Vega et al. 3D bioprinting human induced pluripotent stem cell-derived neural tissues using a novel lab-on-a-printer technology
EP1944359B1 (en) Shaker for cell culture and shaken culture system in cell culture method
Skilton et al. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle
JP5231684B1 (ja) 細胞培養装置、細胞培養長期観察装置、細胞長期培養方法、および細胞培養長期観察方法
JP6291388B2 (ja) 細胞培養評価システムおよび方法
JP6139403B2 (ja) 培養装置、培養装置システム、培養操作管理方法およびプログラム
JP6066492B2 (ja) 細胞画像評価装置および方法並びにプログラム
WO2016042956A1 (ja) 細胞培養装置および方法
CN112041659A (zh) 微流体装置、系统、基础设施、其用途以及使用其用于基因工程改造的方法
JP2012095627A (ja) 細胞培養装置およびプログラム
JP6097952B2 (ja) 観察画像判定装置および方法並びにプログラム
KR101808063B1 (ko) 세포 배양 플레이트를 구비하는 세포 배양장치
JP6277103B2 (ja) 細胞培養観察装置および方法
JP2011050344A (ja) 細胞培養装置
JP2011103779A (ja) 微生物菌液調整装置
JP2008250550A5 (ja)
EP3457192B1 (en) Imaging device and method, and imaging device control program
EP2166444A3 (en) Display apparatus and control method thereof
JP2012200181A (ja) 培養装置、培養管理方法およびプログラム
JP6055166B2 (ja) シート状細胞培養物の製造方法、シート状細胞培養物形成用基材の製造方法、気泡の除去方法および気体の検出システム
Thanaphongdecha et al. Infection with helicobacter pylori induces epithelial to mesenchymal transition in human cholangiocytes
Kaech et al. Long-term time-lapse imaging of developing hippocampal neurons in culture
JP5090224B2 (ja) 細胞活性測定方法及び装置
WO2018061635A1 (ja) 観察装置および方法並びに観察装置制御プログラム
JP6684643B2 (ja) 生体試料評価システムおよび生体試料評価方法並びに生体試料評価制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847723

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015847723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847723

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE