WO2016051633A1 - 燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の形成方法 - Google Patents
燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の形成方法 Download PDFInfo
- Publication number
- WO2016051633A1 WO2016051633A1 PCT/JP2015/003529 JP2015003529W WO2016051633A1 WO 2016051633 A1 WO2016051633 A1 WO 2016051633A1 JP 2015003529 W JP2015003529 W JP 2015003529W WO 2016051633 A1 WO2016051633 A1 WO 2016051633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- porous layer
- porous
- gas diffusion
- fuel cell
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8626—Porous electrodes characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell gas diffusion layer, a fuel cell having a fuel cell gas diffusion layer, and a method of forming a fuel cell gas diffusion layer.
- a fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can obtain high power generation efficiency.
- the main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in conventional power generation methods, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds etc. There are few and noise and vibration are small, so environmental quality is good.
- fuel cells can be effectively used as fuel energy and have environment-friendly characteristics, so they are expected to be energy supply systems for the 21st century. Attention is being focused on as a promising new power generation system that can be used for various applications from large-scale power generation to small-scale power generation, and full-scale technological development is in progress toward practical use.
- Patent Document 1 discloses a fuel cell in which a catalyst layer, a gas diffusion layer, and a separator are sequentially stacked on both sides of a polymer electrolyte membrane.
- the gas diffusion layer of the fuel cell is formed of a conductive carbon sheet, and has a fluid flow path on the surface in contact with the separator.
- the present invention has been made in view of these circumstances, and an object thereof is to provide a technique for improving the drainage performance of a gas diffusion layer for a fuel cell.
- a fuel cell gas diffusion layer comprises: a first porous layer having a groove-like fluid flow channel opened at one main surface; and a first porous layer And a second porous layer disposed on the other main surface side.
- the occupied area ratio of the conductive fibers per unit area in the cross section of the first porous layer is smaller than the occupied area ratio in the cross section of the second porous layer, and the second porous layer is formed on part of the surface of the fluid flow channel Is exposed.
- the fuel cell comprises a membrane electrode assembly comprising an electrolyte membrane, an anode catalyst layer provided on one side of the electrolyte membrane, and a cathode catalyst layer provided on the other side of the electrolyte membrane, and a membrane electrode assembly And an anode gas diffusion layer disposed on the side of the anode catalyst layer, and a cathode gas diffusion layer disposed on the side of the cathode catalyst layer of the membrane electrode assembly.
- At least one of the anode gas diffusion layer and the cathode gas diffusion layer is composed of the fuel cell gas diffusion layer of the aspect described above.
- Another aspect of the present invention is a method of forming a gas diffusion layer for a fuel cell.
- This method comprises the steps of: stacking the first porous sheet and the second porous sheet, followed by heating and pressing; and a groove-like fluid channel opened at one of the main surfaces of the first porous sheet, And forming a fluid flow path in which the second porous sheet is exposed in part of the surface.
- the occupied area ratio per unit area of the cross section of the first porous sheet in which the fluid flow path is formed in the forming step is smaller than the occupied area ratio in the cross section of the second porous sheet.
- FIG. 2 is a schematic cross-sectional view along the line AA of FIG. 1; It is sectional drawing which shows typically the structure of the gas diffusion layer for fuel cells.
- FIG. 4A to FIG. 4D are process cross-sectional views schematically showing a method of manufacturing a gas diffusion layer for a fuel cell according to the embodiment.
- FIGS. 5A to 5B are cross-sectional views schematically showing the structure of a fuel cell according to a modification.
- FIGS. 6A to 6B are cross-sectional views schematically showing the structure of a fuel cell according to another modification.
- FIG. 1 is a perspective view schematically showing the structure of a fuel cell according to the embodiment.
- FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG.
- the fuel cell 1 of the present embodiment includes a substantially flat plate-like membrane electrode assembly 10, and an anode gas diffusion layer 20 and a cathode gas diffusion layer 40 as a fuel cell gas diffusion layer.
- anode gas diffusion layer 20 and the cathode gas diffusion layer 40 are not distinguished from one another, they are collectively referred to as a fuel cell gas diffusion layer.
- the anode gas diffusion layer 20 and the cathode gas diffusion layer 40 are provided such that the main surfaces thereof face each other with the membrane electrode assembly 10 interposed therebetween.
- separators 2 and 4 are provided on the main surface side opposite to the membrane electrode assembly 10 of each of the anode gas diffusion layer 20 and the cathode gas diffusion layer 40.
- separators 2 and 4 are provided on the main surface side opposite to the membrane electrode assembly 10 of each of the anode gas diffusion layer 20 and the cathode gas diffusion layer 40.
- one set of membrane electrode assembly 10, anode gas diffusion layer 20 and cathode gas diffusion layer 40 are shown, but a plurality of sets are stacked via separators 2 and 4 to constitute a fuel cell stack. It is also good.
- the membrane electrode assembly 10 includes an electrolyte membrane 12, an anode catalyst layer 14 provided on one surface of the electrolyte membrane 12, and a cathode catalyst layer 16 provided on the other surface of the electrolyte membrane 12.
- the electrolyte membrane 12 exhibits good ion conductivity in the wet state, and functions as an ion exchange membrane that transfers protons between the anode catalyst layer 14 and the cathode catalyst layer 16.
- the electrolyte membrane 12 is formed of, for example, a solid polymer material such as a fluorine-containing polymer or a non-fluorinated polymer.
- a sulfonic acid type perfluorocarbon polymer, a polysulfone resin, a perfluorocarbon polymer having a phosphonic acid group or a carboxylic acid group, or the like can be used.
- the thickness of the electrolyte membrane 12 is, for example, 10 ⁇ m or more and 200 ⁇ m or less.
- the anode catalyst layer 14 and the cathode catalyst layer 16 respectively have ion exchange resin and catalyst particles, and optionally carbon particles carrying catalyst particles.
- the ion exchange resin possessed by the anode catalyst layer 14 and the cathode catalyst layer 16 connects the catalyst particles and the electrolyte membrane 12 and plays a role of transferring protons between them.
- This ion exchange resin can be formed of the same polymeric material as the electrolyte membrane 12.
- the catalyst particles may be selected from Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanide series elements and actinide series elements, Catalyst metals such as simple substances can be mentioned.
- anode catalyst layer 14 and the cathode catalyst layer 16 are, for example, 10 ⁇ m or more and 40 ⁇ m or less.
- the anode gas diffusion layer 20 is disposed on the anode catalyst layer 14 side of the membrane electrode assembly 10.
- the anode gas diffusion layer 20 has a first porous layer 22, a fluid channel 24, and a second porous layer 26.
- the thickness of the anode gas diffusion layer 20 is, for example, 50 ⁇ m or more and 500 ⁇ m or less.
- FIG. 3 is a cross-sectional view schematically showing the structure of a fuel cell gas diffusion layer.
- the first porous layer 22 contains a plurality of conductive particles and a binder resin for binding the conductive particles.
- the conductive particles and the binder resin are not drawn separately, and a state in which both are mixed is illustrated.
- the conductive particles for example, carbon particles such as carbon black, artificial graphite, natural graphite, expanded graphite, metal particles and the like can be used.
- the average particle size of the conductive particles is, for example, 0.01 ⁇ m or more and 50 ⁇ m or less for primary particles.
- a binder resin PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkylvinylether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), ETFE (tetrafluoroethylene-ethylene copolymer)
- a fluorine-based resin such as a polymer
- the thickness of the first porous layer 22 is, for example, not less than 30 ⁇ m and not more than 300 ⁇ m.
- the second porous layer 26 is disposed on the other main surface side of the first porous layer 22, that is, the main surface side on the anode catalyst layer 14 side.
- the second porous layer 26 contains a plurality of conductive fibers 28 having a length of 30 ⁇ m or more, and a thermoplastic resin 30.
- the conductive fiber 28 for example, carbon fibers such as polyacrylonitrile carbon fiber, rayon carbon fiber, pitch carbon fiber, carbon nanotube, and metal fiber can be used.
- the air permeability of the second porous layer 26 can be changed by changing the types and compositions of the conductive fibers 28 and thermoplastic resin 30 having a length of 30 ⁇ m or more and increasing or decreasing the number of bonding points at which the conductive fibers 28 bond to each other. It can be controlled in a wide range. Thereby, desired drainage property can be provided to the second porous layer 26.
- the thickness of the second porous layer 26 is, for example, not less than 20 ⁇ m and not more than 200 ⁇ m.
- the first porous layer 22 may contain the conductive fibers 28 contained in the second porous layer 26, the content thereof is more than the content in the second porous layer 26. small.
- the occupied area ratio of the conductive fibers 28 per unit area in the cross section of the first porous layer 22 is smaller than the occupied area ratio in the cross section of the conductive fibers 28 in the second porous layer 26.
- the occupied area ratio of the conductive fiber 28 can be determined as follows. That is, first, the cross section of the second porous layer 26 is photographed using a scanning electron microscope (SEM). Then, in the obtained SEM image, the area of the conductive fiber 28 per unit area on the cross section is measured. The area of the conductive fibers 28 is measured by detecting needle fibers by image processing.
- the magnification of the SEM image is, for example, 100 times, and the size of the measurement area in the SEM image captured at this magnification is 1000 ⁇ m ⁇ 1000 ⁇ m.
- the control range of the air permeability of the second porous layer 26 is The second porous layer 26 having a relatively high air permeability and the first porous layer 22 having a relatively low air permeability can be realized. That is, the second porous layer 26 has a higher air permeability than the first porous layer 22.
- the fluid channel 24 has a groove-like shape, and is opened to one main surface of the first porous layer 22.
- the fluid flow channel 24 is disposed on the separator 2 side and functions as a flow channel for fuel gas.
- a fuel gas such as hydrogen gas is distributed from a fuel supply manifold (not shown) to the fluid flow channel 24, and from the fluid flow channel 24 through the first porous layer 22 and the second porous layer 26 to form a membrane electrode.
- the anode catalyst layer 14 of the bonded body 10 is supplied.
- the surface of the fluid channel 24 is constituted by the first surface 80, the second surface 82, the third surface 84, the fourth surface 86, and the fifth surface 88.
- the first surface 80 is provided from the one main surface of the first porous layer 22 to the inside of the first porous layer 22.
- the fifth surface 88 is provided to face the first surface 80.
- the first surface 80 and the fifth surface 88 are formed so that the distance between the first surface 80 and the fifth surface 88 becomes narrower as the distance from the one main surface of the first porous layer 22 becomes smaller. It inclines from an axis perpendicular to one of the main surfaces of the porous layer 22 (hereinafter referred to as "vertical axis").
- the second surface 82 is provided from the inside of the first porous layer 22 to the second porous layer 26 following the first surface 80.
- the fourth surface 86 is provided to face the second surface 82.
- the second surface 82 and the fourth surface 86 are inclined from the vertical axis, but the inclination angle of the second surface 82 and the fourth surface 86 is The angle of inclination of the first surface 80 and the fifth surface 88 is different.
- the third surface 84 is provided on the surface of the second porous layer 26, and the fourth surface 86 and the second porous layer 26 are provided from the portion where the second surface 82 and the second porous layer 26 are in contact with each other. It has a width to the contact part. With such a configuration, the second porous layer 26 is exposed at the third surface 84 which is a part of the surface of the fluid flow channel 24.
- the fluid flow channel 24 is mainly formed in the first porous layer 22.
- the first porous layer 22 hardly contains the conductive fibers 28 and contains the conductive particles and the binder resin, so the formability is high. Therefore, the fluid channel 24 is easily molded.
- the first region 90 which is a portion where the first porous layer 22 and the second porous layer 26 overlap.
- the projected area is larger than the projected area of the second region 92 where the second porous layer 26 is exposed.
- the second region 92 corresponds to the third surface 84 described above. Since the projected area of the first region 90 is larger than the projected area of the second region 92, even in the case where the second region 92 is provided, the first porous layer 22 and the second porous layer 26 The decrease in contact area is suppressed, and the increase in resistance is suppressed.
- the width of the fluid channel 24 When the width of the fluid channel 24 is large, the resistance is increased due to the long electron transfer path. On the other hand, if the width of the fluid flow channel 24 is small, the pressure loss of the gas will be large and the gas will not flow easily. Therefore, the dimensions of the fluid flow channel 24 are, for example, 0.5 mm or less, and the distance between adjacent fluid flow paths 24 is 500 ⁇ m or more and 1000 ⁇ m or less. In addition, when the width of the second region 92 is large, the contact area between the first porous layer 22 and the second porous layer 26 is reduced, so that the resistance is increased.
- the width of the second region 92 is small, the drainage property in the fluid flow path 44 described later is reduced, so the width of the second region 92 is preferably 0.02 mm or more and 0.05 mm or less.
- five fluid flow paths 24 are provided in the present embodiment, the number is not particularly limited, and can be appropriately set according to the size of anode gas diffusion layer 20 and the like.
- the cathode gas diffusion layer 40 is disposed on the cathode catalyst layer 16 side of the membrane electrode assembly 10.
- the cathode gas diffusion layer 40 has a first porous layer 42, a fluid flow channel 44, and a second porous layer 46.
- the thickness of the cathode gas diffusion layer 40 is, for example, 50 ⁇ m or more and 500 ⁇ m or less.
- the first porous layer 42 contains a plurality of conductive particles and a binder resin for binding the conductive particles.
- the conductive particles and the binder resin the same ones as those used for the first porous layer 22 can be used.
- the composition and dimensions of the first porous layer 42 are the same as those of the first porous layer 22.
- the second porous layer 46 is disposed on the other main surface side of the first porous layer 42, that is, the main surface side on the cathode catalyst layer 16 side.
- the second porous layer 46 contains a plurality of conductive fibers 48 having a length of 30 ⁇ m or more, and a thermoplastic resin 50.
- Examples of the conductive fiber 48 and the thermoplastic resin 50 may be the same as the conductive fiber 28 and the thermoplastic resin 30 contained in the anode gas diffusion layer 20.
- the composition and dimensions of the second porous layer 46 are the same as those of the second porous layer 26.
- the occupied area ratio of the conductive fibers 48 per unit area in the cross section of the first porous layer 42 is smaller than the occupied area ratio in the cross section of the second porous layer 46.
- the second porous layer 46 has a higher air permeability than the first porous layer 42.
- the fluid flow channel 44 has a groove shape and is provided on one of the main surfaces of the first porous layer 42. Fluid flow channel 44 is configured similarly to fluid flow channel 24.
- the fluid flow path 44 functions as a flow path for the oxidant gas.
- the fluid flow path 44 also functions as a drainage path for water generated in the cathode catalyst layer 16.
- An oxidant gas such as air, is distributed from the manifold (not shown) for oxidant supply to the fluid flow channel 44, and from the fluid flow channel 44 through the second porous layer 46 to the cathode of the membrane electrode assembly 10. Not only the catalyst layer 16, but also the first porous layer 42 from the fluid flow path 44 and the second porous layer 46, the cathode catalyst layer 16 of the membrane electrode assembly 10 is supplied.
- a cathode catalyst overlapping the exposed surface (that is, third surface 84) of second porous layer 46 exposed from first porous layer 42 The oxidant gas is sufficiently supplied not only to the second portion of the layer 16 but also to the first portion of the cathode catalyst layer 16 overlapping the first porous layer 42.
- the dimensions of the fluid flow channel 44 are the same as those of the fluid flow channel 24.
- the second porous layer 46 Since the second porous layer 46 has higher air permeability than the first porous layer 42, the water generated in the cathode catalyst layer 16 by the electrochemical reaction or the water transferred from the electrolyte membrane 12 to the cathode catalyst layer 16 But it is easy to go through. Therefore, the second porous layer 46 has higher drainage than the first porous layer 42. Since such a second porous layer 46 is disposed closer to the cathode catalyst layer 16 than the first porous layer 42, drainage in the vicinity of the cathode catalyst layer 16 is improved. When the drainage in the vicinity of the cathode catalyst layer 16 is improved, the amount of water in the vicinity of the cathode catalyst layer 16 is reduced, and the gas diffusivity is improved.
- the second porous layer 46 is exposed on the third surface 84, the water from the cathode catalyst layer 16 is discharged directly to the fluid flow channel 44 without passing through the first porous layer 42. As a result, drainage performance is further improved.
- five fluid flow paths 44 are provided in the present embodiment, the number thereof is not particularly limited, and can be appropriately set according to the size of cathode gas diffusion layer 40 or the like.
- the structure in which the anode catalyst layer 14 and the anode gas diffusion layer 20 are stacked may be referred to as an anode, and the structure in which the cathode catalyst layer 16 and the cathode gas diffusion layer 40 may be referred to as a cathode.
- the following reaction occurs in the solid polymer fuel cell 1 described above. That is, when hydrogen gas as a fuel gas is supplied to the anode catalyst layer 14 through the anode gas diffusion layer 20, a reaction represented by the following formula (1) occurs in the anode catalyst layer 14 and hydrogen is decomposed into protons and electrons. Be done. The protons move to the cathode catalyst layer 16 side in the electrolyte membrane 12. The electrons move to an external circuit (not shown) and flow from the external circuit into the cathode catalyst layer 16.
- FIG. 4A to FIG. 4D are process cross-sectional views schematically showing a method of manufacturing a gas diffusion layer for a fuel cell according to the embodiment.
- a method of manufacturing the fuel cell gas diffusion layer will be described by taking the anode gas diffusion layer 20 as an example.
- the 1st porous sheet 21 and the 2nd porous sheet 25 are prepared.
- the second porous sheet 25 is a sheet containing a plurality of conductive fibers 28 (see FIG. 3) and a thermoplastic resin 30 (see FIG. 3).
- the first porous sheet 21 is a sheet that contains a plurality of conductive particles and a binder resin, and the occupied area ratio of the conductive fibers 28 described above is smaller than the occupied area ratio in the cross section of the second porous sheet 25 .
- the first porous sheet 21 and the second porous sheet 25 are stacked and disposed between the first mold 70 and the second mold 72.
- the first mold 70 is provided with a convex portion 74 corresponding to the shape of the fluid channel 24.
- the surface of the second mold 72 facing the convex portion 74 is flat.
- the first porous sheet 21 and the second porous sheet 25 obtained by closing the first metal mold 70 and the second metal mold 72 and superposing the first metal mold 70 and the second metal mold 72 are formed into a predetermined shape. Heat and press at temperature and pressure. As a result, a groove-like fluid flow channel 24 is formed on one of the main surfaces of the first porous sheet 21. In the fluid flow channel 24, the second porous sheet 25 is exposed in part of the surface.
- the thermoplastic resin 30 is PTFE
- the pressure and temperature at molding are 10 MPa and 200 ° C.
- the first porous sheet 21 and the second porous sheet 25 are pressure-bonded to each other. After the predetermined time has elapsed, the first mold 70 and the second mold 72 are opened.
- FIG. 4D the first porous layer 22 having the fluid flow path 24 on one main surface and the other on the other main surface of the first porous layer 22
- An anode gas diffusion layer 20 comprising the two porous layers 26 is obtained.
- (Modification) 5 (A) to 5 (B) and 6 (A) to 6 (B) are cross-sectional views schematically showing the structure of a fuel cell 1 according to a modification.
- FIGS. 5A to 5B and FIGS. 6A to 6B are different from each other in the shape of the fluid flow channel 24 or the property of the second porous layer 46.
- FIG. 5A the cathode gas diffusion layer 40 and the cathode catalyst layer 16 are shown.
- the surface of the fluid flow channel 44 is constituted by the first surface 110, the second surface 112, the third surface 114, and the fourth surface 116.
- the first surface 110 is provided from one major surface of the first porous layer 42 to the second porous layer 46.
- the fourth surface 116 is provided to face the first surface 110.
- the first surface 110 and the fourth surface 116 have vertical axes so that the distance between the first surface 110 and the fourth surface 116 becomes narrower as the distance from the one main surface of the first porous layer 42 becomes smaller Tilt from
- the second surface 112 is provided continuously from the one main surface of the second porous layer 46 to the inside of the second porous layer 46 following the first surface 110.
- the third surface 114 is provided to face the second surface 112 and is connected to the second surface 112 in the second porous layer 46. Similar to the first surface 110 and the fourth surface 116, the second surface 112 and the third surface 114 are inclined from the vertical axis, but the inclination angle of the second surface 112 and the third surface 114 is the same as the first surface 110. And the angle of inclination of the fourth surface 116 may be different. With such a configuration, the second porous layer 46 is exposed at the second surface 112 and the third surface 114 that are part of the surface of the fluid flow channel 44. In order to form the second surface 112 and the third surface 114, the second porous layer 46 also has a groove, which improves drainage performance.
- the microporous layer 100 is laminated between the second porous layer 46 and the cathode catalyst layer 16.
- the microporous layer 100 is dense and has low air permeability but high water repellency, and transfers the water generated in the cathode catalyst layer 16 to the second porous layer 46 in the state of water vapor without converting it into a liquid. Therefore, the drainage property of the cathode catalyst layer 16 is further improved.
- the cathode gas diffusion layer 40 and the cathode catalyst layer 16 are also shown in FIG. 5 (B).
- the surface of the fluid channel 44 is constituted by the first surface 120, the second surface 122, the groove 124, the third surface 126, and the fourth surface 128.
- the first surface 120 is provided from one main surface of the first porous layer 42 to the inside of the first porous layer 42.
- the fourth surface 128 is provided to face the first surface 120.
- the first surface 120 and the fourth surface 128 are disposed along the vertical axis.
- the second surface 122 is connected to the first surface 120 and provided substantially parallel to one of the main surfaces of the first porous layer 42, and the third surface 126 is connected to the fourth surface 128, and the first porous It is provided substantially parallel to one of the main surfaces of layer 42. Furthermore, a groove 124 is provided in the second porous layer 46 from the position where the second surface 122 and the third surface 126 are close to each other. With such a configuration, the second porous layer 46 is exposed in a part of the groove 124 which is a part of the surface of the fluid flow channel 44.
- the second porous layer 46 has a wide control range of air permeability, and realizes a first porous layer 42 having a relatively high air permeability and a second porous layer 46 having a relatively low air permeability. be able to.
- the first porous layer 42 has higher air permeability than the second porous layer 46.
- the second porous layer 46 can discharge the water generated in the cathode catalyst layer 16 to the fluid flow path 44 in the state of water vapor, like the fine porous layer 100.
- the cathode gas diffusion layer 40 and the cathode catalyst layer 16 are also shown in FIG. 6 (B).
- the water repellency of the first portion 46a of the second porous layer 46 overlapping with the first porous layer 42 is exposed from the first porous layer 42 It is higher than the water repellency of the second portion 46 b of the second porous layer 46 overlapping the exposed surface (that is, the third surface 84).
- Water generated in the cathode gas diffusion layer 40 is drawn to the second portion 46 b of the second porous layer 46 having low water repellency.
- the oxidant gas is supplied to the cathode catalyst layer 16 through the first porous layer 42 and the first portion 46 a of the highly water-repellent second porous layer 46. Furthermore, excess oxidant gas flows from the first portion 46a of the second porous layer 46 having high water repellency into the second portion 46b of the second porous layer 46 having low water repellency, and the second porous layer 46 The product water drawn to the second portion 46 b can be discharged by pushing it into the fluid channel 44. In this manner, fluid channels 44 of various shapes and a second porous layer 46 of various properties are provided. In FIGS.
- the shape of the fluid flow channel 44 provided in the cathode gas diffusion layer 40 and the second porous layer 46 have been described.
- the fluid flow path 24 and the second porous layer 26 provided in the anode gas diffusion layer 20 may have the same shape.
- the microporous layer 100 is provided in FIG. 5 (A) to FIG. 5 (B) and FIG. 6 (A) to FIG. 6 (B), this may be omitted. In 2, the microporous layer 100 may be provided.
- the fluid flow channel opened in one main surface of the first porous layer having a small occupied area ratio of the conductive fiber since the groove-like fluid flow channel opened in one main surface of the first porous layer having a small occupied area ratio of the conductive fiber is provided, the fluid flow channel can be easily formed. In addition, since the formation of the fluid flow path is facilitated, the process is facilitated and the cost can be reduced. In addition, since the second porous layer having a large occupied area ratio of the conductive fibers is disposed on the other main surface side of the first porous layer, drainage in the vicinity of the catalyst layer can be improved. In addition, since the drainage in the vicinity of the catalyst layer is improved, the gas diffusivity can be improved.
- the generated water in the catalyst layer is discharged to the fluid flow path without being stored in the first porous layer. it can.
- generated water in the catalyst layer is discharged to the fluid flow channel without being accumulated in the first porous layer, drainage can be improved.
- the second porous layer having a large occupied area ratio of the conductive fibers is disposed on the other main surface side of the first porous layer, the main surfaces can be formed by the conductive fibers disposed along the main surface. Can reduce the resistance along the In addition, since the resistance is reduced, the conductivity can be improved. In addition, since the first porous layer and the second porous layer are stacked, the number of contact points can be increased. In addition, since the contact points are increased, the resistance can be reduced. In addition, since the projected area of the portion where the first porous layer and the second porous layer overlap is larger than the projected area of the portion where the second porous layer is exposed, the second porous layer is exposed. Even if there is, resistance can be lowered.
- both of the anode gas diffusion layer 20 and the cathode gas diffusion layer 40 include the first porous layers 22 and 42, the fluid flow paths 24 and 44, and the second porous layers 26 and 46. It has composition.
- the invention is not particularly limited thereto, and only one of the anode gas diffusion layer 20 and the cathode gas diffusion layer 40 may have the above-described configuration.
- the step of forming the fluid flow channel 24 and the step of laminating the second porous sheet 25 on the first porous sheet 21 are simultaneously performed. For this reason, compared with the case where both processes are implemented separately, the manufacturing process of the gas diffusion layer for fuel cells can be simplified.
- the step of laminating the second porous sheet 25 on the first porous sheet 21 may be performed before or after the step of forming the fluid channel 24 without being particularly limited to this manufacturing step.
- the step of laminating the second porous sheet 25 is performed after the step of forming the fluid flow channel 24, first, only the first porous sheet 21 is disposed between the first mold 70 and the second mold 72. , And press-formed to form the fluid channel 24. Then, the first porous sheet 21 and the second porous sheet 25 provided with the fluid flow path 24 are stacked, disposed between the first mold 70 and the second mold 72, and press-formed. The second porous sheet 25 is laminated to the first porous sheet 21.
- the first porous sheet 21 and the second porous sheet 25 are first overlapped to form the first mold 70. And the second mold 72 and pressed. At this time, the first mold 70 is a flat mold having no convex portion 74. Thereby, the second porous sheet 25 is stacked on the first porous sheet 21. Next, the obtained laminate is placed between the first mold 70 and the second mold 72 and pressed. At this time, the first mold 70 is a mold having a convex portion 74. Thereby, the fluid channel 24 is formed in the first porous sheet 21.
- SYMBOLS 1 fuel cell 10 membrane electrode assembly, 12 electrolyte membrane, 14 anode catalyst layer, 16 cathode catalyst layer, 20 anode gas diffusion layer, 22, 42 1st porous layer, 24, 44 fluid flow path, 26, 46 first 2 porous layers, 28, 48 conductive fibers, 30, 50 thermoplastic resin, 40 cathode gas diffusion layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
第1多孔質層(42)は、一方の主表面において開口した溝状の流体流路(44)を有する。第2多孔質層(46)は、第1多孔質層(42)の他方の主表面側に配置される。ここで、第1多孔質層(42)の断面における単位面積あたりの導電性繊維(28)の占有面積率は、第2多孔質層(46)の断面における導電性繊維(28)の占有面積率よりも小さい。また、流体流路(44)の表面の一部において第2多孔質層(46)が露出している。
Description
本発明は、燃料電池用ガス拡散層と、燃料電池用ガス拡散層を有する燃料電池と、燃料電池用ガス拡散層の形成方法とに関する。
燃料電池は、水素と酸素とから電気エネルギーを発生させる装置であり、高い発電効率を得ることができる。燃料電池の主な特徴としては、従来の発電方式のように熱エネルギーや運動エネルギーの過程を経ることがない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性がよいことなどが挙げられる。このように、燃料電池は燃料のもつ化学エネルギーを有効に利用でき、環境にやさしい特性を備えるため、21世紀を担うエネルギー供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、また大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。
特許文献1には、高分子電解質膜の両面に触媒層、ガス拡散層、及びセパレータが順に積層された燃料電池が開示されている。当該燃料電池のガス拡散層は、導電性カーボンシートで構成され、セパレータと当接する表面に流体流路を有する。
本発明者らは、上述した燃料電池について鋭意研究を重ねた結果、従来の燃料電池のガス拡散層には、排水性の向上を図る余地があることを認識するに至った。
本発明はこうした状況に鑑みてなされたものであり、その目的は、燃料電池用ガス拡散層における排水性の向上を図る技術を提供することにある。
上記課題を解決するために、本発明のある態様の燃料電池用ガス拡散層は、一方の主表面において開口した溝状の流体流路を有する第1多孔質層と、第1多孔質層の他方の主表面側に配置される第2多孔質層とを備える。第1多孔質層の断面における単位面積あたりの導電性繊維の占有面積率が第2多孔質層の断面における当該占有面積率よりも小さく、流体流路の表面の一部において第2多孔質層が露出している。
本発明の他の態様は、燃料電池である。当該燃料電池は、電解質膜、電解質膜の一方の面に設けられたアノード触媒層、及び電解質膜の他方の面に設けられたカソード触媒層で構成される膜電極接合体と、膜電極接合体のアノード触媒層側に配置されるアノードガス拡散層と、膜電極接合体のカソード触媒層側に配置されるカソードガス拡散層と、を備える。アノードガス拡散層及びカソードガス拡散層の少なくとも一方は、上述した態様の燃料電池用ガス拡散層で構成される。
本発明の別の態様は、燃料電池用ガス拡散層の形成方法である。この方法は、第1多孔質シートと第2多孔質シートとを重ね合わせてから加熱及び加圧するステップと、第1多孔質シートの一方の主表面において開口した溝状の流体流路であって、かつ表面の一部において第2多孔質シートが露出した流体流路を形成するステップとを備える。形成するステップにおいて流体流路が形成された第1多孔質シートの断面における単位面積あたりの導電性繊維の占有面積率は、第2多孔質シートの断面における当該占有面積率よりも小さい。
本発明によれば、燃料電池用ガス拡散層における排水性の向上を図ることができる。
以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
図1は、実施の形態に係る燃料電池の構造を模式的に示す斜視図である。図2は、図1のA-A線に沿った概略断面図である。本実施の形態の燃料電池1は、略平板状の膜電極接合体10と、燃料電池用ガス拡散層としてのアノードガス拡散層20及びカソードガス拡散層40とを備える。以下、アノードガス拡散層20とカソードガス拡散層40とを区別しない場合には、まとめて燃料電池用ガス拡散層と称する。アノードガス拡散層20とカソードガス拡散層40とは、膜電極接合体10を挟んで互いの主表面が対向するように設けられる。また、アノードガス拡散層20及びカソードガス拡散層40それぞれの膜電極接合体10とは反対の主表面側には、セパレータ2,4が設けられる。本実施の形態では、一組の膜電極接合体10、アノードガス拡散層20及びカソードガス拡散層40を示すが、セパレータ2,4を介して複数組が積層され、燃料電池スタックが構成されてもよい。
膜電極接合体10は、電解質膜12、電解質膜12の一方の面に設けられたアノード触媒層14、及び電解質膜12の他方の面に設けられたカソード触媒層16で構成される。
電解質膜12は、湿潤状態において良好なイオン伝導性を示し、アノード触媒層14とカソード触媒層16との間でプロトンを移動させるイオン交換膜として機能する。電解質膜12は、例えば含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成される。電解質膜12の材料としては、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。また、スルホン酸型パーフルオロカーボン重合体の例としては、ナフィオン(デュポン社製:登録商標)112等が挙げられる。非フッ素重合体の例としては、スルホン化された、芳香族ポリエーテルエーテルケトンやポリスルホン等が挙げられる。電解質膜12の厚さは、例えば10μm以上200μm以下である。
アノード触媒層14及びカソード触媒層16は、それぞれイオン交換樹脂及び触媒粒子、場合によって触媒粒子を担持する炭素粒子を有する。アノード触媒層14及びカソード触媒層16が有するイオン交換樹脂は、触媒粒子と電解質膜12を接続し、両者間においてプロトンを伝達する役割を果たす。このイオン交換樹脂は、電解質膜12と同様の高分子材料から形成することができる。触媒粒子としては、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体といった触媒金属が挙げられる。また、炭素粒子としては、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等を用いることができる。アノード触媒層14及びカソード触媒層16の厚さは、それぞれ、例えば10μm以上40μm以下である。
アノードガス拡散層20は、膜電極接合体10のアノード触媒層14側に配置される。アノードガス拡散層20は、第1多孔質層22と、流体流路24と、第2多孔質層26とを有する。アノードガス拡散層20の厚さは、例えば50μm以上500μm以下である。
図3は、燃料電池用ガス拡散層の構造を模式的に示す断面図である。第1多孔質層22は、複数の導電性粒子、及び当該導電性粒子同士を結着させるバインダー樹脂を含有する。図3では、導電性粒子とバインダー樹脂とを描き分けておらず、両者が混合された状態を図示している。
導電性粒子としては、例えば、カーボンブラック、人造黒鉛、天然黒鉛、膨張黒鉛などのカーボン粒子や、金属粒子等を用いることができる。導電性粒子の平均粒子径は、例えば一次粒子で0.01μm以上50μm以下である。バインダー樹脂としては、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、ETFE(テトラフルオロエチレン・エチレン共重合体)等のフッ素系樹脂を用いることができる。第1多孔質層22の厚さは、例えば30μm以上300μm以下である。
第2多孔質層26は、第1多孔質層22の他方の主表面側、すなわち、アノード触媒層14側の主表面側に配置される。第2多孔質層26は、長さが30μm以上の複数の導電性繊維28、及び熱可塑性樹脂30を含有する。導電性繊維28としては、例えば、ポリアクリロニトリル系炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維、カーボンナノチューブ等のカーボンファイバーや、金属繊維等を用いることができる。長さ30μm以上の導電性繊維28および熱可塑性樹脂30の種類や組成を変え、導電性繊維28が互いに接着する接着点の数を増減させることにより、第2多孔質層26の透気度を広い範囲で制御することができる。これにより、第2多孔質層26に所望の排水性を付与することができる。なお、第2多孔質層26の厚さは、例えば20μm以上200μm以下である。
ここで、第1多孔質層22は、第2多孔質層26に含有される導電性繊維28を含有していてもよいが、その含有量は、第2多孔質層26における含有量よりも小さい。例えば、第1多孔質層22の断面における単位面積あたりの導電性繊維28の占有面積率が、第2多孔質層26での導電性繊維28の断面における当該占有面積率よりも小さい。導電性繊維28の占有面積率は、以下のようにして求めることができる。すなわち、まず走査型電子顕微鏡(SEM)を用いて第2多孔質層26の断面が撮影される。そして、得られたSEM画像において、断面上における単位面積当たりの導電性繊維28の面積が測定される。導電性繊維28の面積は、画像処理によって針状の繊維を検出することによって測定される。そして、単位面積に対する導電性繊維28の面積の割合が算出されて、導電性繊維28の占有面積率が得られる。SEM画像の倍率は例えば100倍であり、この倍率で撮影されたSEM画像における測定領域の大きさは、1000μm×1000μmである。
第2多孔質層26における導電性繊維28の占有面積率が、第1多孔質層22における導電性繊維28の占有面積率よりも大きいため、第2多孔質層26は透気度の制御範囲が広く、相対的に透気度の高い第2多孔質層26と、相対的に透気度の低い第1多孔質層22とを実現することができる。すなわち、第2多孔質層26は、第1多孔質層22よりも透気度が高い。
流体流路24は、溝状の形状を有し、第1多孔質層22の一方の主表面に開口される。流体流路24は、セパレータ2側に配置され、燃料ガスの流路として機能する。水素ガス等の燃料ガスは、燃料供給用のマニホールド(図示せず)から流体流路24に分配され、流体流路24から第1多孔質層22及び第2多孔質層26を経て、膜電極接合体10のアノード触媒層14に供給される。
流体流路24の表面は、第1面80、第2面82、第3面84、第4面86、第5面88によって構成される。第1面80は、第1多孔質層22の一方の主表面から、第1多孔質層22の中にわたって設けられる。また、第5面88は、第1面80に対向するように設けられる。ここで、第1面80と第5面88との距離が、第1多孔質層22の一方の主表面から離れるにしたがって狭くなるように、第1面80及び第5面88は、第1多孔質層22の一方の主表面に垂直な軸(以下、「垂直軸」という)から傾斜する。
第2面82は、第1面80に続いて、第1多孔質層22の中から、第2多孔質層26にわたって設けられる。また、第4面86は、第2面82に対向するように設けられる。ここで、第2面82及び第4面86は、第1面80及び第5面88と同様に、垂直軸から傾斜するが、第2面82及び第4面86の傾斜の角度は、第1面80及び第5面88の傾斜の角度と異なっている。第3面84は、第2多孔質層26の表面に設けられており、第2面82と第2多孔質層26とが接する部分から、第4面86と第2多孔質層26とが接する部分までの幅を有する。このような構成によって、流体流路24の表面の一部である第3面84において第2多孔質層26が露出している。
流体流路24は、主として第1多孔質層22中に形成されている。第1多孔質層22は、導電性繊維28をほとんど含有せず、かつ導電性粒子とバインダー樹脂を含むので、成型性が高い。そのため、流体流路24が容易に成型される。
第2多孔質層26に含まれた導電性繊維28の長軸が、電解質膜12の主表面に垂直な方向よりも、電解質膜12の主表面に沿った方向に近づくように傾きながら、導電性繊維28が配置される。そのため、第2多孔質層26において、電解質膜12の主表面に沿った方向の導電性が向上する。導電性が向上することは、抵抗が減少することに相当する。また、第2多孔質層26に第1多孔質層22が重ね合わせられるので、第1多孔質層22が第2多孔質層26の中に入り込む。このことによって、両者の接点が増加するので、第2多孔質層26同士を重ねた場合よりも抵抗が減少する。
さらに、図3のごとく、第1多孔質層22の一方の主表面側から投影した場合において、第1多孔質層22と第2多孔質層26とが重なった部分である第1領域90の投影面積は、第2多孔質層26が露出した部分である第2領域92の投影面積よりも大きい。第2領域92は、前述の第3面84に相当する。第1領域90の投影面積が第2領域92の投影面積よりも大きくされるので、第2領域92を設けた場合であっても、第1多孔質層22と第2多孔質層26との接触面積の減少が抑制され、抵抗の増加が抑制される。
流体流路24の幅が大きいと、電子の移動経路が長くなることによって、抵抗が増大する。一方、流体流路24の幅が小さいと、ガスの圧損が大きくなり、ガスが流れにくくなるので、流体流路24の寸法は、例えば、深さが500μm以上1000μm以下、幅が0.1mm以上0.5mm以下、隣り合う流体流路24間の距離が500μm以上1000μm以下である。また、第2領域92の幅が大きいと、第1多孔質層22と第2多孔質層26との接触面積が小さくなるので、抵抗が大きくなる。一方、第2領域92の幅が小さいと、後述の流体流路44における排水性が低下するので、第2領域92の幅は、0.02mm以上0.05mm以下が好ましい。なお、本実施の形態では、流体流路24は5つ設けられているが、その数は特に限定されず、アノードガス拡散層20の大きさ等に応じて適宜設定することができる。
カソードガス拡散層40は、膜電極接合体10のカソード触媒層16側に配置される。カソードガス拡散層40は、第1多孔質層42と、流体流路44と、第2多孔質層46とを有する。カソードガス拡散層40の厚さは、例えば50μm以上500μm以下である。
第1多孔質層42は、複数の導電性粒子、及び当該導電性粒子同士を結着させるバインダー樹脂を含有する。導電性粒子及びバインダー樹脂としては、第1多孔質層22に用いられるものと同じものを用いることができる。また、第1多孔質層42の組成及び寸法は、第1多孔質層22と同様である。
第2多孔質層46は、第1多孔質層42の他方の主表面側、すなわち、カソード触媒層16側の主表面側に配置される。第2多孔質層46は、長さが30μm以上の複数の導電性繊維48、及び熱可塑性樹脂50を含有する。導電性繊維48及び熱可塑性樹脂50としては、アノードガス拡散層20に含まれる導電性繊維28及び熱可塑性樹脂30と同じものを挙げることができる。また、第2多孔質層46の組成及び寸法は、第2多孔質層26と同様である。第1多孔質層42の断面における単位面積当たりの導電性繊維48の占有面積率は、第2多孔質層46の断面における当該占有面積率よりも小さい。また、第2多孔質層46は、第1多孔質層42よりも透気度が高い。
流体流路44は、溝状の形状を有し、第1多孔質層42の一方の主表面に設けられる。流体流路44は、流体流路24と同様に構成される。流体流路44は、酸化剤ガスの流路として機能する。また、流体流路44は、カソード触媒層16で生成された水の排水路としても機能する。空気等の酸化剤ガスは、酸化剤供給用のマニホールド(図示せず)から流体流路44に分配され、流体流路44から第2多孔質層46を通って、膜電極接合体10のカソード触媒層16に供給されるだけでなく、流体流路44から第1多孔質層42を経た後に第2多孔質層46を通って、膜電極接合体10のカソード触媒層16に供給される。したがって、第1多孔質層42の一方の主表面側から投影した場合に、第1多孔質層42から露出した第2多孔質層46の露出面(すなわち、第3面84)と重なるカソード触媒層16の第2部分だけでなく、第1多孔質層42と重なるカソード触媒層16の第1部分にも、酸化剤ガスが十分に供給される。なお、流体流路44の寸法は、流体流路24と同様である。
第2多孔質層46は、第1多孔質層42よりも透気度が高いため、電気化学反応によりカソード触媒層16で生成された水や、電解質膜12からカソード触媒層16に移動した水が、通り抜けやすい。そのため、第2多孔質層46は、第1多孔質層42よりも排水性が高い。このような第2多孔質層46が、第1多孔質層42よりもカソード触媒層16の近くに配置されているので、カソード触媒層16近傍の排水性が向上する。カソード触媒層16近傍の排水性が向上すると、カソード触媒層16近傍の水が少なくなり、ガス拡散性が向上する。また、第3面84において第2多孔質層46が露出しているので、カソード触媒層16からの水が第1多孔質層42を経由せずに流体流路44へ直接排出される。その結果、排水性がさらに向上する。なお、本実施の形態では、流体流路44は5つ設けられているが、その数は特に限定されず、カソードガス拡散層40の大きさ等に応じて適宜設定することができる。
なお、アノード触媒層14とアノードガス拡散層20とが積層された構造をアノードと称し、カソード触媒層16とカソードガス拡散層40とが積層された構造をカソードと称する場合がある。
上述した固体高分子形の燃料電池1では、以下の反応が起こる。すなわち、アノードガス拡散層20を介してアノード触媒層14に燃料ガスとしての水素ガスが供給されると、アノード触媒層14において下記式(1)で示す反応が起こり、水素がプロトンと電子に分解される。プロトンは、電解質膜12中をカソード触媒層16側へ移動する。電子は、外部回路(図示せず)に移動し、外部回路からカソード触媒層16に流れ込む。一方、カソードガス拡散層40を介してカソード触媒層16に酸化剤ガスとしての空気が供給されると、カソード触媒層16において下記式(2)で示す反応が起こり、空気中の酸素がプロトン及び電子と反応して水になる。この結果、外部回路においてアノードからカソードに向かって電子が流れることとなり、電力を取り出すことができる。アノード触媒層14及びカソード触媒層16で起こる反応は以下の通りである。
アノード触媒層14:H2→2H++2e- (1)
カソード触媒層16:2H++(1/2)O2+2e-→H2O (2)
(燃料電池用ガス拡散層の製造工程)
続いて、実施の形態に係る燃料電池用ガス拡散層の製造方法について説明する。図4(A)~図4(D)は、実施の形態に係る燃料電池用ガス拡散層の製造方法を模式的に示す工程断面図である。ここでは、アノードガス拡散層20を例に、燃料電池用ガス拡散層の製造方法を説明する。
カソード触媒層16:2H++(1/2)O2+2e-→H2O (2)
(燃料電池用ガス拡散層の製造工程)
続いて、実施の形態に係る燃料電池用ガス拡散層の製造方法について説明する。図4(A)~図4(D)は、実施の形態に係る燃料電池用ガス拡散層の製造方法を模式的に示す工程断面図である。ここでは、アノードガス拡散層20を例に、燃料電池用ガス拡散層の製造方法を説明する。
まず、図4(A)に示すように、第1多孔質シート21と、第2多孔質シート25とを用意する。第2多孔質シート25は、複数の導電性繊維28(図3参照)及び熱可塑性樹脂30(図3参照)を含有するシートである。第1多孔質シート21は、複数の導電性粒子及びバインダー樹脂を含有し、上述した導電性繊維28の占有面積率が第2多孔質シート25の断面における当該占有面積率よりも小さいシートである。
次に、図4(B)に示すように、第1多孔質シート21と第2多孔質シート25とを重ね合わせて、第1金型70と第2金型72との間に配置する。第1金型70には、流体流路24の形状に対応する凸部74が設けられている。凸部74と対向する第2金型72の表面は、平坦である。
次に、図4(C)に示すように、第1金型70と第2金型72とを型閉じし、重ね合わせた第1多孔質シート21及び第2多孔質シート25を、所定の温度及び圧力で加熱及び加圧する。これにより、第1多孔質シート21の一方の主表面に、溝状の流体流路24が形成される。この流体流路24では、表面の一部において第2多孔質シート25が露出する。熱可塑性樹脂30がPTFEの場合、成型時の圧力及び温度は、10MPa、200℃である。また、これと同時に、第1多孔質シート21と第2多孔質シート25とが互いに圧着される。所定時間の経過後、第1金型70と第2金型72とを型開きする。
以上の工程により、図4(D)に示すように、一方の主表面に流体流路24を有する第1多孔質層22と、第1多孔質層22の他方の主表面に積層された第2多孔質層26とを備えるアノードガス拡散層20が得られる。
(変形例)
図5(A)~図5(B)、図6(A)~図6(B)は、変形例に係る燃料電池1の構造を模式的に示す断面図である。図5(A)~図5(B)、図6(A)~図6(B)は、これまでと流体流路24の形状または第2多孔質層46の性質が異なる。図5(A)では、カソードガス拡散層40、カソード触媒層16が示される。流体流路44の表面は、第1面110、第2面112、第3面114、第4面116によって構成される。第1面110は、第1多孔質層42の一方の主表面から、第2多孔質層46にわたって設けられる。また、第4面116は、第1面110に対向するように設けられる。ここで、第1面110と第4面116との距離が、第1多孔質層42の一方の主表面から離れるにしたがって狭くなるように、第1面110及び第4面116は、垂直軸から傾斜する。
(変形例)
図5(A)~図5(B)、図6(A)~図6(B)は、変形例に係る燃料電池1の構造を模式的に示す断面図である。図5(A)~図5(B)、図6(A)~図6(B)は、これまでと流体流路24の形状または第2多孔質層46の性質が異なる。図5(A)では、カソードガス拡散層40、カソード触媒層16が示される。流体流路44の表面は、第1面110、第2面112、第3面114、第4面116によって構成される。第1面110は、第1多孔質層42の一方の主表面から、第2多孔質層46にわたって設けられる。また、第4面116は、第1面110に対向するように設けられる。ここで、第1面110と第4面116との距離が、第1多孔質層42の一方の主表面から離れるにしたがって狭くなるように、第1面110及び第4面116は、垂直軸から傾斜する。
第2面112は、第1面110に続いて、第2多孔質層46の一方の主表面から、第2多孔質層46の中にわたって設けられる。また、第3面114は、第2面112に対向するように設けられ、第2多孔質層46の中において第2面112につながる。第2面112及び第3面114は、第1面110及び第4面116と同様に、垂直軸から傾斜するが、第2面112及び第3面114の傾斜の角度は、第1面110及び第4面116の傾斜の角度と同じでもよく、異なっていてもよい。このような構成によって、流体流路44の表面の一部である第2面112、第3面114において第2多孔質層46が露出している。第2面112、第3面114を形成するために、第2多孔質層46にも溝が掘られているので、排水性が向上する。
なお、図5(A)においては、第2多孔質層46とカソード触媒層16の間に微多孔質層100が積層されている。微多孔質層100は、緻密で透気度が低いが撥水性が高く、カソード触媒層16において発生した水を液体にすることなく水蒸気の状態で第2多孔質層46へ移動させる。そのため、カソード触媒層16における排水性がさらに向上する。
図5(B)でも、カソードガス拡散層40、カソード触媒層16が示される。流体流路44の表面は、第1面120、第2面122、溝部124、第3面126、第4面128によって構成される。第1面120は、第1多孔質層42の一方の主表面から、第1多孔質層42の中にわたって設けられる。また、第4面128は、第1面120に対向するように設けられる。ここで、第1面120及び第4面128は、垂直軸に沿って配置される。
第2面122は、第1面120につながるとともに、第1多孔質層42の一方の主表面に略平行に設けられ、第3面126は、第4面128につながるとともに、第1多孔質層42の一方の主表面に略平行に設けられる。さらに、第2面122と第3面126とが近接した位置から、第2多孔質層46の中へ溝部124が設けられる。このような構成によって、流体流路44の表面の一部である溝部124の一部において第2多孔質層46が露出している。
図6(A)でも、カソードガス拡散層40、カソード触媒層16が示される。第2多孔質層46は透気度の制御範囲が広く、相対的に透気度の高い第1多孔質層42と、相対的に透気度の低い第2多孔質層46とを実現することができる。図6(A)では、第1多孔質層42は、第2多孔質層46よりも透気度が高い。このような構成により、第2多孔質層46は、微多孔質層100と同様、カソード触媒層16において発生した水を水蒸気の状態で流体流路44へ排出できる。
図6(B)でも、カソードガス拡散層40、カソード触媒層16が示される。第1多孔質層42の一方の主表面側から投影した場合に、第1多孔質層42と重なる第2多孔質層46の第1部分46aの撥水性は、第1多孔質層42から露出した露出面(すなわち、第3面84)と重なる第2多孔質層46の第2部分46bの撥水性よりも高い。カソードガス拡散層40で生成した水は、撥水性の低い第2多孔質層46の第2部分46bに引き寄せられる。一方、酸化剤ガスは、第1多孔質層42、撥水性の高い第2多孔質層46の第1部分46aを経て、カソード触媒層16に供給される。さらに、余剰の酸化剤ガスが、撥水性の高い第2多孔質層46の第1部分46aから撥水性の低い第2多孔質層46の第2部分46bへ流れ込み、第2多孔質層46の第2部分46bに引き寄せられた生成水を流体流路44へ押し出すことで排出できる。このように、さまざまな形状の流体流路44およびさまざまな性質の第2多孔質層46が設けられる。図5(A)~図5(B)、図6(A)~図6(B)では、カソードガス拡散層40に設けられる流体流路44の形状および第2多孔質層46を説明したが、アノードガス拡散層20に設けられる流体流路24および第2多孔質層26が同様の形状であってもよい。さらに、図5(A)~図5(B)、図6(A)~図6(B)において、微多孔質層100が設けられているが、これが省略されてもよく、図1、図2において微多孔質層100が設けられてもよい。
本実施の形態によれば、導電性繊維の占有面積率が小さい第1多孔質層の一方の主表面において開口した溝状の流体流路が設けられるので、流体流路を容易に成形できる。また、流体流路の成形が容易になるので、プロセスが容易になり、コストを低減できる。また、第1多孔質層の他方の主表面側に、導電性繊維の占有面積率が大きい第2多孔質層が配置されるので、触媒層付近の排水性を向上できる。また、触媒層付近の排水性が向上されるので、ガス拡散性を向上できる。また、流体流路が部分的に第1多孔質層を貫通して、第2多孔質層が露出するので、触媒層での生成水を第1多孔質層に溜めずに流体流路に排出できる。また、触媒層での生成水を第1多孔質層に溜めずに流体流路に排出するので、排水性を向上できる。
また、第1多孔質層の他方の主表面側に、導電性繊維の占有面積率が大きい第2多孔質層が配置されるので、主表面に沿って配置される導電性繊維によって、主表面に沿った抵抗を低減できる。また、抵抗が低減するので、導電性を向上できる。また、第1多孔質層と第2多孔質層とを重ねるので、接触点を増加できる。また、接触点が増加するので、抵抗を低減できる。また、第1多孔質層と第2多孔質層とが重なった部分の投影面積が、第2多孔質層が露出した部分の投影面積よりも大きいので、第2多孔質層が露出した場合であっても、抵抗を低くできる。
本発明は、上述した実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
上述した実施の形態では、アノードガス拡散層20及びカソードガス拡散層40がともに、第1多孔質層22,42と、流体流路24,44と、第2多孔質層26,46とを含む構成を有する。しかしながら、特にこれに限定されず、アノードガス拡散層20及びカソードガス拡散層40のいずれか一方のみが上述した構成を有していてもよい。
上述した実施の形態では、流体流路24を形成する工程と、第2多孔質シート25を第1多孔質シート21に積層する工程とが同時に実施されている。このため、両工程を別々に実施する場合に比べて、燃料電池用ガス拡散層の製造工程を簡略化することができる。しかしながら、特にこの製造工程に限定されず、第2多孔質シート25を第1多孔質シート21に積層する工程は、流体流路24を形成する工程の前又は後であってもよい。
第2多孔質シート25の積層工程が流体流路24の形成工程の後に実施される場合、まず第1多孔質シート21のみが第1金型70と第2金型72との間に配置され、プレス成形されて流体流路24が形成される。次いで、流体流路24が設けられた第1多孔質シート21と第2多孔質シート25とが重ね合わされて第1金型70と第2金型72との間に配置され、プレス成形されて第2多孔質シート25が第1多孔質シート21に積層される。
第2多孔質シート25の積層工程が流体流路24の形成工程の前に実施される場合、まず第1多孔質シート21と第2多孔質シート25とが重ね合わされて、第1金型70と第2金型72との間に配置され、プレス成形される。このとき、第1金型70は、凸部74を有しない平坦状の金型である。これにより、第1多孔質シート21に第2多孔質シート25が積層される。次いで、得られた積層体が、第1金型70と第2金型72との間に配置され、プレス成形される。このとき、第1金型70は、凸部74を有する金型である。これにより、第1多孔質シート21に流体流路24が形成される。
1 燃料電池、 10 膜電極接合体、 12 電解質膜、 14 アノード触媒層、 16 カソード触媒層、 20 アノードガス拡散層、 22,42 第1多孔質層、 24,44 流体流路、 26,46 第2多孔質層、 28,48 導電性繊維、 30,50 熱可塑性樹脂、 40 カソードガス拡散層。
Claims (4)
- 一方の主表面において開口した溝状の流体流路を有する第1多孔質層と、
前記第1多孔質層の他方の主表面側に配置される第2多孔質層とを備え、
前記第1多孔質層の断面における単位面積あたりの導電性繊維の占有面積率が前記第2多孔質層の断面における当該占有面積率よりも小さく、
前記流体流路の表面の一部において前記第2多孔質層が露出していることを特徴とする燃料電池用ガス拡散層。 - 前記第1多孔質層の一方の主表面側から投影した場合において、前記第1多孔質層と前記第2多孔質層とが重なった部分の投影面積は、前記第2多孔質層が露出した部分の投影面積よりも大きいことを特徴とする請求項1に記載の燃料電池用ガス拡散層。
- 電解質膜、前記電解質膜の一方の面に設けられたカソード触媒層、及び前記電解質膜の他方の面に設けられたアノード触媒層で構成される膜電極接合体と、
前記膜電極接合体の前記アノード触媒層側に配置されるアノードガス拡散層と、
前記膜電極接合体の前記カソード触媒層側に配置されるカソードガス拡散層と、を備え、
前記アノードガス拡散層及び前記カソードガス拡散層の少なくとも一方は、請求項1または2に記載の燃料電池用ガス拡散層で構成されることを特徴とする燃料電池。 - 第1多孔質シートと第2多孔質シートとを重ね合わせてから加熱及び加圧するステップと、
前記第1多孔質シートの一方の主表面において開口した溝状の流体流路であって、かつ表面の一部において前記第2多孔質シートが露出した流体流路を形成するステップとを備え、
前記形成するステップにおいて流体流路が形成された前記第1多孔質シートの断面における単位面積あたりの導電性繊維の占有面積率は、前記第2多孔質シートの断面における当該占有面積率よりも小さいことを特徴とする燃料電池用ガス拡散層の形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580046558.6A CN106797035B (zh) | 2014-09-29 | 2015-07-13 | 燃料电池用气体扩散层、燃料电池以及燃料电池用气体扩散层的形成方法 |
JP2016551478A JP6650625B2 (ja) | 2014-09-29 | 2015-07-13 | 燃料電池用ガス拡散層、燃料電池 |
US15/434,116 US20170162878A1 (en) | 2014-09-29 | 2017-02-16 | Gas diffusion layer for fuel cell, fuel cell, and formation method for gas diffusion layer for fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-199067 | 2014-09-29 | ||
JP2014199067 | 2014-09-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/434,116 Continuation US20170162878A1 (en) | 2014-09-29 | 2017-02-16 | Gas diffusion layer for fuel cell, fuel cell, and formation method for gas diffusion layer for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051633A1 true WO2016051633A1 (ja) | 2016-04-07 |
Family
ID=55629713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/003529 WO2016051633A1 (ja) | 2014-09-29 | 2015-07-13 | 燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の形成方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170162878A1 (ja) |
JP (1) | JP6650625B2 (ja) |
CN (1) | CN106797035B (ja) |
WO (1) | WO2016051633A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072119A (zh) * | 2020-08-06 | 2020-12-11 | 江苏大学 | 一种燃料电池气体扩散层结构及其加工方法 |
US11539063B1 (en) * | 2021-08-17 | 2022-12-27 | Amogy Inc. | Systems and methods for processing hydrogen |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021171793A1 (ja) * | 2020-02-25 | 2021-09-02 | 国立大学法人山梨大学 | ガス拡散部材、ガス拡散ユニット、燃料電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007299656A (ja) * | 2006-04-28 | 2007-11-15 | Equos Research Co Ltd | 燃料電池の電極 |
JP2007299657A (ja) * | 2006-04-28 | 2007-11-15 | Equos Research Co Ltd | 燃料電池の電極 |
WO2011045889A1 (ja) * | 2009-10-13 | 2011-04-21 | パナソニック株式会社 | 燃料電池及びその製造方法 |
WO2014061280A1 (ja) * | 2012-10-19 | 2014-04-24 | パナソニック株式会社 | 燃料電池用ガス拡散層およびその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040072055A1 (en) * | 2000-04-14 | 2004-04-15 | Getz Matthew George | Graphite article useful as a fuel cell component substrate |
JP5168950B2 (ja) * | 2006-08-11 | 2013-03-27 | ソニー株式会社 | 燃料電池、電子機器および燃料供給方法 |
TWI334237B (en) * | 2007-01-05 | 2010-12-01 | Ind Tech Res Inst | Gas diffusion layer, manufacturing apparatus and manufacturing method thereof |
CN102308419B (zh) * | 2009-09-01 | 2014-09-17 | 松下电器产业株式会社 | 膜电极接合体及其制造方法、以及燃料电池 |
US8790846B2 (en) * | 2009-09-10 | 2014-07-29 | Panasonic Corporation | Gas diffusion layer and process for production thereof, and fuel cell |
KR20110078903A (ko) * | 2009-12-31 | 2011-07-07 | 한국에너지기술연구원 | 미세 천공이 형성된 탄소종이 확산층을 포함하는 직접 메탄올 연료 전지 |
US20140295314A1 (en) * | 2013-03-15 | 2014-10-02 | Ford Global Technologies, Llc | Microporous layer for a fuel cell with enhanced ice storage |
-
2015
- 2015-07-13 CN CN201580046558.6A patent/CN106797035B/zh active Active
- 2015-07-13 WO PCT/JP2015/003529 patent/WO2016051633A1/ja active Application Filing
- 2015-07-13 JP JP2016551478A patent/JP6650625B2/ja active Active
-
2017
- 2017-02-16 US US15/434,116 patent/US20170162878A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007299656A (ja) * | 2006-04-28 | 2007-11-15 | Equos Research Co Ltd | 燃料電池の電極 |
JP2007299657A (ja) * | 2006-04-28 | 2007-11-15 | Equos Research Co Ltd | 燃料電池の電極 |
WO2011045889A1 (ja) * | 2009-10-13 | 2011-04-21 | パナソニック株式会社 | 燃料電池及びその製造方法 |
WO2014061280A1 (ja) * | 2012-10-19 | 2014-04-24 | パナソニック株式会社 | 燃料電池用ガス拡散層およびその製造方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112072119B (zh) * | 2020-08-06 | 2022-06-21 | 江苏大学 | 一种燃料电池气体扩散层结构及其加工方法 |
CN112072119A (zh) * | 2020-08-06 | 2020-12-11 | 江苏大学 | 一种燃料电池气体扩散层结构及其加工方法 |
US11834985B2 (en) | 2021-05-14 | 2023-12-05 | Amogy Inc. | Systems and methods for processing ammonia |
US12000333B2 (en) | 2021-05-14 | 2024-06-04 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994062B2 (en) | 2021-05-14 | 2024-05-28 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11994061B2 (en) | 2021-05-14 | 2024-05-28 | Amogy Inc. | Methods for reforming ammonia |
US12097482B2 (en) | 2021-06-11 | 2024-09-24 | AMOGY, Inc. | Systems and methods for processing ammonia |
US11697108B2 (en) | 2021-06-11 | 2023-07-11 | Amogy Inc. | Systems and methods for processing ammonia |
US11724245B2 (en) | 2021-08-13 | 2023-08-15 | Amogy Inc. | Integrated heat exchanger reactors for renewable fuel delivery systems |
US11843149B2 (en) | 2021-08-17 | 2023-12-12 | Amogy Inc. | Systems and methods for processing hydrogen |
US11769893B2 (en) | 2021-08-17 | 2023-09-26 | Amogy Inc. | Systems and methods for processing hydrogen |
US11764381B2 (en) | 2021-08-17 | 2023-09-19 | Amogy Inc. | Systems and methods for processing hydrogen |
US11539063B1 (en) * | 2021-08-17 | 2022-12-27 | Amogy Inc. | Systems and methods for processing hydrogen |
US11834334B1 (en) | 2022-10-06 | 2023-12-05 | Amogy Inc. | Systems and methods of processing ammonia |
US11840447B1 (en) | 2022-10-06 | 2023-12-12 | Amogy Inc. | Systems and methods of processing ammonia |
US11912574B1 (en) | 2022-10-06 | 2024-02-27 | Amogy Inc. | Methods for reforming ammonia |
US11975968B2 (en) | 2022-10-06 | 2024-05-07 | AMOGY, Inc. | Systems and methods of processing ammonia |
US11866328B1 (en) | 2022-10-21 | 2024-01-09 | Amogy Inc. | Systems and methods for processing ammonia |
US11795055B1 (en) | 2022-10-21 | 2023-10-24 | Amogy Inc. | Systems and methods for processing ammonia |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016051633A1 (ja) | 2017-07-13 |
JP6650625B2 (ja) | 2020-02-19 |
CN106797035A (zh) | 2017-05-31 |
US20170162878A1 (en) | 2017-06-08 |
CN106797035B (zh) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016051633A1 (ja) | 燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の形成方法 | |
CN106716695B (zh) | 燃料电池用气体扩散层、燃料电池及燃料电池用气体扩散层的制造方法 | |
US8790846B2 (en) | Gas diffusion layer and process for production thereof, and fuel cell | |
JP4717160B2 (ja) | 燃料電池及びその製造方法 | |
JP5987440B2 (ja) | 燃料電池用微細多孔質層シート及びその製造方法 | |
JP2010146965A (ja) | 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法 | |
JP2013191435A (ja) | ガス拡散層およびそれを用いてなる燃料電池 | |
JP6751891B2 (ja) | 燃料電池、及び燃料電池の製造方法 | |
JP2006222024A (ja) | 固体高分子型燃料電池、膜−電極接合体およびガス拡散電極基材 | |
JP2010015908A (ja) | ガス拡散電極用基材、その製造方法、および膜−電極接合体 | |
JP2013020762A (ja) | 電解質膜・電極接合体及びその製造方法 | |
JP4792445B2 (ja) | 燃料電池セパレータ | |
CN114902454B (zh) | 燃料电池用膜电极接合体以及燃料电池 | |
JP2016072000A (ja) | 燃料電池用ガス拡散層、燃料電池及び燃料電池用ガス拡散層の製造方法 | |
JP2017168227A (ja) | 燃料電池用ガス拡散層および燃料電池 | |
JP2011049179A (ja) | 固体高分子型燃料電池用膜−電極接合体およびガス拡散電極基材 | |
KR101220866B1 (ko) | 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 연료전지 | |
JP7354928B2 (ja) | 燃料電池用のガス拡散層 | |
JP2014002923A (ja) | 燃料電池用ガス拡散層及びその製造方法 | |
JP2005071933A (ja) | 燃料電池用セパレータ、燃料電池用セパレータの製造方法 | |
JP2016219359A (ja) | 燃料電池用セパレータ、及び燃料電池 | |
JP2017162750A (ja) | 燃料電池用ガス拡散層および燃料電池 | |
JP6412995B2 (ja) | 電解質膜・電極構造体の製造方法 | |
JP2007157573A (ja) | 燃料電池 | |
KR101394281B1 (ko) | 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847066 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016551478 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15847066 Country of ref document: EP Kind code of ref document: A1 |