WO2016050006A1 - 压胀一体对转叶轮机构 - Google Patents

压胀一体对转叶轮机构 Download PDF

Info

Publication number
WO2016050006A1
WO2016050006A1 PCT/CN2015/000673 CN2015000673W WO2016050006A1 WO 2016050006 A1 WO2016050006 A1 WO 2016050006A1 CN 2015000673 W CN2015000673 W CN 2015000673W WO 2016050006 A1 WO2016050006 A1 WO 2016050006A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
blade
same
reverse
rotating shaft
Prior art date
Application number
PCT/CN2015/000673
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
摩尔动力(北京)技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩尔动力(北京)技术股份有限公司 filed Critical 摩尔动力(北京)技术股份有限公司
Publication of WO2016050006A1 publication Critical patent/WO2016050006A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/24Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like
    • F01D1/26Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant

Definitions

  • the invention relates to the field of thermal energy and power, in particular to a compression-integrated counter-rotating impeller mechanism.
  • Impeller mechanisms especially gas turbines (including jet engines, turbofans, turboprops, etc.) require many stages, which not only affect efficiency, but also increase system quality and cost. If the problem of the rotation and the use of gas power to solve the problem of non-equal or flexible communication between stages are effectively solved, the efficiency of the engine will be greatly improved.
  • a compression-integrating counter-rotating impeller mechanism includes a rotating shaft A and a rotating shaft B.
  • the rotating shaft A and the rotating shaft B are alternately arranged in an axial direction, and the pressing shaft A is arranged in a radial direction.
  • a pneumatic blade and an expansion bucket wherein the pressure aerodynamic blade and the expansion bucket are radially disposed on the rotating shaft B, and the pressure aerodynamic blades are arranged in series to form a part of the compression unit, and the expansion rotor is arranged in series to constitute an expansion unit. portion.
  • the rotation axis A and the rotation axis B are further alternately arranged.
  • the pressure pneumatic blade is further disposed in a near center region, the expansion blade is disposed in a telecentric region, or the pressure aerodynamic blade is disposed in a telecentric region.
  • the expansion blade is disposed in the near center region.
  • a compression-integrated counter-rotating impeller mechanism comprising a rotation axis A and a rotation axis B, the rotation axis A being a forward rotation axis, and the rotation axis B being a reverse rotation axis, the forward direction
  • the rotating shaft and the counter rotating shaft are axially alternately disposed, and the pneumatic wing is radially disposed on the forward rotating shaft, and the pressure aerodynamic blade is set as a forward pressure pneumatic blade, and the forward pressure pneumatic
  • An expansion bucket is disposed outside the blade, the expansion bucket is configured as a forward expansion bucket, and the forward pressure aerodynamic blade and the forward expansion bucket are radially disposed from the inside to the outside and the forward pressure aerodynamic blade
  • the positive expansion blade is fixedly disposed, and the pressure aerodynamic blade is radially disposed on the reverse rotation axis, and the pressure aerodynamic blade on the reverse rotation axis is set as a reverse pressure aerodynamic blade
  • An expansion bucket is disposed outside the reverse pressure aerodynamic blade, the expansion bucket outside
  • a compression-integration counter-rotating impeller mechanism comprising a rotation axis A and a rotation axis B, the rotation axis A being a forward rotation axis, and the rotation axis B being a reverse rotation axis, the forward direction
  • the rotating shaft and the counter rotating shaft are axially alternately disposed, and the expanding moving blade is radially disposed on the forward rotating shaft, and the expanding moving blade is set as a positive expanding moving blade.
  • a pressure aerodynamic blade is disposed outside the positive expansion blade, the pressure aerodynamic blade is set as a forward pressure aerodynamic blade, and the positive expansion blade and the forward pressure aerodynamic blade are radially disposed from the inside to the outside and the a positive expansion bucket and the forward pressure aerodynamic blade are fixedly disposed, and the expansion bucket is radially disposed on the reverse rotation axis, and the expansion blade on the reverse rotation axis is reversed
  • a pressure aerodynamic blade is disposed outside the reverse expansion blade, and the pressure aerodynamic blade outside the reverse expansion blade is set as a reverse pressure aerodynamic blade, and the reverse expansion blade and The reverse pressure aerodynamic blade is disposed radially inwardly and outwardly and the reverse expansion bucket and the reverse pressure aerodynamic blade are fixedly disposed, all of the forward pressure aerodynamic blades and all of the reverse pressure pneumatic
  • the leaves are in series forming part of the compression unit, and all of said reverse expansion vanes and all of said forward expansion vanes are in series forming part of the expansion unit.
  • Item 10 On the basis of any one of the sixth aspect to the aspect 9, further comprising an auxiliary positive expansion blade on the forward rotation axis, and an auxiliary reverse expansion blade on the reverse rotation axis, All of the associated positive expansion buckets and all of the associated counter-expansion buckets are in series forming a portion of the accessory expansion unit.
  • the forward pressure aerodynamic blade and the auxiliary forward pressure aerodynamic blade on the same forward rotation axis to be in the same logical direction as the rotation direction, and the same on the forward rotation axis
  • the forward pressure aerodynamic blade and the positive expansion rotor blade conform to a logical relationship in which the direction of rotation is the same and the flow direction is opposite, and the reverse pressure aerodynamic blade and the auxiliary reverse pressure aerodynamic blade on the same reverse rotation axis
  • the reverse pressure aerodynamic blade and the reverse expansion bucket on the same reverse rotation axis conform to a logical relationship with the same rotation direction and opposite flow direction;
  • the forward pressure aerodynamic blade and the auxiliary forward pressure aerodynamic blade on the same forward rotating shaft correspond to a logical relationship in which the direction of rotation is the same and the flow direction is opposite, and the reverse pressure aerodynamic blade and the auxiliary reverse pressure aerodynamic force on the same reverse rotation axis
  • the blade conforms to a logical relationship in which the rotation direction is the same and the flow direction is opposite.
  • the reverse pressure aerodynamic blade and the reverse expansion blade on the same reverse rotation axis conform to a logical relationship in which the rotation direction is the same and the flow direction is opposite.
  • the forward pressure aerodynamic blade and the auxiliary forward pressure aerodynamic blade on the same forward rotation axis are in the same logical relationship with the same direction of rotation, and the same on the forward rotation axis
  • the forward pressure aerodynamic blade and the forward expansion bucket have the same logical relationship of the same direction of flow, and the reverse pressure aerodynamic blade and the auxiliary reverse pressure aerodynamic force on the same reverse rotation axis
  • the blade conforms to the same logical relationship of the same direction of rotation and the same flow direction, and the reverse pressure aerodynamic blade and the reverse expansion blade on the same reverse rotation axis conform to the same logical relationship of the same direction of rotation and the same flow direction;
  • the positive expansion bucket has the same logical relationship with the same direction of rotation, and the reverse pressure aerodynamic blade and the auxiliary reverse pressure aerodynamic blade on the same reverse rotation axis are in the same direction of rotation and opposite in flow direction.
  • the logical relationship is that the reverse pressure aerodynamic blade and the reverse expansion rotor on the same counter-rotating axis conform to the same logical relationship of the direction of rotation and the same flow direction.
  • the working fluid outlet of the pressure gas unit is further communicated with the working medium inlet of the auxiliary pressure gas unit, and the working fluid outlet and combustion of the auxiliary pressure gas unit
  • the chamber is in communication, and the combustion chamber is in communication with a working fluid inlet of the expansion unit.
  • the working fluid outlet of the compressor unit is further communicated with a combustion chamber, and the combustion chamber is in communication with a working medium inlet of the expansion unit, the expansion The working fluid outlet of the unit is in communication with the working fluid inlet of the auxiliary expansion unit.
  • the pressure aerodynamic blade and the expansion blade on the same rotating shaft A are further matched in a logical relationship with the same rotation direction and opposite flow directions.
  • the pressure aerodynamic blade and the expansion blade on the same rotating shaft B conform to a logical relationship in which the direction of rotation is the same and the flow direction is opposite.
  • the pressure aerodynamic blade and the expansion blade on the same rotating shaft A are further in the same logical relationship with the same direction of rotation.
  • the pressure aerodynamic blade and the expansion rotor on the same rotating shaft B conform to the same logical relationship in the same direction of rotation and flow direction.
  • the working fluid outlet of the compressor unit is further communicated with a combustion chamber, and the combustion chamber is in communication with a working fluid inlet of the expansion unit.
  • the combustion chamber is further communicated with a working fluid inlet of an expansion work mechanism.
  • an auxiliary combustion chamber is further disposed between the combustion chamber and the working fluid inlet of the expansion work mechanism.
  • a working fluid outlet is further disposed between the working fluid outlet of the compressor unit and the combustion chamber, and the working medium guide The outlet is in communication with the auxiliary combustion chamber.
  • the expansion work mechanism is further configured as a nozzle, a Laval nozzle, a turbine, or a volumetric expansion work mechanism.
  • an expansion vane is further disposed between two adjacent expansion vanes.
  • an intake recirculation flow guiding structure is further provided at a working fluid inlet of the gas pressing unit.
  • an exhaust gas recirculation flow guiding structure is further provided at a working medium outlet of the expansion unit.
  • fixed connection means a fixed connection arrangement including a one-piece structure in which two or more members are integrally molded.
  • the so-called alternating arrangement of A and B means a mode in which A and B are adjacent in the axial direction, for example, A-B, A-B-A, A-B-A-B, A-B-A-B-A, and B-A, B-A-B, B-A-B-A, B-A-B-A-B and the like.
  • the so-called "moving blade” means a blade that performs a rotational motion, including a cascade.
  • forward pressure aerodynamic blade and “auxiliary forward pressure aerodynamic blade” are forward pressure aerodynamic blades, and the names are different only for the purpose of distinction.
  • forward expansion bucket and "auxiliary forward expansion bucket” are all forward expansion buckets, and the names are different only for the purpose of distinction.
  • combustion chamber and "auxiliary combustion chamber” are all combustion chambers, and the names are different only for the purpose of distinction.
  • the so-called “near-heart region” and “telecentric region” are defined with respect to each other, that is, the near-heart region is close to the axis with respect to the telecentric region, that is, the telecentric region is far from the axis with respect to the proximal region.
  • the moving blades are disposed on the rotating shafts corresponding to the opposite directions of rotation, instead of the moving blades being disposed on the casing.
  • the rotating shaft rotates
  • the moving blades are in the tension state, and the rotating shaft is also In the radial tension state, it can effectively resist the centrifugal force, greatly increase the rotation speed, thereby improving the efficiency and reducing the volume.
  • the thrust-to-weight ratio can be effectively improved.
  • the inflation-integrated counter-rotating impeller mechanism disclosed in the present invention distributes the pneumatic aerodynamic blade and the expanding rotor blade in a radial direction, so as to effectively resist the centrifugal force generated by the counter-rotating impeller mechanism, thereby improving efficiency and reducing volume.
  • the power transmission shaft between the compressor unit and the expansion unit can be selectively circumvented, and the thrust-to-weight ratio can be effectively improved.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic structural view of Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 5 is a schematic structural view of Embodiment 5 of the present invention.
  • Figure 6 is a schematic structural view of Embodiment 6 of the present invention.
  • Figure 7 is a schematic structural view of Embodiment 7 of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 8 of the present invention.
  • Figure 9 is a schematic structural view of Embodiment 9 of the present invention.
  • Figure 10 is a schematic structural view of Embodiment 10 of the present invention.
  • Figure 11 is a schematic structural view of Embodiment 11 of the present invention.
  • Figure 12 is a schematic structural view of Embodiment 12 of the present invention.
  • Figure 13 is a schematic structural view of Embodiment 13 of the present invention.
  • Figure 14 is a schematic structural view of Embodiment 14 of the present invention.
  • Figure 15 is a schematic structural view of Embodiment 15 of the present invention.
  • Figure 16 is a schematic structural view of Embodiment 16 of the present invention.
  • Figure 17 is a schematic structural view of Embodiment 17 of the present invention.
  • Figure 18 is a schematic structural view of Embodiment 18 of the present invention.
  • Figure 19 is a schematic structural view of Embodiment 19 of the present invention.
  • Figure 20 is a schematic structural view of Embodiment 20 of the present invention.
  • Figure 21 is a schematic structural view of Embodiment 21 of the present invention.
  • Figure 22 is a schematic structural view of Embodiment 22 of the present invention.
  • Figure 23 is a schematic structural view of Embodiment 23 of the present invention.
  • the present invention provides a compression-integrated counter-rotating impeller mechanism including a rotating shaft A and a rotating shaft B, the rotating shaft A and the rotating shaft B being alternately arranged in the axial direction.
  • a pressing air shaft and an expanding bucket are arranged on the rotating shaft A, and a pressing air blade and an expanding rotor blade are radially arranged on the rotating shaft B, and the pressing air blades are arranged in series to form a part of the gas pressing unit.
  • the expansion vanes are arranged in series to form part of the expansion unit.
  • the compression-integrated counter-rotating impeller mechanism shown in FIG. 1 includes a rotating shaft A and a rotating shaft A, the rotating shaft A is a forward rotating shaft 1, and the rotating shaft B is a reverse rotating shaft 2
  • the forward rotating shaft 1 and the counter rotating shaft 2 are alternately arranged in the axial direction, and the pressing air shaft is radially disposed on the forward rotating shaft 1, and the pressed air blade is set as a forward pressure pneumatic blade 3,
  • An expansion bucket is disposed outside the forward pressure aerodynamic blade 3, the expansion bucket is configured as a forward expansion bucket 4, and the forward pressure aerodynamic blade 3 and the forward expansion bucket 4 are radially
  • the inner side is disposed outwardly and the forward pressure air blade 3 and the forward expansion blade 4 are fixedly disposed, and the pneumatic wing is radially disposed on the reverse rotation shaft 2, the reverse rotation
  • the pressure air blade on the rotating shaft 2 is set as a reverse pressure air blade 5, and an expansion blade is disposed outside the reverse pressure air blade 5, and the expansion blade is arranged outside the reverse pressure
  • the reverse pressure aerodynamic blade 5 and the counter expansion bucket 6 are disposed radially inwardly outward and the reverse pressure aerodynamic blade 5 and the reverse expansion bucket 6 a solid connection arrangement in which all of said forward pressure aerodynamic blades 3 and all of said reverse pressure aerodynamic blades 5 are in series form part of a compression unit, all of said reverse expansion buckets 6 and all said said positive expansion buckets 4 is in series to form part of the expansion unit.
  • the pressure air blade is disposed in a near center region, and the expansion blade is disposed in a telecentric region.
  • the compression-integrated counter-rotating impeller mechanism shown in FIG. 2 includes a rotating shaft A and a rotating shaft B, and the rotating shaft A is a forward rotating shaft 1 and the rotating shaft B is a reverse rotating shaft 2
  • the forward rotating shaft 1 and the reverse rotating shaft 2 are alternately arranged in the axial direction, and the expanding rotating blades are radially disposed on the forward rotating shaft 1, and the expanding moving blades are set as the positive expanding moving blades 4,
  • a pressure aerodynamic blade is disposed outside the positive expansion bucket 4, the pressure aerodynamic blade is set as a forward pressure aerodynamic blade 3, and the forward expansion bucket 4 and the forward pressure aerodynamic blade 3 are radially Arranged inside and outside and the forward expansion bucket 4 and the forward pressure aerodynamic blade 3 are fixedly disposed, and the expansion rotor is radially disposed on the reverse rotation shaft 2, and the reverse rotation shaft 2
  • the expansion vane is set as a reverse expansion bucket 6
  • a pressure aerodynamic blade is disposed outside the reverse expansion bucket 6
  • the pressure air blade is disposed in a telecentric region, and the expansion blade is disposed in a proximal region.
  • a compression-integrated counter-rotating impeller mechanism as shown in FIG. 3, further comprising an auxiliary forward-pressure pneumatic blade 31 on the forward-rotating shaft 1 on the basis of the first embodiment, wherein the counter-rotating shaft 2 is An auxiliary reverse pressure aerodynamic blade 51 is disposed thereon, and all of said auxiliary positive pressure pneumatic blades 31 and all of said auxiliary reverse pressure pneumatic blades 51 are in series to form part of an auxiliary compression unit.
  • two pressure aerodynamic blades are arranged in the radial direction of the rotating shaft.
  • three or more pressure aerodynamic blades can also be provided, and two adjacent ones can be selectively disposed.
  • the number of pressure aerodynamic blades on the rotating shaft is equal.
  • a compression-integrated counter-rotating impeller mechanism as shown in FIG. 4, further comprising, on the basis of the first embodiment, an auxiliary positive expansion rotor 41 on the forward rotation shaft 1 at the reverse rotation shaft 2
  • An auxiliary reverse expansion bucket 61 is disposed thereon, and all of the subsidiary positive expansion buckets 41 and all of the subsidiary reverse expansion buckets 61 are in series to form a part of the subsidiary expansion unit.
  • two expansion vanes are disposed in the radial direction of the rotating shaft.
  • three or more expansion vanes may be provided, and two adjacent ones may be selectively disposed.
  • the number of expansion vanes on the rotating shaft is equal.
  • FIG. 5 a compression-integrated counter-rotating impeller mechanism as shown in FIG. 5, which further expands the forward-pressure aerodynamic blade 3 and the forward expansion on the same forward-rotating shaft 1 on the basis of Embodiment 1.
  • the bucket 4 conforms to a logical relationship in which the direction of rotation is the same and the flow direction is opposite.
  • the reverse pressure aerodynamic blade 5 and the reverse expansion bucket 6 on the same counter-rotating shaft 2 conform to the same direction of rotation and opposite flow directions. Logic.
  • FIG. 6 a compression-integrated counter-rotating impeller mechanism as shown in FIG. 6, which further expands the forward-pressure aerodynamic blade 3 and the forward expansion on the same forward-rotating shaft 1 on the basis of Embodiment 1.
  • the moving blade 4 conforms to the same logical relationship of the same direction of rotation and the same flow direction.
  • the reverse-pressure aerodynamic blade 5 and the reverse-expansion moving blade 6 on the same counter-rotating shaft 2 conform to the same direction of rotation and the same flow direction. Logic.
  • the inflation-integrated counter-rotating impeller mechanism shown in Fig. 7 further comprises, on the basis of the third embodiment, the forward-pressure aerodynamic blade 3 and the auxiliary forward pressure on the same forward-rotating shaft 1
  • the aerodynamic blade 31 conforms to the same logical relationship of the same direction of rotation and the same direction of flow.
  • the forward pressure aerodynamic blade 3 and the forward expansion blade 4 on the same forward rotation axis 1 conform to the same direction of rotation and opposite flow directions.
  • the reverse pressure aerodynamic blade 5 and the auxiliary reverse pressure aerodynamic blade 51 on the same counter-rotating shaft 2 are in the same logical relationship with the same direction of rotation, and the same said reverse rotation
  • the counterpressure aerodynamic blade 5 and the counter-expansion bucket 6 on the shaft 2 conform to a logical relationship in which the direction of rotation is the same and the flow direction is opposite.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 8 further comprises, on the basis of the third embodiment, the forward-pressure aerodynamic blade 3 and the auxiliary forward pressure on the same forward-rotating shaft 1
  • the aerodynamic blade 31 conforms to a logical relationship in which the direction of rotation is the same and the flow direction is opposite.
  • the forward pressure aerodynamic blade 3 and the forward expansion blade 4 on the same forward rotation axis 1 are in the same direction of rotation and opposite in flow direction.
  • the reverse pressure aerodynamic blade 5 and the auxiliary reverse pressure aerodynamic blade 51 on the same counter-rotating shaft 2 conform to the same rotational direction and opposite flow logic relationship, and the same said reverse rotation
  • the counterpressure aerodynamic blade 5 and the counter-expansion bucket 6 on the shaft 2 conform to a logical relationship in which the direction of rotation is the same and the flow direction is opposite.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 9 further comprises, on the basis of Embodiment 3, the forward-pressure pneumatic blade 3 and the auxiliary forward pressure on the same forward-rotating shaft 1
  • the aerodynamic blade 31 conforms to the same logical relationship of the same direction of rotation and the same direction of flow.
  • the forward pressure aerodynamic blade 3 and the forward expansion blade 4 on the same forward rotation axis 1 conform to the same direction of rotation and the same flow direction.
  • the reverse-pressure aerodynamic blade 5 and the auxiliary counter-pressure aerodynamic blade 51 on the same counter-rotating shaft 2 conform to the same logical relationship in the direction of rotation, and the same said reverse rotation
  • the reverse pressure aerodynamic blade 5 on the shaft 2 and the reverse expansion rotor blade 6 conform to the same logical relationship in the same direction of rotation and flow direction.
  • the integrally-rotating impeller mechanism is further formed, and based on the third embodiment, the forward-pressure aerodynamic blade 3 and the auxiliary positive-pressure aerodynamic blade 31 on the same forward-rotating shaft 1 are further Consistent with the same direction of rotation, flow direction
  • the forward pressure aerodynamic blade 3 and the forward expansion bucket 4 on the same forward rotating shaft 1 conform to the same rotational direction and the same logical relationship, and the same reverse
  • the reverse pressure aerodynamic blade 5 on the rotating shaft 2 and the auxiliary reverse pressure aerodynamic blade 51 conform to a logical relationship in which the direction of rotation is the same and the flow direction is opposite, and the reverse pressure on the same counter-rotating shaft 2
  • the aerodynamic blade 5 and the counter-expansion bucket 6 conform to the same logical relationship of the same direction of rotation and the same flow direction.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 11 further connects the working fluid outlet of the compressor unit to the combustion chamber 7 on the basis of the fifth embodiment, and the combustion chamber 7 and the expansion unit The quality entrance is connected.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 12 further connects the working fluid outlet of the compressor unit to the combustion chamber 7 on the basis of the sixth embodiment, and the combustion chamber 7 and the expansion unit The quality entrance is connected.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 13 further comprises, in addition to the embodiment 10, the working fluid outlet of the compressor unit is in communication with the working fluid inlet of the auxiliary compressor unit, and the auxiliary compressor unit is The mass outlet is in communication with a combustion chamber 7 that is in communication with the working fluid inlet of the expansion unit.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 14 further connects the working fluid outlet of the compressor unit with the combustion chamber 7 on the basis of the fourth embodiment, and the combustion chamber 7 and the expansion unit
  • the mass inlet is in communication
  • the working fluid outlet of the expansion unit is in communication with the working fluid inlet of the auxiliary expansion unit.
  • the forward expansion bucket 4 and the auxiliary forward expansion bucket 41 on the same forward rotation axis 1 are in the same logical relationship with the same direction of rotation and opposite flow directions.
  • the forward pressure aerodynamic blade 3 and the forward expansion bucket 4 on the forward rotation axis 1 conform to a logical relationship in which the rotation direction is the same and the flow direction is opposite, and the reverse direction on the same reverse rotation axis 2
  • the expansion bucket 6 and the subsidiary counter-expansion bucket 61 conform to a logical relationship in which the direction of rotation is the same and the flow direction is opposite, the reverse-pressure aerodynamic blade 5 on the same counter-rotating shaft 2 and the reverse expansion
  • the bucket 6 conforms to a logical relationship in which the direction of rotation is the same and the flow direction is opposite.
  • the flow direction of any two of the forward pressure airfoil 3, the forward expansion blade 4, and the auxiliary positive expansion blade 41 may be the same or opposite.
  • the inflation-integrated counter-rotating impeller mechanism shown in Fig. 15 further connects the combustion chamber 7 to the working fluid inlet of the expansion work mechanism 8 in addition to the eleventh embodiment.
  • the inflation-integrated counter-rotating impeller mechanism is provided with an auxiliary combustion chamber 71 between the combustion chamber 7 and the working fluid inlet of the expansion work mechanism 8 in addition to the fifteenth embodiment.
  • the expansion working mechanism 8 is further referred to as a Laval nozzle 9.
  • the expansion work mechanism can also be set as another type of nozzle, and set as a turbine. Or set as a volumetric expansion work mechanism.
  • the inflation-integrated counter-rotating impeller mechanism shown in FIG. 18 further includes a working fluid outlet 10 between the working fluid outlet of the compressor unit and the combustion chamber 7 based on the eleventh embodiment.
  • the mass outlet 10 is in communication with the auxiliary combustion chamber 71.
  • the inflation-integrated counter-rotating impeller mechanism shown in Fig. 19 further connects the sub-combustion chamber 71 with the working fluid inlet of the expansion work mechanism 8 in addition to the eighteenth embodiment.
  • the expansion working mechanism 8 is further referred to as a Laval nozzle 9.
  • the expansion work mechanism can also be a nozzle of another type, a turbine, or a volumetric expansion work mechanism.
  • an intake recirculation flow guiding structure 11 is further provided at the working fluid inlet of the compressor unit.
  • the inflation-integrated counter-rotating impeller mechanism shown in Fig. 22 is further provided with an exhaust gas recirculation guide structure 12 at the working fluid outlet of the expansion unit in addition to the seventeenth embodiment.
  • one of the forward rotating shaft 1 and one of the counter-rotating shafts 2 is further externally outputted with power.
  • the coaxial arrangement of the rotating shaft A and the rotating shaft B can make the mechanism design simpler.
  • the rotating shaft A and the rotating shaft B in the above embodiment of the present invention are both coaxial. It is provided, but it should be understood that whether the rotating shaft A and the rotating shaft B are arranged in a coaxial manner does not affect the realization of the object of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A和所述旋转轴B轴向交替设置,在所述旋转轴A上按径向设置压气动叶(3)和膨胀动叶(4),在所述旋转轴B上按径向设置压气动叶(5)和膨胀动叶(6),所述压气动叶(3,4)串联设置构成压气单元的一部分,所述膨胀动叶(5,6)串联设置构成膨胀单元的一部分。该压胀一体对转叶轮机构的压气动叶(3,4)和膨胀动叶(5,6)是按径向分布地,这样可以有效抗击对转叶轮机构产生的离心力,提高效率。

Description

压胀一体对转叶轮机构 技术领域
本发明涉及热能与动力领域,尤其是一种压胀一体对转叶轮机构。
背景技术
叶轮机构,特别是燃气轮机(含喷气式发动机、涡扇、涡桨等)需要很多级,这样不但影响效率,而且增加系统质量和造价。如果能够有效地解决对转问题及用气体动力解决级间不等速或柔性连通的问题,将大幅度提高发动机的效率。
发明内容
为了解决上述问题,本发明提出的技术方案如下:
方案1.一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A和所述旋转轴B轴向交替设置,在所述旋转轴A上按径向设置压气动叶和膨胀动叶,在所述旋转轴B上按径向设置压气动叶和膨胀动叶,所述压气动叶串联设置构成压气单元的一部分,所述膨胀动叶串联设置构成膨胀单元的一部分。
方案2.在方案1的基础上,进一步使所述旋转轴A和所述旋转轴B共轴线交替设置。
方案3.在方案1或方案2的基础上,进一步使所述压气动叶设置在近心区,所述膨胀动叶设置在远心区,或所述压气动叶设置在远心区,所述膨胀动叶设置在近心区。
方案4.在方案1、方案2或方案3的基础上,进一步在径向上设置两个或两个以上所述压气动叶。
方案5.在方案1至方案4任一方案的基础上,进一步在径向上设置两个或两个以上所述膨胀动叶。
方案6.一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A设为正向旋转轴,所述旋转轴B设为反向旋转轴,所述正向旋转轴和所述反向旋转轴轴向交替设置,在所述正向旋转轴上按径向设置压气动叶,所述压气动叶设为正向压气动叶,在所述正向压气动叶外设置膨胀动叶,所述膨胀动叶设为正向膨胀动叶,所述正向压气动叶和所述正向膨胀动叶按径向由内向外设置且所述正向压气动叶和所述正向膨胀动叶固连设置,在所述反向旋转轴上按径向设置压气动叶,该所述反向旋转轴上的所述压气动叶设为反向压气动叶,在所述反向压气动叶外设置膨胀动叶,该所述反向压气动叶外的所述膨胀动叶设为反向膨胀动叶,所述反向压气动叶和所述反向膨胀动叶按径向由内向外设置且所述反向压气动叶和所述反向膨胀动叶固连设置,所有所述正向压气动叶和所有所述反向压气动叶处于串联状态构成压气单元的一部分,所有所述反向膨胀动叶和所有所述正向膨胀动叶处于串联状态构成膨胀单元的一部分。
方案7.一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A设为正向旋转轴,所述旋转轴B设为反向旋转轴,所述正向旋转轴和所述反向旋转轴轴向交替设置,在所述正向旋转轴上按径向设置膨胀动叶,所述膨胀动叶设为正向膨胀动叶,在所 述正向膨胀动叶外设置压气动叶,所述压气动叶设为正向压气动叶,所述正向膨胀动叶和所述正向压气动叶按径向由内向外设置且所述正向膨胀动叶和所述正向压气动叶固连设置,在所述反向旋转轴上按径向设置膨胀动叶,该所述反向旋转轴上的所述膨胀动叶设为反向膨胀动叶,在所述反向膨胀动叶外设置压气动叶,该所述反向膨胀动叶外的所述压气动叶设为反向压气动叶,所述反向膨胀动叶和所述反向压气动叶按径向由内向外设置且所述反向膨胀动叶和所述反向压气动叶固连设置,所有所述正向压气动叶和所有所述反向压气动叶处于串联状态构成压气单元的一部分,所有所述反向膨胀动叶和所有所述正向膨胀动叶处于串联状态构成膨胀单元的一部分。
方案8.在方案6或方案7的基础上,进一步使所述正向旋转轴和所述反向旋转轴共轴线交替设置。
方案9.在方案6、方案7或方案8的基础上,进一步在所述正向旋转轴上设置附属正向压气动叶,在所述反向旋转轴上设置附属反向压气动叶,所有所述附属正向压气动叶和所有所述附属反向压气动叶处于串联状态构成附属压缩单元的一部分。
方案10.在方案6至方案9中任一方案的基础上,进一步在所述正向旋转轴上设置附属正向膨胀动叶,在所述反向旋转轴上设置附属反向膨胀动叶,所有所述附属正向膨胀动叶和所有所述附属反向膨胀动叶处于串联状态构成附属膨胀单元的一部分。
方案11.在上述所有设置有所述附属正向压气动叶的方案中,进一步:
使同一个所述正向旋转轴上的所述正向压气动叶和所述附属正向压气动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述正向旋转轴上的所述正向压气动叶和所述正向膨胀动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述附属反向压气动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述反向膨胀动叶符合旋转方向相同、流向相反的逻辑关系;
或使同一个所述正向旋转轴上的所述正向压气动叶和所述附属正向压气动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述正向旋转轴上的所述正向压气动叶和所述正向膨胀动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述附属反向压气动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述反向膨胀动叶符合旋转方向相同、流向相反的逻辑关系。
或使同一个所述正向旋转轴上的所述正向压气动叶和所述附属正向压气动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述正向旋转轴上的所述正向压气动叶和所述正向膨胀动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述附属反向压气动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述反向膨胀动叶符合旋转方向相同、流向相同的逻辑关系;
或使同一个所述正向旋转轴上的所述正向压气动叶和所述附属正向压气动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述正向旋转轴上的所述正向压气动叶和所述 正向膨胀动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述附属反向压气动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴上的所述反向压气动叶和所述反向膨胀动叶符合旋转方向相同、流向相同的逻辑关系。
方案12.在上述所有设置有所述附属压气单元的方案中,进一步使所述压气单元的工质出口与所述附属压气单元的工质入口连通,所述附属压气单元的工质出口与燃烧室连通,所述燃烧室与所述膨胀单元的工质入口连通。
方案13.在上述所有设置有所述附属膨胀单元的方案中,进一步使所述压气单元的工质出口与燃烧室连通,所述燃烧室与所述膨胀单元的工质入口连通,所述膨胀单元的工质出口与所述附属膨胀单元的工质入口连通。
方案14.在方案1至方案10中任一方案的基础上,进一步使同一个所述旋转轴A上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述旋转轴B上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相反的逻辑关系。
方案15.在方案1至方案10中任一方案的基础上,进一步使同一个所述旋转轴A上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述旋转轴B上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相同的逻辑关系。
方案16.在上述所有未设置燃烧室的方案中,进一步使所述压气单元的工质出口与燃烧室连通,所述燃烧室与所述膨胀单元的工质入口连通。
方案17.在上述所有设置所述燃烧室的方案中,进一步使所述燃烧室与膨胀做功机构的工质入口连通。
方案18.在方案17的基础上,进一步在所述燃烧室和所述膨胀做功机构的工质入口之间设置附属燃烧室。
方案19.在上述所有设置所述燃烧室未设置所述附属燃烧室的方案中,进一步在所述压气单元的工质出口与所述燃烧室之间设置工质导出口,所述工质导出口与附属燃烧室连通。
方案20.在方案19的基础上,进一步使所述附属燃烧室与膨胀做功机构的工质入口连通。
方案21.在上述所有设置有所述膨胀做功机构的方案中,进一步将所述膨胀做功机构设为喷管、设为拉瓦尔喷管、设为透平或设为容积型膨胀做功机构。
方案22.在方案1至21中任一方案的基础上,进一步在相邻的两个所述压气动叶之间设置压气静叶。
方案23.在方案1至22中任一方案的基础上,进一步在相邻的两个所述膨胀动叶之间设置膨胀静叶。
方案24.在方案1至23中任一方案的基础上,进一步在所述压气单元的工质入口设置进气换向导流结构。
方案25.在方案1至24中任一方案的基础上,进一步在所述膨胀单元的工质出口设置排气换向导流结构。
方案26.在方案1至25中任一方案的基础上,进一步使至少一个所述旋转轴A和至少一个所述旋转轴B分别对外输出动力。
本发明中,所谓的“固连设置”是指固定连接设置,包括将两个或两个以上部件经整体成型而成的一个部件化的结构方式。
本发明中,所谓的A和B交替设置是指在轴线方向上,A和B相邻的设置方式,例如A-B,A-B-A,A-B-A-B,A-B-A-B-A,和B-A,B-A-B,B-A-B-A,B-A-B-A-B等形式。
本发明中,所谓的“正向”和所谓的“反向”是仅为区别旋转方向而定义。
本发明中,所谓的“动叶”是指做旋转运动的叶片,包括叶栅。
本发明中,所谓的“正向压气动叶”、“附属正向压气动叶”都是正向压气动叶,名称不同仅是为了区分而定义的。
本发明中,所谓的“反向压气动叶”、“附属反向压气动叶”都是反向压气动叶,名称不同仅是为了区分而定义的。
本发明中,所谓的“正向膨胀动叶”、“附属正向膨胀动叶”都是正向膨胀动叶,名称不同仅是为了区分而定义的。
本发明中,所谓的“反向膨胀动叶”、“附属反向膨胀动叶”都是反向膨胀动叶,名称不同仅是为了区分而定义的。
本发明中,所谓的“燃烧室”、“附属燃烧室”都是燃烧室,名称不同仅是为了区分而定义的。
本发明中,所谓的“近心区”、“远心区”是互为参照定义的,即近心区相对于远心区离轴线近,即远心区相对于近心区离轴线远。
本发明中,将动叶设置在旋转方向相反的相互对应设置的旋转轴上,而不是将动叶设在壳上,这种结构在旋转轴旋转时,动叶处于受拉状态,旋转轴也处于径向受拉状态,可以有效抗击离心力,大幅度提高转速,进而提高效率,减小体积,在用作喷气推进发动机时,可有效提高推重比。
本发明中,应根据热能与动力领域的公知技术,在必要的地方设置必要的部件、单元或系统等。
本发明的有益效果如下:
本发明中所公开的压胀一体对转叶轮机构,压气动叶和膨胀动叶是按径向分布地,这样可以有效抗击对转叶轮机构产生的离心力,进而提高效率,减小体积,在用作喷气推进发动机时,可选择性地规避压气单元和膨胀单元之间的动力传输轴,可有效提高推重比。
附图说明
图1为本发明实施例1的结构示意图;
图2为本发明实施例2的结构示意图;
图3为本发明实施例3的结构示意图;
图4为本发明实施例4的结构示意图;
图5为本发明实施例5的结构示意图;
图6为本发明实施例6的结构示意图;
图7为本发明实施例7的结构示意图;
图8为本发明实施例8的结构示意图;
图9为本发明实施例9的结构示意图;
图10为本发明实施例10的结构示意图;
图11为本发明实施例11的结构示意图;
图12为本发明实施例12的结构示意图;
图13为本发明实施例13的结构示意图;
图14为本发明实施例14的结构示意图;
图15为本发明实施例15的结构示意图;
图16为本发明实施例16的结构示意图;
图17为本发明实施例17的结构示意图;
图18为本发明实施例18的结构示意图;
图19为本发明实施例19的结构示意图;
图20为本发明实施例20的结构示意图;
图21为本发明实施例21的结构示意图;
图22为本发明实施例22的结构示意图;
图23为本发明实施例23的结构示意图;
图中:
1正向旋转轴、2反向旋转轴、3正向压气动叶、31附属正向压气动叶、4正向膨胀动叶、41附属正向膨胀动叶、5反向压气动叶、51附属反向压气动叶、6反向膨胀动叶、61附属反向膨胀动叶、7燃烧室、71附属燃烧室、8膨胀做功机构、9拉瓦尔喷管、10工质导出口、11进气换向导流结构、12排气换向导流结构。
具体实施方式
为了解决本发明提出的问题,本发明提供了一种压胀一体对转叶轮机构,其包括旋转轴A和旋转轴B,所述旋转轴A和所述旋转轴B轴向交替设置,在所述旋转轴A上按径向设置压气动叶和膨胀动叶,在所述旋转轴B上按径向设置压气动叶和膨胀动叶,所述压气动叶串联设置构成压气单元的一部分,所述膨胀动叶串联设置构成膨胀单元的一部分。为了进一步详细说明本发明的技术方案,下面结合附图具体说明。
实施例1
如图1所示的压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A设为正向旋转轴1,所述旋转轴B设为反向旋转轴2,所述正向旋转轴1和所述反向旋转轴2轴向交替设置,在所述正向旋转轴1上按径向设置压气动叶,所述压气动叶设为正向压气动叶3,在所述正向压气动叶3外设置膨胀动叶,所述膨胀动叶设为正向膨胀动叶4,所述正向压气动叶3和所述正向膨胀动叶4按径向由内向外设置且所述正向压气动叶3和所述正向膨胀动叶4固连设置,在所述反向旋转轴2上按径向设置压气动叶,该所述反向旋 转轴2上的所述压气动叶设为反向压气动叶5,在所述反向压气动叶5外设置膨胀动叶,该所述反向压气动叶5外的所述膨胀动叶设为反向膨胀动叶6,所述反向压气动叶5和所述反向膨胀动叶6按径向由内向外设置且所述反向压气动叶5和所述反向膨胀动叶6固连设置,所有所述正向压气动叶3和所有所述反向压气动叶5处于串联状态构成压气单元的一部分,所有所述反向膨胀动叶6和所有所述正向膨胀动叶4处于串联状态构成膨胀单元的一部分。
本实施例中,所述压气动叶设置在近心区,所述膨胀动叶设置在远心区。
实施例2
如图2所示的压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A设为正向旋转轴1,所述旋转轴B设为反向旋转轴2,所述正向旋转轴1和所述反向旋转轴2轴向交替设置,在所述正向旋转轴1上按径向设置膨胀动叶,所述膨胀动叶设为正向膨胀动叶4,在所述正向膨胀动叶4外设置压气动叶,所述压气动叶设为正向压气动叶3,所述正向膨胀动叶4和所述正向压气动叶3按径向由内向外设置且所述正向膨胀动叶4和所述正向压气动叶3固连设置,在所述反向旋转轴2上按径向设置膨胀动叶,该所述反向旋转轴2上的所述膨胀动叶设为反向膨胀动叶6,在所述反向膨胀动叶6外设置压气动叶,该所述反向膨胀动叶6外的所述压气动叶设为反向压气动叶5,所述反向膨胀动叶6和所述反向压气动叶5按径向由内向外设置且所述反向膨胀动叶6和所述反向压气动叶5固连设置,所有所述正向压气动叶3和所有所述反向压气动叶5处于串联状态构成压气单元的一部分,所有所述反向膨胀动叶6和所有所述正向膨胀动叶4处于串联状态构成膨胀单元的一部分。
本实施例中,所述压气动叶设置在远心区,所述膨胀动叶设置在近心区。
实施例3
如图3所示的压胀一体对转叶轮机构,其在实施例1的基础上,进一步在所述正向旋转轴1上设置附属正向压气动叶31,在所述反向旋转轴2上设置附属反向压气动叶51,所有所述附属正向压气动叶31和所有所述附属反向压气动叶51处于串联状态构成附属压缩单元的一部分。
本实施例中,在旋转轴的径向上设置两个压气动叶,作为可以变换的实施方式,还可以设置3个或者更多的压气动叶,且可选择性的设置相邻两个所述旋转轴上的压气动叶数量相等。
实施例4
如图4所示的压胀一体对转叶轮机构,其在实施例1的基础上,进一步在所述正向旋转轴1上设置附属正向膨胀动叶41,在所述反向旋转轴2上设置附属反向膨胀动叶61,所有所述附属正向膨胀动叶41和所有所述附属反向膨胀动叶61处于串联状态构成附属膨胀单元的一部分。
本实施例中,在旋转轴的径向上设置两个膨胀动叶,作为可以变换的实施方式,还可以设置3个或者更多的膨胀动叶,且可选择性的设置相邻两个所述旋转轴上的膨胀动叶数量相等。
实施例5
如图5所示的压胀一体对转叶轮机构,其在实施例1的基础上,进一步使同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相反的逻辑关系。
实施例6
如图6所示的压胀一体对转叶轮机构,其在实施例1的基础上,进一步使同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相同的逻辑关系。
实施例7
如图7所示的压胀一体对转叶轮机构,在实施例3的基础上,进一步使同一个所述正向旋转轴1上的所述正向压气动叶3和所述附属正向压气动叶31符合旋转方向相同、流向相同的逻辑关系,同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述附属反向压气动叶51符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相反的逻辑关系。
实施例8
如图8所示的压胀一体对转叶轮机构,在实施例3的基础上,进一步使同一个所述正向旋转轴1上的所述正向压气动叶3和所述附属正向压气动叶31符合旋转方向相同、流向相反的逻辑关系,同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述附属反向压气动叶51符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相反的逻辑关系。
实施例9
如图9所示的压胀一体对转叶轮机构,在实施例3的基础上,进一步使同一个所述正向旋转轴1上的所述正向压气动叶3和所述附属正向压气动叶31符合旋转方向相同、流向相同的逻辑关系,同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相同的逻辑关系;同一个所述反向旋转轴2上的所述反向压气动叶5和所述附属反向压气动叶51符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相同的逻辑关系。
实施例10
如图10压胀一体对转叶轮机构,在实施例3的基础上,进一步使同一个所述正向旋转轴1上的所述正向压气动叶3和所述附属正向压气动叶31符合旋转方向相同、流向相 反的逻辑关系,同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述附属反向压气动叶51符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相同的逻辑关系。
实施例11
如图11所示的压胀一体对转叶轮机构,在实施例5的基础上,进一步使所述压气单元的工质出口与燃烧室7连通,所述燃烧室7与所述膨胀单元的工质入口连通。
实施例12
如图12所示的压胀一体对转叶轮机构,在实施例6的基础上,进一步使所述压气单元的工质出口与燃烧室7连通,所述燃烧室7与所述膨胀单元的工质入口连通。
实施例13
如图13所示的压胀一体对转叶轮机构,在实施例10的基础上,进一步所述压气单元的工质出口与所述附属压气单元的工质入口连通,所述附属压气单元的工质出口与燃烧室7连通,所述燃烧室7与所述膨胀单元的工质入口连通。
实施例14
如图14所示的压胀一体对转叶轮机构,在实施例4的基础上,进一步使所述压气单元的工质出口与燃烧室7连通,所述燃烧室7与所述膨胀单元的工质入口连通,所述膨胀单元的工质出口与所述附属膨胀单元的工质入口连通。
且本实施例中,同一个所述正向旋转轴1上的所述正向膨胀动叶4和所述附属正向膨胀动叶41符合旋转方向相同、流向相反的逻辑关系,同一个所述正向旋转轴1上的所述正向压气动叶3和所述正向膨胀动叶4符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向膨胀动叶6和所述附属反向膨胀动叶61符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴2上的所述反向压气动叶5和所述反向膨胀动叶6符合旋转方向相同、流向相反的逻辑关系。
作为可以变换的实施方式,所述正向压气动叶3、所述正向膨胀动叶4和所述附属正向膨胀动叶41任意两个的流向可以相同,也可以相反。
实施例15
如图15所示的压胀一体对转叶轮机构,在实施例11的基础上,进一步使所述燃烧室7与膨胀做功机构8的工质入口连通。
实施例16
如图16所示的压胀一体对转叶轮机构,在实施例15的基础上,在所述燃烧室7和所述膨胀做功机构8的工质入口之间设置附属燃烧室71。
实施例17
如图17所示的压胀一体对转叶轮机构,在实施例15的基础上,进一步将所述膨胀做功机构8设为拉瓦尔喷管9。
作为可以变换的实施方式,所述膨胀做功机构还可以设为其他形式的喷管、设为透平 或设为容积型膨胀做功机构。
实施例18
如图18所示的压胀一体对转叶轮机构,在实施例11的基础上,进一步在所述压气单元的工质出口与所述燃烧室7之间设置工质导出口10,所述工质导出口10与附属燃烧室71连通。
实施例19
如图19所示的压胀一体对转叶轮机构,在实施例18的基础上,进一步使所述附属燃烧室71与膨胀做功机构8的工质入口连通。
实施例20
如图20所示的压胀一体对转叶轮机构,在实施例19的基础上,进一步将所述膨胀做功机构8设为拉瓦尔喷管9。
作为可以变换的实施方式,所述膨胀做功机构还可以设为其他形式的喷管、设为透平或设为容积型膨胀做功机构。
实施例21
如图21所示的压胀一体对转叶轮机构,在实施例11的基础上,进一步在所述压气单元的工质入口设置进气换向导流结构11。
实施例22
如图22所示的压胀一体对转叶轮机构,在实施例17的基础上,进一步在所述膨胀单元的工质出口设置排气换向导流结构12。
实施例23
如图23所示的压胀一体对转叶轮机构,在实施例11的基础上,进一步使一个所述正向旋转轴1和一个所述反向旋转轴2分别对外输出动力。
所述旋转轴A和所述旋转轴B共轴线设置能够使机构设计更加简单,参见附图1至,本发明的上述实施例中的所述旋转轴A和所述旋转轴B均为共轴线设置,但是应该理解,所述旋转轴A和所述旋转轴B是否采用共轴线设置并不影响本发明目的的实现。
本发明中上述各实施方式中的技术要素在不冲突的情况下可以相互组合。
显然,本发明不限于以上实施例,根据本领域的公知技术和本发明所公开的技术方案,可以推导出或联想出许多变型方案,所有这些变型方案,也应认为是本发明的保护范围。

Claims (25)

  1. 一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,其特征在于:所述旋转轴A和所述旋转轴B轴向交替设置,在所述旋转轴A上按径向设置压气动叶和膨胀动叶,在所述旋转轴B上按径向设置压气动叶和膨胀动叶,所述压气动叶串联设置构成压气单元的一部分,所述膨胀动叶串联设置构成膨胀单元的一部分。
  2. 如权利要求1所述压胀一体对转叶轮机构,其特征在于:所述旋转轴A和所述旋转轴B共轴线交替设置。
  3. 如权利要求1或2所述压胀一体对转叶轮机构,其特征在于:所述压气动叶设置在近心区,所述膨胀动叶设置在远心区,或所述压气动叶设置在远心区,所述膨胀动叶设置在近心区。
  4. 如权利要求1至3中任一项所述压胀一体对转叶轮机构,其特征在于:在径向上设置两个或两个以上所述压气动叶。
  5. 如权利要求1至4中任一项所述压胀一体对转叶轮机构,其特征在于:在径向上设置两个或两个以上所述膨胀动叶。
  6. 一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A设为正向旋转轴(1),所述旋转轴B设为反向旋转轴(2),其特征在于:所述正向旋转轴(1)和所述反向旋转轴(2)轴向交替设置,在所述正向旋转轴(1)上按径向设置压气动叶,所述压气动叶设为正向压气动叶(3),在所述正向压气动叶(3)外设置膨胀动叶,所述膨胀动叶设为正向膨胀动叶(4),所述正向压气动叶(3)和所述正向膨胀动叶(4)按径向由内向外设置且所述正向压气动叶(3)和所述正向膨胀动叶(4)固连设置,在所述反向旋转轴(2)上按径向设置压气动叶,该所述反向旋转轴(2)上的所述压气动叶设为反向压气动叶(5),在所述反向压气动叶(5)外设置膨胀动叶,该所述反向压气动叶(5)外的所述膨胀动叶设为反向膨胀动叶(6),所述反向压气动叶(5)和所述反向膨胀动叶(6)按径向由内向外设置且所述反向压气动叶(5)和所述反向膨胀动叶(6)固连设置,所有所述正向压气动叶(3)和所有所述反向压气动叶(5)处于串联状态构成压气单元的一部分,所有所述反向膨胀动叶(6)和所有所述正向膨胀动叶(4)处于串联状态构成膨胀单元的一部分。
  7. 一种压胀一体对转叶轮机构,包括旋转轴A和旋转轴B,所述旋转轴A设为正向旋转轴(1),所述旋转轴B设为反向旋转轴(2),其特征在于:所述正向旋转轴(1)和所述反向旋转轴(2)轴向交替设置,在所述正向旋转轴(1)上按径向设置膨胀动叶,所述膨胀动叶设为正向膨胀动叶(4),在所述正向膨胀动叶(4)外设置压气动叶,所述压气动叶设为正向压气动叶(3),所述正向膨胀动叶(4)和所述正向压气动叶(3)按径向由内向外设置且所述正向膨胀动叶(4)和所述正向压气动叶(3)固连设置,在所述反向旋转轴(2)上按径向设置膨胀动叶,该所述反向旋转轴(2)上的所述膨胀动叶设为反向膨胀动叶(6),在所述反向膨胀动叶(6)外设置压气动叶,该所述反向膨胀动叶(6)外的所述压气动叶设为反向压气动叶(5),所述反向膨胀动叶(6)和所述反向压气动叶(5)按径向由内向外设置且所述反向膨胀动叶(6)和所述反向压气动叶(5)固连设置,所有所述正向压气动叶(3)和所有所述反向压气动叶(5)处于串联状态构成压气单元的一部 分,所有所述反向膨胀动叶(6)和所有所述正向膨胀动叶(4)处于串联状态构成膨胀单元的一部分。
  8. 如权利要求6或7所述压胀一体对转叶轮机构,其特征在于:所述正向旋转轴(1)和所述反向旋转轴(2)共轴线交替设置。
  9. 如权利要求6至8中任一项所述压胀一体对转叶轮机构,其特征在于:在所述正向旋转轴(1)上设置附属正向压气动叶(31),在所述反向旋转轴(2)上设置附属反向压气动叶(51),所有所述附属正向压气动叶(31)和所有所述附属反向压气动叶(51)处于串联状态构成附属压缩单元的一部分。
  10. 如权利要求6至8中任一项所述压胀一体对转叶轮机构,其特征在于:在所述正向旋转轴(1)上设置附属正向膨胀动叶(41),在所述反向旋转轴(2)上设置附属反向膨胀动叶(61),所有所述附属正向膨胀动叶(41)和所有所述附属反向膨胀动叶(61)处于串联状态构成附属膨胀单元的一部分。
  11. 如权利要求9所述压胀一体对转叶轮机构,其特征在于:
    同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述附属正向压气动叶(31)符合旋转方向相同、流向相同的逻辑关系,同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述正向膨胀动叶(4)符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述附属反向压气动叶(51)符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述反向膨胀动叶(6)符合旋转方向相同、流向相反的逻辑关系;
    或同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述附属正向压气动叶(31)符合旋转方向相同、流向相反的逻辑关系,同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述正向膨胀动叶(4)符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述附属反向压气动叶(51)符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述反向膨胀动叶(6)符合旋转方向相同、流向相反的逻辑关系;
    或同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述附属正向压气动叶(31)符合旋转方向相同、流向相同的逻辑关系,同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述正向膨胀动叶(4)符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述附属反向压气动叶(51)符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述反向膨胀动叶(6)符合旋转方向相同、流向相同的逻辑关系;
    或同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述附属正向压气动叶(31)符合旋转方向相同、流向相反的逻辑关系,同一个所述正向旋转轴(1)上的所述正向压气动叶(3)和所述正向膨胀动叶(4)符合旋转方向相同、流向相同的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述附属反向压气动叶(51)符合旋转方向相同、流向相反的逻辑关系,同一个所述反向旋转轴(2)上的所述反向压气动叶(5)和所述反向膨胀动叶(6)符合旋转方向相同、流向相同的逻辑关系。
  12. 如权利要求9所述压胀一体对转叶轮机构,其特征在于:所述压气单元的工质出口与所述附属压气单元的工质入口连通,所述附属压气单元的工质出口与燃烧室(7)连通,所述燃烧室(7)与所述膨胀单元的工质入口连通。
  13. 如权利要求10所述压胀一体对转叶轮机构,其特征在于:所述压气单元的工质出口与燃烧室(7)连通,所述燃烧室(7)与所述膨胀单元的工质入口连通,所述膨胀单元的工质出口与所述附属膨胀单元的工质入口连通。
  14. 如权利要求1至8中任一项所述压胀一体对转叶轮机构,其特征在于:
    同一个所述旋转轴A上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相反的逻辑关系,同一个所述旋转轴B上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相反的逻辑关系;
    或同一个所述旋转轴A上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相同的逻辑关系,同一个所述旋转轴B上的所述压气动叶和所述膨胀动叶符合旋转方向相同、流向相同的逻辑关系。
  15. 如权利要求1至8中任一项所述压胀一体对转叶轮机构,其特征在于:所述压气单元的工质出口与燃烧室(7)连通,所述燃烧室(7)与所述膨胀单元的工质入口连通。
  16. 如权利要求12、13或15所述压胀一体对转叶轮机构,其特征在于:所述燃烧室(7)与膨胀做功机构(8)的工质入口连通。
  17. 如权利要求16所述压胀一体对转叶轮机构,其特征在于:在所述燃烧室(7)和所述膨胀做功机构(8)的工质入口之间设置附属燃烧室(71)。
  18. 如权利要求12、13或15所述压胀一体对转叶轮机构,其特征在于:在所述压气单元的工质出口与所述燃烧室(7)之间设置工质导出口(10),所述工质导出口(10)与附属燃烧室(71)连通。
  19. 如权利要求18所述压胀一体对转叶轮机构,其特征在于:所述附属燃烧室(71)与膨胀做功机构(8)的工质入口连通。
  20. 如权利要求16、17或19所述压胀一体对转叶轮机构,其特征在于:所述膨胀做功机构(8)设为喷管、设为拉瓦尔喷管(9)、设为透平或设为容积型膨胀做功机构。
  21. 如权利要求1至20中任一项所述压胀一体对转叶轮机构,其特征在于:在相邻的两个所述压气动叶之间设置压气静叶。
  22. 如权利要求1至21中任一项所述压胀一体对转叶轮机构,其特征在于:在相邻的两个所述膨胀动叶之间设置膨胀静叶。
  23. 如权利要求1至22中任一项所述压胀一体对转叶轮机构,其特征在于:在所述压气单元的工质入口设置进气换向导流结构(11)。
  24. 如权利要求1至23中任一项所述压胀一体对转叶轮机构,其特征在于:在所述膨胀单元的工质出口设置排气换向导流结构(12)。
  25. 如权利要求1至24中任一项所述压胀一体对转叶轮机构,其特征在于:至少一个所述旋转轴A和至少一个所述旋转轴B分别对外输出动力。
PCT/CN2015/000673 2014-09-29 2015-09-29 压胀一体对转叶轮机构 WO2016050006A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201410514701.7 2014-09-29
CN201410514701 2014-09-29
CN201410523307.X 2014-10-04
CN201410523307 2014-10-04
CN201410522353.8 2014-10-05
CN201410522367.X 2014-10-05
CN201410522353 2014-10-05
CN201410522367 2014-10-05
CN201410613770 2014-11-04
CN201410613770.3 2014-11-04
CN201410614534.3 2014-11-04
CN201410614534 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016050006A1 true WO2016050006A1 (zh) 2016-04-07

Family

ID=55629381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000673 WO2016050006A1 (zh) 2014-09-29 2015-09-29 压胀一体对转叶轮机构

Country Status (2)

Country Link
CN (2) CN106014498B (zh)
WO (1) WO2016050006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105756716A (zh) * 2016-04-22 2016-07-13 中国船舶重工集团公司第七�三研究所 可倒车涡轮用双层整体静叶环

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050006A1 (zh) * 2014-09-29 2016-04-07 摩尔动力(北京)技术股份有限公司 压胀一体对转叶轮机构
CN106567746A (zh) * 2015-10-10 2017-04-19 熵零控股股份有限公司 复合流叶轮机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339101A (ja) * 1991-01-24 1992-11-26 Toshiba Corp 二軸反転式軸流タービン
WO2005005248A1 (en) * 2003-07-14 2005-01-20 Propeller Jet Limited Impeller drive for a water jet propulsion unit
CN101117926A (zh) * 2006-07-31 2008-02-06 通用电气公司 在内外翼面间的罩处具有不同翼面交错角的叶片上风扇
CN101457656A (zh) * 2007-12-14 2009-06-17 姜志凌 双转向透平式叶轮机及双转向叶轮发动机
CN103382856A (zh) * 2012-08-25 2013-11-06 摩尔动力(北京)技术股份有限公司 壳动叶轮机构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2035063C3 (de) * 1970-07-15 1974-05-30 Arthur Pfeiffer-Vakuumtechnik Gmbh, 6330 Wetzlar Laufrad für eine Turbomolekularpumpe
CN1022435C (zh) * 1989-06-26 1993-10-13 川波春平 对转双转子离心式流体增压器
US6224324B1 (en) * 1998-07-16 2001-05-01 Georg Poinstingl Axial-flow turbine
JP2000303854A (ja) * 1999-04-23 2000-10-31 Eruson Kk 高効率ガスタービン
CN101117914B (zh) * 2006-07-31 2010-12-08 良峰塑胶机械股份有限公司 增压系统及其机具总成
CN101963073B (zh) * 2009-07-22 2012-05-23 中国科学院工程热物理研究所 具有悬垂转子叶片结构的对转涡轮
CN103758575A (zh) * 2013-02-04 2014-04-30 摩尔动力(北京)技术股份有限公司 发动机用惰轴对转体
WO2016050006A1 (zh) * 2014-09-29 2016-04-07 摩尔动力(北京)技术股份有限公司 压胀一体对转叶轮机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339101A (ja) * 1991-01-24 1992-11-26 Toshiba Corp 二軸反転式軸流タービン
WO2005005248A1 (en) * 2003-07-14 2005-01-20 Propeller Jet Limited Impeller drive for a water jet propulsion unit
CN101117926A (zh) * 2006-07-31 2008-02-06 通用电气公司 在内外翼面间的罩处具有不同翼面交错角的叶片上风扇
CN101457656A (zh) * 2007-12-14 2009-06-17 姜志凌 双转向透平式叶轮机及双转向叶轮发动机
CN103382856A (zh) * 2012-08-25 2013-11-06 摩尔动力(北京)技术股份有限公司 壳动叶轮机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105756716A (zh) * 2016-04-22 2016-07-13 中国船舶重工集团公司第七�三研究所 可倒车涡轮用双层整体静叶环

Also Published As

Publication number Publication date
CN106014498A (zh) 2016-10-12
CN106014498B (zh) 2017-12-01
CN205189965U (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5518597B2 (ja) タービンエンジンに関するシステム及び装置並びにタービンエンジン用シール
US6807802B2 (en) Single rotor turbine
JP5949164B2 (ja) 可変ノズルユニット及び可変容量型過給機
KR20120115973A (ko) 터빈 스테이터를 냉각하기 위한 방법 및 상기 방법을 이용하기 위한 냉각시스템
JP6326912B2 (ja) 可変ノズルユニット及び可変容量型過給機
US20130074516A1 (en) Gas turbines
WO2016050006A1 (zh) 压胀一体对转叶轮机构
US10309222B2 (en) Revolving outer body rotary vane compressor or expander
EP3047104A1 (en) Fan root endwall contouring
JP2013245655A (ja) 可変ノズルユニット及び可変容量型過給機
JP5287873B2 (ja) ターボファンエンジン
JP6565122B2 (ja) 補強ディスクを含む圧縮機及びこれを含むガスタービン
JP2017141825A (ja) ガスタービンエンジン用の翼形部
JP5796302B2 (ja) 可変ノズルユニット及び可変容量型過給機
US20170342997A1 (en) Compressor and turbocharger
CN104948300A (zh) 燃气轮机
CN107061015A (zh) 具有冷却流体路径的燃气涡轮发动机
JP2015031237A (ja) 可変ノズルユニット及び可変容量型過給機
JP2010163951A (ja) 自動車用排気タービン発電装置
JP2020172895A5 (zh)
JP5216802B2 (ja) 2軸式ガスタービンの冷却空気供給構造
US11401826B2 (en) Stator structure and gas turbine having the same
KR100843540B1 (ko) 동력발생용 터빈
JP6089791B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP2016148344A (ja) 可変ノズルユニット及び可変容量型過給機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847772

Country of ref document: EP

Kind code of ref document: A1