WO2016046934A1 - ラマン散乱光観察用基板 - Google Patents

ラマン散乱光観察用基板 Download PDF

Info

Publication number
WO2016046934A1
WO2016046934A1 PCT/JP2014/075437 JP2014075437W WO2016046934A1 WO 2016046934 A1 WO2016046934 A1 WO 2016046934A1 JP 2014075437 W JP2014075437 W JP 2014075437W WO 2016046934 A1 WO2016046934 A1 WO 2016046934A1
Authority
WO
WIPO (PCT)
Prior art keywords
specimen
substrate
scattered light
raman scattered
liquid layer
Prior art date
Application number
PCT/JP2014/075437
Other languages
English (en)
French (fr)
Inventor
佐藤 亮
祐子 嵯峨
真一 瀧本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2014/075437 priority Critical patent/WO2016046934A1/ja
Publication of WO2016046934A1 publication Critical patent/WO2016046934A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention measures Raman scattered light from a biological specimen such as a pathological tissue section or a cell, and observes biochemical information (chemical components and chemical bonding state) of the specimen based on the obtained Raman spectrum.
  • the present invention relates to a substrate for observing Raman scattered light used in the invention.
  • Patent Document 1 As a chemical imaging technique for optically imaging a chemical composition derived from a living organism such as a pathological tissue section or a cell without using a staining material, for example, described in Patent Document 1 and Non-Patent Document 1 below. There is micro Raman imaging technology.
  • a frozen or paraffin-embedded block-shaped tissue specimen is sliced with a microtome and then stretched onto a slide glass to perform optical measurement in a dry atmosphere. Has been done.
  • Microscopic Raman imaging of biological specimens such as pathological tissue sections and cells is usually performed by observing spontaneous Raman scattered light emitted from the specimen.
  • the size of a tissue to be subjected to a pathological analysis by a staining method in which a tissue section is stained with HE staining (hematoxylin / eosin staining) or the like and then observed with an optical microscope is generally several mm to 10 mm. It is about mm square (several mm 2 to 100 mm 2 in area ).
  • spontaneous Raman scattered light is weak.
  • the tissue section specimen is sliced to about several to 20 micrometers and the Raman scattered light from the tissue section specimen is weak.
  • the influence of noise due to Raman scattered light from the substrate member to be placed cannot be ignored. Therefore, as a raw material for the substrate member on which the tissue slice specimen is placed, quartz or calcium fluoride, which is relatively less affected by the generated Raman scattered light, must be used, and a cheaper slide glass is used as the tissue slice specimen. There is also a problem that it is difficult to substitute for the substrate member on which the substrate is placed.
  • the present invention has been made in view of such conventional problems, and can effectively collect Raman scattered light from a tissue section specimen and reduce measurement time with good spectral accuracy.
  • An object of the present invention is to provide a substrate for observing Raman scattered light, which is capable of observing a good scattering spectrum over a wide area even for a large area object such as a tissue slice specimen.
  • the Raman scattered light observation substrate is a substrate used for observing Raman scattered light from a biological specimen, and is disposed on the substrate base material and the substrate base material.
  • a specimen placement section for placing the biological specimen, and an area surrounding the specimen placement section in the substrate base material or the organism placed on the specimen placement section provided in the specimen placement section A liquid layer holding mechanism for holding a liquid layer for immersing the specimen on the specimen mounting portion is provided.
  • the surface of the specimen mounting portion on the side of the biological specimen is composed of a light reflecting surface.
  • the light reflecting surface has a chemically modified portion subjected to chemical modification for exhibiting an adhesive action with the biological specimen.
  • the liquid layer holding mechanism is configured to have a detachable wall frame in a region surrounding the sample mounting portion in the substrate base material. preferable.
  • the liquid layer holding mechanism has a water-repellent surface in a region surrounding the sample mounting portion in the substrate base material or the sample mounting portion, and the liquid layer It is preferable that the liquid layer is held on the specimen mounting portion by a mechanical balance between the surface tension of the liquid, the interfacial tension between the liquid layer and the water repellent surface, and the surface tension of the water repellent surface. .
  • the opposing surfaces of the region surrounding the sample mounting portion in the wall frame and the substrate base material are configured to be bonded or chemically adsorbed. Is preferred.
  • the chemically modified portion applied to the light reflecting surface is bonded via a chemical interaction between a functional group on the surface of the chemically modified portion and the biological specimen. It is preferable to play.
  • the light reflecting surface is composed of gold, silver, aluminum or a metal layer or a metal oxide multilayer film containing them as a main component. It is preferable that only the excitation light and the Raman scattered light from the biological specimen or the Raman scattered light from the biological specimen are reflected.
  • the water repellent surface has an uneven structure of submicron or less.
  • the water-repellent surface is provided on the sample mounting portion, and the sample mounting portion is in a region surrounding the sample mounting portion in the substrate base material. It is preferable to have a step that is convex toward the biological specimen.
  • the specimen mounting portion is configured to be detachable from the substrate base material.
  • a shielding cover having a transparent window for observing the biological specimen is provided so as to be adsorbed or adhered to the wall frame.
  • a region surrounding the sample mounting portion has a water repellent surface.
  • the present invention it is possible to effectively collect Raman scattered light from a biological specimen, reduce the measurement time with high spectral accuracy, and perform measurement with a large area such as a tissue slice specimen.
  • a substrate for Raman scattering light observation capable of observing a good scattering spectrum is obtained.
  • FIG. 1 is an explanatory diagram conceptually showing the basic configuration of a Raman scattered light observation substrate according to an embodiment of the present invention.
  • b) conceptually shows the action of the liquid layer holding mechanism in the Raman scattering light observation substrate of (a) holding the liquid layer, and
  • c) is a biological figure using the Raman scattering light observation substrate of this embodiment.
  • It is sectional drawing which shows typically an example of the positional relationship of the board
  • FIG. 5C is a cross-sectional view schematically showing the positional relationship of each member in a state where the liquid layer holding mechanism holds the liquid layer on the specimen mounting portion. It is explanatory drawing which shows the whole structure of the board
  • FIG. 4B is a cross-sectional view schematically showing a configuration of a main part of the liquid layer holding mechanism.
  • the Applicant has realized a micro-Raman imaging of a tissue section specimen that can shorten the measurement time and observe a good scattering spectrum over a wide area even for a large area object such as a tissue section specimen. As a result of repeated trial and error in the examination process, the following findings were obtained.
  • the threshold for photothermal damage to the specimen is higher than when the tissue slice specimen is irradiated with excitation light in a dry atmosphere. I found out that For this reason, when the tissue slice specimen was immersed, the intensity of excitation light was increased by the amount that the threshold of photothermal damage to the tissue slice specimen was increased, and the generation efficiency of Raman scattered light was increased.
  • the Applicant can perform micro-Raman imaging even for large samples such as tissue section specimens by enhancing Raman scattered light from biological specimens and increasing light collection efficiency.
  • a predetermined idea about the observation method has been obtained, and the Raman scattered light observation substrate of the present invention capable of realizing such an observation method has been conceived.
  • FIG. 1 is an explanatory diagram conceptually showing the basic configuration of a Raman scattered light observation substrate according to an embodiment of the present invention, and (a) schematically shows the positional relationship of each member on the Raman scattered light observation substrate.
  • Figure, (b) conceptually shows the action of the liquid layer holding mechanism in the Raman scattering light observation substrate of (a) holding the liquid layer
  • (c) is the Raman scattering light observation substrate of this embodiment It is sectional drawing which shows typically an example of the positional relationship of the board
  • the Raman scattered light observation substrate includes a substrate base material 1 and a specimen placement portion for placing a biological specimen 10 disposed on the substrate base material 1. 2 and a liquid layer 11 for immersing the biological specimen 10 placed on the specimen placing section 2 provided in the area 3 surrounding the specimen placing section 2 on the substrate base material 1 or the specimen placing section 2.
  • a liquid layer holding mechanism 4 (only the concept of the liquid layer holding mechanism 4 is shown in FIG. 1B, and the detailed configuration is omitted in FIG. 1) is held in the specimen mounting portion 2.
  • the liquid layer 11 can accelerate
  • the liquid layer 11 for immersing the biological specimen 10 of the tissue section subjected to the deparaffinization process or the freezing process has a refractive index close to that of the biological tissue or the biological tissue component, and has a desired observation scattering wavelength band.
  • stray light derived from elastically scattered light and inelastically scattered light from the biological specimen 10 can be reduced, and as a result, a good Raman spectrum having a large SN ratio can be measured. It becomes.
  • the surface on the biological specimen 10 side in the specimen mounting portion 2 is composed of the light reflecting surface 2a.
  • a part of the Raman scattered light emitted isotropically from the biological specimen 10 is directed in the direction opposite to the objective lens 12 for specimen observation (for example, see the broken line shown in FIG. 1C).
  • the Raman scattered light from the biological specimen 10 that is focused on the objective lens 12 toward the objective lens 12 can be enhanced, and as a result, the SN ratio can be increased. It is possible to measure a good Raman spectrum having a large.
  • the surface on the biological specimen 10 side in the specimen mounting portion 2 is configured by the light reflecting surface 2a, a medium that passes through the biological specimen 10 and is located on the inner side of the surface on the biological specimen 10 side in the specimen mounting portion 2
  • Excitation light that reaches the substrate base material 1 or the like for example, glass
  • Raman scattered light from the substrate base material or the like and stray light due to autofluorescence can be removed.
  • the stray light due to the Raman signal and autofluorescence from the substrate base material 1 and the like superimposed on the Raman spectrum of the observed biological specimen 10 can be removed, and a good Raman spectrum with a large SN ratio can be measured. .
  • the light reflecting surface 2a is composed of gold, silver, aluminum or a metal layer or a metal oxide multilayer film containing them as a main component, and among the incident light, It is preferably configured to reflect only the excitation light and the Raman scattered light from the biological specimen 10 or the Raman scattered light from the biological specimen 10.
  • the light reflecting surface 2a has a chemical modification portion (not shown in FIG. 1) that has been chemically modified to have an adhesive action with the biological specimen 10. It is preferable. In this way, separation of the biological specimen 10 from the light reflecting surface 2a of the substrate during immersion is prevented, and defocusing (positional deviation of the excitation light condensing point in the optical axis direction with respect to the specimen surface) is avoided. Can do. For this reason, it is possible to measure the Raman scattered light from the biological specimen 10 with the strongest intensity by irradiating the specimen with the focal point on the specimen surface. As a result, the SN ratio is large. A good Raman spectrum can be acquired stably.
  • the chemically modified portion applied to the light reflecting surface 2a has an adhesive action through a chemical interaction between the functional group on the surface of the chemically modified portion and the biological specimen 10. It is preferable to play.
  • the liquid layer holding mechanism 4 has a detachable wall frame (not shown in FIG. 1) in a region surrounding the sample mounting portion 2 in the substrate base material 1. It is preferable that it is comprised. With this configuration, a large amount of the liquid layer 11 can be held on the specimen mounting unit 2 in a stable state.
  • the opposing surfaces of the wall frame constituting the liquid layer holding mechanism 4 and the region 3 surrounding the sample mounting portion 2 in the substrate base material 1 are bonded or chemisorbed. It is preferable to be configured as described above. If comprised in this way, the area
  • the region 3 surrounding the sample mounting portion 2 has a water repellent surface. If comprised in this way, the leakage from the clearance gap between the wall frame and the area
  • the liquid layer holding mechanism 4 has a water repellent surface (not shown in FIG. 1) in the region 3 surrounding the sample mounting portion 2 or the sample mounting portion 2 in the substrate base material 1.
  • the liquid layer 11 is held on the specimen mounting portion 2 by a mechanical balance between the surface tension of the liquid layer 11, the interfacial tension between the liquid layer 11 and the water repellent surface, and the surface tension of the water repellent surface.
  • it is configured. If comprised in this way, the number of parts which comprise the liquid layer holding
  • a wall frame or the like since it is not necessary to arrange a wall frame or the like in the region 3 surrounding the specimen mounting portion 2 in the substrate base material 1, interference with the objective lens 12 when the biological specimen 10 is immersed in the objective lens 12 is observed. Can be prevented.
  • the water repellent surface has an uneven structure of submicron or less. If comprised in this way, the interfacial tension of the area
  • the water repellent surface is provided in the sample mounting part 2, and the sample mounting part 2 has a region 3 surrounding the sample mounting part 2 in the substrate base material 1. It is preferable to have a step which becomes convex toward the biological specimen 10 side. If comprised in this way, in the liquid layer 11 on the light reflection surface 2a, the discontinuous wetting angle will arise and the liquid layer 11 can be hold
  • the sample mounting portion 2 is configured to be detachable from the substrate base material 1. If comprised in this way, the board
  • FIG. 1 in the configuration in which the liquid layer holding mechanism 4 has a detachable wall frame in the region 3 surrounding the sample mounting part 2 in the substrate base material 1, the surface facing the wall frame in the region 3 surrounding the sample mounting part 2 Can be maintained in a state of good adhesion to the wall frame.
  • the number of substrate base materials 1 can be reduced with respect to the number of specimen placement portions 2 on which the biological specimen 10 is placed.
  • the sample mounting part 2 may be configured such that the surfaces on the side facing the substrate base material 1 are attracted to each other, or may be fitted into a recess formed in the substrate base material 1.
  • a shielding cover having a transparent window for observing the biological specimen 10 is provided so as to be adsorbed or adhered to the wall frame. If comprised in this way, evaporation of the liquid which comprises the liquid layer 11 can be suppressed, and the biological specimen 10 can be observed while being immersed for a long time.
  • FIGS. 2A and 2B are explanatory diagrams showing the configuration of the Raman scattered light observation substrate according to Example 1 of the present invention.
  • FIG. 2A is a diagram showing the overall configuration
  • FIG. 2B is the Raman scattered light observation substrate of FIG.
  • FIG. 4C is a diagram schematically illustrating the configuration of the sample mounting portion
  • FIG. 5C is a cross-sectional view schematically illustrating the positional relationship of each member in a state where the liquid layer holding mechanism holds the liquid layer on the sample mounting portion.
  • FIG. 3 is an explanatory diagram showing the overall configuration of the Raman scattered light observation substrate according to a modification of the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing the overall configuration of a Raman scattered light observation substrate according to another modification of the first embodiment of the present invention. Note that description of members having the same configuration as that of the embodiment shown in FIG. 1 is omitted.
  • the Raman scattered light observation substrate of Example 1 includes a wall frame 4 a in which the liquid layer holding mechanism 4 can be attached to and detached from the region 3 surrounding the sample mounting portion 2 in the substrate base material 1.
  • the wall frame 4a is formed with a square-shaped opening 4a1 made of a material having low chemical reactivity with respect to the liquid in the liquid layer 11, such as silicon rubber, Teflon (registered trademark), or metal.
  • the substrate is bonded to a region surrounding the specimen mounting portion 2 through a self-chemical adsorption action or a predetermined adhesive.
  • the square-shaped opening 4a1 has a sufficient area that does not interfere with the objective lens for sample observation.
  • the surface on the biological specimen 10 side is constituted by a light reflecting surface 2a.
  • the light reflecting surface 2a is made of gold, silver, aluminum, or a metal layer containing them as a main component, or a multilayer film of a metal oxide film, and among incident light, excitation light and Raman scattered light from the biological specimen 10, or Only the Raman scattered light from the biological specimen 10 is reflected.
  • the light reflecting surface 2a has a chemically modified portion 2b that has been chemically modified to have an adhesive action with the biological specimen 10.
  • the chemical modification part 2b is composed of, for example, a silane coupling agent, a self-assembled film containing a thiol group, a graphene sheet, a protein coat, a polypeptide coat, and a positive charge provided by a functional group on the surface of the chemical modification part 2b Alternatively, chemical modification is performed so as to exert an adhesive action through a chemical interaction between the ⁇ -electron system and the biological specimen 10.
  • the chemical modification part 2b has a structure in which a positive charge of an amino group is exposed on the side in contact with the biological specimen 10, and a thiol group, a carboxyl group, or a functional group for silane coupling is exposed on the light reflecting surface 2a side.
  • ⁇ electrons of a two-dimensionally arranged aromatic ring may be formed on the biological specimen 10 and the light reflecting surface 2a side.
  • the liquid layer holding mechanism 4 is configured to include the wall frame 4a, a large amount of the liquid layer 11 is held in a stable state on the specimen mounting portion 2. be able to.
  • the opposing surfaces of the region 3 surrounding the sample mounting portion 2 in the wall frame 4a and the substrate base material 1 are configured to be bonded or chemically adsorbed, the sample mounting in the wall frame 2a and the substrate base material 1 is performed.
  • the region 3 surrounding the placement unit 2 can be brought into close contact with each other, and leakage of the liquid layer 11 in which the biological specimen 10 is immersed can be prevented.
  • the surface on the biological specimen 10 side in the specimen mounting portion 2 is configured by the light reflecting surface 2a, one of the Raman scattered light emitted isotropically from the biological specimen 10 is directed in the direction opposite to the objective lens 12.
  • the Raman scattered light from the biological specimen 10 that is focused on the objective lens 12 toward the objective lens 12 can be enhanced.
  • the surface on the biological specimen 10 side in the specimen mounting portion 2 is constituted by the light reflecting surface 2a, a medium that passes through the biological specimen 10 and is located on the inner side of the surface on the biological specimen 10 side in the specimen mounting portion 2
  • Excitation light that reaches the substrate base material 1 or the like for example, glass
  • Raman scattered light from the substrate base material or the like and stray light due to autofluorescence can be removed.
  • the Raman scattered light from the biological specimen 10 can be effectively collected, and the measurement time can be shortened with high spectral accuracy. A good scattering spectrum can be observed even for a large object such as a specimen.
  • Other functions and effects are substantially the same as those of the Raman scattered light observation substrate of the embodiment shown in FIG.
  • the Raman scattered light observation substrate of Example 1 may be configured such that the light reflection surface 2a is detachable from the substrate base material 1, as shown as a modified example in FIG.
  • the light reflecting surface 2 a may be configured such that the surfaces facing the substrate base material 1 are attracted to each other, or may be fitted into a recess formed in the substrate base material 1.
  • the wall frame 4 a may be configured to be integrally fixed to the substrate base material 1.
  • the sample mounting part 2 is configured to be detachable from the substrate base material 1, so that the substrate mother can be removed with the sample mounting part 2 removed.
  • the material 1 can be cleaned.
  • the surface facing the wall frame 4a in the region 3 surrounding the specimen mounting portion 2 can be maintained in a state where the adhesive force with the wall frame 4a is good.
  • the number of substrate base materials 1 can be reduced with respect to the number of specimen placement portions 2 on which the biological specimen 10 is placed.
  • the Raman scattered light observation substrate of Example 1 adsorbs the shielding cover 5 having the transparent window 5a for observing the biological specimen 10 to the wall frame 4a. Or you may prepare so that adhesion
  • the shielding cover 5 has a thin transparent window 5 a made of a member such as a cover glass made of quartz, calcium fluoride, or the like between the biological specimen 10 and the objective lens 12.
  • the window 5a is configured to transmit the excitation light for exciting the Raman scattering of the biological specimen 10 and the Raman scattered light from the biological specimen 10.
  • the shielding cover 5 has a sealing action by self-adsorbing to the wall frame 4a or by adhering by a covalent bond or an ionic bond through a predetermined adhesive or a coating applied to the wall frame 4. . Further, the shielding cover 5 and the wall frame 4a may be integrated. In this case, an injection hole for injecting the liquid constituting the liquid layer 11 may be provided, or the window 5a itself may be configured by an opening hole.
  • the shielding cover 5 having the transparent window 5a for observing the biological specimen 10 is provided so as to be able to be adsorbed or adhered to the wall frame 4a.
  • the evaporation of the liquid constituting the liquid layer 11 can be suppressed, and the biological specimen 10 can be observed while being immersed for a long time.
  • FIG. 5 is an explanatory view showing the configuration of the Raman scattered light observation substrate according to Example 2 of the present invention.
  • FIG. 5A shows the overall configuration in a state where the liquid layer holding mechanism holds the liquid layer on the specimen mounting portion.
  • FIG. 4B is a diagram schematically showing the configuration of the water repellent surface of the liquid layer holding mechanism.
  • FIG. 6 is an explanatory view showing a configuration of a Raman scattered light observation substrate according to a modification of the second embodiment of the present invention.
  • FIG. 6A shows a state in which the liquid layer holding mechanism holds the liquid layer on the sample mounting portion.
  • FIG. 2B is a cross-sectional view schematically showing a main part configuration of a liquid layer holding mechanism. Note that description of members having the same configuration as that of the embodiment shown in FIG. 1 is omitted.
  • the liquid layer holding mechanism 4 has a water repellent surface 4b in the region 3 surrounding the sample mounting portion 2 in the substrate base material 1, as shown in FIG.
  • the liquid layer 11 is held on the sample mounting portion 2 by the mechanical balance between the surface tension of the liquid layer 11 formed on the surface 4b, the interfacial tension between the liquid layer 11 and the water repellent surface 4b, and the surface tension of the water repellent surface 4b. Is configured to do.
  • the water repellent surface 4b is constituted by a water repellent coating roughened so as to have a fine uneven structure of submicron or less.
  • the water repellent surface 4b can be created, for example, by oxidizing a thin aluminum film deposited on the region 3 surrounding the light reflecting surface 2a with a predetermined chemical method and then performing water repellent treatment with fluorocarbon or the like. Or you may produce by performing the same process to a titanium or a silicon substrate.
  • the configuration of the other liquid layer holding unit 2 is substantially the same as the Raman scattered light observation substrate of Example 1.
  • the liquid layer holding mechanism 4 has the water repellent surface 4b in the region 3 surrounding the sample mounting portion 2 in the substrate base material 1, and is formed on the water repellent surface 4b.
  • the liquid layer 11 is held on the specimen mounting portion 2 by the mechanical balance of the surface tension of the liquid layer 11, the interfacial tension between the liquid layer 11 and the water repellent surface 4 b, and the surface tension of the water repellent surface 4 b.
  • the number of components can be reduced.
  • the interference of the objective lens 12 can be prevented. Further, since the water repellent surface 4b has an uneven structure of sub-micron or less, the interfacial tension of the region 3 surrounding the light reflecting surface 2a is reduced, and the water repellent effect in the region is enhanced, thereby obtaining a liquid layer holding effect. It is done.
  • FIG. 6 is an explanatory view showing a configuration of a Raman scattered light observation substrate according to a modification of the second embodiment.
  • FIG. 6A is an overall configuration in a state where the liquid layer holding mechanism holds the liquid layer on the sample mounting portion.
  • FIG. 4B is a diagram schematically showing the configuration of the liquid layer holding mechanism.
  • the liquid layer holding mechanism 4 has the water repellent surface 4b on the sample mounting portion 2, and the surface tension of the liquid layer 11 formed on the water repellent surface 4b and the liquid layer 11 is configured to hold the liquid layer 11 on the specimen mounting portion 2 by a mechanical balance between the interfacial tension between the surface 11 and the water repellent surface 4b and the surface tension of the water repellent surface 4b.
  • the water repellent surface 4 b is provided on the specimen mounting portion 2.
  • the structure of the water repellent surface 4b is the same as that of the example of FIG.
  • the sample mounting unit 2 has a step that protrudes toward the biological sample 10 with respect to the region 3 surrounding the sample mounting unit 2 in the substrate base material 1.
  • the configurations of the light reflecting surface 2a and the chemical modification 2b in the liquid holding unit 2 are substantially the same as those in the first embodiment.
  • the water-repellent surface 4 b is provided on the sample mounting portion 2, and the sample mounting portion 2 is placed in the region 3 surrounding the sample mounting portion 2 in the substrate base material 1.
  • the sample mounting portion 2 since it has the structure which has the convex step on the biological specimen 10 side, in the liquid layer 11 on the light reflecting surface 2a, a discontinuous wetting angle is generated by the wetting pinning effect, and the liquid layer 11 can be held.
  • Other functions and effects are substantially the same as in the example of FIG.
  • the Raman scattered light observation substrate of the present invention is limited to the embodiments and modified examples shown in FIGS. It is not something.
  • the Raman scattered light observation substrate of Example 1 may have the water repellent surface 4 b in the region 3 surrounding the specimen mounting portion 2. If comprised in this way, the leak from the clearance gap between the wall frame 4a and the area
  • the specimen mounting portion 2 may be configured to be detachable from the substrate base material 1. If comprised in this way, the number of the board
  • the Raman scattered light observation substrate of the present invention is useful in fields where it is required to observe biochemical information by irradiating a thin biological specimen with excitation light and measuring the Raman scattered light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】組織切片標本からのラマン散乱光を効果的に集光し、分光精度良く計測時間を短縮して測定することができ、組織切片標本のような面積の大きな対象であっても、広い面積にわたって良好な散乱スペクトルを観察することのできる、ラマン散乱光観察用基板の提供。 【解決手段】生物標本10からのラマン散乱光を観察するために用いる基板であって、基板母材1と、基板母材に配される、生物標本10を載置するための標本載置部2と、基板母材における標本載置部を囲む領域3又は標本載置部に設けられる、標本載置部に載置された生物標本を液浸するための液層11を標本載置部に保持する液層保持機構4を備える。

Description

ラマン散乱光観察用基板
 本発明は、病理組織切片や細胞などの生物標本からのラマン散乱光を測定し、得られたラマンスペクトルに基づき標本の生化学情報(化学成分及び化学結合の状態)を観察する、顕微ラマンイメージングに用いるラマン散乱光観察用基板に関する。
 病理組織切片や細胞などの生物由来の化学的な組成を、染色材を用いずに無染色で光学的にイメージングするケミカルイメージング技術として、例えば、次の特許文献1や非特許文献1に記載の顕微ラマンイメージング技術がある。
 これらの顕微ラマンイメージング技術では、組織切片を観察する場合、凍結もしくはパラフィン包埋されたブロック状の組織標本がミクロトームで薄切された後にスライドガラス上へ伸展されて、乾燥雰囲気下で光学測定が行われている。
System and Method for Classifying a Disease State Using Repre-sentative Data Sets, 米国特許出願公開公報US 2010/0225911 A1
Vibrational Spectroscopy for Medical Diagnosis, Chap.3(2008 Willy Diem, Max/Griffiths, Peter et al.)
 病理組織切片や細胞などの生物標本の顕微ラマンイメージングは、通常、標本から発せられる自発ラマン散乱光を観測することによりなされる。
 ところで、組織切片をHE染色(ヘマトキシレン・エオジン染色)などで染色した上で光学顕微鏡にて観察する、染色法による病理解析において対象とされる組織の大きさは、一般的に数mmから十mm角(面積にして数mm2から百mm2)程度である。
 しかし、自発ラマン散乱光は微弱である。このため、病理解析において一般的に解析対象とされる程度の大きさ(数mmから十mm角、面積にして数mm2から百mm2程度)を有する組織切片標本を顕微ラマンイメージングすることは、細胞の大きさ(10-4mm2)程度の空間分解能を維持した上で組織切片標本全体の分光データを取得するために膨大な計測時間を要してしまい、困難であった。
 組織切片標本からのラマン散乱光を増強して計測時間を短縮する方法としては、非線形ラマン散乱を利用する、あるいは表面増強ラマン散乱を利用する等の自発ラマン散乱以外の散乱信号の増強を利用する方法がある。
 しかし、これらの方法では、広い周波数帯域の生物標本のスペクトルを観測できず分析精度に劣る、観測されるスペクトルの再現性が低い、複雑な顕微イメージング装置が必要となる等の不都合な点がある。
 また、自発ラマン散乱により生物標本の顕微イメージングを行う場合において、計測時間を短縮するには、励起光の強度を上げる、あるいは、励起光を短波長化して、自発ラマン散乱光の強度を上げる必要がある。
 しかし、対象が組織切片標本の場合、レーザ光照射による標本の発熱もしくは光化学的な損傷が生じたり、組織の自家蛍光やレイリー散乱光に由来する迷光がラマンスペクトルを劣化させるため、これらの方法は実用的ではなく、病理組織標本のような大きなサンプルを顕微イメージングすることが困難であった。
 また、組織切片標本は、一般的な病理切片の場合には数ミクロンメートルから20ミクロンメートル程度に薄切されている上、組織切片標本からのラマン散乱光が微弱であるので、組織切片標本を載置する基板部材からのラマン散乱光によるノイズの影響を無視することが出来ない。そのため、組織切片標本を載置する基板部材の原料としては、発生するラマン散乱光の影響が比較的少ない石英やフッ化カルシウム等を利用せざるを得ず、より安価なスライドガラスを組織切片標本を載置する基板部材の代用とすることが難しいという課題もあった。
 本発明は、このような従来の問題点に鑑みてなされたものであり、組織切片標本からのラマン散乱光を効果的に集光し、分光精度良く計測時間を短縮して測定することができ、組織切片標本のような面積の大きな対象であっても、広い面積にわたって良好な散乱スペクトルを観察することのできる、ラマン散乱光観察用基板を提供することを目的としている
 上記目的を達成するため、本発明によるラマン散乱光観察用基板は、生物標本からのラマン散乱光を観察するために用いる基板であって、基板母材と、前記基板母材に配される、前記生物標本を載置するための標本載置部と、前記基板母材における前記標本載置部を囲む領域又は該標本載置部に設けられる、該標本載置部に載置された前記生物標本を液浸するための液層を該標本載置部に保持する液層保持機構を備えることを特徴としている。
 また、本発明のラマン散乱光観察用基板においては、前記標本載置部における前記生物標本側の表面が、光反射面で構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記光反射面が、前記生物標本との接着作用を奏するための化学修飾を施された化学修飾部を有しているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記液層保持機構が、前記基板母材における前記標本載置部を囲む領域に着脱可能な壁枠を有して構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記液層保持機構が、前記基板母材における前記標本載置部を囲む領域又は該標本載置部に撥水面を有し、前記液層の表面張力と、前記液層と前記撥水面の界面張力と、前記撥水面の表面張力との力学的平衡により前記標本載置部に前記液層を保持するように構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記壁枠と前記基板母材における前記標本載置部を囲む領域の対向する面同士が、接着又は化学吸着されるように構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記光反射面に施される化学修飾部は、該化学修飾部表面の官能基と前記生物標本との化学的相互作用を介して接着作用を奏するのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記光反射面が、金、銀、アルミもしくはそれらを主成分とする金属層又は金属酸化物の多層膜からなり、入射した光のうち、励起光及び前記生物標本からのラマン散乱光又は前記生物標本からのラマン散乱光のみを反射するように構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記撥水面が、サブミクロン以下の凹凸構造を有するのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記撥水面が、前記標本載置部に設けられ、前記標本載置部が、前記基板母材における該標本載置部を囲む領域に対し、前記生物標本側に凸となる段差を有しているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記標本載置部が、前記基板母材に対し着脱可能に構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、前記生物標本を観察するための透明な窓を有する遮蔽カバーを、前記壁枠に吸着又は接着可能に備えるのが好ましい。
 また、本発明の前記液層保持機構が壁枠を有して構成されている、ラマン散乱光観察用基板においては、前記標本載置部を囲む領域に撥水面を有するのが好ましい。
 本発明によれば、生体標本からのラマン散乱光を効果的に集光し、分光精度良く計測時間を短縮して測定することができ、組織切片標本のような面積の大きな対象であっても良好な散乱スペクトルを観察することのできるラマン散乱光観察用基板が得られる。
本発明の一実施形態にかかるラマン散乱光観察用基板の基本構成を概念的に示す説明図で、(a)はラマン散乱光観察用基板における各部材の位置関係を概略的に示す図、(b)は(a)のラマン散乱光観察用基板における液層保持機構が液層を保持する作用を概念的に示す図、(c)は本実施形態のラマン散乱光観察用基板を用いて生物標本からのラマン散乱光を観察する際の基板と生物標本と液層と標本観察用の対物レンズとの位置関係の一例を模式的に示す断面図である。 本発明の実施例1にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は全体構成を示す図、(b)は(a)のラマン散乱光観察用基板における標本載置部の構成を模式的に示す図、(c)は液層保持機構が液層を標本載置部に保持した状態における各部材の位置関係を模式的に示す断面図である。 本発明の実施例1の一変形例にかかるラマン散乱光観察用基板の全体構成を示す説明図である。 本発明の実施例1の他の変形例にかかるラマン散乱光観察用基板の全体構成を示す説明図である。 本発明の実施例2にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は液層保持機構が液層を標本載置部に保持した状態での全体構成を示す図、(b)は液層保持機構が有する撥水面の構成を模式的に示す図である。 本発明の実施例2の一変形例にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は液層保持機構が液層を標本載置部に保持した状態での全体構成を示す図、(b)は液層保持機構の要部構成を模式的に示す断面図である。
 実施例の説明に先立ち、本発明を想到するに至った経緯及び本発明の作用効果について説明する。
 本件出願人は、計測時間を短縮して、組織切片標本のような面積の大きな対象であっても、広い面積にわたって良好な散乱スペクトルを観察することのできる、組織切片標本の顕微ラマンイメージングを実現させるための検討過程において、試行錯誤を重ねた結果、次に示すような知見を得た。
 まず、パラフィン包埋組織ブロックから薄切した組織切片標本について、脱パラフィン化処理後に水等の所定の物性の液体に浸した状態で、顕微ラマンイメージングすると、ラマンスペクトルのSN比が改善されることがわかった。
 また、組織切片標本を液浸すると、標本から液槽への熱拡散作用を奏する結果、標本への光熱ダメージの閾値は、乾燥雰囲気下で組織切片標本に励起光を照射したときに比べて高くなることがわかった。このため、組織切片標本を液浸すると、組織切片標本への光熱ダメージの閾値が高くなった分、励起光強度を上げて、ラマン散乱光の発生効率を高めることができる結果を得た。
 一方、組織切片標本を液浸する場合、次のような測定上の課題があることも判明した。
 即ち、組織切片標本を液浸すると、石英やフッ化カルシウム製のスライドガラス上に載置された組織切片標本は著しく剥離し易くなり、スライドガラスから組織切片標本が剥離すると、デフォーカス状態(励起光の集光点が標本位置からずれた状態)となって、検出部で検出される組織切片標本からのラマン散乱光の強度が弱くなることがわかった。
 本件出願人は、これらの知見に基づき、生物標本からのラマン散乱光を増強し、かつ集光効率を高めることで、組織切片標本のような大きなサンプルであっても顕微ラマンイメージングを実行可能な観察法についての所定の着想を得、そのような観察法を実現可能とする本発明のラマン散乱光観察用基板を想到するに至った。
 図1は本発明の一実施形態にかかるラマン散乱光観察用基板の基本構成を概念的に示す説明図で、(a)はラマン散乱光観察用基板における各部材の位置関係を概略的に示す図、(b)は(a)のラマン散乱光観察用基板における液層保持機構が液層を保持する作用を概念的に示す図、(c)は本実施形態のラマン散乱光観察用基板を用いて生物標本からのラマン散乱光を観察する際の基板と生物標本と液層と標本観察用の対物レンズとの位置関係の一例を模式的に示す断面図である。
 本発明のラマン散乱光観察用基板は、図1に一実施形態として示すように、基板母材1と、基板母材1に配される、生物標本10を載置するための標本載置部2と、基板母材1における標本載置部2を囲む領域3又は標本載置部2に設けられる、標本載置部2に載置された生物標本10を液浸するための液層11を標本載置部2に保持する液層保持機構4(液層保持機構4は図1(b)に概念のみが示されており、図1では詳細な構成は省略されている)を備える。
 このように構成すると、液層11が生物標本10からの熱拡散を促進し、レーザ光照射による生物標本10の熱損傷を低減することができ、生物標本10への光熱ダメージの閾値が乾燥雰囲気下に比べて高くなる。このため、乾燥雰囲気下に比べて高強度の励起光を生物標本10へ照射することができ、その結果、SN比の大きい良好なラマンスペクトルを測定することが可能となる。
 また、脱パラフィン処理、もしくは凍結処理した組織切片の生物標本10を液浸するための液層11に、生物組織あるいは生物組織成分に近い屈折率を有し、且つ、所望の観測散乱波長帯に窓を有する液体を用いることにより、生物標本10からの弾性散乱光および非弾性散乱光に由来する迷光を低減することができ、その結果、SN比の大きい良好なラマンスペクトルを測定することが可能となる。
 なお、本発明のラマン散乱光観察用基板においては、標本載置部2における生物標本10側の表面が、光反射面2aで構成されているのが好ましい。
 このようにすれば、生物標本10から等方的に発せられるラマン散乱光のうち標本観察用の対物レンズ12とは反対方向に向かう一部の光(例えば、図1(c)に示す破線参照)を、光反射面2aで反射させることにより、対物レンズ12に向かわせて、対物レンズ12に集光される、生物標本10からのラマン散乱光を増強させることができ、その結果、SN比の大きい良好なラマンスペクトルを測定することが可能となる。
 また、標本載置部2における生物標本10側の表面を光反射面2aで構成すれば、生物標本10を透過して標本載置部2における生物標本10側の表面より内側に位置する媒質や基板母材1等(例えば、ガラス)へ到達する励起光を除去し、基板母材等からのラマン散乱光や自家蛍光による迷光を除去することができる。その結果、観測される生体標本10のラマンスペクトルに重畳される基板母材1等からのラマン信号・自家蛍光による迷光を除去でき、SN比の大きい良好なラマンスペクトルを測定することが可能となる。
 また、本発明のラマン散乱光観察用基板においては、光反射面2aが、金、銀、アルミもしくはそれらを主成分とする金属層又は金属酸化物の多層膜からなり、入射した光のうち、励起光及び生物標本10からのラマン散乱光又は生物標本10からのラマン散乱光のみを反射するように構成されているのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、光反射面2aが、生物標本10との接着作用を有するための化学修飾を施された化学修飾部(図1においては不図示)を有しているのが好ましい。
 このようにすれば、液浸時における生物標本10の基板の光反射面2aからの剥離を防ぎ、デフォーカス(励起光の集光点の標本面に対する光軸方向の位置ずれ)を回避することができる。このため、励起光を標本面に集光点のあった状態で照射することによって生物標本10からのラマン散乱光を、強度が最も強い状態で測定することができ、その結果、SN比の大きい良好なラマンスペクトルを安定的に取得することができる。
 また、本発明のラマン散乱光観察用基板においては、光反射面2aに施される化学修飾部は、化学修飾部表面の官能基と生物標本10との化学的相互作用を介して接着作用を奏するのが好ましい。
 また、本発明のラマン散乱光観察用基板においては、液層保持機構4が、基板母材1における標本載置部2を囲む領域に着脱可能な壁枠(図1においては不図示)を有して構成されているのが好ましい。
 このように構成すれば、多量の液層11を安定した状態で標本載置部2に保持することができる。
 また、本発明のラマン散乱光観察用基板においては、液層保持機構4を構成する壁枠と基板母材1における標本載置部2を囲む領域3の対向する面同士が、接着又は化学吸着されるように構成されているのが好ましい。
 このように構成すれば、壁枠と基板母材1における標本載置部2を囲む領域3とを密着させることができ、壁枠と標本載置部2を囲む領域3との隙間からの漏出を防止できる。
 また、本発明のラマン散乱光観察用基板においては、標本載置部2を囲む領域3に撥水面を有するのが好ましい。
 このように構成すれば、生物標本10を液浸する液層11における壁枠と標本載置部2を囲む領域3との隙間からの漏出をより一層防止できる。
 また、本発明のラマン散乱光観察用基板においては、液層保持機構4が、基板母材1における標本載置部2を囲む領域3又は標本載置部2に撥水面(図1においては不図示)を有し、液層11の表面張力と、液層11と撥水面の界面張力と、撥水面の表面張力との力学的平衡により標本載置部2に液層11を保持するように構成されているのが好ましい。
 このように構成すれば、液層保持機構4を構成する部品点数を少なくすることができる。また、基板母材1における標本載置部2を囲む領域3に壁枠等を配置させずに済むため、対物レンズ12にて生物標本10を液浸観察する際の対物レンズ12との干渉を防ぐことができる。
 また、本発明のラマン散乱光観察用基板においては、撥水面が、サブミクロン以下の凹凸構造を有するのが好ましい。
 このように構成すれば、光反射面2aを囲む領域の界面張力を低下させ、当該領域での撥水作用を増強して、液層保持効果が得られる。
 また、本発明のラマン散乱光観察用基板においては、撥水面が、標本載置部2に設けられ、標本載置部2が、基板母材1における標本載置部2を囲む領域3に対し、生物標本10側に凸となる段差を有しているのが好ましい。
 このように構成すれば、光反射面2a上の液層11において、濡れのピン止め効果により、不連続な濡れ角が生じ液層11を保持できる。
 また、本発明のラマン散乱光観察用基板においては、標本載置部2が、基板母材1に対し着脱可能に構成されているのが好ましい。
 このように構成すれば、標本載置部2を取り外した状態で、基板母材1を清浄にすることができる。その結果、液層保持機構4が基板母材1における標本載置部2を囲む領域3に着脱可能な壁枠を有する構成において、標本載置部2を囲む領域3における壁枠に対向する面を、壁枠との接着力が良好な状態に保つことができる。
 また、生物標本10を載置した標本載置部2の個数に対して、基板母材1の個数を少なく抑えることができる。
 なお、標本載置部2は、基板母材1と対向する側の面同士が相互に吸着するようにしてもよいし、基板母材1に形成された凹部に嵌め込むようにしてもよい。
 また、本発明のラマン散乱光観察用基板においては、生物標本10を観察するための透明な窓を有する遮蔽カバーを、壁枠に吸着又は接着可能に備えるのが好ましい。
 このように構成すれば、液層11を構成する液体の蒸発を抑制でき、生物標本10を長時間液浸しながら観察することができる。
 以下、本発明の実施形態について、図面を用いて説明する。
実施例1
 図2は本発明の実施例1にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は全体構成を示す図、(b)は(a)のラマン散乱光観察用基板における標本載置部の構成を模式的に示す図、(c)は液層保持機構が液層を標本載置部に保持した状態における各部材の位置関係を模式的に示す断面図である。図3は本発明の実施例1の一変形例にかかるラマン散乱光観察用基板の全体構成を示す説明図である。図4は本発明の実施例1の他の変形例にかかるラマン散乱光観察用基板の全体構成を示す説明図である。なお、図1に示した実施形態と同じ構成の部材については説明を省略する。
 実施例1のラマン散乱光観察用基板は、図2に示すように、液層保持機構4が、基板母材1における標本載置部2を囲む領域3に着脱可能な壁枠4aを有して構成されている。
 壁枠4aは、シリコンゴム、テフロン(登録商標)、金属など、液層11中の液体に対して化学反応性の低い物質を原料としてロ字状の開口部4a1を有して形成されており、自己的な化学吸着作用又は所定の接着剤を介して基板母材1における標本載置部2を囲む領域と接着されている。ロ字状の開口部4a1は、標本観察用の対物レンズに干渉しない程度の十分な面積を有している。
 標本載置部2は、生物標本10側の表面が光反射面2aで構成されている。光反射面2aは、金、銀、アルミもしくはそれらを主成分とする金属層、又は金属酸化膜の多層膜からなり、入射した光のうち、励起光及び生物標本10からのラマン散乱光、又は生物標本10からのラマン散乱光のみを反射するように構成されている。
 また、光反射面2aは、生物標本10との接着作用を有するための化学修飾を施された化学修飾部2bを有している。
 化学修飾部2bは、例えば、シランカップリング剤、チオール基を含有する自己組織化膜、グラフェンシート、タンパク質コート、ポリペプチドコートで構成され、化学修飾部2b表面の官能基によって供せられる正電荷又はπ電子系と生物標本10との化学的相互作用を介して接着作用を奏するように化学修飾が施されている。例えば、化学修飾部2bは、生物標本10との接触側においてアミノ基の正電荷、光反射面2a側にチオール基やカルボシキル基もしくはシランカップリングする官能基が露出する構造となっている。あるいは、化学修飾部2bは、二次元配列された芳香環のπ電子が生物標本10及び光反射面2a側に形成されていてもよい。
 実施例1のラマン散乱光観察用基板によれば、液層保持機構4を、壁枠4aを有して構成したので、標本載置部2に多量の液層11を安定した状態で保持させることができる。
 また、壁枠4aと基板母材1における標本載置部2を囲む領域3の対向する面同士を、接着又は化学吸着されるように構成したので、壁枠2aと基板母材1における標本載置部2を囲む領域3とを密着させることができ、生物標本10を液浸する液層11の漏出を防止できる。
 また、標本載置部2における生物標本10側の表面を、光反射面2aで構成したので、生物標本10から等方的に発せられるラマン散乱光のうち対物レンズ12とは反対方向に向かう一部の光を、光反射面2aで反射させることにより、対物レンズ12に向かわせて、対物レンズ12に集光される、生物標本10からのラマン散乱光を増強させることができる。
 また、標本載置部2における生物標本10側の表面を光反射面2aで構成したので、生物標本10を透過して標本載置部2における生物標本10側の表面より内側に位置する媒質や基板母材1等(例えば、ガラス)へ到達する励起光を除去し、基板母材等からのラマン散乱光や自家蛍光による迷光を除去することができる。その結果、観測される生体標本10のラマンスペクトルに重畳される基板母材1等からのラマン信号・自家蛍光による迷光を除去できる。
 その結果、実施例1のラマン散乱光観察用基板によれば、生体標本10からのラマン散乱光を効果的に集光し、分光精度良く計測時間を短縮して測定することができ、組織切片標本のような面積の大きな対象であっても良好な散乱スペクトルを観察することができる。
 その他の作用効果は、図1に示した実施形態のラマン散乱光観察用基板と略同じである。
 なお、実施例1のラマン散乱光観察用基板は、図3に一変形例として示すように、光反射面2aを、基板母材1に対して着脱可能に構成してもよい。その場合、光反射面2aを、基板母材1と対向する側の面同士が相互に吸着するようにしてもよいし、基板母材1に形成された凹部に嵌め込むようにしてもよい。
 さらに、壁枠4aは、基板母材1に対して一体的に固定されるように構成してもよい。
 図3の一変形例のラマン散乱光観察用基板によれば、標本載置部2を、基板母材1に対し着脱可能に構成したので、標本載置部2を取り外した状態で、基板母材1を清浄することができる。その結果、標本載置部2を囲む領域3における壁枠4aに対向する面を、壁枠4aとの接着力が良好な状態に保つことができる。
 また、生物標本10を載置した標本載置部2の個数に対して、基板母材1の個数を少なく抑えることができる。
 また、実施例1のラマン散乱光観察用基板は、図4に他の変形例として示すように、生物標本10を観察するための透明な窓5aを有する遮蔽カバー5を、壁枠4aに吸着又は接着可能に備えてもよい。
 詳しくは、遮蔽カバー5は、石英やフッ化カルシウムなどで作成されるカバーガラスのような部材からなる薄い透明な窓5aを生物標本10と対物レンズ12との間に有する。窓5aは、生物標本10のラマン散乱を励起するための励起光及び生物標本10からのラマン散乱光を透過させることができるように構成されている。また、遮蔽カバー5は、壁枠4aに自己吸着するか、所定の接着剤もしくは壁枠4に施されたコーティングを介して共有結合やイオン結合により接着することで、密閉作用を有している。
 また、遮蔽カバー5と壁枠4aとを一体化させてもよい。この場合には、液層11を構成する液体を注入するための注入孔を設けてもよいし、あるいは窓5a自体を開口孔で構成してもよい。
 図4の他の変形例のラマン散乱光観察用基板によれば、生物標本10を観察するための透明な窓5aを有する遮蔽カバー5を、壁枠4aに吸着又は接着可能に備えたので、液層11を構成する液体の蒸発を抑制でき、生物標本10を長時間液浸しながら観察することができる。
実施例2
 図5は本発明の実施例2にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は液層保持機構が液層を標本載置部に保持した状態での全体構成を示す図、(b)は液層保持機構が有する撥水面の構成を模式的に示す図である。図6は本発明の実施例2の一変形例にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は液層保持機構が液層を標本載置部に保持した状態での全体構成を示す図、(b)は液層保持機構の要部構成を模式的に示す断面図である。なお、図1に示した実施形態と同じ構成の部材については説明を省略する。
 実施例2のラマン散乱光観察用基板は、図5に示すように、液層保持機構4が、基板母材1における標本載置部2を囲む領域3に撥水面4bを有し、撥水面4b上に形成される液層11の表面張力と、液層11と撥水面4bの界面張力と、撥水面4bの表面張力との力学的平衡により、標本載置部2に液層11を保持するように構成されている。
 撥水面4bは、サブミクロン以下の微細凹凸構造を有するように粗面化された撥水コーティングによって構成されている。
 詳しくは、撥水面4bは、例えば、光反射面2aを囲む領域3へ蒸着させたアルミニウム薄膜を所定の化学法で酸化した上で、フッ化炭素等で撥水処理することで作成できる。あるいは、チタンやシリコン基板に同様の処理を施すことによって作成してもよい。
 その他の液層保持部2の構成は、実施例1のラマン散乱光観察用基板と略同じである。
 実施例2のラマン散乱光観察用基板によれば、液層保持機構4が、基板母材1における標本載置部2を囲む領域3に撥水面4bを有し、撥水面4b上に形成される液層11の表面張力と、液層11と撥水面4bの界面張力と、撥水面4bの表面張力との力学的平衡により、標本載置部2に液層11を保持するように構成したので、構成する部品点数を少なくすることができる。また、基板母材1上における標本載置部2を囲む領域3に実施例1で示したような壁枠等を配置させずに済むため、対物レンズ12で生物標本10を液浸観察する際の対物レンズ12の干渉を防ぐことができる。また、撥水面4bが、サブミクロン以下の凹凸構造を有するので、光反射面2aを囲む領域3の界面張力を低下させ、当該領域での撥水作用を増強して、液層保持効果が得られる。
 図6は実施例2の一変形例にかかるラマン散乱光観察用基板の構成を示す説明図で、(a)は液層保持機構が液層を標本載置部に保持した状態での全体構成を示す図、(b)は液層保持機構の構成を模式的に示す図である。
 本変形例のラマン散乱光観察用基板では、液層保持機構4が、標本載置部2に撥水面4bを有し、撥水面4b上に形成される液層11の表面張力と、液層11と撥水面4bの界面張力と、撥水面4bの表面張力との力学的平衡により、標本載置部2に液層11を保持するように構成されている。
 撥水面4bは、標本載置部2に設けられている。撥水面4bの構成は、図5の例と同様である。また、標本載置部2は、基板母材1における標本載置部2を囲む領域3に対し、生物標本10側に凸となる段差を有している。
 液体保持部2における光反射面2a、化学修飾2bの構成は、実施例1と略同じである。
 図6の変形例のラマン散乱光観察用基板によれば、撥水面4bを標本載置部2に設け、標本載置部2を、基板母材1における標本載置部2を囲む領域3に対し、生物標本10側に凸となる段差を有する構成としたので、光反射面2a上の液層11において、濡れのピン止め効果により不連続な濡れ角が生じ液層11を保持できる。
 その他の作用効果は、図5の例と略同じである。
 以上、本発明のラマン散乱光観察用基板の実施例及びその変形例を説明したが、本発明のラマン散乱光観察用基板は、図2~図6に示した実施例及び変形例に限定されるものではない。
 例えば、実施例1のラマン散乱光観察用基板において、標本載置部2を囲む領域3に撥水面4bを有してもよい。このように構成すれば、生物標本10を液浸する液層11における壁枠4aと標本載置部2を囲む領域3との隙間からの漏出をより一層防止できる。
 また、例えば、実施例2のラマン散乱光観察用基板において、標本載置部2を、基板母材1に対し着脱可能に構成してもよい。このように構成すれば、生物標本10を載置した標本載置部2の個数に対して、基板母材1の個数を少なく抑えることができる。
 本発明のラマン散乱光観察用基板は、薄片の生物標本に励起光を照射してラマン散乱光を測定することによって生化学情報を観察することが求められる分野に有用である。
1     基板母材
2     標本載置部
2a    光反射面
2b    化学修飾部
3     標本載置部を囲む領域
4     液層保持機構
4a    壁枠
4a1   開口部
4b    撥水面
5     遮蔽カバー
5a    窓
10    生物標本
11    液層
12    対物レンズ

Claims (13)

  1.  生物標本からのラマン散乱光を観察するために用いる基板であって、
     基板母材と、
     前記基板母材に配される、前記生物標本を載置するための標本載置部と、
     前記基板母材における前記標本載置部を囲む領域又は該標本載置部に設けられる、該標本載置部に載置された前記生物標本を液浸するための液層を該標本載置部に保持する液層保持機構と、
    を備えることを特徴とするラマン散乱光観察用基板。
  2.  前記標本載置部における前記生物標本側の表面が、光反射面で構成されていることを特徴とする請求項1に記載のラマン散乱光観察用基板。
  3.  前記光反射面が、前記生物標本との接着作用を奏するための化学修飾を施された化学修飾部を有していることを特徴とする請求項2に記載のラマン散乱光観察用基板。
  4.  前記液層保持機構が、前記基板母材における前記標本載置部を囲む領域に着脱可能な壁枠を有して構成されていることを特徴とする請求項1~3のいずれかに記載のラマン散乱光観察用基板。
  5.  前記液層保持機構が、前記基板母材における前記標本載置部を囲む領域又は該標本載置部に撥水面を有し、前記液層の表面張力と、前記液層と前記撥水面の界面張力と、前記撥水面の表面張力との力学的平衡により前記標本載置部に前記液層を保持するように構成されていることを特徴とする請求項1~3のいずれかに記載のラマン散乱光観察用基板。
  6.  前記壁枠と前記基板母材における前記標本載置部を囲む領域の対向する面同士が、接着又は化学吸着されるように構成されていることを特徴とする請求項4に記載のラマン散乱光観察用基板。
  7.  前記光反射面に施される化学修飾部は、該化学修飾部表面の官能基と前記生物標本との化学的相互作用を介して接着作用を奏することを特徴とする請求項2又は3に従属する請求項4~6のいずれかに記載のラマン散乱光観察用基板。
  8.  前記光反射面が、金、銀、アルミもしくはそれらを主成分とする金属層又は金属酸化物の多層膜からなり、入射した光のうち、励起光及び前記生物標本からのラマン散乱光又は前記生物標本からのラマン散乱光のみを反射するように構成されていることを特徴とする請求項2又は3に従属する請求項4~6のいずれかに記載のラマン散乱光観察用基板。
  9.  前記撥水面が、サブミクロン以下の凹凸構造を有することを特徴とする請求項5、請求項5に従属する請求項7又は8のいずれかに記載のラマン散乱光観察用基板。
  10.  前記撥水面が、前記標本載置部に設けられ、
     前記標本載置部が、前記基板母材における該標本載置部を囲む領域に対し、前記生物標本側に凸となる段差を有していることを特徴とする請求項5、9、請求項5に従属する請求項7又は8のいずれかに記載のラマン散乱光観察用基板。
  11.  前記標本載置部が、前記基板母材に対し着脱可能に構成されていることを特徴とする請求項4~10のいずれかに記載のラマン散乱光観察用基板。
  12.  前記生物標本を観察するための透明な窓を有する遮蔽カバーを、前記壁枠に吸着又は接着可能に備えたことを特徴とする請求項4、6、請求項4に従属する請求項7、8、11のいずれかに記載のラマン散乱光観察用基板。
  13.  前記標本載置部を囲む領域に撥水面を有することを特徴とする請求項4に記載のラマン散乱光観察用基板。
PCT/JP2014/075437 2014-09-25 2014-09-25 ラマン散乱光観察用基板 WO2016046934A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075437 WO2016046934A1 (ja) 2014-09-25 2014-09-25 ラマン散乱光観察用基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075437 WO2016046934A1 (ja) 2014-09-25 2014-09-25 ラマン散乱光観察用基板

Publications (1)

Publication Number Publication Date
WO2016046934A1 true WO2016046934A1 (ja) 2016-03-31

Family

ID=55580494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075437 WO2016046934A1 (ja) 2014-09-25 2014-09-25 ラマン散乱光観察用基板

Country Status (1)

Country Link
WO (1) WO2016046934A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164213A (ja) * 1997-06-09 1999-03-05 Fuji Photo Film Co Ltd サンプルプレート
JP2001074647A (ja) * 1999-09-07 2001-03-23 Suzuki Motor Corp センサプレート
JP2007248361A (ja) * 2006-03-17 2007-09-27 Toshiba Corp 抗体チップ、抗原測定装置及び液体排出方法
WO2007139201A1 (ja) * 2006-05-31 2007-12-06 Olympus Corporation 生体試料撮像方法および生体試料撮像装置
JP2009171921A (ja) * 2008-01-28 2009-08-06 Olympus Corp 蛍光増幅核酸の検出装置及び検出方法
WO2011142117A1 (ja) * 2010-05-11 2011-11-17 パナソニック株式会社 細胞培養基材及びそれを用いた細胞培養方法
JP2014160021A (ja) * 2013-02-20 2014-09-04 Nsk Ltd 標的物質捕捉装置およびそれを備えた標的物質検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164213A (ja) * 1997-06-09 1999-03-05 Fuji Photo Film Co Ltd サンプルプレート
JP2001074647A (ja) * 1999-09-07 2001-03-23 Suzuki Motor Corp センサプレート
JP2007248361A (ja) * 2006-03-17 2007-09-27 Toshiba Corp 抗体チップ、抗原測定装置及び液体排出方法
WO2007139201A1 (ja) * 2006-05-31 2007-12-06 Olympus Corporation 生体試料撮像方法および生体試料撮像装置
JP2009171921A (ja) * 2008-01-28 2009-08-06 Olympus Corp 蛍光増幅核酸の検出装置及び検出方法
WO2011142117A1 (ja) * 2010-05-11 2011-11-17 パナソニック株式会社 細胞培養基材及びそれを用いた細胞培養方法
JP2014160021A (ja) * 2013-02-20 2014-09-04 Nsk Ltd 標的物質捕捉装置およびそれを備えた標的物質検出装置

Similar Documents

Publication Publication Date Title
Baik et al. Intraoperative label‐free photoacoustic histopathology of clinical specimens
Miao et al. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots
Ortega-Arroyo et al. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy
CN1950026B (zh) 用于无创血液分析的测量头
JP2011508199A (ja) 標的粒子を検出するためのマイクロエレクトロニクスセンサデバイス
JP2015026022A (ja) ラマン散乱光観察用基板
WO2015129361A1 (ja) 表面プラズモン励起増強蛍光分光測定用センサーチップ
KR100500610B1 (ko) 형광 현미경 및 이를 사용한 관측 방법
WO2008091852A2 (en) Polymeric substrates for surface enhanced raman spectroscopy
JP2008164584A (ja) ラマン分光装置、及びこれを用いたラマン分光方法
US20210247291A1 (en) Probing mechanical properties of biological matter
JP2020527759A (ja) 微小球レンズ組立体
JP2011112548A (ja) 生体サンプル解析方法、生体サンプル解析装置及び生体サンプル解析プログラム
EP4241061A1 (en) Analysis of tissue samples using quantitative phase-contrast microscopy
US10067061B2 (en) Patch clamp technique with complementary raman spectroscopy
JP2009128152A (ja) エバネッセント波発生装置及びそれを用いた観察装置
WO2016046934A1 (ja) ラマン散乱光観察用基板
KR100615040B1 (ko) 바이오칩 측정 장치 및 방법
WO2015146036A1 (ja) 増強ラマン分光装置
FR2973511A1 (fr) Dispositif et procede de couplage d'un spectrometre raman et d'un microscope a champ proche
JP5598929B2 (ja) 光学顕微鏡
JP2002243594A (ja) サンプリング用治具及びそれを用いた赤外分光測定法
JP2000356611A (ja) 熱レンズ顕微鏡超微量分析方法とその装置
US10994993B2 (en) Method of forming enhanced super-resolution image
TWI723508B (zh) 形成增強之超解析影像的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14902609

Country of ref document: EP

Kind code of ref document: A1