WO2016045629A1 - 微波炉解冻的控制方法、装置及微波炉 - Google Patents

微波炉解冻的控制方法、装置及微波炉 Download PDF

Info

Publication number
WO2016045629A1
WO2016045629A1 PCT/CN2015/090806 CN2015090806W WO2016045629A1 WO 2016045629 A1 WO2016045629 A1 WO 2016045629A1 CN 2015090806 W CN2015090806 W CN 2015090806W WO 2016045629 A1 WO2016045629 A1 WO 2016045629A1
Authority
WO
WIPO (PCT)
Prior art keywords
thawing
food
microwave oven
temperature
defrosting
Prior art date
Application number
PCT/CN2015/090806
Other languages
English (en)
French (fr)
Inventor
唐相伟
贾逾泽
李燕
栾春
孙大文
韩忠
曾新安
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410499499.5A external-priority patent/CN104235902B/zh
Priority claimed from CN201410499395.4A external-priority patent/CN104235901A/zh
Priority claimed from CN201410499543.2A external-priority patent/CN104235903A/zh
Priority claimed from CN201410508374.4A external-priority patent/CN104235904A/zh
Priority claimed from CN201410510143.7A external-priority patent/CN104266236A/zh
Priority to CA2962660A priority Critical patent/CA2962660C/en
Priority to EP15845000.7A priority patent/EP3199873A4/en
Priority to EP17167008.6A priority patent/EP3285548B1/en
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Priority to US15/514,231 priority patent/US20170280518A1/en
Priority to JP2017516302A priority patent/JP6526183B2/ja
Priority to BR112017006266A priority patent/BR112017006266A2/pt
Priority to AU2015320087A priority patent/AU2015320087A1/en
Priority to KR1020177011292A priority patent/KR102042199B1/ko
Priority to RU2017114102A priority patent/RU2671654C2/ru
Publication of WO2016045629A1 publication Critical patent/WO2016045629A1/zh
Priority to US15/468,994 priority patent/US10397990B2/en
Priority to US15/468,937 priority patent/US10588181B2/en
Priority to AU2017202618A priority patent/AU2017202618B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • H05B6/6455Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors the sensors being infrared detectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6464Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using weight sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • H05B6/725Rotatable antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to the technical field of living appliances, in particular to a control method and device for thawing a microwave oven and a microwave oven.
  • the inventors have found that by studying the current state of thawing of different types of microwave ovens of different brands on the market, as described in the above background art, the effects of thawing are not ideal for the same type of food of the same size, generally There will be the following problems: long thawing time, cooked discoloration, excessive temperature difference between the highest temperature and the lowest temperature, etc., and the reason for these problems is that the optimal thawing end point problem has not been defined yet, and thus the thawing is lacking. Research on procedures such as firepower and time.
  • the object of the present invention is to solve at least one of the above technical problems to some extent.
  • a first object of the present invention is to provide a control method for defrosting a microwave oven.
  • the method has been invented by the inventors for a large number of experiments and theoretical analysis, and it has been found that by using the temperature in the range of -3-0 ° C as the optimal endpoint temperature for thawing, the food after thawing is more nutritious, more hygienic and easier to cut. And the temperature difference is low, there is no cooking discoloration.
  • a second object of the present invention is to provide a control method for defrosting a microwave oven.
  • a third object of the present invention is to provide a control method for defrosting a microwave oven.
  • a fourth object of the present invention is to provide a control method for defrosting a microwave oven.
  • a fifth object of the present invention is to provide a control method for defrosting a microwave oven.
  • a sixth object of the present invention is to provide a control method for defrosting a microwave oven.
  • a seventh object of the present invention is to provide a control method for defrosting a microwave oven.
  • An eighth object of the present invention is to provide a control method for defrosting a microwave oven.
  • a ninth object of the present invention is to provide a control method for defrosting a microwave oven.
  • a tenth object of the present invention is to provide a control device for defrosting a microwave oven.
  • An eleventh object of the present invention is to provide a control device for defrosting a microwave oven.
  • a twelfth object of the present invention is to provide a control device for defrosting a microwave oven.
  • a thirteenth object of the present invention is to provide a control device for defrosting a microwave oven.
  • a fourteenth object of the present invention is to provide a control device for defrosting a microwave oven.
  • a fifteenth object of the present invention is to provide a control device for defrosting a microwave oven.
  • a sixteenth object of the present invention is to provide a microwave oven.
  • a seventeenth object of the present invention is to provide a microwave oven.
  • An eighteenth object of the present invention is to provide a microwave oven.
  • a nineteenth object of the present invention is to provide a microwave oven.
  • a twentieth object of the present invention is to provide a microwave oven.
  • a method for controlling defrosting of a microwave oven includes: S1, receiving a defrosting instruction; S2, starting to perform thawing; and S3, controlling thawing conditions to maintain temperature of food in the microwave oven At -3-0 ° C.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, and control the thawing condition to maintain the temperature of the food in the microwave oven at -3-0 ° C, through a large number of experiments and theories.
  • Analysis innovatively found that by using the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing is more sanitary; (3) The temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • controlling the thawing condition specifically comprises controlling one or more of a thawing time, a thawing heating power or a heating direction.
  • the microwave oven has a microwave generating device, and the step S2 specifically includes: controlling the microwave generating device to start, and performing thawing.
  • the controlling method further includes: S4: determining a weight x of the food in the microwave oven.
  • step S32A includes sequentially defrosting the food by using a plurality of firepower levels in a plurality of consecutive time periods.
  • the step S32A specifically includes: S321, thawing at a first firepower level in the first time period t1, the first firepower level is 30% to 60% of the full firepower; S322, in the second time period Th2 is thawed at a second firepower level, the second firepower level is 20% to 40% of the full firepower; S323 is thawed at a third firepower level during a third time period t3, and the third firepower level is The firepower is 30% to 60%; S324 is thawed at a fourth firepower level in the fourth time period t4, and the fourth firepower level is 0% to 30% of the full firepower.
  • step S322 and step S323 further comprising: S3221A, after the second time period t2, the defrosting process is controlled to pause and prompting to turn the food over, and detecting whether the food is turned over; S3222A, after detecting that the food is turned over, the defrosting process is controlled to proceed to the step S323.
  • step S322 and step S323 further comprising: S3221B, after the second time period t2, the defrosting process is controlled to pause and prompting to turn the food over, and detecting whether the microwave generating device is re-started Startup; S3222B, after detecting that the microwave generating device is activated, the thawing process is controlled to proceed to the step S323.
  • the microwave oven has a defrosting key, wherein the weight x of the food is determined according to the touch state of the defrosting key.
  • the defrosting key is one, and the defrosting key is configured to increase the weight displayed on the microwave oven by 50 to 100 grams per press.
  • the defrosting key comprises a plurality of defrosting keys corresponding to a plurality of weight grams.
  • the weight x of the food is determined based on a weight sensor provided in the microwave oven.
  • control method further includes: S5. Detecting a temperature of the plurality of temperature measurement points on the food in the microwave oven.
  • the step S3 specifically includes: S31B, defrosting the food according to the temperature of the plurality of temperature measuring points on the food to maintain the temperature of the food at -3-0 °C.
  • step S5 the temperature of the plurality of temperature measurement points on the food is detected according to an infrared temperature sensor provided in the microwave oven.
  • the infrared temperature sensor has M infrared temperature sensing probes, and the temperature of the plurality of temperature measuring points on the food is detected by N infrared temperature sensing probes, wherein, N And M are both positive integers, and N is less than or equal to M.
  • the step S31B includes sequentially defrosting the food according to the temperature detection values of the N infrared temperature sensing probes by using a plurality of firepower levels.
  • the step S31B specifically includes: S311, thawing at a first firepower level, the first firepower level is 30% to 60% of the full firepower; S312, when the N infrared temperature sensing probes When 30% of the temperature detection value is greater than -4 ° C, the second firepower level is thawed, the second firepower level is 20% to 40% of the full firepower; S313, when the N infrared temperature sensing probes When 60% of the temperature detection value is greater than -4 ° C, the third firepower level is thawed, the third firepower level is 30% to 60% of the full firepower; S314, when the N infrared temperature sensing probes 30% of the temperature detection value is -3 ° C ⁇ 0 ° C, the fourth fire level is thawed, the fourth fire level is 0% ⁇ 30% of the full firepower; S315, when the N infrared temperature measurement The defrosting is stopped when 80% of the temperature detection value in the sensing probe is within -3 ° C
  • the infrared temperature sensor is driven to rotate by a motor.
  • the microwave oven has a rotatable heating antenna, wherein the step S3 specifically includes: S31C, determining a heating angle of the heating antenna according to a temperature of the plurality of temperature measuring points; S32C, according to the The heating angle controls the heating antenna to rotate to maintain the temperature of the food at -3-0 °C.
  • step S31C the position of the lowest temperature point among the plurality of temperature measurement points is determined; in the step S32C, the heating antenna is controlled to rotate to the lowest temperature point.
  • the method further includes: S6, controlling the heating antenna to rotate at a constant speed; S7, when 30% of the plurality of temperature measuring points are greater than -4 ° C The defrosting process is controlled to proceed to the step S31C.
  • step S32C specifically includes: when 80% of the plurality of temperature measurement points are within a temperature range of -3 ° C to 0 ° C, the thawing is stopped.
  • the food is meat or fish.
  • the thawing conditions are controlled to maintain the temperature of the food in the microwave oven at -1 °C.
  • a method for controlling defrosting of a microwave oven includes: S1, receiving a defrosting instruction; S2, starting to perform thawing; and S3, controlling thawing conditions such that the temperature of the food in the microwave oven is at It was kept at -3-0 ° C after thawing.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, and control the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing, through a large number of Experimental and theoretical analysis, innovatively found that by using the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing More sanitary; (3) The temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • controlling the thawing condition specifically comprises controlling one or more of a thawing time, a thawing heating power or a heating direction.
  • the microwave oven has a microwave generating device, and the step S2 specifically includes: controlling the microwave generating device to start, and performing thawing.
  • the controlling method further includes: S4: determining a weight x of the food in the microwave oven.
  • step S32A includes sequentially defrosting the food by using a plurality of firepower levels in a plurality of consecutive time periods.
  • the step S32A specifically includes: S321, the first firepower, etc. in the first time period t1 Level thawing, the first firepower level is 30% to 60% of full firepower; S322, thawing at a second firepower level in the second time period t2, the second firepower level is 20% of the full firepower ⁇ 40%; S323, thawed at a third firepower level in a third time period t3, the third firepower level is 30% to 60% of the full firepower; S324, the fourth firepower in the fourth time period t4 The level is thawed, and the fourth firepower level is 0% to 30% of the full firepower.
  • step S322 and step S323 further comprising: S3221A, after the second time period t2, the defrosting process is controlled to pause and prompting to turn the food over, and detecting whether the food is turned over; S3222A, after detecting that the food is turned over, the defrosting process is controlled to proceed to the step S323.
  • step S322 and step S323 further comprising: S3221B, after the second time period t2, the defrosting process is controlled to pause and prompting to turn the food over, and detecting whether the microwave generating device is re-started Startup; S3222B, after detecting that the microwave generating device is activated, the thawing process is controlled to proceed to the step S323.
  • the microwave oven has a defrosting key, wherein the weight x of the food is determined according to the touch state of the defrosting key.
  • the defrosting key is one, and the defrosting key is configured to increase the weight displayed on the microwave oven by 50 to 100 grams per press.
  • the defrosting key comprises a plurality of defrosting keys corresponding to a plurality of weight grams.
  • the weight x of the food is determined based on a weight sensor provided in the microwave oven.
  • control method further includes: S5. Detecting a temperature of the plurality of temperature measurement points on the food in the microwave oven.
  • the step S3 specifically includes: S31B, thawing the food according to the temperature of the plurality of temperature measuring points on the food to keep the temperature of the food at -3-0 ° C after thawing.
  • step S5 the temperature of the plurality of temperature measurement points on the food is detected according to an infrared temperature sensor provided in the microwave oven.
  • the infrared temperature sensor has M infrared temperature sensing probes, and the temperature of the plurality of temperature measuring points on the food is detected by N infrared temperature sensing probes, wherein, N And M are both positive integers, and N is less than or equal to M.
  • the step S31B includes sequentially defrosting the food according to the temperature detection values of the N infrared temperature sensing probes by using a plurality of firepower levels.
  • the step S31B specifically includes: S311, thawing at a first firepower level, the first firepower level is 30% to 60% of the full firepower; S312, when the N infrared temperature sensing probes 30% temperature detection When the value is greater than -4 ° C, the second firepower level is thawed, the second firepower level is 20% to 40% of the full firepower; S313, when the N infrared temperature sensing probes are 60% of the temperature detection When the value is greater than -4 ° C, the third firepower level is thawed, the third firepower level is 30% to 60% of the full firepower; S314, when the N infrared temperature sensing probes are 30% of the temperature detection When the value is within -3 ° C ⁇ 0 ° C, the fourth firepower level is thawed, the fourth firepower level is 0% to 30% of the full firepower; S315, when the 80 of the N infrared temperature sensing probes When the temperature detection value of % is within -3
  • the infrared temperature sensor is driven to rotate by a motor.
  • the microwave oven has a rotatable heating antenna, wherein the step S3 specifically includes: S31C, determining a heating angle of the heating antenna according to a temperature of the plurality of temperature measuring points; S32C, according to the The heating angle controls the heating antenna to rotate such that the temperature of the food is maintained at -3-0 °C after thawing.
  • step S31C the position of the lowest temperature point among the plurality of temperature measurement points is determined; in the step S32C, the heating antenna is controlled to rotate to the lowest temperature point.
  • the method further includes: S6, controlling the heating antenna to rotate at a constant speed; S7, when 30% of the plurality of temperature measuring points are greater than -4 ° C The defrosting process is controlled to proceed to the step S31C.
  • step S32C specifically includes: when 80% of the plurality of temperature measurement points are within a temperature range of -3 ° C to 0 ° C, the thawing is stopped.
  • the food is meat or fish.
  • the thawing conditions are controlled such that the temperature of the food in the microwave oven is maintained at -1 °C after thawing.
  • a microwave oven defrosting control method detects a temperature of the food in the microwave oven during the thawing process, and controls the temperature of the food to be lower than -3- during the thawing process. 0 ° C, and the temperature of the food was maintained at -3-0 ° C after thawing.
  • the temperature of the food in the microwave oven can be detected in real time, and the temperature of the food in the thawing process is controlled to be lower than -3-0 ° C, and the food after thawing The temperature is maintained at -3-0 ° C.
  • the temperature of the food in the microwave oven is below -1 °C, and the temperature of the food is maintained at -1 °C after thawing.
  • a method for controlling defrosting of a microwave oven includes: receiving a defrosting command; starting thawing and detecting a temperature of a food in the microwave oven; and controlling thawing conditions to make the food in the microwave oven The temperature was maintained at -1 °C.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, detect the temperature of the food in the microwave oven, and control the thawing condition to maintain the temperature of the food in the microwave oven at -1 ° C,
  • -1 ° C the optimal endpoint temperature for food thawing
  • controlling the thawing condition specifically comprises controlling one or more of a thawing time, a thawing heating power or a heating direction.
  • the food is meat or fish.
  • a method for controlling defrosting of a microwave oven includes: receiving a defrosting command; starting thawing and detecting a temperature of a food in the microwave oven; and controlling thawing conditions to make the food in the microwave oven The temperature was maintained at -1 °C after thawing.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, detect the temperature of the food in the microwave oven, and control the thawing condition so that the temperature of the food in the microwave oven remains after thawing - At 1 °C, through a large number of experiments and theoretical analysis, it is innovatively found that by using -1 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing More sanitary; (3) The temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • controlling the thawing condition specifically comprises controlling one or more of a thawing time, a thawing heating power or a heating direction.
  • the food is meat or fish.
  • a microwave oven defrosting control method in the thawing process, the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is kept at - after thawing 1 ° C.
  • the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained at -1 ° C after thawing, through a large number of experiments and theoretical analysis,
  • -1 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing is more hygienic; (3) temperature difference of food after thawing Lower, no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • a method for controlling defrosting of a microwave oven comprising the steps of: S1, detecting a plurality of temperatures of the food in the microwave oven a temperature of the point; S2, determining a heating angle of the heating antenna according to a temperature of the plurality of temperature measuring points; and S3, controlling the heating antenna to rotate according to the heating angle.
  • the thawing food is thawed according to the temperature of a plurality of temperature measuring points on the food to be thawed, for example, meat, and the thawing effect is good.
  • step S2 determining a position of a lowest temperature point among the plurality of temperature measurement points; in the step S3, controlling the heating antenna to rotate to the lowest temperature point.
  • control method for the defrosting of the microwave oven further includes: S11, controlling the heating antenna to rotate at a constant speed; S12, when 30% of the plurality of temperature measuring points When the temperature is greater than -4 ° C, the thawing process is controlled to proceed to the step S2.
  • the method for controlling the thawing of the microwave oven further comprises: S4, when the temperature of 80% of the plurality of temperature measurement points is within -3 ° C to 0 ° C, the thawing is stopped.
  • step S1 the temperature of the plurality of temperature measurement points is detected according to an infrared temperature sensor disposed in the microwave oven.
  • the infrared temperature sensor has M infrared temperature sensing probes, and the temperature of the plurality of temperature measuring points on the food in the microwave oven is detected by N infrared temperature sensing probes, wherein , N and M are both positive integers, and N is less than or equal to M.
  • the infrared temperature sensor is driven to rotate by a motor.
  • the food is meat.
  • the microwave oven includes a microwave generating device, the method comprising: S1, detecting a temperature of a plurality of temperature measuring points on the food in the microwave oven; S2. Control the microwave generating device to start, and thaw the food according to the temperature of the plurality of temperature measuring points on the food.
  • the thawing food is thawed according to the temperature of the plurality of temperature measuring points on the food to be thawed, and the thawing effect is good.
  • the step S1 detects the microwave oven according to an infrared temperature sensor disposed in the microwave oven The temperature of the plurality of temperature measurement points on the food in the food.
  • the infrared temperature sensor has M infrared temperature sensing probes, and the temperature of the plurality of temperature measuring points on the food is detected by N infrared temperature sensing probes, wherein N and M is a positive integer, and N is less than or equal to M.
  • step S2 includes sequentially defrosting the food by using a plurality of firepower levels according to the temperature detection values of the N infrared temperature sensing probes.
  • the step S2 specifically includes: S21, after the microwave generating device is started, thawed at a first firepower level, the first firepower level is 30% to 60% of the full firepower; S22, when the N infrared rays When 30% of the temperature sensing value in the temperature sensing probe is greater than -4 ° C, the second fire level is thawed, and the second fire level is 20% to 40% of the full fire force; S23, when the N infrared When 60% of the temperature sensing value in the temperature sensing probe is greater than -4 ° C, the third fire level is thawed, the third fire level is 30% to 60% of the full fire force; S24, when the N infrared When 30% of the temperature detection value in the temperature sensing probe is within -3 ° C to 0 ° C, the temperature is thawed at a fourth firepower level, and the fourth firepower level is 0% to 30% of the full firepower; S25; When 80% of the temperature detection values of the N in
  • the infrared temperature sensor is driven to rotate by a motor.
  • the food is meat.
  • the total thawing time T required for thawing the food to be thawed is calculated according to the weight x of the food to be thawed, and the thawing effect is good.
  • step S2 includes sequentially defrosting the food by using a plurality of firepower levels in successively consecutive time periods.
  • the step S2 specifically includes: S21, thawing at a first firepower level in the first time period t1, the first firepower level is 30% to 60% of the full firepower; S22, in the second time period t2 The inside is thawed by a second firepower level, the second firepower level is 20% to 40% of the full firepower; S23, and the third firepower level is thawed during the third time period t3, the third firepower level is The firepower is 30% to 60%; S24 is thawed at the fourth firepower level in the fourth time period t4, and the fourth firepower level is 0% to 30% of the full firepower.
  • the microwave oven defrosting control method further includes: S221A, after the second time period t2, the thawing process is controlled to pause and prompts to turn the food over, and starts detecting the food. Whether it is turned over; S222A, after detecting that the food is turned over, the thawing process is controlled to proceed to step S23.
  • the microwave defrosting control method further includes: S221B, after the second time period t2, the thawing process is controlled to pause and prompts to turn the food over, and starts detecting Whether the microwave generating device is restarted; S222B, after detecting that the microwave generating device is activated, the thawing process is controlled to proceed to step S23.
  • the weight x of the food is judged according to the touch state of the defrosting key.
  • the defrosting key is one, and the defrosting key is configured to increase the weight displayed on the microwave oven by 50 to 100 grams per press.
  • the defrosting key comprises a plurality of defrosting keys corresponding to a plurality of weight grams.
  • the weight x of the food is judged based on a weight sensor provided in the microwave oven.
  • the temperature of the food is -3 ° C to 0 ° C.
  • the food is meat.
  • a control apparatus for defrosting a microwave oven includes: a receiving module for receiving a defrosting command; a defrosting module for starting thawing; and a control module for controlling the thawing condition to enable The temperature of the food in the microwave oven was maintained at -3-0 °C.
  • the defrosting module is started to perform thawing by the receiving module, and the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least the following advantages: (1) the food after thawing is more nutritious; (2) the food after thawing is more Hygiene; (3) The food after thawing has a lower temperature difference and no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • control module is further configured to determine the weight x of the food in the microwave oven.
  • control module sequentially uses a plurality of firepower levels to thaw the plurality of time segments in sequence food.
  • control module is specifically configured to: in the first time period t1, thaw at a first firepower level, the first firepower level is 30% to 60% of the full firepower; and in the second time period t2
  • the second firepower level is thawed, the second firepower level is 20% to 40% of the full firepower;
  • the third firepower level is thawed in the third time period t3, and the third firepower level is 30 of the full firepower % to 60%; thawed at a fourth firepower level during the fourth time period t4, the fourth firepower level being 0% to 30% of the full firepower.
  • control module is further configured to: after the second time period t2, the defrosting process is controlled to pause and prompt to turn the food over, and start detecting whether the food is turned over; after detecting that the food is turned over The control is thawed at the third firepower level during the third time period t3.
  • control module is further configured to: after the second time period t2, the defrosting process is controlled to pause and prompt to turn the food over, and start detecting whether the microwave generating device is restarted; detecting the microwave generating device After being activated, the control is thawed at a third firepower level during the third time period t3.
  • control module is further configured to: detect a temperature of the plurality of temperature measurement points on the food in the microwave oven.
  • control module is specifically configured to: thaw the food according to the temperature of the plurality of temperature measuring points on the food to maintain the temperature of the food at -3-0 ° C.
  • control module detects the temperature of the plurality of temperature measurement points on the food according to an infrared temperature sensor provided in the microwave oven.
  • the infrared temperature sensor has M infrared temperature sensing probes, and the temperature of the plurality of temperature measuring points on the food is detected by N infrared temperature sensing probes, wherein, N And M are both positive integers, and N is less than or equal to M.
  • control module is configured to sequentially thaw the food by using a plurality of firepower levels according to the temperature detection values of the N infrared temperature sensing probes.
  • control module is specifically configured to: thaw at a first firepower level, the first firepower level is 30% to 60% of the full firepower; and 30% of the N infrared temperature sensing probes
  • the temperature detection value is greater than -4 ° C
  • the temperature is thawed by a second firepower level
  • the second firepower level is 20% to 40% of the full firepower
  • the temperature of the N infrared temperature sensing probes is 60%
  • the detected value is greater than -4 ° C, it is thawed at a third firepower level
  • the third firepower level is 30% to 60% of the full firepower
  • the fourth firepower level is 0% to 30% of the full firepower
  • the temperature of the N infrared temperature sensing probe is 80%
  • the detected value is within -3 ° C to 0
  • the microwave oven has a rotatable heating antenna, wherein the control module is specifically configured to: determine a heating angle of the heating antenna according to a temperature of the plurality of temperature measuring points; and control according to the heating angle The heating antenna is rotated to maintain the temperature of the food at -3-0 °C.
  • control module controls the thawing condition to maintain the temperature of the food in the microwave oven at -1 °C.
  • a control device for defrosting a microwave oven includes: a receiving module for receiving a defrosting command; a defrosting module for starting thawing; and a control module for controlling the defrosting condition
  • the temperature of the food in the microwave oven was maintained at -3-0 ° C after thawing.
  • the receiving module receives the defrosting command
  • the defrosting module starts to perform thawing
  • the control module controls the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing, through a large amount
  • the experimental and theoretical analysis innovatively found that by using the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least has the following advantages: (1) the food after thawing is more nutritious; (2) after thawing The food is more hygienic; (3) the food after thawing has a lower temperature difference and no cooking discoloration; (4) the food after thawing has moderate shearing force and is easier to cut and operate.
  • control module is further configured to determine the weight x of the food in the microwave oven.
  • control module sequentially uses a plurality of firepower levels to thaw the food in successively consecutive time periods.
  • control module is specifically configured to: in the first time period t1, thaw at a first firepower level, the first firepower level is 30% to 60% of the full firepower; and in the second time period t2
  • the second firepower level is thawed, the second firepower level is 20% to 40% of the full firepower;
  • the third firepower level is thawed in the third time period t3, and the third firepower level is 30 of the full firepower % to 60%; thawed at a fourth firepower level during the fourth time period t4, the fourth firepower level being 0% to 30% of the full firepower.
  • control module is further configured to: after the second time period t2, the defrosting process is controlled to pause and prompt to turn the food over, and start detecting whether the food is turned over; after detecting that the food is turned over Controlled in the third Thawed at a third firepower level during time period t3.
  • control module is further configured to: after the second time period t2, the defrosting process is controlled to pause and prompt to turn the food over, and start detecting whether the microwave generating device is restarted; detecting the microwave generating device After being activated, the control is thawed at a third firepower level during the third time period t3.
  • control module is further configured to: detect a temperature of the plurality of temperature measurement points on the food in the microwave oven.
  • control module is specifically configured to: thaw the food according to a temperature of the plurality of temperature measuring points on the food to maintain the temperature of the food at -3-0 ° C after thawing.
  • control module detects the temperature of the plurality of temperature measurement points on the food according to an infrared temperature sensor provided in the microwave oven.
  • control module detects a temperature of the plurality of temperature measurement points on the food according to an infrared temperature sensor disposed in the microwave oven.
  • control module sequentially uses a plurality of firepower levels to thaw the food according to the temperature detection values of the N infrared temperature sensing probes.
  • control module is specifically configured to: thaw at a first firepower level, the first firepower level is 30% to 60% of the full firepower; and 30% of the N infrared temperature sensing probes
  • the temperature detection value is greater than -4 ° C
  • the temperature is thawed by a second firepower level
  • the second firepower level is 20% to 40% of the full firepower
  • the temperature of the N infrared temperature sensing probes is 60%
  • the detected value is greater than -4 ° C, it is thawed at a third firepower level
  • the third firepower level is 30% to 60% of the full firepower
  • the fourth firepower level is 0% to 30% of the full firepower
  • the temperature of the N infrared temperature sensing probe is 80%
  • the detected value is within -3 ° C to 0
  • the microwave oven has a rotatable heating antenna
  • the control module is specifically configured to: determine a heating angle of the heating antenna according to a temperature of the plurality of temperature measuring points; and control according to the heating angle The heating antenna is rotated such that the temperature of the food is maintained at -3-0 ° C after thawing.
  • control module controls the thawing condition such that the temperature of the food in the microwave oven is maintained at -1 °C after thawing.
  • a microwave oven defrosting control apparatus detects a temperature of a food in the microwave oven during a thawing process, and controls a temperature of the food in the thawing process to be lower than -3 -0 ° C, and the temperature of the food was maintained at -3-0 ° C after thawing.
  • the control device for defrosting a microwave oven can detect the temperature of the food in the microwave oven in real time during the thawing process, and control the temperature of the food in the thawing process to be lower than -3-0 ° C, and the food after thawing
  • the temperature is maintained at -3-0 ° C, through a large number of experimental and theoretical analysis, innovatively found through the range of -3-0 ° C
  • temperature has at least the following advantages: (1) the food after thawing is more nutritious; (2) the food after thawing is more sanitary; (3) the temperature difference after thawing is lower, no cooking discoloration Phenomenon; (4)
  • the food after thawing has moderate shearing force and is easier to cut and operate.
  • control device during the thawing process has a temperature of the food in the microwave oven below -1 ° C, and the temperature of the food is maintained at -1 ° C after thawing.
  • a control apparatus for defrosting a microwave oven includes: a receiving module for receiving a defrosting command; a detecting module for starting thawing and detecting a temperature of a food in the microwave oven; and controlling A module for controlling the thawing conditions to maintain the temperature of the food in the microwave oven at -1 °C.
  • the control device for defrosting a microwave oven after the receiving module receives the defrosting command, starts thawing and detects the temperature of the food in the microwave oven, and the control module controls the thawing condition to maintain the temperature of the food in the microwave oven At -1 ° C, through a large number of experimental and theoretical analysis, it is innovatively found that by using -1 ° C as the optimal endpoint temperature for food thawing, at least the following advantages: (1) food after thawing is more nutritious; (2) after thawing The food is more hygienic; (3) the food after thawing has a lower temperature difference and no cooking discoloration; (4) the food after thawing has moderate shearing force and is easier to cut and operate.
  • controlling the thawing condition specifically comprises controlling one or more of a thawing time, a thawing heating power or a heating direction.
  • the food is meat or fish.
  • a microwave oven defrosting control apparatus includes: a receiving module for receiving a defrosting command; a detecting module for starting thawing and detecting a temperature of a food in the microwave oven; and controlling A module for controlling the thawing conditions such that the temperature of the food in the microwave oven is maintained at -1 °C after thawing.
  • a control device for defrosting a microwave oven after the receiving module receives the defrosting command, starts to perform thawing, and detects the temperature of the food in the microwave oven, and the control module controls the thawing condition so that the temperature of the food in the microwave oven is After thawing, it was kept at -1 °C.
  • controlling the thawing condition specifically comprises controlling one or more of a thawing time, a thawing heating power or a heating direction.
  • the food is meat or fish.
  • the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained after thawing -1 ° C.
  • the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained at -1 ° C after thawing, through a large number of experiments and theoretical analysis,
  • -1 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing is more hygienic; (3) temperature difference of food after thawing Lower, no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • a microwave oven according to a sixteenth aspect of the present invention includes the control device for defrosting a microwave oven according to the tenth aspect of the present invention.
  • the defrosting module is started to perform thawing by the receiving module in the control device, and the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • a microwave oven according to a seventeenth aspect of the present invention includes the control device for defrosting a microwave oven according to the eleventh embodiment of the present invention.
  • the defrosting module is started to perform thawing by the receiving module in the control device, and the defrosting module controls the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing
  • the defrosting module controls the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing
  • a microwave oven according to an eighteenth aspect of the present invention includes the control device for defrosting a microwave oven according to the twelfth aspect of the present invention.
  • the temperature of the food in the microwave oven can be detected in real time, and the temperature of the food during the thawing process is controlled to be lower than -3-0 ° C, and the temperature of the food remains after the thawing - 3-0 ° C,
  • the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) thawing After the food is more hygienic; (3) the food after thawing has a lower temperature difference and no cooking discoloration; (4) the food after thawing has moderate shearing force and is easier to cut and operate.
  • a microwave oven includes: a furnace body defining a furnace chamber, the food is adapted to be placed in the furnace chamber; and a control panel, the control panel is provided On the furnace body, and the control panel has a defrosting button and a start button; a microwave generating device, the microwave generating device is disposed in the furnace body, and the microwave generating device is configured to emit microwaves into the furnace cavity To thaw the food; a controller for performing the steps included in the method for controlling thawing of the microwave oven according to the ninth aspect of the present invention.
  • the furnace body is provided with a weight sensor adapted to detect the weight of the food
  • the bottom of the furnace body has a furnace foot
  • the weight sensor is disposed on the furnace foot.
  • the furnace body is provided with a weight sensor adapted to detect the weight of the food, the furnace chamber being partitioned by a partition into a cooking chamber and a heating chamber located below the cooking chamber, the weight sensor being disposed at The bottom of the partition.
  • a microwave oven includes: a furnace body defining a furnace chamber, the food is suitable for being placed in the furnace chamber; a temperature measuring device, the temperature measurement a device is disposed in the furnace body to detect a temperature of a plurality of temperature measurement points on the food; a microwave generating device, the microwave generating device is disposed in the furnace body, and the microwave generating device is configured to be in the furnace cavity Microwaves are emitted to thaw the food; and a controller for performing the steps included in the method of controlling the defrosting of the microwave oven according to the seventh aspect of the present invention.
  • the temperature measuring device is an infrared temperature measuring sensor, and the infrared temperature measuring sensor is disposed at an upper portion of the furnace body.
  • a microwave oven comprising: a furnace body, wherein the furnace body defines a furnace chamber, the food is suitable for being placed in the furnace chamber; and the temperature measuring device is provided at the temperature measuring device a furnace body for detecting a temperature of a plurality of temperature measuring points on the food; a microwave generating device, wherein the microwave generating device is disposed in the furnace body, the microwave generating device is configured to emit microwaves into the furnace cavity to thaw The food; a controller, wherein the controller is configured to perform the steps included in the method for controlling thawing of the microwave oven according to the eighth aspect of the present invention.
  • the temperature measuring device is an infrared temperature measuring sensor, and the infrared temperature measuring sensor is disposed at an upper portion of the furnace body.
  • FIG. 1 is a flow chart of a control method for defrosting a microwave oven according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of selecting 12 points when measuring food temperature according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a temperature profile of meat when a microwave oven thaws meat according to an embodiment of the present invention
  • 4(a) is a diagram showing an example of temperature difference after thawing of different weights of pork tenderloin at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • 4(b) is a diagram showing an example of temperature difference after thawing of different weights of fish meat at different thawing temperature endpoints according to an embodiment of the present invention
  • 4(c) is a diagram showing an example of temperature difference after thawing of different weights of chicken meat at different thawing temperature endpoints according to an embodiment of the present invention
  • Figure 4 (d) is a diagram showing an example of temperature differences after thawing of different weights of beef at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 5 (a) is a diagram showing an example of gravy exudation rate after thawing of different weights of pork tenderloin at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 5 (b) is a diagram showing an example of gravy exudation rate after thawing of different weights of fish meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 5 (c) is a diagram showing an example of gravy exudation rate after thawing of different weights of chicken meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 5 (d) is a diagram showing an example of gravy exudation rate after thawing of different weights of beef at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 6 (a) is a diagram showing an example of protein content of different weights of pork tenderloin after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 6 (b) is a diagram showing an example of protein content of different weights of fish meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 6 (c) is a diagram showing an example of protein content of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 6 (d) is a diagram showing an example of protein content of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 7 (a) is a solution of different weights of pork tenderloin at different thawing temperatures in accordance with one embodiment of the present invention.
  • Figure 7 (b) is a diagram showing an example of moisture content of different weights of fish meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 7 (c) is a diagram showing an example of the moisture content of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 7 (d) is a diagram showing an example of moisture content of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 8 (a) is a diagram showing an example of shearing force of different weights of pork tenderloin after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 8 (b) is a diagram showing an example of shearing force of different weights of fish meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 8 (c) is a diagram showing an example of shearing force of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 8 (d) is a diagram showing an example of shearing force of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 9 (a) is a diagram showing an example of yellowness of different weights of pork tenderloin after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 9 (b) is a diagram showing an example of yellowness of different weights of fish after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention.
  • Figure 9 (c) is a diagram showing an example of yellowness of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention.
  • Figure 9 (d) is a diagram showing an example of yellowness of different weights of beef after thawing at different defrosting temperature endpoints in accordance with one embodiment of the present invention.
  • Figure 10 (a) is a diagram showing an example of the total number of colonies after thawing of different weights of pork tenderloin at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 10 (b) is a diagram showing an example of the total number of colonies after thawing of different weights of fish meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 10 (c) is a diagram showing an example of the total number of colonies after thawing of different weights of chicken meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 10 (d) is a diagram showing an example of the total number of colonies after thawing of different weights of beef at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 11 is a diagram showing different weights of different foods after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a control device for defrosting a microwave oven according to an embodiment of the present invention.
  • FIG. 13 is a flow chart of a method of controlling defrosting of a microwave oven according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a control of defrosting a microwave oven according to another embodiment of the present invention.
  • 15 is a flow chart of a method of controlling defrosting of a microwave oven according to an embodiment of the present invention.
  • Figure 16 (a) is a diagram showing an example of temperature difference after thawing of different weights of pork tenderloin at different thawing temperatures in accordance with one embodiment of the present invention
  • Figure 16 (b) is a diagram showing an example of temperature difference after thawing of different weights of fish meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 16 (c) is a diagram showing an example of temperature difference after thawing of different weights of chicken meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 16 (d) is a diagram showing an example of temperature differences after thawing of different weights of beef at different defrosting temperature endpoints in accordance with one embodiment of the present invention
  • Figure 17 (a) is a diagram showing an example of gravy exudation rate after thawing of different weights of pork tenderloin at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 17 (b) is a diagram showing an example of gravy exudation rate after thawing of different weights of fish meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 17 (c) is a diagram showing an example of gravy exudation rate after thawing of different weights of chicken meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 17 (d) is a diagram showing an example of gravy exudation rate after thawing of different weights of beef at different defrosting temperature endpoints in accordance with one embodiment of the present invention
  • Figure 18 (a) is a diagram showing an example of protein content of different weights of pork tenderloin after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 18 (b) is a diagram showing an example of protein content of different weights of fish meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 18 (c) is a diagram showing an example of protein content of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 18 (d) is a diagram showing an example of protein content of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 19 (a) is a diagram showing an example of moisture content of different weights of pork tenderloin after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 19 (b) is a view of different weights of fish meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention An example of the moisture content;
  • Figure 19 (c) is a diagram showing an example of moisture content of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention.
  • Figure 19 (d) is a diagram showing an example of moisture content of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 20 (a) is a diagram showing an example of shearing force of different weights of pork tenderloin after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 20 (b) is a diagram showing an example of shearing force of different weights of fish meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 20 (c) is a diagram showing an example of shearing force of different weights of chicken meat after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 20 (d) is a diagram showing an example of shearing force of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 21 (a) is a diagram showing an example of yellowness of different weights of pork tenderloin after thawing at different thawing temperature endpoints, in accordance with one embodiment of the present invention
  • Figure 21 (b) is a diagram showing an example of yellowness of fish of different weights after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 21 (c) is a diagram showing an example of yellowness of different weights of chicken after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 21 (d) is a diagram showing an example of yellowness of different weights of beef after thawing at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 22 (a) is a diagram showing an example of the total number of colonies after thawing of different weights of pork tenderloin at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 22 (b) is a diagram showing an example of the total number of colonies after thawing of different weights of fish meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 22 (c) is a diagram showing an example of the total number of colonies after thawing of different weights of chicken meat at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • Figure 22 (d) is a diagram showing an example of the total number of colonies after thawing of different weights of beef at different thawing temperature endpoints in accordance with one embodiment of the present invention
  • FIG. 23 is a schematic structural view of a control device for defrosting a microwave oven according to an embodiment of the present invention.
  • 24 is a flow chart showing a control method of defrosting a microwave oven according to another embodiment of the present invention.
  • Figure 25 is a block diagram showing the structure of a control device for defrosting a microwave oven according to another embodiment of the present invention.
  • 26 is a flow chart of a method of controlling defrosting of a microwave oven according to an embodiment of the present invention.
  • FIG. 27 is a schematic diagram of thawing a food to be thawed by using a plurality of firepower levels in sequence during a total thawing time T according to an embodiment of the present invention
  • Figure 29a is a schematic view of the control panel after pressing the thawing key shown in Figure 28;
  • Figure 29b is a schematic view of the control panel after pressing the second defrosting button shown in Figure 28;
  • Figure 29c is a schematic view of the control panel after pressing the third defrosting key shown in Figure 28;
  • Figure 29d is a schematic view of the control panel after pressing the fourth defrosting key shown in Figure 28;
  • Figure 29e is a schematic view of the control panel after pressing the fifth defrosting key shown in Figure 28;
  • Figure 30 is a flow chart showing the operation of thawing the microwave oven shown in Figure 28;
  • FIG 31 is a schematic illustration of a microwave oven in accordance with another embodiment of the present invention.
  • FIG 32 is a schematic illustration of a microwave oven in accordance with still another embodiment of the present invention.
  • Figure 33 is a schematic view of the control panel of the microwave oven shown in Figures 31 and 32;
  • Figure 34 is a flow chart showing the operation of thawing the microwave oven shown in Figures 31 and 32;
  • 35 is a flow chart of a method of controlling defrosting of a microwave oven according to an embodiment of the present invention.
  • Figure 36 is a schematic illustration of a microwave oven in accordance with an embodiment of the present invention.
  • FIG 37 is a schematic illustration of the control panel of the microwave oven shown in Figure 36;
  • Figure 38 is a flow chart showing the operation of defrosting the microwave oven shown in Figure 36;
  • 39 is a schematic diagram of detecting a temperature of a plurality of temperature measurement points on a food to be thawed by using an infrared temperature sensor according to an embodiment of the present invention
  • 40 is another schematic diagram of detecting a temperature of a plurality of temperature measurement points on a food to be thawed by using an infrared temperature sensor according to an embodiment of the present invention
  • 41 is a flow chart of a control method of defrosting a microwave oven according to an embodiment of the present invention.
  • 110A, 110B receiving module; 120A: defrosting module; 120B: detecting module; 130A, 130B: control module;
  • 210A, 210B receiving module; 220A: defrosting module; 220B: detecting module; 230A, 230B: control module;
  • 100A, 100B microwave oven
  • furnace body 11: furnace chamber; 12: furnace foot; 13: partition; 14: mounting portion;
  • control panel 21: display; 22: defrosting button;
  • microwave source 32: microwave source energy feeding device; 33: waveguide; 34: heating antenna; 35: stirring piece;
  • the control method for thawing the microwave oven may include:
  • the control method of the microwave thawing can be applied to a microwave oven, and the microwave oven can provide a button with a thawing function for the user.
  • the defrosting command can be input through the button.
  • the food may be meat or fish.
  • the microwave oven can initiate a defrosting function for thawing.
  • controlling the thawing condition may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction, etc., according to an embodiment of the present invention.
  • the temperature of the food in the microwave oven can be maintained at -3-0 ° C by controlling the thawing conditions (such as thawing time, and/or thawing heating power, and/or heating direction, etc.).
  • the thawing conditions such as thawing time, and/or thawing heating power, and/or heating direction, etc.
  • the thawing heating process can be accelerated by increasing the thawing heating power when the food in the microwave oven is detected.
  • the thawing heating power can be reduced and the corresponding thawing heating power can be controlled, so that the temperature of the food in the microwave oven is maintained at -3-0 ° C, and the heating direction can be controlled to uniformly thaw the food. .
  • 12 points can be selected from the food in the microwave oven, and temperature measurement is performed on the 12 points respectively (for example, detecting 1/2 height of each point) Temperature), when more than 80% of the 12 points measured (ie, more than 10 points) in the range of -3-0 °C, the food can be said to be -3-0 ° C thawed food.
  • the column edge of the point 1 is about 1/5 of the long side
  • the column edge of the point 4 is about 1/5 of the long side
  • the line edge of the point 1 is about The length of 1/4 short side
  • the line edge of point 9 is about 1/4 of the length of the short side
  • the four points of the edge are about 1/5 pairs from the corner. The length of the corner.
  • the inventors have obtained a large amount of experimental data to defrost the food to be thawed in a microwave oven. Keeping the temperature of the food at -3-0 °C improves the nutrient retention rate of the food, and the microbial contamination is less, and does not affect the cutting of the thawed food.
  • the microwave is mainly used to thaw when the microwave is thawed, that is, the microwave directly acts on the food to be thawed, and the inside and the outside are simultaneously heated, and no radiation is required, and the space can be thawed with or without voids. Since microwave thawing is caused by the loss of the absorbing medium, the heating is faster when the loss is larger. Water is the strongest medium for absorbing microwaves, so it is very effective for heating substances with large water content. Since the water molecules in the food to be thawed can only absorb a large amount of microwaves after thawing, the water molecules trapped in the crystal ice cannot absorb the microwave.
  • the inventor conducted a drawing analysis based on the selected five experimental data after several experiments. It can be seen that the temperature change of the food in the thaw interval is relatively stable, and since the food also has crystal ice, the temperature of the food does not change much; When the crystal ice is gradually melted, the water medium that absorbs the microwave gradually becomes more and more, and the temperature of the food will continue to increase rapidly, which may cause food to mature. Therefore, -3-0 °C was chosen as the thawing interval for the food.
  • the experimental data will be combined below to make it clear to those skilled in the art that the benefits of thawing food at -3-0 °C are well understood.
  • Example 1 Temperature difference analysis of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100 g, 200 g, 300 g, 400 g, and 500 g of pork tenderloin were measured at different thawing temperatures (ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing, and -4 ° C thawing).
  • thawing temperatures ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing, and -4 ° C thawing.
  • pork tenderloin of 100g, 200g, 300g, 400g and 500g are at the end of different thawing temperatures (ie, thawing greater than 0 °C, thawing at 0 °C, -
  • the temperature difference after thawing was carried out at 1.5 ° C thawing, -3 ° C thawing and -4 ° C thawing.
  • Table 1 the experimental data obtained by the inventors from five consecutive experiments selected from several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 3 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 4 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 4(a) is a graph drawn according to the mean value of each group in Table 1
  • Fig. 4(b) is a graph drawn according to the mean value of each group in Table 2
  • Fig. 4(c) is based on The graphs drawn by the mean values of each group in Table 3
  • Fig. 4(d) are the graphs drawn according to the mean values of each group in Table 4, from Fig. 4(a), Fig. 4(b), Fig.
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g of pork tenderloin can be calculated at the end of different thawing temperatures by formula "grain amount/total weight *100%" (ie, thawing greater than 0 °C, thawing at 0 °C, - The gravy exudation rate after thawing was carried out at 1.5 ° C thawing, -3 ° C thawing and -4 ° C thawing. As shown in Table 5 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 7 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 8 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 5(a) is a graph drawn according to the mean value of each group in Table 5
  • Fig. 5(b) is a graph drawn according to the mean value of each group in Table 6
  • Example 3 Analysis of protein content of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100 g, 200 g, 300 g, 400 g, and 500 g of pork tenderloin can be measured at different end of the thawing temperature by Kjeldahl (ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing and -4 ° C thawing)
  • Kjeldahl ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing and -4 ° C thawing
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 11 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 12 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 6(a) is a graph drawn according to the average value of each group in Table 9
  • Fig. 6(b) is a graph drawn according to the mean value of each group in Table 10
  • Fig. 6(c) is based on The graphs drawn by the mean values of each group in Table 11
  • Fig. 6(d) are graphs drawn according to the mean values of each group in Table 12, from Fig. 6(a), Fig. 6(b), Fig. 6(c) and
  • the protein content of different foods after different thawing temperatures is also different, and the temperature of the food after thawing is kept in the range of -3-0 °C, and the temperature after thawing is 0.
  • the protein content above °C is slightly increased and the nutritional value is high.
  • Example 4 Analysis of moisture content of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100 g, 200 g, 300 g, 400 g, and 500 g of pork tenderloin can be separately measured at 105 ° C by the end of different thawing temperatures (ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing and -
  • the water content after thawing was carried out at 4 ° C.
  • Table 13 all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 15 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 16 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 7(a) is a graph drawn according to the mean value of each group in Table 13
  • Fig. 7(b) is a graph drawn according to the mean value of each group in Table 14
  • Fig. 7(c) is based on The graphs drawn by the mean values of each group in Table 15, and Figure 7(d) are graphs drawn according to the mean values of each group in Table 16, from Figure 7 (a), Figure 7 (b), Figure 7 (c) and
  • the moisture content of different foods after different thawing temperatures is different, and the temperature of the food after thawing is kept in the range of -3-0 °C, and the temperature after thawing is 0.
  • the moisture content above °C is slightly increased and the taste is good.
  • Example 5 Texture analysis of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100 g, 200 g, 300 g, 400 g, and 500 g of pork tenderloin can be measured by texture analyzer at different thawing temperatures (ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing and -4 °C thawing) Shear force after thawing.
  • thawing temperatures ie, greater than 0 ° C thawing, 0 ° C thawing, -1.5 ° C thawing, -3 ° C thawing and -4 °C thawing
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 19 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 20 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 8(a) is a graph drawn according to the average value of each group in Table 17
  • Fig. 8(b) is a graph drawn according to the average value of each group in Table 18
  • Fig. 8(c) is based on The graphs drawn by the mean values of each group in Table 19,
  • Fig. 8(d) are graphs drawn according to the mean values of each group in Table 20, from Fig. 8(a), Fig. 8(b), Fig. 8(c) and Fig. 8(d) shows that the shearing force of different foods after different thawing temperatures at different thawing temperatures is different, and the temperature of the food after thawing is kept in the range of -3-0 °C, compared with the temperature after thawing.
  • the shear force above 0 °C slightly increased, but was significantly smaller than the food temperature after thawing at -4 °C, so it is easier to cut.
  • Example 6 yellowness analysis of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100g, 200g, 300g, 400g and 500g of pork tenderloin can be measured by colorimeter at different thawing temperatures (ie, greater than 0 °C thawing, 0 °C thawing, -1.5 °C thawing, -3 °C thawing, and -4 °C). Thawing) The yellowness after thawing. As shown in Table 21 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 23 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 24 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 9(a) is a graph drawn according to the mean value of each group in Table 21
  • Fig. 9(b) is a graph drawn according to the mean value of each group in Table 22
  • Fig. 9(c) is based on The graphs drawn by the mean values of each group in Table 23
  • Fig. 9(d) are graphs drawn according to the mean values of each group in Table 24, from Fig. 9(a), Fig. 9(b), Fig. 9(c) and Figure 9(d) shows that the yellowness of different foods at different thawing temperatures is different after thawing, and the food after thawing is above 0 °C compared to the food after thawing at -3-0 °C. The yellowness of the product has increased significantly, indicating that some food has been discolored and cooked.
  • Example 7 analysis of the total number of colonies of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100g, 200g, 300g, 400g and 500g of pork tenderloin can be measured at different end of thawing temperature by dilution culture counting method (ie, more than 0 °C thawing, 0 °C thawing, -1.5 °C solution).
  • the total number of colonies after thawing was carried out by freezing, thawing at -3 ° C and thawing at -4 ° C.
  • Table 25 all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Descriptions of the processes and methods for 200g, 300g, 400g, and 500g of pork tenderloin are not described herein. As shown in Table 27 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Test 100g, 200g, 300g, 400g and 500g of beef respectively the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin, refer to the above 100g, Descriptions of the processes and methods for 200g, 300g, 400g, and 500g of pork tenderloin are not described herein. As shown in Table 28 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 10(a) is a chart drawn according to the mean value of each group in Table 25
  • Fig. 10(b) is a chart drawn according to the mean value of each group in Table 26
  • Fig. 10(c) is based on The chart drawn by the mean of each group in Table 27
  • Fig. 10(d) is a graph drawn according to the mean value of each group in Table 28. From Fig. 10(a), Fig. 10(b), Fig. 10(c) and Fig. 10(d), different foods have different weights.
  • the total number of colonies after thawing at different thawing temperatures is also different, and the temperature of the food after thawing is kept in the range of -3-0 °C, the total number of colonies above 0 °C after thawing is significantly smaller, because After thawing, the temperature is lower and the microorganisms are slower to reproduce, so the food after thawing is more hygienic.
  • Example 8 Analysis of thawing speed of defrosted food at -3-0 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (i.e., thawing greater than 0 °C, thawing at 0 °C, thawing at -1.5 °C, thawing at -3 °C, and thawing at -4 °C).
  • 100 g, 200 g, 300 g, 400 g, and 500 g of pork tenderloin can be separately measured at the end of different thawing temperatures by using the time used in the thawing process (ie, thawing greater than 0 ° C, thawing at 0 ° C, thawing at -1.5 ° C, - The thawing rate after thawing was carried out at 3 ° C thawing and -4 ° C thawing. As shown in Table 29 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 31 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 32 below, all the experimental data obtained by the inventors from five parallel experiments were selected after several experiments.
  • FIG. 11 is a chart drawn according to the average value of each group in Table 29 (or Table 30, or Table 31, or Table 32).
  • the temperature of the thawed food is maintained at -3-0 ° C.
  • the thawing speed is significantly smaller than the thawing temperature above 0 ° C. This is because the thawing end temperature is lower and the required energy is reduced, so the thawing time is shortened.
  • the inventor through a large number of experiments and theoretical analysis, innovatively found that by controlling the temperature of the food between -3-0 ° C, the food after thawing is more nutritious, more sanitary, easier to cut, temperature difference Low, no cooked discoloration, so it is better to determine the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, and control the thawing condition to maintain the temperature of the food in the microwave oven at -3-0 ° C, through a large number of experiments and theories.
  • Analysis innovatively found that by using the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing is more sanitary; (3) The temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • another embodiment of the present invention further provides a control device for thawing a microwave oven, which is controlled by the defrosting of the microwave oven provided by the present invention and the defrosting of the microwave oven of the previous embodiment.
  • the method of the present invention is also applicable to the above-described embodiment of the control method for the defrosting of the microwave oven.
  • the control device for the defrosting of the microwave oven provided by the present embodiment is not described in detail in this embodiment.
  • FIG. 12 is a block diagram showing the structure of a control device for defrosting a microwave oven according to an embodiment of the present invention.
  • the control device for thawing the microwave oven may include: a receiving module 110A, a defrosting module 120A, and a control module 130A.
  • the receiving module 110A can be configured to receive a thaw instruction.
  • Thaw module 120A can be used to initiate thawing.
  • Control module 130A can be used to control the thawing conditions to maintain the temperature of the food in the microwave oven at -3-0 °C.
  • the food may be meat or fish.
  • controlling the thawing conditions may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction.
  • the defrosting module is started to perform thawing by the receiving module, and the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least the following advantages: (1) the food after thawing is more nutritious; (2) the food after thawing is more Hygiene; (3) The food after thawing has a lower temperature difference and no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • the present invention also proposes a microwave oven comprising the above-described control apparatus for defrosting the microwave oven of the embodiment shown in Fig. 12.
  • the defrosting module is started to perform thawing by the receiving module in the control device, and the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the control module controls the thawing condition to keep the temperature of the food in the microwave oven at -3-0 ° C, and passes a large number of tests.
  • the thawing conditions can also be controlled so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing, and the food may also be referred to as -3-0 ° C defrosted food.
  • the present invention also proposes another control method for defrosting a microwave oven.
  • FIG. 13 is a flow chart showing a control method of defrosting a microwave oven according to another embodiment of the present invention.
  • the control method of the microwave thawing may include:
  • controlling the thawing condition may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction, etc., according to an embodiment of the present invention.
  • the food can be meat or fish.
  • control method of the defrosting of the microwave oven makes the food become a benefit of defrosting the food at -3-0 ° C.
  • the defrosting instruction may be received first, and then the solution may be started. Freeze and control the thawing conditions so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing.
  • the optimal endpoint temperature has at least the following advantages: (1) the food after thawing is more nutritious; (2) the food after thawing is more sanitary; (3) the temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and manipulate.
  • another embodiment of the present invention further provides a control device for thawing a microwave oven, which is controlled by the defrosting of the microwave oven provided by the present invention and the defrosting of the microwave oven of the previous embodiment.
  • the method of the present invention is also applicable to the above-described embodiment of the control method for the defrosting of the microwave oven.
  • the control device for the defrosting of the microwave oven provided by the present embodiment is not described in detail in this embodiment.
  • FIG. 14 is a block diagram showing the structure of a control device for defrosting a microwave oven according to another embodiment of the present invention.
  • the control device for thawing the microwave oven may include: a receiving module 210A, a defrosting module 220A, and a control module 230A.
  • the receiving module 210A can be configured to receive a thaw instruction.
  • Thaw module 220A can be used to initiate thawing.
  • Control module 230A can be used to control the defrosting conditions such that the temperature of the food in the microwave oven remains at -3-0 °C after thawing.
  • controlling the thawing condition may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction, etc., according to an embodiment of the present invention.
  • the food can be meat or fish.
  • the receiving module receives the defrosting command
  • the defrosting module starts to perform thawing
  • the control module controls the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing, through a large amount
  • the experimental and theoretical analysis innovatively found that by using the temperature in the range of -3-0 °C as the optimal endpoint temperature for food thawing, at least has the following advantages: (1) the food after thawing is more nutritious; (2) after thawing The food is more hygienic; (3) the food after thawing has a lower temperature difference and no cooking discoloration; (4) the food after thawing has moderate shearing force and is easier to cut and operate.
  • the present invention also proposes another microwave oven comprising the above-described control device for defrosting the microwave oven of the embodiment shown in Fig. 14.
  • the defrosting module is started to perform thawing by the receiving module in the control device, and the defrosting module controls the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing
  • the defrosting module controls the thawing condition so that the temperature of the food in the microwave oven is maintained at -3-0 ° C after thawing
  • Another embodiment of the present invention provides a control method for thawing a microwave oven, which detects the temperature of the food in the microwave oven during the thawing process, and controls the temperature of the food during the thawing process to be lower than -3-0 ° C, and The temperature of the food after thawing was maintained at -3-0 °C.
  • control method of the defrosting of the microwave oven makes the food become a benefit of defrosting the food at -3-0 ° C.
  • the temperature of the food in the microwave oven can be detected in real time, and the temperature of the food in the thawing process is controlled to be lower than -3-0 ° C, and the food after thawing The temperature is maintained at -3-0 ° C.
  • the present invention further proposes another control device for defrosting a microwave oven, which detects the temperature of the food in the microwave oven during the thawing process and controls the temperature of the food during the thawing process to be lower than -3-0. °C, and the temperature of the food after thawing is maintained at -3-0 °C.
  • the control device for defrosting a microwave oven can detect the temperature of the food in the microwave oven in real time during the thawing process, and control the temperature of the food in the thawing process to be lower than -3-0 ° C, and the food after thawing The temperature is maintained at -3-0 ° C.
  • the present invention further proposes another microwave oven comprising the control device for defrosting the microwave oven of the above embodiment.
  • the temperature of the food in the microwave oven can be detected in real time, and the temperature of the food during the thawing process is controlled to be lower than -3-0 ° C, and the temperature of the food remains after the thawing - 3-0 ° C, through a large number of experimental and theoretical analysis, innovatively found that by using the temperature range of -3-0 ° C as the optimal endpoint temperature for food thawing, at least has the following advantages: (1) food after thawing is more nutritious (2) The food after thawing is more sanitary; (3) The temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • the invention also proposes a control method for defrosting a microwave oven.
  • the control method for thawing the microwave oven may include:
  • the control method of the microwave thawing can be applied to a microwave oven, and the microwave oven can provide a button with a thawing function for the user.
  • the defrosting command can be input through the button.
  • the food may be meat or fish.
  • the microwave oven can initiate a defrosting function to perform defrosting and detect the temperature of the food in the microwave oven in real time.
  • controlling the thawing condition may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction, etc., according to an embodiment of the present invention.
  • the temperature of the food in the microwave oven can be maintained at -1 ° C by controlling the thawing conditions (such as thawing time, and/or thawing heating power, and/or heating direction, etc.). For example, during the thawing process, when it is detected that the temperature of the food in the microwave oven is less than -20 ° C (such as when the food has just been placed in the microwave oven), the thawing heating process can be accelerated by increasing the thawing heating power when the food in the microwave oven is detected.
  • the thawing conditions such as thawing time, and/or thawing heating power, and/or heating direction, etc.
  • the thawing heating power can be reduced and the corresponding thawing heating power can be controlled so that the temperature of the food in the microwave oven is maintained at -1 ° C, and the heating direction can be controlled to evenly thaw the food.
  • 12 points can be selected from the food in the microwave oven, and temperature measurement is performed on the 12 points respectively (for example, detecting 1/2 height of each point) Temperature), when more than 80% of the 12 points measured (ie, more than 10 points) are in the range of -1 ⁇ 0.2 °C, the food can be said to be -1 ° C thawed food.
  • the column edge of the point 1 is about 1/5 of the long side
  • the column edge of the point 4 is about 1/5 of the long side
  • the line edge of the point 1 is about The length of 1/4 short side
  • the line edge of point 9 is about 1/4 of the length of the short side
  • the four points of the edge are about 1/5 pairs from the corner. The length of the corner.
  • the inventors have obtained a large amount of experimental data to obtain that the food to be thawed is thawed in a microwave oven to keep the temperature of the food at -1 ° C, which improves the nutrient retention rate of the food and is more hygienic without affecting the thawed food. Cutting.
  • the microwave is mainly used to thaw when the microwave is thawed, that is, the microwave directly acts on the food to be thawed, and the inside and the outside are simultaneously heated, and no radiation is required, and the space can be thawed with or without voids. Since microwave thawing is caused by the loss of the absorbing medium, the heating is faster when the loss is larger. Water is the strongest medium for absorbing microwaves, so it is very effective for heating substances with large water content. Since the water molecules in the food to be thawed can only absorb a large amount of microwaves after thawing, the water molecules trapped in the crystal ice cannot absorb the microwave.
  • the inventor conducted a lot of experiments based on the selected five experimental data for drawing analysis, and it can be seen that the temperature change of the food in the thawing interval is relatively stable, especially when the food has crystal ice near -1 °C. Therefore, the temperature of the food does not change much; when it is above 0 °C, the crystal medium gradually melts due to the gradual melting of the crystal ice, which causes the temperature of the food to continue to increase rapidly, which may lead to food maturity and other problems. . Therefore, -1 ° C was chosen as the thawing endpoint temperature of the food. Experimental data will be combined below to make it clear to those skilled in the art that the benefits of thawing food at -1 °C are well understood.
  • Example 9 Temperature difference analysis of thawing food at -1 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • the maximum temperatures of the meat pieces of 100g, 200g, 300g, 400g and 500g of pork tenderloin at different thawing temperatures were measured and measured separately.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 35 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 36 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 16(a) is a graph drawn according to the mean value of each group in Table 33
  • Fig. 16(b) is a graph drawn according to the mean value of each group in Table 34
  • Fig. 16(c) is based on The graphs drawn for each group of means in Table 35
  • Figure 16(d) are graphs drawn according to the mean of each group in Table 36, from Figure 16 (a), Figure 16 (b), Figure 16 (c) and Figure 16 (d) shows that the temperature difference between different foods at different thawing temperatures is different after thawing, and the food temperature after thawing is about -1 °C, compared with the temperature difference of food above 0 °C after thawing. Reduce, thawing more uniform.
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven. The temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 39 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 40 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 17(a) is a graph drawn according to the mean value of each group in Table 37
  • Fig. 17(b) is a graph drawn according to the mean value of each group in Table 38
  • Fig. 17(c) is based on The graphs drawn for each group of means in Table 39
  • Figure 17(d) are graphs drawn according to the mean of each group in Table 40, from Figure 17 (a), Figure 17 (b), Figure 17 (c) and Figure 17 (d) shows that the gravy exudation rate after thawing of different foods at different thawing temperatures is different, and the food after thawing is about -1 °C, and the temperature after thawing is above 0 °C. The rate of exudation of food gravy is significantly reduced, with almost no loss of gravy.
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven. The temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • the protein content of 100g, 200g, 300g, 400g and 500g pork tenderloin can be measured by Kjeldahl nitrogen at different thawing temperature endpoints (-1°C thawing, 0°C thawing and -2°C thawing).
  • Table 41 As shown in Table 41 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 43 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 44 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 18(a) is a graph drawn according to the mean value of each group in Table 41
  • Fig. 18(b) is a graph drawn according to the mean value of each group in Table 42
  • Fig. 18(c) is based on The graphs drawn for each group of means in Table 43 are shown in Fig. 18(d) as a graph based on the mean value of each group in Table 44, from Fig. 18(a), Fig. 18(b), Fig. 18(c) and Fig.
  • Example 12 analysis of moisture content of thawing food at -1 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven. The temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 47 below, all the experimental data obtained by the inventors from five parallel experiments were selected after repeated experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 48 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 19(a) is a graph drawn according to the mean value of each group in Table 45
  • Fig. 19(b) is a graph drawn according to the mean value of each group in Table 46
  • Fig. 19(c) is based on The graphs plotted for each group of means in Table 47
  • Figure 19(d) are graphs drawn according to the mean of each group in Table 48, from Figures 19(a), 19(b), 19(c) and Figure 19(d) shows that the moisture content of different foods after different thawing temperatures at different thawing temperatures is different, and the moisture content after thawing is about -1 °C, compared with the moisture content above 0 °C after thawing. Slightly raised and tasted good.
  • Example 13 Texture analysis of thawing food at -1 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • shear stresses of 100 g, 200 g, 300 g, 400 g, and 500 g of pork tenderloin at different thawing temperatures were measured by a texture analyzer.
  • Table 49 all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 51 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 52 below, all the experimental data obtained by the inventors from five parallel experiments were selected after several experiments.
  • FIG. 20(a) is a chart drawn according to the mean value of each group in Table 49
  • Fig. 20(b) is a table according to the table.
  • FIG. 20(c) is a graph drawn according to the average value of each group in Table 51
  • FIG. 20(b) is a chart drawn according to the mean value of each group in Table 49
  • 20(d) is a graph drawn according to the average value of each group in Table 52, 20(a), 20(b), 20(c), and 20(d), the shearing force of different foods at different thawing temperatures at the end of different thawing temperatures is also different, and the food after thawing At about -1 ° C, the shearing force is slightly higher than the temperature at 0 ° C or higher after thawing, but is significantly smaller than the food having a temperature of about -2 ° C after thawing, so that it is easier to cut.
  • Example 14 yellowness analysis of thawing food at -1 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven. The temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • the yellowness of the pork tenderloin of 100 g, 200 g, 300 g, 400 g, and 500 g was measured by a color difference meter at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing, and -2 ° C thawing).
  • thawing temperatures -1 ° C thawing, 0 ° C thawing, and -2 ° C thawing.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin.
  • Refer to the above 100g, 200g. Descriptions of the processes and methods for 300g, 400g, and 500g pork tenderloin are not described herein.
  • Table 55 below all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 56 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 21(a) is a graph drawn according to the mean value of each group in Table 53
  • Fig. 21(b) is a graph drawn according to the mean value of each group in Table 54
  • Fig. 21(c) is based on The graphs drawn by the mean values of each group in Table 55
  • Fig. 21(d) are graphs drawn according to the mean values of each group in Table 56, from Fig. 21 (a), Fig. 21 (b), Fig. 21 (c) and Figure 21 (d) shows that the yellowness of different foods after different thawing temperatures at different thawing temperatures is different, and the food after thawing is above 0 °C compared to the food after thawing at -1 °C. The degree has increased significantly, indicating that some food has been discolored and cooked.
  • Example 15 analysis of the total number of colonies of thawing food at -1 °C
  • the foods were selected from pork tenderloin, fish, chicken and beef, and 100 g (g), 200 g, 300 g, 400 g and 500 g of each food were selected.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin are tested separately.
  • 100g, 200g, 300g, 400g and 500g pork tenderloin can be thawed in a microwave oven and made in a microwave oven.
  • the temperature of the food was maintained at the end of different thawing temperatures (-1 ° C thawing, 0 ° C thawing and -2 ° C thawing).
  • the total number of colonies of 100g, 200g, 300g, 400g and 500g pork tenderloin at different thawing temperatures can be measured by dilution culture counting method. .
  • Table 57 As shown in Table 57 below, for the inventor The experimental results were selected from all the experimental data obtained from 5 parallel experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here.
  • Table 59 all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • the test process and method are the same as the process and method of 100g, 200g, 300g, 400g and 500g pork tenderloin. Refer to the above 100g, 200g. Description of the process and method of 300g, 400g and 500g pork tenderloin will not be repeated here. As shown in Table 60 below, all the experimental data obtained by the inventors from five parallel experiments were selected through several experiments.
  • Fig. 22(a) is a graph drawn according to the mean value of each group in Table 57
  • Fig. 22(b) is a graph drawn according to the mean value of each group in Table 58
  • Fig. 22(c) is based on The graphs drawn for each group of means in Table 59
  • Figure 22(d) are graphs drawn according to the mean of each group in Table 60, from Figure 22 (a), Figure 22 (b), Figure 22 (c) and Figure 22 (d) shows that the total number of colonies after thawing of different foods at different thawing temperatures is different, and the total number of colonies after thawing is about -1 °C, relative to the temperature after thawing is above 0 °C. It is significantly smaller because the temperature is lower after thawing and the microorganisms are slower to reproduce, so the food after thawing is more hygienic.
  • the inventor through a large number of experiments and theoretical analysis, innovatively found that by controlling the temperature of the food at about -1 ° C, the food after thawing is more nutritious, more sanitary, easier to cut, lower temperature difference, no cooking The phenomenon of cooked discoloration, so it is better to determine the optimal endpoint temperature of -1 °C as food thawing.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, detect the temperature of the food in the microwave oven, and control the thawing condition to maintain the temperature of the food in the microwave oven at -1 ° C,
  • -1 ° C the optimal endpoint temperature for food thawing
  • another embodiment of the present invention further provides a control device for thawing a microwave oven, which is controlled by the defrosting of the microwave oven provided by the present invention and the defrosting of the microwave oven of the previous embodiment.
  • the method of the present invention is also applicable to the above-described embodiment of the control method for the defrosting of the microwave oven.
  • the control device for the defrosting of the microwave oven provided by the present embodiment is not described in detail in this embodiment.
  • FIG. 23 is a block diagram showing the structure of a control device for defrosting a microwave oven according to an embodiment of the present invention.
  • the control device for thawing the microwave oven may include: a receiving module 110B, a detecting module 120B, and a control module 130B.
  • the receiving module 110B can be configured to receive a thaw instruction.
  • the detection module 120B can be used to initiate thawing and detect the temperature of the food in the microwave oven.
  • Control module 130B can be used to control the thawing conditions to maintain the temperature of the food in the microwave oven at -1 °C.
  • the food may be meat or fish.
  • controlling the thawing conditions may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction.
  • the control device for defrosting the microwave oven after the receiving module receives the defrosting command, starts to perform thawing, and detects the temperature of the food in the microwave oven, and the control module controls the thawing condition to make the microwave oven
  • the temperature of the food in the food is kept at -1 ° C.
  • the present invention also proposes a microwave oven comprising the above-described control device for defrosting the microwave oven of the embodiment shown in Fig. 23.
  • the detecting module in the control device starts thawing and detects the temperature of the food in the microwave oven, and the control module controls the thawing condition to maintain the temperature of the food in the microwave oven.
  • the thawing conditions may also be controlled such that the temperature of the food in the microwave oven is maintained at -1 °C after thawing, at which time the food may also be referred to as -1 °C defrosted food.
  • the present invention also proposes another control method for defrosting a microwave oven.
  • FIG. 24 is a flow chart showing a control method of defrosting a microwave oven according to another embodiment of the present invention.
  • the control method of the microwave thawing may include:
  • the food may be meat or fish.
  • controlling the thawing condition may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction, etc., according to an embodiment of the present invention.
  • control method of the defrosting of the microwave oven makes the food become a benefit of thawing the food at -1 ° C.
  • the method for controlling thawing of a microwave oven may first receive a thawing command, and then start thawing, detect the temperature of the food in the microwave oven, and control the thawing condition so that the temperature of the food in the microwave oven remains after thawing - At 1 °C, through a large number of experiments and theoretical analysis, it is innovatively found that by using -1 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing More sanitary; (3) The temperature difference after thawing is lower, and there is no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • another embodiment of the present invention further provides a control device for thawing a microwave oven, which is controlled by the defrosting of the microwave oven provided by the present invention and the defrosting of the microwave oven of the previous embodiment.
  • the method of the present invention is also applicable to the above-described embodiment of the control method for the defrosting of the microwave oven.
  • the control device for the defrosting of the microwave oven provided by the present embodiment is not described in detail in this embodiment.
  • FIG. 25 is a block diagram showing the structure of a control device for defrosting a microwave oven according to another embodiment of the present invention.
  • the control device for thawing the microwave oven may include: a receiving module 210B, a detecting module 220B, and a control module 230B.
  • the receiving module 210B can be configured to receive a thaw instruction.
  • the detection module 220B can be used to initiate thawing and detect the temperature of the food in the microwave oven.
  • the food may be meat or fish.
  • Control module 230B can be used to control the thawing conditions such that the temperature of the food in the microwave oven remains at -1 °C after thawing.
  • controlling the thawing condition may specifically include controlling one or more of a thawing time, a thawing heating power, or a heating direction, etc., according to an embodiment of the present invention.
  • a control device for defrosting a microwave oven after the receiving module receives the defrosting command, starts to perform thawing, and detects the temperature of the food in the microwave oven, and the control module controls the thawing condition so that the temperature of the food in the microwave oven is After thawing, it was kept at -1 °C.
  • the present invention also proposes another microwave oven comprising the above-described control device for defrosting the microwave oven of the embodiment shown in Fig. 25.
  • the detecting module in the control device starts thawing and detects the temperature of the food in the microwave oven, and the control module controls the thawing condition so that the temperature of the food in the microwave oven is After thawing, it was kept at -1 °C.
  • the embodiment of the present invention further provides another method for controlling thawing of a microwave oven, wherein during the thawing process, the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained at -1 after thawing. °C.
  • control method of the defrosting of the microwave oven makes the food become a benefit of thawing the food at -1 ° C.
  • the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained at -1 ° C after thawing, through a large number of experiments and theoretical analysis,
  • -1 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing is more hygienic; (3) temperature difference of food after thawing Lower, no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • the present invention further proposes another control device for thawing a microwave oven, in which the temperature of the food in the microwave oven is lower than -1 ° C during the thawing process, and the temperature of the food remains at -1 after thawing °C.
  • the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained at -1 ° C after thawing, through a large number of experiments and theoretical analysis,
  • -1 °C as the optimal endpoint temperature for food thawing, it has at least the following advantages: (1) food after thawing is more nutritious; (2) food after thawing is more hygienic; (3) temperature difference of food after thawing Lower, no cooking discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • the present invention further proposes another microwave oven comprising the control device for defrosting the microwave oven of the above embodiment.
  • the temperature of the food in the microwave oven is lower than -1 ° C, and the temperature of the food is maintained at -1 ° C after thawing, and through a large number of experiments and theoretical analysis, innovatively found through Taking -1 °C as the optimal endpoint temperature for food thawing has at least the following advantages: (1) the food after thawing is more nutritious; (2) the food after thawing is more sanitary; (3) the temperature difference after thawing is lower, no Cooked discoloration; (4) The food after thawing has moderate shearing force and is easier to cut and operate.
  • the invention also proposes a control method for defrosting a microwave oven.
  • the microwave oven 100A has a defrosting key 22 and a microwave generating device, and by pressing the defrosting key 22, the food 200 placed in the microwave oven 100A, for example, meat (including pork, chicken, fish, etc.) can be thawed.
  • meat including pork, chicken, fish, etc.
  • the structure and operation principle of the microwave generating device including the microwave source 31, the microwave source feeding device 32, the waveguide 33, the heating antenna 34, the stirring blade 35, etc.
  • the like are well known to those skilled in the art. , no longer detailed here.
  • a method for controlling thawing of a microwave oven 100A includes the following steps:
  • the unit of the weight x of the food 200 is gram.
  • the specific value of K can be specifically selected according to the type of the food 200, etc., which is not specifically limited in the present invention.
  • the relationship between the total thawing time T and the weight x of the food 200 is obtained by the inventors by extensive thawing tests on different foods 200 such as meat and different weights.
  • the total thawing time T required for thawing the meat can be calculated based on the weight of the meat, when the food 200 such as meat is thawed by the microwave oven 100A, the meat is simply placed in the microwave oven 100A.
  • the meat can be thawed in the total thawing time T, which is convenient to operate, and the thawing nutrient loss and partial ripening of the conventional microwave oven 100A are solved by accurately calculating the total thawing time T of different weights of food 200 such as meat.
  • the phenomenon is described in the total thawing time T.
  • the temperature of the food is -3 ° C to 0 ° C. That is, after the thawing process is finished, the temperature of the food such as meat is between -3 ° C and 0 ° C, preferably -1 ° C.
  • -1 ° C as the endpoint temperature for food thawing, at least the following advantages: (1) the food after thawing is more nutritious; (2) the food after thawing is more sanitary; (3) the temperature difference of the food after thawing is lower , no cooked discoloration; (4) the food after thawing has moderate shearing force and is easier to cut and operate.
  • the total thawing time T required for obtaining the defrosted food 200 is calculated from the weight x of the food 200, and the thawing effect is good.
  • step S2602 includes sequentially defrosting the food 200 by using a plurality of firepower levels in a plurality of consecutive time segments, that is, the total thawing time T may be divided into a plurality of time segments, and the plurality of time segments are chronologically Continuously, the food 200 is thawed at a corresponding firepower level during each time period.
  • the sum of the plurality of time periods is the total thawing time T, in other words, each time period is less than the total thawing time T.
  • the sizes of the plurality of time periods may be the same or different; similarly, the sizes of the plurality of firepower levels may be the same or different.
  • the total thawing time T is divided into four time periods, and different time periods are used to thaw food 200 such as meat, respectively, using different firepower levels.
  • the specific value of the full firepower may be adaptively changed according to the type of the food 200, etc., which is not specifically limited in the present invention.
  • step S2602 specifically includes:
  • S26021 in the first time period t1, is thawed by the first firepower level, and the first firepower level is 30% to 60% of the full firepower;
  • the second firepower level is thawed, and the second firepower level is 20% to 40% of the full firepower;
  • S26024 in the fourth time period t4, is thawed by a fourth firepower level, and the fourth firepower level is 0% to 30% of the full firepower.
  • the full firepower is 100%.
  • the total thawing time T is divided into four consecutive time periods: a first time period t1, a second time period t2, a third time period t3, and a fourth time period t4, respectively, in each time period.
  • the food 200 such as meat, is thawed using a first firepower rating, a second firepower rating, a third firepower rating, and a fourth firepower rating.
  • the first time period t1, the second time period t2, the third time period t3, and the fourth time period t4 respectively satisfy:
  • the food 200 is thawed in each time period using the corresponding firepower level, the thawing is uniform, the nutrition is not lost, and the thawing speed is fast.
  • the present invention is not limited thereto, and the total thawing time T can also be divided into two, three, five, six or even more time periods, and the corresponding firepower level is used for each food 200 in each time period. Thaw it for better thawing.
  • control method for thawing the microwave oven 100A between step S26022 and step S26023 further includes:
  • the thawing process is controlled to pause and prompts to turn the food over, and begins to detect whether the food is turned over;
  • step S260222A after detecting that the food is turned over, the defrosting process is controlled to proceed to step S26023.
  • the thawing process is performed until the second time period t2 and before the third time period t3, the thawing process is suspended, at which time the microwave generating device stops working, the food in the microwave oven 100A is not thawed, and the microwave oven 100A issues a microwave oven to the user.
  • the tip of the food in the 100A is turned over, and after the user flips the food in the microwave oven 100A, the microwave generating device is controlled to restart to continue to thaw the food in the microwave oven 100A.
  • the detecting device may be disposed in the microwave oven 100A to detect whether the food is turned over. For example, when the microwave generating device emits microwaves upward, the detecting device can detect The temperature of the lower surface of the food, before the turning, the temperature of the lower surface of the food should be higher than the temperature of the upper surface of the food.
  • the upper and lower surfaces of the food are interchanged, and the food detected by the detecting device at this time
  • the temperature of the lower surface i.e., the upper surface before the turning
  • the temperature of the upper surface of the food i.e., the lower surface before the turning
  • the detection device is a temperature sensor.
  • control method for thawing the microwave oven 100A between step S26022 and step S26023 further includes:
  • the defrosting process is controlled to pause and prompts to turn the food over, and starts to detect whether the microwave generating device is restarted;
  • the microwave generating device stops working, the food in the microwave oven 100A is not thawed, and the microwave oven 100A issues a prompt to the user to turn the food in the microwave oven 100A, and after the user turns the food in the microwave oven 100A, the microwave generating device is controlled. Restart to continue thawing the food in the microwave oven 100A.
  • the user can press the defrosting key 22 or the start button on the microwave oven 100A to control the microwave generating device to restart, thereby continuing the food in the microwave oven 100A. thaw.
  • the weight x of the food 200 can be judged based on the touch state of the defrosting key 22.
  • the microwave oven 100A is provided with one defrosting key 22, and the defrosting key 22 is configured to increase the weight displayed on the microwave oven 100A by 50 to 100 grams each time it is pressed. That is, the user can first estimate the weight x of the food 200, and then press the defrosting key 22 multiple times according to the estimated value of the weight x. Each time the defrosting key 22 is pressed, the weight displayed on the microwave oven 100A is successively increased until the user's pre-up is reached. Valuation. It can be understood that the specific value of the weight displayed on the microwave oven 100A can be specifically designed according to actual requirements, and the present invention does not specifically limit this.
  • the control panel 2 of the microwave oven 100A has a display screen 21, and a defrosting key 22 is provided below the display screen 21, and the defrosting key 22 is one.
  • the microwave oven 100A is mounted on the microwave oven 100A.
  • the displayed weight is increased by 100 grams.
  • the defrosting key 22 can be pressed five times, wherein the weight displayed on the microwave oven 100A is sequentially increased by 100 grams each time the defrosting key 22 is pressed.
  • the operation of thawing the food 200 such as meat is as shown in Fig. 30, estimating the weight x of the food 200 such as meat, and putting the food 200 such as meat into the microwave oven 100A, and then pressing one or more times according to the weight x
  • the key 22 is used to select a suitable thawing weight, and the microwave oven 100A can calculate the total thawing time T according to the defrosting weight described above, and then press the start button on the microwave oven 100A to start the defrosting, at which time the microwave generating device is activated, thereby the food 200 such as meat.
  • Thawing when thawing to the second time period t2, before the third time period t3, the microwave oven 100A pauses and prompts to turn over, and the user restarts the microwave oven 100A after the face is turned over until the thawing ends.
  • the defrosting key 22 may also include a plurality of defrosting keys 22 (not shown) corresponding to a plurality of weight gram.
  • the plurality of defrosting keys 22 are provided on the control panel 2 of the microwave oven 100A, and the weights corresponding to the plurality of defrosting keys 22 are different.
  • the meat may be first estimated. The weight is then found in the plurality of defrosting keys 22 by the defrosting key 22 closest to the estimated value of the weight of the meat, and the defrosting key 22 is pressed.
  • the weight x of the frozen food 200 can also be judged based on the weight sensor 4 provided in the microwave oven 100A.
  • the weight sensor 4 is disposed on the foot 12 of the bottom of the microwave oven 100A.
  • the weight sensor 4 detects that the weight of the food 200 is not placed in the microwave oven 100A.
  • the weight sensor 4 detects the weight of the microwave oven 100A having the food 200, and the difference between the two weights is the weight of the food 200.
  • the number of the weight sensors 4 can be specifically designed according to actual requirements to accurately obtain the weight of the food 200 such as meat.
  • the microwave oven 100A has a furnace chamber 11 therein, and the furnace chamber 11 is partitioned by a partition 13 into a cooking chamber 111 and a heating chamber 112 located below the cooking chamber 111, and the food 200 is adapted to be placed in the cooking chamber 111.
  • the weight sensor 4 is provided at the bottom of the partition 13, at which time the weight sensor 4 can directly detect the weight of the food 200 on the partition 13.
  • the operation process of defrosting the food 200 such as meat is as shown in Figs. 33 and 34.
  • the food 200 such as meat is placed in the microwave oven 100A, and the weight sensor 4 in the microwave oven 100A can automatically detect the weight of the food 200 such as meat, microwave oven 100A can calculate the total thawing time T according to the weight obtained by the above detection, and then press the defrosting key 22, and then press the start key, the defrosting starts, at which time the microwave generating device is activated, thereby thawing the food 200 such as meat, when thawed to After the second time period t2 and before the third time period t3, the microwave oven 100A pauses and prompts to turn over, and the user restarts the microwave oven 100A after the face is turned over until the thawing ends.
  • the weight sensor 4 can also be provided at the bottom of the foot 12 and the partition 13 at the same time to further accurately obtain the weight of the food 200 such as meat.
  • the weight sensor 4 in the microwave oven 100A, the automatic detection of the microwave oven 100A is realized, making the microwave oven 100A more intelligent.
  • a microwave oven 100A As shown in FIGS. 28, 31, and 32, a microwave oven 100A according to an embodiment of the second aspect of the present invention includes a furnace body 1, a control panel 2, and a microwave generating device. Among them, the microwave oven 100A uses the food thawing control method of the microwave oven 100A according to the above-described first aspect of the present invention to thaw the food 200.
  • the furnace body 1 defines a furnace chamber 11 adapted to place a food 200 such as meat
  • the control panel 2 is disposed on the furnace body 1, such as the front surface of the furnace body 1, the control panel 2 has a defrosting key 22 and The start button
  • the microwave generating device is disposed in the furnace body 1, and the microwave generating device is configured to emit microwaves into the furnace chamber 11 to thaw the food 200 such as meat.
  • the defrosted food such as meat nutrition is not lost.
  • the furnace body 1 is provided with a weight sensor 4 adapted to detect the weight of the food.
  • the bottom of the furnace body 1 has a furnace foot 12, and the weight sensor 4 is provided on the furnace foot 12.
  • the weight sensor 4 detects that the food 200 has the food 200.
  • the weight of the microwave oven 100A takes the difference between the above two weights to obtain the weight of the food 200.
  • the furnace body 1 is provided with a weight sensor 4 adapted to detect the weight of the food
  • the furnace chamber 11 is partitioned by the partition 13 into a cooking chamber 111 and a heating chamber 112 located below the cooking chamber 111, and the weight sensor 4 is provided.
  • the weight sensor 4 can directly detect the weight of the food 200 on the partition 13.
  • the operation process of defrosting the food 200 such as meat is as shown in Fig. 34.
  • the food 200 such as meat is placed in the microwave oven 100A, and the weight sensor 4 in the microwave oven 100A can automatically detect the weight of the food 200 such as meat, and the microwave oven 100A can be based on Calculate the total thawing time T by the weight obtained above, then press the defrosting key 22, then press
  • the defrosting starts, at which time the microwave generating device is activated to thaw the food 200, for example, meat.
  • the microwave oven 100A pauses and prompts to turn over, and the user turns over.
  • the microwave oven 100A is thawed until the end of the thawing.
  • the weight x of the food 200 can be judged based on the touch state of the defrosting key 22.
  • the microwave oven 100A is provided with one defrosting key 22, and the defrosting key 22 is configured to increase the weight displayed on the microwave oven 100A by 50 to 100 grams each time it is pressed. That is, the user can first estimate the weight x of the food 200, and then press the defrosting key 22 multiple times according to the estimated value of the weight x. Each time the defrosting key 22 is pressed, the weight displayed on the microwave oven 100A is successively increased until the user's pre-up is reached. Valuation. It can be understood that the specific value of the weight displayed on the microwave oven 100A can be specifically designed according to actual requirements, and the present invention does not specifically limit this.
  • the control panel 2 of the microwave oven 100A has a display screen 21, and a defrosting key 22 is provided below the display screen 21, and the defrosting key 22 is one.
  • the microwave oven 100A is mounted on the microwave oven 100A.
  • the displayed weight is increased by 100 grams.
  • the defrosting key 22 can be pressed five times, wherein the weight displayed on the microwave oven 100A is sequentially increased by 100 grams each time the defrosting key 22 is pressed.
  • the operation of thawing the food 200 such as meat is as shown in Fig. 30, estimating the weight x of the food 200 such as meat, and putting the food 200 such as meat into the microwave oven 100A, and then pressing one or more times according to the weight x
  • the key 22 is used to select a suitable thawing weight, and the microwave oven 100A can calculate the total thawing time T according to the defrosting weight described above, and then press the start button on the microwave oven 100A to start the defrosting, at which time the microwave generating device is activated, thereby the food 200 such as meat.
  • Thawing when thawing to the second time period t2, before the third time period t3, the microwave oven 100A pauses and prompts to turn over, and the user restarts the microwave oven 100A after the face is turned over until the thawing ends.
  • the defrosting key 22 may also include a plurality of defrosting keys 22 (not shown) corresponding to a plurality of weight gram.
  • the plurality of defrosting keys 22 are provided on the control panel 2 of the microwave oven 100A, and the weights corresponding to the plurality of defrosting keys 22 are different.
  • the meat may be first estimated. The weight is then found in the plurality of defrosting keys 22 by the defrosting key 22 closest to the estimated value of the weight of the meat, and the defrosting key 22 is pressed.
  • the present invention also proposes another control method for defrosting a microwave oven.
  • the microwave oven 100B has a defrosting key 22 and a microwave generating device, and by pressing the defrosting key 22, the food 200 placed in the microwave oven 100B such as meat (including pork, chicken, fish, etc.) can be thawed.
  • meat including pork, chicken, fish, etc.
  • the structure and operation principle of the microwave generating device including the microwave source 31, the microwave source feeding device 32, the waveguide 33, the heating antenna 34, the stirring blade 35, etc.
  • the like are well known to those skilled in the art. , no longer detailed here.
  • a method for controlling thawing of a microwave oven 100B includes the following steps:
  • the number of temperature measuring points 131 and the distribution on the food 200 can be specifically designed according to actual requirements. For example, as shown in FIG. 39, when the food 200 is placed on the partition 13 in the microwave oven 100B. When the plurality of temperature measuring points 131 are arranged in a matrix on the partition plate 13, the temperature measuring points 131 on the food 200 are also distributed in a plurality of rows and columns; or, as shown in FIG. 40, a plurality of temperature measuring points. 131 may also be distributed in a circle with a point on the partition 13 as a circle, and each temperature measurement point 131 includes a plurality of temperature measurement points 131 distributed along the circumference, and at least part of the temperature measurement on the partition 13 Point 131 falls on food 200 for better detection.
  • step S3502 during the process of defrosting the food 200, such as meat, in the microwave oven 100B, the defrosting power and/or the thawing time may be controlled according to the temperature of the plurality of temperature measuring points 131 on the food 200, so that a better The thawing effect solves the phenomenon of thawing nutrient loss and partial ripening of the conventional microwave oven 100B.
  • the temperature of the food such as meat is -3 ° C to 0 ° C, preferably -1 ° C.
  • the temperature of the food is -3 ° C to 0 ° C, preferably -1 ° C.
  • the thawing effect is good by defrosting the food 200 according to the temperature of the food 200 such as the plurality of temperature measuring points 131 on the meat.
  • the temperature of the plurality of temperature measuring points 131 on the food 200 can be detected according to the infrared temperature measuring sensor 5 provided in the microwave oven 100B.
  • the infrared temperature sensor 5 can scan the initial temperature of the food 200, such as meat, and count the number of temperature points 131 of the food 200, such as meat, such as in the example of FIG. 39, for example, the food 200, such as the meat temperature measurement point 131.
  • the number of each is 14, and in the example of Fig. 40, the number of temperature points 131 of the food 200 such as meat is 15 each.
  • the infrared temperature sensor 5 is disposed in the microwave oven 100B.
  • the microwave oven 100B defines a furnace chamber 11 defined by the partition 13 into a cooking chamber 111 and a heating chamber located below the cooking chamber 111.
  • the infrared temperature sensor 5 is disposed outside the furnace chamber 11 and is located at the upper portion of the cooking chamber 111.
  • the cooking chamber 111 is formed with a through hole 141.
  • the infrared temperature sensor 5 has an infrared temperature sensing probe and an infrared temperature sensing probe. Corresponding to the through hole 141.
  • the infrared temperature sensor 5 is obliquely disposed on a sidewall of the furnace chamber 11 and disposed near the top wall of the furnace chamber 11.
  • the microwave oven 100B is provided with a mounting portion 14 adapted to mount the infrared temperature sensor 5.
  • the mounting portion 14 is formed to protrude outward from a portion of the side wall of the furnace chamber 11, and a through hole 141 is formed in the mounting portion 14.
  • the infrared temperature sensor 5 can also be disposed on the top wall outside the furnace chamber 11 (not shown). It can be understood that the specific setting position of the infrared temperature sensor 5,
  • the shape, the molding method, and the like of the mounting portion 14 can be specifically designed according to actual requirements, and the present invention is not particularly limited thereto.
  • the infrared temperature sensor 5 has M infrared temperature sensing probes.
  • the infrared temperature sensor 5 has a total of 64 infrared temperature sensing probes 1-64; in the example of FIG.
  • the mid-infrared temperature sensor 5 has a total of 8 infrared temperature sensing probes 1-8.
  • the infrared temperature sensor 5 can be driven to rotate by a motor 6, such as a stepper motor.
  • the temperature of the food 200 for example, the plurality of temperature measuring points 131 on the meat is detected by N infrared temperature sensing probes.
  • the food 200 for example, the meat surface is distributed with 14 temperature measuring points 131, and the numbers are respectively: 20, 21, 22, 27, 28, 29, 30, 35, 36, 37, 38, 43, 44, 45; as shown in FIG. 40, 15 temperature measuring points of food 200 such as meat surface distribution are obtained by scanning 131.
  • N and M are both positive integers, and N is less than or equal to M.
  • N is equal to M.
  • step S3502 includes sequentially defrosting the food 200 using a plurality of firepower levels according to the temperature detection values of the N infrared temperature sensing probes.
  • the distribution uses different, or partially identical, fire levels to thaw the food 200, such as meat.
  • step S3502 specifically includes:
  • the full firepower is 100%. It is to be understood that the specific value of the full firepower may be adaptively changed according to the type of the food 200, etc., which is not specifically limited in the present invention.
  • the food 200 such as meat is first thawed by the first firepower level, and the first firepower level is 30% to 60% of the full firepower; the temperature of the food 200 such as meat is continuously detected,
  • the temperature of the temperature measuring point 131 of the food 200 for example, 30% of the plurality of temperature measuring points 131 on the meat is greater than -4 ° C, the food 200 such as meat is thawed by the second fire level, and the second fire level is full.
  • the firepower continuously detecting the temperature of the food 200 such as meat, when the temperature of the temperature measuring point 131 of 60% of the plurality of temperature measuring points 131 in the food 200, for example, meat is greater than -4 ° C, the first The third firepower level thaws the food 200, such as meat, and the third firepower level is 30% to 60% of the full firepower; continuously detecting the temperature of the food 200, such as meat, when the food 200 is, for example, a plurality of temperature measuring points 131 on the meat.
  • the food 200 such as meat is thawed by the fourth firepower level, and the fourth firepower level is 0% to 30% of the full firepower; the food is continuously detected.
  • the temperature of the meat when the temperature of the temperature measuring point 131 of 80% of the plurality of temperature measuring points 131 in the food 200 such as meat is within -3 ° C to 0 ° C, the thawing is stopped, and the thawing process ends.
  • the infrared temperature sensor 5 is fixed.
  • the infrared temperature sensor 5 has 64 infrared temperature sensing probes, and the partition 13 has 64 temperature measuring points 131 correspondingly.
  • the food 200 such as meat
  • the first firepower level being 30% to 60% of the full firepower
  • the temperature of the food 200 is continuously detected, when the food 200 is, for example, meat.
  • 30% of the plurality of temperature measurement points 131 have a temperature greater than -4 ° C
  • the food 200 such as meat is thawed by the second fire level, and the second fire level is 20% to 40% of the full firepower.
  • Constantly detecting the temperature of the food 200 such as meat when the temperature of the temperature measuring point 131 of 60% of the plurality of temperature measuring points 131 in the food 200 such as meat is greater than -4 ° C, the third fire level is used for the food 200, for example The meat is thawed, and the third firepower level is 30% to 60% of the full firepower; the temperature of the food 200 such as meat is continuously detected, and when the food 200 is, for example, 30% of the temperature measurement points of the plurality of temperature measuring points 131 on the meat
  • the temperature of 131 is within -3 ° C to 0 ° C
  • the food 200 such as meat is thawed by the fourth firepower level, and the fourth firepower level is 0% to 30% of the full firepower; the temperature of the food 200 such as meat is continuously detected.
  • food 200 for example, 80 of the plurality of temperature measuring points 131 on the meat
  • Temperature measurement points 131 is within -3 °C ⁇ 0 °C
  • thawing is stopped
  • the infrared temperature sensor 5 can be driven to rotate by a motor 6 connected thereto.
  • the infrared temperature sensor 5 has eight infrared temperature sensing probes, and the partition 13 has eight temperature measuring points uniformly distributed thereon. 131, 8 temperature measuring points 131 are arranged in a straight line on the partition plate 13.
  • the food 200 ie, the food to be thawed
  • the stepping motor drives the infrared temperature sensor 5 to rotate, thereby realizing full surface scanning.
  • the initial temperature of the meat is detected, and the number of temperature measuring points 131 (15) of the meat surface distribution is obtained by scanning, and then the defrosting key 22 on the control panel 2 of the microwave oven 100B is pressed to start the microwave generating device to The meat is thawed and the microwave generating device is activated to thaw the meat.
  • the food 200 such as meat
  • the first firepower level being 30% to 60% of the full firepower
  • the temperature of the food 200 is continuously detected, when the food 200 is, for example, meat.
  • 30% of the plurality of temperature measurement points 131 have a temperature greater than -4 ° C
  • the food 200 such as meat is thawed by the second fire level
  • the second fire level is 20% to 40% of the full firepower.
  • the third fire level is adopted.
  • the food 200 such as meat
  • the third firepower level is 30% to 60% of the full firepower
  • the temperature of the food 200 such as meat is continuously detected, and when the food 200 is, for example, 30% of the plurality of temperature measuring points 131 on the meat
  • the temperature of the temperature measuring point 131 is within -3 ° C to 0 ° C
  • the food 200 such as meat is thawed by the fourth firepower level
  • the fourth firepower level is 0% to 30% of the full fire power
  • the temperature of the meat is such that when the temperature of the temperature measurement point 131 of the food 200, for example, 80% of the plurality of temperature measurement points 131, is within -3 ° C to 0 ° C, the thawing is stopped, and the thawing process is completed.
  • a microwave oven 100B includes a furnace body 1, a temperature measuring device, and a microwave generating device. Among them, the microwave oven 100B uses the control method of the defrosting of the microwave oven 100B according to the above-described first aspect of the present invention to thaw the food 200.
  • the furnace body 1 defines a furnace chamber 11 suitable for placing food 200 such as meat
  • the control panel 2 is disposed on the furnace body 1, such as the front surface of the furnace body 1, and the control panel 2 has a defrosting key 22,
  • the microwave generating device is disposed in the furnace body 1, and the microwave generating device is configured to emit microwaves into the furnace chamber 11 to thaw food 200 such as meat.
  • the temperature measuring device is disposed in the furnace body 1 to detect the temperature of the plurality of temperature measuring points 131 on the food 200.
  • the temperature measuring device is an infrared temperature measuring sensor 5, and the infrared temperature measuring sensor 5 is disposed at an upper portion of the furnace body 1.
  • the infrared temperature sensor 5 is disposed in the furnace chamber 11. Specifically, referring to FIG. 36, the furnace chamber 11 is partitioned into a cooking chamber 111 and a heating chamber 112 located below the cooking chamber 111 through a partition plate 13. The infrared temperature sensor 5 is disposed at Outside the furnace chamber 11 and located at an upper portion of the cooking chamber 111, a through hole 141 is formed in the cooking chamber 111. The infrared temperature sensing sensor 5 has an infrared temperature sensing sensor probe, and the infrared temperature sensing sensor probe corresponds to the through hole 141.
  • the infrared temperature sensor 5 is obliquely disposed on the sidewall of the furnace chamber 11 and disposed near the top wall of the furnace chamber 11.
  • the microwave oven 100B is provided with a mounting portion 14 adapted to mount the infrared temperature sensor 5, and the mounting portion. 14 is formed to protrude outward from a portion of the side wall of the furnace chamber 11, and a through hole 141 is formed in the mounting portion 14.
  • the infrared temperature sensor 5 can also be disposed on the top wall outside the furnace chamber 11 (not shown). It can be understood that the specific position of the infrared temperature sensor 5, the shape of the mounting portion 14, the molding method, and the like can be specifically designed according to actual requirements, and the present invention does not particularly limit this.
  • the infrared temperature sensor 5 is fixed.
  • the infrared temperature sensor 5 has 64 infrared temperature sensing probes, and the partition 13 has 64 temperature measuring points 131 correspondingly.
  • the food 200 such as meat
  • the first firepower level being 30% to 60% of the full firepower
  • the temperature of the food 200 is continuously detected, when the food 200 is, for example, meat.
  • 30% of the plurality of temperature measurement points 131 have a temperature greater than -4 ° C
  • the food 200 such as meat is thawed by the second fire level
  • the second fire level is 20% to 40% of the full firepower.
  • the third fire level is adopted.
  • the food 200 such as meat
  • the third firepower level is 30% to 60% of the full firepower
  • the temperature of the food 200 such as meat is continuously detected, and when the food 200 is, for example, 30% of the plurality of temperature measuring points 131 on the meat
  • the temperature of the temperature measuring point 131 is within -3 ° C to 0 ° C
  • the food 200 such as meat is thawed by the fourth firepower level
  • the fourth firepower level is 0% to 30% of the full fire power
  • the temperature of the meat is such that when the temperature of the temperature measurement point 131 of the food 200, for example, 80% of the plurality of temperature measurement points 131, is within -3 ° C to 0 ° C, the thawing is stopped, and the thawing process is completed.
  • the infrared temperature sensor 5 can be driven to rotate by a motor 6 connected thereto.
  • the infrared temperature sensor 5 has eight infrared temperature sensing probes, and the partition 13 has eight temperature measuring points uniformly distributed thereon. 131, 8 temperature measuring points 131 are arranged in a straight line on the partition plate 13.
  • the food 200 such as meat is first placed in the microwave oven 100B, and the stepping motor drives the infrared temperature sensor 5 to rotate, thereby realizing full surface scanning and detecting the initial temperature of the meat. And scanning to obtain the number of temperature measuring points 131 (15) of the meat surface distribution, and then pressing the defrosting key 22 on the control panel 2 of the microwave oven 100B, starting the microwave generating device to thaw the meat, start The microwave generating device thaws the meat.
  • the food 200 such as meat
  • the first firepower level being 30% to 60% of the full firepower
  • the temperature of the food 200 is continuously detected, when the food 200 is, for example, meat.
  • 30% of the plurality of temperature measurement points 131 have a temperature greater than -4 ° C
  • the food 200 such as meat is thawed by the second fire level, and the second fire level is 20% to 40% of the full firepower.
  • Constantly detecting the temperature of the food 200 such as meat when the temperature of the temperature measuring point 131 of 60% of the plurality of temperature measuring points 131 in the food 200 such as meat is greater than -4 ° C, the third fire level is used for the food 200, for example The meat is thawed, and the third firepower level is 30% to 60% of the full firepower; the temperature of the food 200 such as meat is continuously detected, and when the food 200 is, for example, 30% of the temperature measurement points of the plurality of temperature measuring points 131 on the meat
  • the temperature of 131 is within -3 ° C to 0 ° C
  • the food 200 such as meat is thawed by the fourth firepower level, and the fourth firepower level is 0% to 30% of the full firepower; the temperature of the food 200 such as meat is continuously detected.
  • food 200 for example, 80 of the plurality of temperature measuring points 131 on the meat
  • Temperature measurement points 131 is within -3 °C ⁇ 0 °C
  • thawing is stopped
  • the defrosted food such as meat nutrition is not lost.
  • the present invention further proposes another control method for defrosting a microwave oven.
  • the structure of the microwave oven of the embodiment of the present invention can be the same as that of the microwave oven 100B of the above embodiment.
  • the following description of the structure of the microwave oven according to the embodiment of the present invention can refer to the structure of the microwave oven 100B of the above embodiment. .
  • micro The wave oven 100B has a defrosting key 22 and a microwave generating device, and by pressing the defrosting key 22, the food 200 such as meat (including pork, chicken, fish, etc.) placed in the microwave oven 100B can be thawed.
  • the structure and working principle of the microwave generating device including the microwave source 31, the microwave source energy feeding device 32, the waveguide 33, etc.
  • the microwave generating device including the microwave source 31, the microwave source energy feeding device 32, the waveguide 33, etc.
  • a control method for defrosting a microwave oven 100B has a rotatable heating antenna 34 in a microwave oven 100B, and the control method includes the following steps:
  • S4102 Determine a heating angle of the heating antenna 34 according to the temperatures of the plurality of temperature measuring points 131.
  • the number of temperature measuring points 131 and the distribution on the food 200 can be specifically designed according to actual requirements. For example, as shown in FIG. 39, when the food 200 is placed on the partition 13 in the microwave oven 100B. When the plurality of temperature measuring points 131 are arranged in a matrix on the partition plate 13, the temperature measuring points 131 on the food 200 are also distributed in a plurality of rows and columns; or, as shown in FIG. 40, a plurality of temperature measuring points. 131 may also be distributed in a circle with a point on the partition 13 as a circle, and each temperature measurement point 131 includes a plurality of temperature measurement points 131 distributed along the circumference, and at least part of the temperature measurement on the partition 13 Point 131 falls on food 200 for better detection.
  • the temperature of the plurality of temperature measuring points 131 on the food 200 may be continuously detected to determine the heating of the heating antenna 34. Angle, after the heating angle is determined, the heating antenna 34 is rotated to a heating angle to thaw the food 200, such as meat.
  • step S4102 the position of the lowest temperature point among the plurality of temperature measuring points 131 may be determined; in step S4103, the heating antenna 34 is controlled to rotate to the lowest temperature point to obtain the lowest temperature point on the thawed food. Strong microwave heating. Therefore, according to the temperature of the plurality of temperature measuring points 131 on the food 200, the heating position of the heating antenna 34 is controlled, a better thawing effect can be achieved, and the phenomenon of thawing nutrient loss and partial ripening of the conventional microwave oven 100B is solved.
  • the thawing effect is good by defrosting the food 200 according to the temperature of the food 200 such as the plurality of temperature measuring points 131 on the meat.
  • control method of the defrosting of the microwave oven 100B between step S4101 and step S4102 further includes:
  • the heating antenna 34 can be first controlled to rotate at a constant speed to uniformly thaw the food 200 such as meat; during the thawing process, when the food 200 is, for example, meat
  • the directional heating mode is started, that is, the lowest temperature point among the plurality of temperature measurement points 131 on the food 200 such as meat is determined, and the heating antenna is rotated. 34 to a certain position, so that Thawing foods such as the lowest temperature point on the meat results in more microwave heating.
  • control method of the defrosting of the microwave oven 100B further includes:
  • the temperature of the plurality of temperature measuring points 131 on the thawed food such as meat is continuously detected.
  • the temperature of the temperature measuring point 131 in the food 200 such as the plurality of temperature measuring points 131 on the meat is 80%, the temperature is -3.
  • the temperature is within ° C to 0 ° C, the thawing of the food 200 such as meat is stopped, and the thawing process is completed.
  • step S4101 the temperature of the plurality of temperature measuring points 131 is detected based on the infrared temperature measuring sensor 5 provided in the microwave oven 100B.
  • the infrared temperature sensor 5 can scan the initial temperature of the food 200, such as meat, and count the number of temperature points 131 of the food 200, such as meat, such as in the example of FIG. 39, for example, the food 200, such as the meat temperature measurement point 131.
  • the number of each is 14, and in the example of Fig. 40, the number of temperature points 131 of the food 200 such as meat is 15 each.
  • the infrared temperature sensor 5 is disposed in the microwave oven 100B.
  • the microwave oven 100B defines a furnace chamber 11 defined by the partition 13 into a cooking chamber 111 and a heating chamber located below the cooking chamber 111.
  • the infrared temperature sensor 5 is disposed outside the furnace chamber 11 and is located at the upper portion of the cooking chamber 111.
  • the cooking chamber 111 is formed with a through hole 141.
  • the infrared temperature sensor 5 has an infrared temperature sensing probe and an infrared temperature sensing probe. Corresponding to the through hole 141.
  • the infrared temperature sensor 5 is obliquely disposed on a sidewall of the furnace chamber 11 and disposed near the top wall of the furnace chamber 11.
  • the microwave oven 100B is provided with a mounting portion 14 adapted to mount the infrared temperature sensor 5.
  • the mounting portion 14 is formed to protrude outward from a portion of the side wall of the furnace chamber 11, and a through hole 141 is formed in the mounting portion 14.
  • the infrared temperature sensor 5 can also be disposed on the top wall outside the furnace chamber 11 (not shown). It can be understood that the specific position of the infrared temperature sensor 5, the shape of the mounting portion 14, the molding method, and the like can be specifically designed according to actual requirements, and the present invention does not particularly limit this.
  • the infrared temperature sensor 5 has M infrared temperature sensing probes.
  • the infrared temperature sensor 5 has a total of 64 infrared temperature sensing probes 1-64; in the example of FIG.
  • the mid-infrared temperature sensor 5 has a total of 8 infrared temperature sensing probes 1-8.
  • the infrared temperature sensor 5 can be driven to rotate by a motor 6, such as a stepper motor.
  • the temperature of the food 200 for example, the plurality of temperature measuring points 131 on the meat is detected by N infrared temperature sensing probes.
  • the food 200 for example, the meat surface is distributed with 14 temperature measuring points 131, and the numbers are respectively: 20, 21, 22, 27, 28, 29, 30, 35, 36, 37, 38, 43, 44, 45; as shown in FIG. 40, 15 temperature measuring points of food 200 such as meat surface distribution are obtained by scanning 131.
  • N and M are both positive integers, and N is less than or equal to M.
  • N is equal to M.
  • the infrared temperature sensor 5 is fixed.
  • the infrared temperature sensor 5 has 64 infrared temperature sensing probes, and the partition 13 has 64 temperature measuring points 131 correspondingly.
  • the heating antenna 34 is controlled to rotate at a constant speed, and the temperature of the meat is continuously detected.
  • the temperature of the temperature measuring point 131 of 30% of the plurality of temperature measuring points 131 on the meat is greater than -4 ° C, the directional heating is started.
  • the infrared temperature sensor 5 can be driven to rotate by a motor 6 connected thereto.
  • the infrared temperature sensor 5 has eight infrared temperature sensing probes, and the partition 13 has eight temperature measuring points uniformly distributed thereon. 131, 8 temperature measuring points 131 are arranged in a straight line on the partition plate 13.
  • the food 200 such as meat is first placed in the microwave oven 100B, and the stepping motor drives the infrared temperature sensor 5 to rotate, thereby realizing full surface scanning and detecting the initial temperature of the meat. And scanning to obtain the number of temperature measuring points 131 (15) of the meat surface distribution, and then pressing the defrosting key 22 on the control panel 2 of the microwave oven 100B, starting the microwave generating device to thaw the meat, start The microwave generating device thaws the meat.
  • the heating antenna 34 is controlled to rotate at a constant speed, and the temperature of the meat is continuously detected.
  • the temperature of the temperature measuring point 131 of 30% of the plurality of temperature measuring points 131 on the meat is greater than -4 ° C, the directional heating is started.
  • the temperature of the food such as meat is -3 ° C to 0 ° C, preferably -1 ° C.
  • the temperature of the food is -3 ° C to 0 ° C, preferably -1 ° C.
  • a microwave oven 100B includes a furnace body 1, a temperature measuring device, and a microwave generating device. Among them, the microwave oven 100B uses the control method of the defrosting of the microwave oven 100B according to the above-described first aspect of the present invention to thaw the food 200.
  • the furnace body 1 defines a furnace chamber 11 suitable for placing food 200 such as meat
  • the control panel 2 is disposed on the furnace body 1, such as the front surface of the furnace body 1, and the control panel 2 has a defrosting key 22,
  • the microwave generating device is disposed in the furnace body 1, and the microwave generating device is configured to emit microwaves into the furnace chamber 11 to thaw food 200 such as meat.
  • the temperature measuring device is disposed in the furnace body 1 to detect the temperature of the plurality of temperature measuring points 131 on the food 200.
  • the temperature measuring device is an infrared temperature measuring sensor 5, and the infrared temperature measuring sensor 5 is disposed at an upper portion of the furnace body 1.
  • the infrared temperature sensor 5 is disposed in the furnace chamber 11. Specifically, referring to FIG. 36, the furnace chamber 11 is partitioned into a cooking chamber 111 and a heating chamber 112 located below the cooking chamber 111 through a partition plate 13. The infrared temperature sensor 5 is disposed at Outside the furnace chamber 11 and located at an upper portion of the cooking chamber 111, a through hole 141 is formed in the cooking chamber 111. The infrared temperature sensing sensor 5 has an infrared temperature sensing sensor probe, and the infrared temperature sensing sensor probe corresponds to the through hole 141.
  • the infrared temperature sensor 5 is obliquely disposed on the sidewall of the furnace chamber 11 and disposed near the top wall of the furnace chamber 11.
  • the microwave oven 100B is provided with a mounting portion 14 adapted to mount the infrared temperature sensor 5, and the mounting portion. 14 is formed to protrude outward from a portion of the side wall of the furnace chamber 11, and a through hole 141 is formed in the mounting portion 14.
  • the infrared temperature sensor 5 can also be disposed on the top wall outside the furnace chamber 11 (not shown). It can be understood that the specific position of the infrared temperature sensor 5, the shape of the mounting portion 14, the molding method, and the like can be specifically designed according to actual requirements, and the present invention does not particularly limit this.
  • the infrared temperature sensor 5 is fixed.
  • the infrared temperature sensor 5 has 64 infrared temperature sensing probes, and the partition 13 has 64 temperature measuring points 131 correspondingly.
  • the heating antenna 34 is controlled to rotate at a constant speed, and the temperature of the meat is continuously detected.
  • the temperature of the temperature measuring point 131 of 30% of the plurality of temperature measuring points 131 on the meat is greater than -4 ° C, the directional heating is started.
  • the infrared temperature sensor 5 can be driven to rotate by a motor 6 connected thereto.
  • the infrared temperature sensor 5 has eight infrared temperature sensing probes, and the partition 13 has eight temperature measuring points uniformly distributed thereon. 131, 8 temperature measuring points 131 are arranged in a straight line on the partition plate 13.
  • the food 200 such as meat is first placed in the microwave oven 100B, and the stepping motor drives the infrared temperature sensor 5 to rotate, thereby realizing full surface scanning and detecting the initial temperature of the meat. And scanning to obtain the number of temperature measuring points 131 (15) of the meat surface distribution, and then pressing the defrosting key 22 on the control panel 2 of the microwave oven 100B, starting the microwave generating device to thaw the meat, start The microwave generating device thaws the meat.
  • the heating antenna 34 is controlled to rotate at a constant speed, and the temperature of the meat is continuously detected.
  • the temperature of the temperature measuring point 131 of 30% of the plurality of temperature measuring points 131 on the meat is greater than -4 ° C, the directional heating is started.
  • the defrosted food such as meat nutrition is not lost.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuit, ASIC with suitable combinational logic gate, Programmable Gate Array (PGA), now Field programmable gate array (FPGA), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种微波炉解冻的控制方法、装置及微波炉。该微波炉的控制方法包括:接收解冻指令;启动进行解冻;以及控制解冻条件以使微波炉中的食物的温度保持在-3-0℃。该微波炉具有能够实施上述解冻控制方法的控制装置。

Description

微波炉解冻的控制方法、装置及微波炉
相关申请的交叉引用
本申请要求广东美的厨房电器制造有限公司、美的集团股份有限公司于2014年9月28日提交的、发明名称为“微波炉解冻的控制方法、装置及微波炉”的、中国专利申请号“201410508374.4”、“201410510143.7”、以及于2014年9月25日提交的、发明名称为“微波炉的食物解冻控制方法及微波炉”的、中国专利申请号的“201410499543.2”、“201410499499.5”、“201410499395.4”优先权。
技术领域
本发明涉及生活电器技术领域,尤其涉及一种微波炉解冻的控制方法、装置及微波炉。
背景技术
随着家用微波炉的普及和发展,由于微波解冻的速度快,效率高等优点,越来越多的人们开始使用微波炉对冷冻食品进行解冻。
目前,生活中人们买回来的食品(如肉类,鱼类等)通常不会一次吃完,有部分会冷冻起来以便下次再食用,因此有必要对食品的微波解冻加以研究。
为了研究目前微波炉解冻现状,从市场上挑选了6款不同品牌不同型号的微波炉,用他们分别解冻500g牛肉末,得到如下结果:
品牌 型号 时间 火力 最高温度 最低温度 煮熟变色
品牌1 型号1 2′12″ 自动 67.0℃ -2.2℃
品牌2 型号2 15′00″ 自动 29.6℃ -1.8℃
品牌3 型号3 27′17″ 自动 42.1℃ -0.5℃
品牌4 型号4 7′00″ 自动 48.2℃ -1.9℃
品牌5 型号5 13′00″ 自动 67.6℃ -1.3℃
品牌6 型号6 11′00″ 自动 41.9℃ -2.0℃
从上表可以看出,大多数品牌的微波炉都存在以下问题:①解冻时间长,最长的达到27′17″;②煮熟变色;③温差过大,最高温差达到了69.2℃。出现这些问题的原因是对最优的解冻终点温度没有进行定义,进而缺少对解冻程序(如火力和时间)的研究,导致解冻效果不理想,因此解冻最优终点温度及微波炉解冻食物的控制方法亟待研究和改进。
发明内容
本发明是基于发明人的下列发现而完成的:
发明人发现,通过对目前市场上的不同品牌不同型号的微波炉解冻现状的研究,如上述背景技术中所介绍的,对于相同大小相同类型的食物来说,解冻后的效果均不太理想,一般会存在以下问题:解冻时间长、煮熟变色、最高温度与最低温度之间的温差过大等,而出现这些问题的原因是目前还没有对最优的解冻终点问题进行定义,进而缺少对解冻程序(如火力和时间)的研究。
因而,现阶段,提出解冻最优终点温度的定义及对微波炉解冻食物的控制方法进行改进,至关重要。
本发明的目的旨在至少在一定程度上解决上述的技术问题之一。
为此,本发明的第一个目的在于提出一种微波炉解冻的控制方法。该方法通过发明人进行大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,使得解冻后的食物更加营养,更加卫生,更容易切割,且温差较低,无煮熟变色现象。
本发明的第二个目的在于提出一种微波炉解冻的控制方法。
本发明的第三个目的在于提出一种微波炉解冻的控制方法。
本发明的第四个目的在于提出一种微波炉解冻的控制方法。
本发明的第五个目的在于提出一种微波炉解冻的控制方法。
本发明的第六个目的在于提出一种微波炉解冻的控制方法。
本发明的第七个目的在于提出一种微波炉解冻的控制方法。
本发明的第八个目的在于提出一种微波炉解冻的控制方法。
本发明的第九个目的在于提出一种微波炉解冻的控制方法。
本发明的第十个目的在于提出一种微波炉解冻的控制装置。
本发明的第十一个目的在于提出一种微波炉解冻的控制装置。
本发明的第十二个目的在于提出一种微波炉解冻的控制装置。
本发明的第十三个目的在于提出一种微波炉解冻的控制装置。
本发明的第十四个目的在于提出一种微波炉解冻的控制装置。
本发明的第十五个目的在于提出一种微波炉解冻的控制装置。
本发明的第十六个目的在于提出一种微波炉。
本发明的第十七个目的在于提出一种微波炉。
本发明的第十八个目的在于提出一种微波炉。
本发明的第十九个目的在于提出一种微波炉。
本发明的第二十个目的在于提出一种微波炉。
为了实现上述目的,本发明第一方面实施例的微波炉解冻的控制方法,包括:S1、接收解冻指令;S2、启动进行解冻;以及S3、控制解冻条件以使所述微波炉中的食物的温度保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并控制解冻条件以使微波炉中的食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
其中,所述微波炉具有微波发生装置,所述步骤S2具体包括:控制所述微波发生装置启动,并进行解冻。
可选地,在本发明的一个实施例中,所述控制方法还包括:S4、判断所述微波炉中的食物的重量x。
具体地,在本发明的实施例中,所述步骤S3具体包括:S31A、根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;S32A、控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
进一步地,所述步骤S32A包括在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
更进一步地,所述步骤S32A具体包括:S321、在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;S322、在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;S323、在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;S324、在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
其中,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:t1=K(n+1+a)/4,t2=K(n-1-a)/4,t3=K(n+1-a)/4,t4=K(n-1+a)/4,其中,所述n=x/100克,所述a=[1+(-1)n]/2。
可选地,在所述步骤S322和步骤S323之间,还包括:S3221A、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;S3222A、在检测到食物被翻面后,解冻过程被控制进入所述步骤S323。
可选地,在所述步骤S322和步骤S323之间,还包括:S3221B、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;S3222B、检测所述微波发生装置被启动后,解冻过程被控制进入所述步骤S323。
可选地,所述微波炉具有解冻键,其中,根据所述解冻键的触动状态判断所述食物的重量x。
其中,在本发明的一个实施例中,所述解冻键为1个,所述解冻键被构造成每按压一次、使得所述微波炉上显示的重量依次增加50克~100克。
在本发明的另一个实施例中,所述解冻键包括与多个重量克数对应的多个解冻键。
可选地,根据设在所述微波炉内的重量传感器判断所述食物的重量x。
可选地,所述控制方法还包括:S5、检测所述微波炉中的食物上多个测温点的温度。
具体地,所述步骤S3具体包括:S31B、根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
其中,所述步骤S5中根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
可选地,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
具体地,所述步骤S31B包括根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
更具体地,所述步骤S31B具体包括:S311、以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;S312、当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;S313、当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;S314、当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;S315、当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
可选地,所述红外测温传感器由电机驱动旋转。
可选地,所述微波炉中具有可旋转的加热天线,其中,所述步骤S3具体包括:S31C、根据所述多个测温点的温度确定所述加热天线的加热角度;S32C、根据所述加热角度控制所述加热天线转动以使所述食物的温度保持在-3-0℃。
具体地,所述步骤S31C中,判断所述多个测温点中的最低温度点的位置;所述步骤S32C中,控制所述加热天线转动至所述最低温度点。
进一步地,在所述步骤S5和所述步骤S31C之间,还包括:S6、控制所述加热天线匀速旋转;S7、当所述多个测温点中的30%的温度大于-4℃时,解冻过程被控制进入所述步骤S31C。
进一步地,所述步骤S32C具体包括:当所述多个测温点中的80%的温度在-3℃~0℃内时,停止解冻。
可选地,所述食物为肉类或鱼类。
优选地,其中,控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
为了实现上述目的,本发明第二方面实施例的微波炉解冻的控制方法,包括:S1、接收解冻指令;S2、启动进行解冻;以及S3、控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
其中,所述微波炉具有微波发生装置,所述步骤S2具体包括:控制所述微波发生装置启动,并进行解冻。
可选地,在本发明的一个实施例中,所述控制方法还包括:S4、判断所述微波炉中的食物的重量x。
具体地,在本发明的实施例中,所述步骤S3具体包括:S31A、根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;S32A、控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
进一步地,所述步骤S32A包括在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
更进一步地,所述步骤S32A具体包括:S321、在第一时间段t1内以第一火力等 级解冻,所述第一火力等级为满火力的30%~60%;S322、在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;S323、在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;S324、在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
其中,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:t1=K(n+1+a)/4,t2=K(n-1-a)/4,t3=K(n+1-a)/4,t4=K(n-1+a)/4,其中,所述n=x/100克,所述a=[1+(-1)n]/2。
可选地,在所述步骤S322和步骤S323之间,还包括:S3221A、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;S3222A、在检测到食物被翻面后,解冻过程被控制进入所述步骤S323。
可选地,在所述步骤S322和步骤S323之间,还包括:S3221B、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;S3222B、检测所述微波发生装置被启动后,解冻过程被控制进入所述步骤S323。
可选地,所述微波炉具有解冻键,其中,根据所述解冻键的触动状态判断所述食物的重量x。
其中,在本发明的一个实施例中,所述解冻键为1个,所述解冻键被构造成每按压一次、使得所述微波炉上显示的重量依次增加50克~100克。
在本发明的另一个实施例中,所述解冻键包括与多个重量克数对应的多个解冻键。
可选地,根据设在所述微波炉内的重量传感器判断所述食物的重量x。
可选地,所述控制方法还包括:S5、检测所述微波炉中的食物上多个测温点的温度。
具体地,所述步骤S3具体包括:S31B、根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
其中,所述步骤S5中根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
可选地,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
具体地,所述步骤S31B包括根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
更具体地,所述步骤S31B具体包括:S311、以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;S312、当所述N个红外测温传感探头中的30%的温度检测 值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;S313、当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;S314、当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;S315、当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
可选地,所述红外测温传感器由电机驱动旋转。
可选地,所述微波炉中具有可旋转的加热天线,其中,所述步骤S3具体包括:S31C、根据所述多个测温点的温度确定所述加热天线的加热角度;S32C、根据所述加热角度控制所述加热天线转动以使所述食物的温度在解冻之后保持在-3-0℃。
具体地,所述步骤S31C中,判断所述多个测温点中的最低温度点的位置;所述步骤S32C中,控制所述加热天线转动至所述最低温度点。
进一步地,在所述步骤S5和所述步骤S31C之间,还包括:S6、控制所述加热天线匀速旋转;S7、当所述多个测温点中的30%的温度大于-4℃时,解冻过程被控制进入所述步骤S31C。
进一步地,所述步骤S32C具体包括:当所述多个测温点中的80%的温度在-3℃~0℃内时,停止解冻。
可选地,所述食物为肉类或鱼类。
优选地,其中,控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
为了实现上述目的,本发明第三方面实施例的微波炉解冻的控制方法,在解冻过程中,检测所述微波炉中的食物的温度,并控制在解冻过程中所述食物的温度低于-3-0℃,且在解冻之后所述食物的温度保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制方法,在解冻过程中,可实时检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
优选地,其中,在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
为了实现上述目的,本发明第四方面实施例的微波炉解冻的控制方法,包括:接收解冻指令;启动进行解冻,并检测微波炉中食物的温度;以及控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并检测微波炉中食物的温度,以及控制解冻条件以使微波炉中的食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
可选地,所述食物为肉类或鱼类。
为了实现上述目的,本发明第五方面实施例的微波炉解冻的控制方法,包括:接收解冻指令;启动进行解冻,并检测微波炉中食物的温度;以及控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并检测微波炉中食物的温度,以及控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
可选地,所述食物为肉类或鱼类。
为了实现上述目的,本发明第六方面实施例的微波炉解冻的控制方法,在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
根据本发明实施例的微波炉解冻的控制方法,在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃,通过大量的试验和理论分析, 创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述目的,本发明第七方面实施例的微波炉解冻的控制方法,所述微波炉中具有可旋转的加热天线,所述方法包括以下步骤:S1、检测所述微波炉中的食物多个测温点的温度;S2、根据所述多个测温点的温度确定所述加热天线的加热角度;以及S3、根据所述加热角度控制所述加热天线转动。
根据本发明实施例的微波炉解冻的控制方法,通过根据待解冻食物例如肉类上多个测温点的温度对待解冻食物进行解冻,解冻效果好。
可选地,所述步骤S2中,判断所述多个测温点中的最低温度点的位置;所述步骤S3中,控制所述加热天线转动至所述最低温度点。
进一步地,在所述步骤S1和所述步骤S2之间,所述微波炉解冻的控制方法还包括:S11、控制所述加热天线匀速旋转;S12、当所述多个测温点中的30%的温度大于-4℃时,解冻过程被控制进入所述步骤S2。
更进一步地,所述步骤S3之后,所述微波炉解冻的控制方法还包括:S4、当所述多个测温点中的80%的温度在-3℃~0℃内时,停止解冻。
可选地,所述步骤S1中根据设在所述微波炉内的红外测温传感器检测所述多个测温点的温度。
进一步地,所述红外测温传感器具有M个红外测温传感探头,所述微波炉中的食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
可选地,所述红外测温传感器由电机驱动旋转。
可选地,所述食物为肉类。
为了实现上述目的,本发明第八方面实施例的微波炉解冻的控制方法,所述微波炉包括微波发生装置,所述方法包括:S1、检测所述微波炉中的食物上多个测温点的温度;S2、控制所述微波发生装置启动,并根据所述食物上所述多个测温点的温度对所述食物进行解冻。
根据本发明实施例的微波炉解冻的控制方法,通过根据待解冻食物上多个测温点的温度对待解冻食物进行解冻,解冻效果好。
可选地,所述步骤S1中根据设在所述微波炉内的红外测温传感器检测所述微波炉 中的食物上所述多个测温点的温度。
进一步地,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
更进一步地,所述步骤S2包括根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
具体地,所述步骤S2具体包括:S21、所述微波发生装置启动后以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;S22、当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;S23、当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;S24、当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;S25、当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
可选地,所述红外测温传感器由电机驱动旋转。
可选地,所述食物为肉类。
为了实现上述目的,本发明第九方面实施例的微波炉解冻的控制方法,所述微波炉具有解冻键和微波发生装置,所述方法包括:S1、根据微波炉中的食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;S2、控制所述微波发生装置启动,并以所述总解冻时间T对所述食物进行解冻。
根据本发明实施例的微波炉解冻的控制方法,通过根据待解冻食物的重量x来计算得到解冻待解冻食物所需的总解冻时间T,解冻效果好。
进一步地,所述步骤S2包括在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
具体地,所述步骤S2具体包括:S21、在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;S22、在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;S23、在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;S24、在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
可选地,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时 间段t4分别满足:t1=K(n+1+a)/4,t2=K(n-1-a)/4,t3=K(n+1-a)/4,t4=K(n-1+a)/4,其中,所述n=x/100克,所述a=[1+(-1)n]/2。
可选地,在步骤S22和步骤S23之间,所述微波炉解冻的控制方法还包括:S221A、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;S222A、在检测到食物被翻面后,解冻过程被控制进入步骤S23。
或者可选地,在步骤S22和步骤S23之间,所述微波炉解冻的控制方法还包括:S221B、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测所述微波发生装置是否被重新启动;S222B、检测所述微波发生装置被启动后,解冻过程被控制进入步骤S23。
具体地,根据所述解冻键的触动状态判断所述食物的重量x。
可选地,所述解冻键为1个,所述解冻键被构造成每按压一次、使得所述微波炉上显示的重量依次增加50克~100克。
或者可选地,所述解冻键包括与多个重量克数对应的多个解冻键。
具体地,根据设在所述微波炉内的重量传感器判断所述食物的重量x。
可选地,在所述总解冻时间T后,食物的温度为-3℃~0℃。
可选地,所述食物为肉类。
为了实现上述目的,本发明第十方面实施例的微波炉解冻的控制装置,包括:接收模块,用于接收解冻指令;解冻模块,用于启动进行解冻;以及控制模块,用于控制解冻条件以使所述微波炉中的食物的温度保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制装置,通过接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制模块还用于判断所述微波炉中的食物的重量x。
具体地,所述控制模块具体用于:根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
可选地,所述控制模块在依次连续的多个时间段依次采用多个火力等级解冻所述 食物。
具体地,所述控制模块具体用于:在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
其中,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:t1=K(n+1+a)/4,t2=K(n-1-a)/4,t3=K(n+1-a)/4,t4=K(n-1+a)/4其中,所述n=x/100克,所述a=[1+(-1)n]/2。
可选地,所述控制模块还用于:在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;在检测到食物被翻面后,控制在第三时间段t3内以第三火力等级解冻。
可选地,所述控制模块还用于:在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;检测所述微波发生装置被启动后,控制在第三时间段t3内以第三火力等级解冻。
可选地,所述控制模块还用于:检测所述微波炉中的食物上多个测温点的温度。
进一步地,所述控制模块具体用于:根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
更具体地,所述控制模块根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
可选地,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
具体地,所述控制模块用于根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
更具体地,所述控制模块具体用于:以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
可选地,所述微波炉中具有可旋转的加热天线,其中,所述控制模块具体用于:根据所述多个测温点的温度确定所述加热天线的加热角度;根据所述加热角度控制所述加热天线转动以使所述食物的温度保持在-3-0℃。
优选地,其中,所述控制模块控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
为了实现上述目的,本发明第十一方面实施例的微波炉解冻的控制装置,包括:接收模块,用于接收解冻指令;解冻模块,用于启动进行解冻;以及控制模块,用于控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制装置,接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制模块还用于判断所述微波炉中的食物的重量x。
具体地,所述控制模块具体用于:根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
可选地,所述控制模块在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
具体地,所述控制模块具体用于:在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
其中,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:t1=K(n+1+a)/4,t2=K(n-1-a)/4,t3=K(n+1-a)/4,t4=K(n-1+a)/4其中,所述n=x/100克,所述a=[1+(-1)n]/2。
可选地,所述控制模块还用于:在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;在检测到食物被翻面后,控制在第三 时间段t3内以第三火力等级解冻。
可选地,所述控制模块还用于:在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;检测所述微波发生装置被启动后,控制在第三时间段t3内以第三火力等级解冻。
可选地,所述控制模块还用于:检测所述微波炉中的食物上多个测温点的温度。
具体地,所述控制模块具体用于:根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
更具体地,所述控制模块根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
可选地,所述控制模块根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
具体地,所述控制模块根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
更具体地,所述控制模块具体用于:以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
可选地,所述微波炉中具有可旋转的加热天线,其中,所述控制模块具体用于:根据所述多个测温点的温度确定所述加热天线的加热角度;根据所述加热角度控制所述加热天线转动以使所述食物的温度在解冻之后保持在-3-0℃。
优选地,其中,所述控制模块控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
为了实现上述目的,本发明第十二方面实施例的微波炉解冻的控制装置,在解冻过程中,检测所述微波炉中的食物的温度,并控制在解冻过程中所述食物的温度低于-3-0℃,且在解冻之后所述食物的温度保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制装置,在解冻过程中,可实时检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的 温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
优选地,其中,所述控制装置在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
为了实现上述目的,本发明第十三方面实施例的微波炉解冻的控制装置,包括:接收模块,用于接收解冻指令;检测模块,用于启动进行解冻,并检测微波炉中食物的温度;以及控制模块,用于控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
根据本发明实施例的微波炉解冻的控制装置,通过检测模块在接收模块接收到解冻指令之后,启动进行解冻,并检测微波炉中食物的温度,控制模块控制解冻条件以使微波炉中的食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
可选地,所述食物为肉类或鱼类。
为了实现上述目的,本发明第十四方面实施例的微波炉解冻的控制装置,包括:接收模块,用于接收解冻指令;检测模块,用于启动进行解冻,并检测微波炉中食物的温度;以及控制模块,用于控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
根据本发明实施例的微波炉解冻的控制装置,通过检测模块在接收模块接收到解冻指令之后,启动进行解冻,并检测微波炉中食物的温度,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选地,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
可选地,所述食物为肉类或鱼类。
为了实现上述目的,本发明第十五方面实施例的微波炉解冻的控制装置,在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
根据本发明实施例的微波炉解冻的控制装置,在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述目的,本发明第十六方面实施例的微波炉,包括:本发明第十方面实施例所述的微波炉解冻的控制装置。
根据本发明实施例的微波炉,通过控制装置中的接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述目的,本发明第十七方面实施例的微波炉,包括:本发明第十一方面实施例所述的微波炉解冻的控制装置。
根据本发明实施例的微波炉,通过控制装置中的接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述目的,本发明第十八方面实施例的微波炉,包括:本发明第十二方面实施例所述的微波炉解冻的控制装置。
根据本发明实施例的微波炉,在解冻过程中,可实时检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃, 通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述目的,本发明第十九方面实施例的微波炉,包括:炉体,所述炉体内限定出炉腔,所述食物适于放置在所述炉腔内;控制面板,所述控制面板设在所述炉体上,且所述控制面板具有解冻键和启动键;微波发生装置,所述微波发生装置设在所述炉体内,所述微波发生装置用于向所述炉腔内发出微波以解冻所述食物;控制器,所述控制器用于执行本发明第九方面实施例所述的微波炉解冻的控制方法所包括的步骤。
可选地,所述炉体设有适于检测所述食物重量的重量传感器,所述炉体的底部具有炉脚,所述重量传感器设在所述炉脚上。
或者可选地,所述炉体设有适于检测所述食物重量的重量传感器,所述炉腔通过隔板分隔成烹饪腔和位于所述烹饪腔下方的加热腔,所述重量传感器设在所述隔板的底部。
为了实现上述目的,本发明第二十方面实施例的微波炉,包括:炉体,所述炉体内限定出炉腔,所述食物适于放置在所述炉腔内;测温装置,所述测温装置设在所述炉体内以检测所述食物上多个测温点的温度;微波发生装置,所述微波发生装置设在所述炉体内,所述微波发生装置用于向所述炉腔内发出微波以解冻所述食物;控制器,所述控制器用于执行本发明第七方面实施例所述的微波炉解冻的控制方法所包括的步骤。
可选地,所述测温装置为红外测温传感器,所述红外测温传感器设在所述炉体内的上部。
本发明第二十一方面实施例的微波炉,包括:炉体,所述炉体内限定出炉腔,所述食物适于放置在所述炉腔内;测温装置,所述测温装置设在所述炉体内以检测所述食物上多个测温点的温度;微波发生装置,所述微波发生装置设在所述炉体内,所述微波发生装置用于向所述炉腔内发出微波以解冻所述食物;控制器,所述控制器用于执行本发明第八方面实施例所述的微波炉解冻的控制方法所包括的步骤。
可选地,所述测温装置为红外测温传感器,所述红外测温传感器设在所述炉体内的上部。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1是根据本发明一个实施例的微波炉解冻的控制方法的流程图;
图2是根据本发明一个实施例的测量食物温度时选取12个点的示意图;
图3是根据本发明一个实施例的微波炉解冻肉类时肉类的温度曲线的示例图;
图4(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的温差的示例图;
图4(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的温差的示例图;
图4(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的温差的示例图;
图4(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的温差的示例图;
图5(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图5(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图5(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图5(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图6(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图6(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图6(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图6(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图7(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解 冻后的水分含量的示例图;
图7(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的水分含量的示例图;
图7(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的水分含量的示例图;
图7(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的水分含量的示例图;
图8(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图8(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图8(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图8(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图9(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的黄度的示例图;
图9(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的黄度的示例图;
图9(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的黄度的示例图;
图9(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的黄度的示例图;
图10(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图10(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图10(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图10(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图11是根据本发明一个实施例的不同食物不同重量在不同解冻温度终点进行解冻后的 解冻速度的示例图;
图12是根据本发明一个实施例的微波炉解冻的控制装置的结构示意图;
图13是根据本发明另一个实施例的微波炉解冻的控制方法的流程图;
图14是根据本发明另一个实施例的微波炉解冻的控制的结构示意图;
图15是根据本发明一个实施例的微波炉解冻的控制方法的流程图;
图16(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的温差的示例图;
图16(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的温差的示例图;
图16(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的温差的示例图;
图16(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的温差的示例图;
图17(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图17(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图17(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图17(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的肉汁渗出率的示例图;
图18(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图18(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图18(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图18(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的蛋白质含量的示例图;
图19(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的水分含量的示例图;
图19(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后 的水分含量的示例图;
图19(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的水分含量的示例图;
图19(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的水分含量的示例图;
图20(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图20(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图20(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图20(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的剪切力的示例图;
图21(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的黄度的示例图;
图21(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的黄度的示例图;
图21(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的黄度的示例图;
图21(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的黄度的示例图;
图22(a)是根据本发明一个实施例的不同重量的猪里脊肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图22(b)是根据本发明一个实施例的不同重量的鱼肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图22(c)是根据本发明一个实施例的不同重量的鸡肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图22(d)是根据本发明一个实施例的不同重量的牛肉在不同解冻温度终点进行解冻后的菌落总数的示例图;
图23是根据本发明一个实施例的微波炉解冻的控制装置的结构示意图;
图24是根据本发明另一个实施例的微波炉解冻的控制方法的流程图;
图25是根据本发明另一个实施例的微波炉解冻的控制装置的结构示意图;
图26是根据本发明实施例的微波炉解冻的控制方法的流程图;
图27是根据本发明实施例的在总解冻时间T内依次采用多个火力等级解冻待解冻食物的示意图;
图28是根据本发明实施例的微波炉的示意图;
图29a是图28中所示的按压一次解冻键后的控制面板的示意图;
图29b是图28中所示的按压第二次解冻键后的控制面板的示意图;
图29c是图28中所示的按压第三次解冻键后的控制面板的示意图;
图29d是图28中所示的按压第四次解冻键后的控制面板的示意图;
图29e是图28中所示的按压第五次解冻键后的控制面板的示意图;
图30是图28中所示的微波炉解冻的操作流程图;
图31是根据本发明另一个实施例的微波炉的示意图;
图32是根据本发明再一个实施例的微波炉的示意图;
图33是图31和图32中所示的微波炉的控制面板的示意图;
图34是图31和图32中所示的微波炉解冻的操作流程图;
图35是根据本发明实施例的微波炉解冻的控制方法的流程图;
图36是根据本发明实施例的微波炉的示意图;
图37是图36中所示的微波炉的控制面板的示意图;
图38是图36中所示的微波炉解冻的操作流程图;
图39是根据本发明实施例的微波炉采用红外测温传感器检测待解冻食物上的多个测温点的温度的示意图;
图40是根据本发明实施例的微波炉采用红外测温传感器检测待解冻食物上的多个测温点的温度的另一个示意图;
图41是根据本发明实施例的微波炉解冻的控制方法的流程图。
附图标记:
110A、110B:接收模块;120A:解冻模块;120B:检测模块;130A、130B:控制模块;
210A、210B:接收模块;220A:解冻模块;220B:检测模块;230A、230B:控制模块;
100A、100B:微波炉;
1:炉体;11:炉腔;12:炉脚;13:隔板;14:安装部;
111:烹饪腔;112:加热腔;131:测温点;141:通孔;
2:控制面板;21:显示屏;22:解冻键;
31:微波源;32:微波源馈能装置;33:波导;34:加热天线;35:搅拌片;
4:重量传感器;5:红外测温传感器;6:电机;
200:食物。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的微波炉解冻的控制方法、装置及微波炉。
图1是根据本发明一个实施例的微波炉解冻的控制方法的流程图。如图1所示,该微波炉解冻的控制方法可以包括:
S101,接收解冻指令。
举例而言,假设微波炉解冻的控制方法可应用于微波炉中,微波炉可为用户提供具有解冻功能的按钮,当用户将待解冻的食物放入微波炉中进行解冻时,可通过按钮输入解冻指令。其中,根据本发明的一个实施例,食物可为肉类或鱼类。
S102,启动进行解冻。
例如,微波炉在接收到解冻指令之后,可启动解冻功能来进行解冻。
S103,控制解冻条件以使微波炉中的食物的温度保持在-3-0℃。
其中,根据本发明的一个实施例,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。
具体地,可通过控制解冻条件(如解冻时间、和/或解冻加热功率、和/或加热方向等)以使微波炉中的食物的温度保持在-3-0℃。例如,在解冻过程中,当检测到微波炉中食物的温度小于-20℃(如食物刚被放入微波炉中)时,可通过增大解冻加热功率以加速解冻的过程,当检测到微波炉中食物的当前温度为-5℃时,可减小解冻加热功率并控制到相应的解冻加热功率,使得微波炉中的食物的温度保持在-3-0℃,同时还可控制加热方向以使食物均匀解冻。
需要说明的是,在本发明的实施例中,如图2所示,可从微波炉中的食物选取12个点,并分别对该12个点进行温度测量(如检测每个点1/2高度处的温度),当测量12个点中有80%以上(即10个点以上)在-3-0℃范围内,可称该食物为-3-0℃解冻食物。其中,如图2所示,点1所在的列距边沿约占1/5长边的长度,点4所在的列距边沿约占1/5长边的长度,点1所在的行距边沿约占1/4短边的长度,点9所在的行距边沿约占1/4短边的长度,边缘四点(即点1、点4、点9、点12)距边角约占1/5对角线的长度。
还需要说明的是,发明人通过大量实验数据得出将待解冻食物通过微波炉解冻以 使食物的温度保持在-3-0℃,提高了食物的营养保留率,且微生物污染少,同时不影响对解冻食物的切割。
这是由于微波炉解冻时主要利用的是微波进行解冻,即微波直接作用于待解冻食物上,内外同时加热,不需传导辐射,不管有无空隙都能解冻。由于微波解冻是通过吸收介质的损耗而发热,故损耗较大者加热较快。水是吸收微波最强的介质,故对含水量大的物质加热非常有效。由于待解冻食物中的水分子只有解冻后才能吸收大量的微波,而囚禁在晶体冰内的水分子不能吸收微波,因此,当食物还存在晶体冰时食物的温度变化不大,但当食物的晶体冰融化后,食物的温度会迅速变化。如图3所示,发明人经过多次试验根据选出的5次实验数据进行画图分析,可知在解冻区间食物的温度变化比较平稳,由于食物还具有晶体冰,所以食物的温度变化不大;当0℃以上时,由于晶体冰逐渐融化,导致吸收微波的水介质逐渐变多,从而导致食物的温度会持续快速增高,而这样可能会导致食物变熟等问题。因此,选择-3-0℃作为食物的解冻区间。下面将结合实验数据以使得本领域的技术人员更加清楚地了解到-3-0℃解冻食物所带来的好处。
实施例1、-3-0℃解冻食物的温差分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,分别测量100g、200g、300g、400g和500g的猪里脊肉分别在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后肉块的最高温度,并分别测量其的最低温度,可得出100g、200g、300g、400g和500g的猪里脊肉分别在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的温差。如下面表1所示,为发明人经过多次试验从中选出5次平行实验所得到的实验数据。
Figure PCTCN2015090806-appb-000001
Figure PCTCN2015090806-appb-000002
表1
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表2所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000003
Figure PCTCN2015090806-appb-000004
表2
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表3所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000005
Figure PCTCN2015090806-appb-000006
表3
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表4所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000007
Figure PCTCN2015090806-appb-000008
表4
2、试验结果,图4(a)为根据表1中每组均值所画出的图表,图4(b)为根据表2中每组均值所画出的图表,图4(c)为根据表3中每组均值所画出的图表,图4(d)为根据表4中每组均值所画出的图表,由图4(a)、图4(b)、图4(c)和图4(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的温差也有所不同,且解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的食物温差显著降低,解冻较均匀。
实施例2、-3-0℃解冻食物的肉汁渗出率分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分 别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过公式“肉汁量/肉块总重量*100%”分别计算出100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的肉汁渗出率。如下面表5所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000009
Figure PCTCN2015090806-appb-000010
表5
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表6所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000011
Figure PCTCN2015090806-appb-000012
表6
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表7所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000013
Figure PCTCN2015090806-appb-000014
表7
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表8所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000015
Figure PCTCN2015090806-appb-000016
表8
2、试验结果,图5(a)为根据表5中每组均值所画出的图表,图5(b)为根据表6中每组均值所画出的图表,图5(c)为根据表7中每组均值所画出的图表,图5(d)为根据表8中每组均值所画出的图表,由图5(a)、图5(b)、图5(c)和图5(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的肉汁渗出率也有所不同,且解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的食物肉汁渗出率降低明显,几乎没有肉汁损失。
实施例3、-3-0℃解冻食物的蛋白质含量分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过凯氏定氮仪分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的蛋白质含量。如下面表9所示,为发明人经过多次试验从中选出5次平行实验所得到的实验数据。
Figure PCTCN2015090806-appb-000017
Figure PCTCN2015090806-appb-000018
表9
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表10所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000019
Figure PCTCN2015090806-appb-000020
表10
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表11所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000021
Figure PCTCN2015090806-appb-000022
表11
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表12所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000023
Figure PCTCN2015090806-appb-000024
表12
2、试验结果,图6(a)为根据表9中每组均值所画出的图表,图6(b)为根据表10中每组均值所画出的图表,图6(c)为根据表11中每组均值所画出的图表,图6(d)为根据表12中每组均值所画出的图表,由图6(a)、图6(b)、图6(c)和图6(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的蛋白质含量也有所不同,且解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的蛋白质含量略有上升,营养价值高。
实施例4、-3-0℃解冻食物的水分含量分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过105℃干燥法分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的水分含量。如下面表13所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000025
Figure PCTCN2015090806-appb-000026
表13
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表14所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000027
Figure PCTCN2015090806-appb-000028
表14
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表15所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000029
Figure PCTCN2015090806-appb-000030
表15
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表16所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000031
Figure PCTCN2015090806-appb-000032
表16
2、试验结果,图7(a)为根据表13中每组均值所画出的图表,图7(b)为根据表14中每组均值所画出的图表,图7(c)为根据表15中每组均值所画出的图表,图7(d)为根据表16中每组均值所画出的图表,由图7(a)、图7(b)、图7(c)和图7(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的水分含量也有所不同,且解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的水分含量略有上升,口感好。
实施例5、-3-0℃解冻食物的质构分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过质构仪分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的剪切力。如下面表17所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000033
Figure PCTCN2015090806-appb-000034
表17
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表18所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000035
Figure PCTCN2015090806-appb-000036
表18
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表19所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000037
Figure PCTCN2015090806-appb-000038
表19
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表20所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000039
Figure PCTCN2015090806-appb-000040
表20
2、试验结果,图8(a)为根据表17中每组均值所画出的图表,图8(b)为根据表18中每组均值所画出的图表,图8(c)为根据表19中每组均值所画出的图表,图8(d)为根据表20中每组均值所画出的图表,由图8(a)、图8(b)、图8(c)和图8(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的剪切力也有所不同,且解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的剪切力有轻微上升,但明显小于解冻后温度在-4℃左右的食材,因此更容易切割。
实施例6、-3-0℃解冻食物的黄度分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过色差计分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的黄度。如下面表21所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000041
Figure PCTCN2015090806-appb-000042
表21
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表22所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000043
Figure PCTCN2015090806-appb-000044
表22
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表23所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000045
Figure PCTCN2015090806-appb-000046
表23
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表24所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000047
Figure PCTCN2015090806-appb-000048
表24
2、试验结果,图9(a)为根据表21中每组均值所画出的图表,图9(b)为根据表22中每组均值所画出的图表,图9(c)为根据表23中每组均值所画出的图表,图9(d)为根据表24中每组均值所画出的图表,由图9(a)、图9(b)、图9(c)和图9(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的黄度也有所不同,且解冻后的在0℃以上的食物相对于解冻后温度在-3-0℃范围的食物的黄度有明显上升,说明部分食物已经变色、煮熟。
实施例7、-3-0℃解冻食物的菌落总数分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过稀释后培养计数法分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解 冻、-3℃解冻和-4℃解冻)进行解冻后的菌落总数。如下面表25所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000049
表25
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、 200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表26所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000050
表26
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、 200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表27所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000051
表27
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、 200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表28所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000052
表28
2、试验结果,图10(a)为根据表25中每组均值所画出的图表,图10(b)为根据表26中每组均值所画出的图表,图10(c)为根据表27中每组均值所画出的图表, 图10(d)为根据表28中每组均值所画出的图表,由图10(a)、图10(b)、图10(c)和图10(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的菌落总数也有所不同,且解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的菌落总数明显较小,这是因为解冻后温度较低,微生物繁殖较慢,因此解冻后的食物更加卫生。
实施例8、-3-0℃解冻食物的解冻速度分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)。之后,可通过在解冻过程中所使用的时间来分别测定100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(即大于0℃解冻、0℃解冻、-1.5℃解冻、-3℃解冻和-4℃解冻)进行解冻后的解冻速度。如下面表29所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000053
Figure PCTCN2015090806-appb-000054
表29
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表30所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000055
Figure PCTCN2015090806-appb-000056
表30
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表31所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000057
Figure PCTCN2015090806-appb-000058
表31
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表32所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000059
Figure PCTCN2015090806-appb-000060
表32
2、试验结果,发明人通过对上面表29、表30、表31和表32中的实验数据进行分析,发现不同食物相同重量所使用的解冻时间相同,因此本实施例可通过一个图表来表示即可,图11为根据表29(或表30、或表31、或表32)中每组均值所画出的图表,由图11可知,解冻后的食物的温度保持在-3-0℃范围时,相对于解冻后温度在0℃以上的解冻速度明显较小,这是因为解冻终点温度较低,所需能量减小,因此解冻时间缩短。
综上所述,发明人通过大量的试验和理论分析,创新地发现通过将食物的温度控制在-3-0℃之间时,解冻后的食物更加营养,更加卫生,更容易切割,温差较低,无煮熟变色现象,因此确定-3-0℃范围内的温度作为食物解冻的最优终点温度较好。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并控制解冻条件以使微波炉中的食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
与上述实施例提供的微波炉解冻的控制方法相对应,本发明的另一种实施方式还提供一种微波炉解冻的控制装置,由于本发明提供的微波炉解冻的控制装置与前面实施例微波炉解冻的控制方法相对应,因此在前述适用于微波炉解冻的控制方法的工作方法的实施方式也适用于本实施例提供的微波炉解冻的控制装置,在本实施例中不再详细描述。
图12是根据本发明一个实施例的微波炉解冻的控制装置的结构示意图。如图12所示,该微波炉解冻的控制装置可以包括:接收模块110A、解冻模块120A和控制模块130A。
具体地,接收模块110A可用于接收解冻指令。解冻模块120A可用于启动进行解冻。控制模块130A可用于控制解冻条件以使微波炉中的食物的温度保持在-3-0℃。其中,根据本发明的一个实施例,食物可为肉类或鱼类。此外,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。
根据本发明实施例的微波炉解冻的控制装置,通过接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明还提出了一种微波炉,包括上述图12所示实施例的微波炉解冻的控制装置。
根据本发明实施例的微波炉,通过控制装置中的接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
需要说明的是,还可控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,此时食物也可称为-3-0℃解冻食物。具体地,本发明还提出了另一种微波炉解冻的控制方法。
图13是根据本发明另一个实施例的微波炉解冻的控制方法的流程图。如图13所示,该微波炉解冻的控制方法可以包括:
S1301,接收解冻指令。
S1302,启动进行解冻。
S1303,控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃。
其中,根据本发明的一个实施例,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。此外,食物可为肉类或鱼类。
需要说明的是,通过本实施例提供的微波炉解冻的控制方法使得食物成为-3-0℃解冻食物所带来的好处,可参照上述实施例1-实施例8的详细描述。在此不再赘述。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解 冻,并控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
与上述实施例提供的微波炉解冻的控制方法相对应,本发明的另一种实施方式还提供一种微波炉解冻的控制装置,由于本发明提供的微波炉解冻的控制装置与前面实施例微波炉解冻的控制方法相对应,因此在前述适用于微波炉解冻的控制方法的工作方法的实施方式也适用于本实施例提供的微波炉解冻的控制装置,在本实施例中不再详细描述。
图14是根据本发明另一个实施例的微波炉解冻的控制装置的结构示意图。如图14所示,该微波炉解冻的控制装置可以包括:接收模块210A、解冻模块220A和控制模块230A。
具体地,接收模块210A可用于接收解冻指令。解冻模块220A可用于启动进行解冻。控制模块230A可用于控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃。其中,根据本发明的一个实施例,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。此外,食物可为肉类或鱼类。
根据本发明实施例的微波炉解冻的控制装置,接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明还提出了另一种微波炉,包括上述图14所示实施例的微波炉解冻的控制装置。
根据本发明实施例的微波炉,通过控制装置中的接收模块接收解冻指令,解冻模块启动进行解冻,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
本发明实施例又提出了另一种微波炉解冻的控制方法,该方法在解冻过程中,检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃。
需要说明的是,通过本实施例提供的微波炉解冻的控制方法使得食物成为-3-0℃解冻食物所带来的好处,可参照上述实施例1-实施例8的详细描述。在此不再赘述。
根据本发明实施例的微波炉解冻的控制方法,在解冻过程中,可实时检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明又提出了另一种微波炉解冻的控制装置,该装置在解冻过程中,检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃。
根据本发明实施例的微波炉解冻的控制装置,在解冻过程中,可实时检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明又提出了另一种微波炉,包括上述实施例的微波炉解冻的控制装置。
根据本发明实施例的微波炉,在解冻过程中,可实时检测微波炉中的食物的温度,并控制在解冻过程中食物的温度低于-3-0℃,且在解冻之后食物的温度保持在-3-0℃,通过大量的试验和理论分析,创新地发现通过将-3-0℃范围内的温度作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更加营养;(2)解冻后的食物更加卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
本发明还提出了一种微波炉解冻的控制方法。
图15是根据本发明一个实施例的微波炉解冻的控制方法的流程图。如图15所示,该微波炉解冻的控制方法可以包括:
S1501,接收解冻指令。
举例而言,假设微波炉解冻的控制方法可应用于微波炉中,微波炉可为用户提供具有解冻功能的按钮,当用户将待解冻的食物放入微波炉中进行解冻时,可通过按钮输入解冻指令。其中,根据本发明的一个实施例,食物可为肉类或鱼类。
S1502,启动进行解冻,并检测微波炉中食物的温度。
例如,微波炉在接收到解冻指令之后,可启动解冻功能来进行解冻,并实时检测微波炉中食物的温度。
S1503,控制解冻条件以使微波炉中的食物的温度保持在-1℃。
其中,根据本发明的一个实施例,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。
具体地,可通过控制解冻条件(如解冻时间、和/或解冻加热功率、和/或加热方向等)以使微波炉中的食物的温度保持在-1℃。例如,在解冻过程中,当检测到微波炉中食物的温度小于-20℃(如食物刚被放入微波炉中)时,可通过增大解冻加热功率以加速解冻的过程,当检测到微波炉中食物的当前温度为-5℃时,可减小解冻加热功率并控制到相应的解冻加热功率,使得微波炉中的食物的温度保持在-1℃,同时还可控制加热方向以使食物均匀解冻。
需要说明的是,在本发明的实施例中,如图2所示,可从微波炉中的食物选取12个点,并分别对该12个点进行温度测量(如检测每个点1/2高度处的温度),当测量12个点中有80%以上(即10个点以上)在-1±0.2℃范围内,可称该食物为-1℃解冻食物。其中,如图2所示,点1所在的列距边沿约占1/5长边的长度,点4所在的列距边沿约占1/5长边的长度,点1所在的行距边沿约占1/4短边的长度,点9所在的行距边沿约占1/4短边的长度,边缘四点(即点1、点4、点9、点12)距边角约占1/5对角线的长度。
还需要说明的是,发明人通过大量实验数据得出将待解冻食物通过微波炉解冻以使食物的温度保持在-1℃,提高了食物的营养保留率,且更加卫生,同时不影响对解冻食物的切割。
这是由于微波炉解冻时主要利用的是微波进行解冻,即微波直接作用于待解冻食物上,内外同时加热,不需传导辐射,不管有无空隙都能解冻。由于微波解冻是通过吸收介质的损耗而发热,故损耗较大者加热较快。水是吸收微波最强的介质,故对含水量大的物质加热非常有效。由于待解冻食物中的水分子只有解冻后才能吸收大量的微波,而囚禁在晶体冰内的水分子不能吸收微波,因此,当食物还存在晶体冰时食物的温度变化不大,但当食物的 晶体冰融化后,食物的温度会迅速变化。如图3所示,发明人经过多次试验根据选出的5次实验数据进行画图分析,可知在解冻区间食物的温度变化比较平稳,特别是在-1℃附近时由于食物还具有晶体冰,所以食物的温度变化不大;当0℃以上时,由于晶体冰逐渐融化,导致吸收微波的水介质逐渐变多,从而导致食物的温度会持续快速增高,而这样可能会导致食物变熟等问题。因此,选择-1℃作为食物的解冻终点温度。下面将结合实验数据以使得本领域的技术人员更加清楚地了解到-1℃解冻食物所带来的好处。
实施例9、-1℃解冻食物的温差分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,分别测量100g、200g、300g、400g和500g的猪里脊肉分别在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后肉块的最高温度,并分别测量其的最低温度,可得出100g、200g、300g、400g和500g的猪里脊肉分别在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的温差。如下面表33所示,为发明人经过多次试验从中选出5次平行实验所得到的实验数据。
Figure PCTCN2015090806-appb-000061
Figure PCTCN2015090806-appb-000062
表33
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表34所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000063
表34
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表35所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000064
表35
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表36所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000065
Figure PCTCN2015090806-appb-000066
表36
2、试验结果,图16(a)为根据表33中每组均值所画出的图表,图16(b)为根据表34中每组均值所画出的图表,图16(c)为根据表35中每组均值所画出的图表,图16(d)为根据表36中每组均值所画出的图表,由图16(a)、图16(b)、图16(c)和图16(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的温差也有所不同,且解冻后的食物在-1℃左右时,相对于解冻后温度在0℃以上的食物温差显著降低,解冻较均匀。
实施例10、-1℃解冻食物的肉汁渗出率分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,可通过公式“肉 汁量/肉块总重量*100%”分别计算出100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的肉汁渗出率。如下面表37所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000067
表37
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表38所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000068
Figure PCTCN2015090806-appb-000069
表38
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表39所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000070
Figure PCTCN2015090806-appb-000071
表39
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表40所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000072
Figure PCTCN2015090806-appb-000073
表40
2、试验结果,图17(a)为根据表37中每组均值所画出的图表,图17(b)为根据表38中每组均值所画出的图表,图17(c)为根据表39中每组均值所画出的图表,图17(d)为根据表40中每组均值所画出的图表,由图17(a)、图17(b)、图17(c)和图17(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的肉汁渗出率也有所不同,且解冻后的食物在-1℃左右时,相对于解冻后温度在0℃以上的食物肉汁渗出率降低明显,几乎没有肉汁损失。
实施例11、-1℃解冻食物的蛋白质含量分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,可通过凯氏定氮仪分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的蛋白质含量。如下面表41所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000074
Figure PCTCN2015090806-appb-000075
表41
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表42所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000076
Figure PCTCN2015090806-appb-000077
表42
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表43所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000078
表43
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表44所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000079
表44
2、试验结果,图18(a)为根据表41中每组均值所画出的图表,图18(b)为根据表42中每组均值所画出的图表,图18(c)为根据表43中每组均值所画出的图表,图18(d)为根据表44中每组均值所画出的图表,由图18(a)、图18(b)、图18(c)和图18(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的蛋白质含量也有所不同,且解冻后的食物在-1℃左右时,相对于解冻后温度在0℃以上的蛋白质含量略有上升,营养价值高。
实施例12、-1℃解冻食物的水分含量分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,可通过105℃干燥法分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的水分含量。如下面表45所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000080
表45
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与 100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表46所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000081
表46
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表47所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000082
Figure PCTCN2015090806-appb-000083
表47
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表48所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000084
Figure PCTCN2015090806-appb-000085
表48
2、试验结果,图19(a)为根据表45中每组均值所画出的图表,图19(b)为根据表46中每组均值所画出的图表,图19(c)为根据表47中每组均值所画出的图表,图19(d)为根据表48中每组均值所画出的图表,由图19(a)、图19(b)、图19(c)和图19(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的水分含量也有所不同,且解冻后的食物在-1℃左右时,相对于解冻后温度在0℃以上的水分含量略有上升,口感好。
实施例13、-1℃解冻食物的质构分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,可通过质构仪分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的剪切力。如下面表49所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000086
Figure PCTCN2015090806-appb-000087
表49
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表50所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000088
Figure PCTCN2015090806-appb-000089
表50
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表51所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000090
Figure PCTCN2015090806-appb-000091
表51
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表52所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000092
表52
2、试验结果,图20(a)为根据表49中每组均值所画出的图表,图20(b)为根据表 50中每组均值所画出的图表,图20(c)为根据表51中每组均值所画出的图表,图20(d)为根据表52中每组均值所画出的图表,由图20(a)、图20(b)、图20(c)和图20(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的剪切力也有所不同,且解冻后的食物在-1℃左右时,相对于解冻后温度在0℃以上的剪切力有轻微上升,但明显小于解冻后温度在-2℃左右的食材,因此更容易切割。
实施例14、-1℃解冻食物的黄度分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,可通过色差计分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的黄度。如下面表53所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000093
Figure PCTCN2015090806-appb-000094
表53
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表54所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000095
表54
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、 300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表55所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000096
表55
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表56所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000097
Figure PCTCN2015090806-appb-000098
表56
2、试验结果,图21(a)为根据表53中每组均值所画出的图表,图21(b)为根据表54中每组均值所画出的图表,图21(c)为根据表55中每组均值所画出的图表,图21(d)为根据表56中每组均值所画出的图表,由图21(a)、图21(b)、图21(c)和图21(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的黄度也有所不同,且解冻后的在0℃以上的食物相对于解冻后温度在-1℃左右的食物的黄度有明显上升,说明部分食物已经变色、煮熟。
实施例15、-1℃解冻食物的菌落总数分析
1、分别选取食物为猪里脊肉、鱼肉、鸡肉和牛肉,且分别选取每种食物100g(克)、200g、300g、400g和500g。
(1)对100g、200g、300g、400g和500g的猪里脊肉分别进行试验,首先,可分别将100g、200g、300g、400g和500g的猪里脊肉放入微波炉进行解冻,并使微波炉中的食物的温度保持在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)。之后,可通过稀释后培养计数法分别测量100g、200g、300g、400g和500g的猪里脊肉在不同解冻温度终点(-1℃解冻、0℃解冻和-2℃解冻)进行解冻后的菌落总数。如下面表57所示,为发明人经过多 次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000099
表57
(2)对100g、200g、300g、400g和500g的鱼肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表58所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000100
Figure PCTCN2015090806-appb-000101
表58
(3)对100g、200g、300g、400g和500g的鸡肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表59所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000102
Figure PCTCN2015090806-appb-000103
表59
(4)对100g、200g、300g、400g和500g的牛肉分别进行试验,试验的过程和方法与100g、200g、300g、400g和500g的猪里脊肉的过程和方法相同,可参照上述100g、200g、300g、400g和500g的猪里脊肉的过程和方法的描述,在此不再赘述。如下面表60所示,为发明人经过多次试验从中选出5次平行实验所得到的所有实验数据。
Figure PCTCN2015090806-appb-000104
Figure PCTCN2015090806-appb-000105
表60
2、试验结果,图22(a)为根据表57中每组均值所画出的图表,图22(b)为根据表58中每组均值所画出的图表,图22(c)为根据表59中每组均值所画出的图表,图22(d)为根据表60中每组均值所画出的图表,由图22(a)、图22(b)、图22(c)和图22(d)可知,不同食物不同重量在不同解冻温度终点进行解冻后的菌落总数也有所不同,且解冻后的食物在-1℃左右时,相对于解冻后温度在0℃以上的菌落总数明显较小,这是因为解冻后温度较低,微生物繁殖较慢,因此解冻后的食物更加卫生。
综上所述,发明人通过大量的试验和理论分析,创新地发现通过将食物的温度控制在-1℃左右,解冻后的食物更加营养,更加卫生,更容易切割,温差较低,无煮熟变色现象,因此确定-1℃作为食物解冻的最优终点温度较好。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并检测微波炉中食物的温度,以及控制解冻条件以使微波炉中的食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
与上述实施例提供的微波炉解冻的控制方法相对应,本发明的另一种实施方式还提供一种微波炉解冻的控制装置,由于本发明提供的微波炉解冻的控制装置与前面实施例微波炉解冻的控制方法相对应,因此在前述适用于微波炉解冻的控制方法的工作方法的实施方式也适用于本实施例提供的微波炉解冻的控制装置,在本实施例中不再详细描述。
图23是根据本发明一个实施例的微波炉解冻的控制装置的结构示意图。如图23所示,该微波炉解冻的控制装置可以包括:接收模块110B、检测模块120B和控制模块130B。
具体地,接收模块110B可用于接收解冻指令。检测模块120B可用于启动进行解冻,并检测微波炉中食物的温度。控制模块130B可用于控制解冻条件以使微波炉中的食物的温度保持在-1℃。其中,根据本发明的一个实施例,食物可为肉类或鱼类。此外,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。
根据本发明实施例的微波炉解冻的控制装置,通过检测模块在接收模块接收到解冻指令之后,启动进行解冻,并检测微波炉中食物的温度,控制模块控制解冻条件以使微波炉 中的食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明还提出了一种微波炉,包括上述图23所示实施例的微波炉解冻的控制装置。
根据本发明实施例的微波炉,通过控制装置中的检测模块在接收模块接收到解冻指令之后,启动进行解冻,并检测微波炉中食物的温度,控制模块控制解冻条件以使微波炉中的食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选的,也可控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃,此时食物也可称为-1℃解冻食物。具体地,本发明还提出了另一种微波炉解冻的控制方法。
图24是根据本发明另一个实施例的微波炉解冻的控制方法的流程图。如图24所示,该微波炉解冻的控制方法可以包括:
S2401,接收解冻指令。
S2402,启动进行解冻,并检测微波炉中食物的温度。
其中,根据本发明的一个实施例,食物可为肉类或鱼类。
S2403,控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃。
其中,根据本发明的一个实施例,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。
需要说明的是,通过本实施例提供的微波炉解冻的控制方法使得食物成为-1℃解冻食物所带来的好处,可参照上述实施例9-实施例15的详细描述。在此不再赘述。
根据本发明实施例的微波炉解冻的控制方法,可先接收解冻指令,之后可启动进行解冻,并检测微波炉中食物的温度,以及控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
与上述实施例提供的微波炉解冻的控制方法相对应,本发明的另一种实施方式还提供一种微波炉解冻的控制装置,由于本发明提供的微波炉解冻的控制装置与前面实施例微波炉解冻的控制方法相对应,因此在前述适用于微波炉解冻的控制方法的工作方法的实施方式也适用于本实施例提供的微波炉解冻的控制装置,在本实施例中不再详细描述。
图25是根据本发明另一个实施例的微波炉解冻的控制装置的结构示意图。如图25所示,该微波炉解冻的控制装置可以包括:接收模块210B、检测模块220B和控制模块230B。
具体地,接收模块210B可用于接收解冻指令。检测模块220B可用于启动进行解冻,并检测微波炉中食物的温度。其中,根据本发明的一个实施例,食物可为肉类或鱼类。控制模块230B可用于控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃。其中,根据本发明的一个实施例,控制解冻条件可具体包括控制解冻时间、解冻加热功率或加热方向等中的一种或多种。
根据本发明实施例的微波炉解冻的控制装置,通过检测模块在接收模块接收到解冻指令之后,启动进行解冻,并检测微波炉中食物的温度,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明还提出了另一种微波炉,包括上述图25所示实施例的微波炉解冻的控制装置。
根据本发明实施例的微波炉,通过控制装置中的检测模块在接收模块接收到解冻指令之后,启动进行解冻,并检测微波炉中食物的温度,控制模块控制解冻条件以使微波炉中的食物的温度在解冻之后保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
可选的,本发明实施例又提出了另一种微波炉解冻的控制方法,该方法在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃。
需要说明的是,通过本实施例提供的微波炉解冻的控制方法使得食物成为-1℃解冻食物所带来的好处,可参照上述实施例9-实施例15的详细描述。在此不再赘述。
根据本发明实施例的微波炉解冻的控制方法,在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明又提出了另一种微波炉解冻的控制装置,该装置在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃。
根据本发明实施例的微波炉解冻的控制装置,在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
为了实现上述实施例,本发明又提出了另一种微波炉,包括上述实施例的微波炉解冻的控制装置。
根据本发明实施例的微波炉,在解冻过程中,微波炉中的食物的温度低于-1℃,且在解冻之后食物的温度保持在-1℃,通过大量的试验和理论分析,创新地发现通过将-1℃作为食物解冻的最优终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
本发明还提出了一种微波炉解冻的控制方法。
下面参考图26-图34描述根据本发明实施例的微波炉100A解冻的控制方法。其中,微波炉100A具有解冻键22和微波发生装置,按下解冻键22,可以对放入微波炉100A内的食物200例如肉类(包括猪肉、鸡肉、鱼肉等)解冻。这里,需要说明的是,微波发生装置(包括微波源31、微波源馈能装置32、波导33、加热天线34或搅拌片35等)的结构以及工作原理等已为本领域的技术人员所熟知,这里不再详细说明。
如图26所示,根据本发明第一方面实施例的微波炉100A解冻的控制方法,包括以下步骤:
S2601、根据微波炉100A内的食物200的重量x计算总解冻时间T,其中总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;
S2602、控制微波发生装置启动,并以总解冻时间T对食物200进行解冻。
其中,食物200的重量x的单位为克。K的具体数值可以根据食物200的种类等具体选用,本发明对此不作具体限定。
总解冻时间T与食物200的重量x之间的关系是发明人通过对不同的食物200例如肉类、不同重量进行大量解冻测试得到的。
这样,由于根据肉类的重量就可以计算得到解冻该肉类所需要的总解冻时间T,因此,采用微波炉100A对食物200例如肉类进行解冻时,只需将肉类放入微波炉100A内,在总解冻时间T内对肉类进行解冻即可,操作方便,且通过对不同重量的食物200例如肉类的总解冻时间T进行精确计算,解决了传统的微波炉100A的解冻营养流失、部分熟的现象。
可选地,在总解冻时间T后,食物的温度为-3℃~0℃。也就是说,解冻过程结束后,食物例如肉类的温度在-3℃~0℃,优选为-1℃。由此,通过将-1℃作为食物解冻的终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
根据本发明实施例的微波炉100A解冻的控制方法,通过根据食物200的重量x来计算得到解冻食物200所需的总解冻时间T,解冻效果好。
进一步地,步骤S2602包括在依次连续的多个时间段依次采用多个火力等级解冻食物200,也就是说,可以将总解冻时间T划分为多个时间段,多个时间段在时间顺序上是连续的,在每个时间段内采用对应的火力等级对食物200进行解冻。其中,多个时间段之和为总解冻时间T,换言之,每个时间段小于总解冻时间T。多个时间段的大小可以相同,也可以不同;同样地,多个火力等级的大小也可以相同,或者不同。
根据本发明的一个实施例,例如,总解冻时间T被划分成四个时间段,不同的时间段,分别采用不同的火力等级对食物200例如肉类进行解冻。可以理解,满火力的具体数值可以根据食物200的种类等而适应性改变,本发明对此不作具体限定。
具体而言,如图27所示,步骤S2602具体包括:
S26021、在第一时间段t1内以第一火力等级解冻,第一火力等级为满火力的30%~60%;
S26022、在第二时间段t2内以第二火力等级解冻,第二火力等级为满火力的20%~40%;
S26023、在第三时间段t3内以第三火力等级解冻,第三火力等级为满火力的30%~60%;
S26024、在第四时间段t4内以第四火力等级解冻,第四火力等级为满火力的0%~30%。
其中,满火力是100%。
也就是说,总解冻时间T被划分为依次连续的第一时间段t1、第二时间段t2、第三时间段t3和第四时间段t4这四个时间段,在每个时间段内分别采用第一火力等级、第二火力等级、第三火力等级和第四火力等级对食物200例如肉类进行解冻。
可选地,第一时间段t1、第二时间段t2、第三时间段t3和第四时间段t4分别满足:
t1=K(n+1+a)/4
t2=K(n-1-a)/4
t3=K(n+1-a)/4
t4=K(n-1+a)/4
其中,n=x/100克,a=[1+(-1)n]/2。
由此,通过将总解冻时间T划分为四个时间段,在每个时间段内分别采用对应的火力等级解冻食物200,解冻均匀,营养无损失,且解冻速度快。
当然,本发明不限于此,总解冻时间T还可以被划分为两个、三个、五个、六个甚至更多个时间段,在每个时间段内分别采用相应的火力等级对食物200进行解冻,以达到更好的解冻效果。
根据本发明的一个可选实施例,在步骤S26022和步骤S26023之间,微波炉100A解冻的控制方法还包括:
S260221A、在第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;
S260222A、在检测到食物被翻面后,解冻过程被控制进入步骤S26023。
换言之,在解冻过程进行到第二时间段t2之后、第三时间段t3之前,暂停解冻过程,此时微波发生装置停止工作,不对微波炉100A内的食物进行解冻,且微波炉100A向用户发出将微波炉100A内的食物翻面的提示,在用户将微波炉100A内的食物翻面后,控制微波发生装置重新启动,以对微波炉100A内的食物继续解冻。
其中,在微波炉100A向用户发出将微波炉100A内的食物翻面的提示后,微波炉100A内可以设置检测装置以检测食物是否被翻面,例如,当微波发生装置向上发出微波时,检测装置可以检测食物的下表面的温度,在翻面之前,食物的下表面的温度应当高于食物的上表面的温度,翻面之后,食物的上表面和下表面互换,此时检测装置检测到的食物的下表面(即翻面之前的上表面)的温度相比于食物的上表面(即翻面之前的下表面)的温度较低,由此,可以确定食物已经翻面。可选地,检测装置为温度传感器。
根据本发明的另一个可选实施例,在步骤S26022和步骤S26023之间,微波炉100A解冻的控制方法还包括:
S260221B、在第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;
S260222B、检测微波发生装置被启动后,解冻过程被控制进入步骤S26023。
换言之,在解冻过程进行到第二时间段t2之后、第三时间段t3之前,暂停解冻过程, 此时微波发生装置停止工作,不对微波炉100A内的食物进行解冻,且微波炉100A向用户发出将微波炉100A内的食物翻面的提示,在用户将微波炉100A内的食物翻面后,控制微波发生装置重新启动,以对微波炉100A内的食物继续解冻。
其中,在微波炉100A向用户发出将微波炉100A内的食物翻面的提示后,用户可以按下微波炉100A上的解冻键22或启动键,控制微波发生装置重新启动,从而对微波炉100A内的食物继续解冻。
根据本发明的一个可选实施例,食物200的重量x可以根据解冻键22的触动状态来判断。例如,微波炉100A上设有1个解冻键22,解冻键22被构造成每按压一次、使得微波炉100A上显示的重量依次增加50克~100克。也就是说,用户可以首先预估食物200的重量x,然后根据重量x的预估值多次按压解冻键22,每按压一次解冻键22,微波炉100A上显示的重量逐次增加直至达到用户的预估值。可以理解,每按压一次解冻键22,微波炉100A上显示的重量的具体数值可以根据实际要求具体设计,本发明对此不作具体限定。
参照图28并结合图29a-图29e,微波炉100A的控制面板2上具有显示屏21,显示屏21的下方设有解冻键22,解冻键22为一个,每按压一次解冻键22,微波炉100A上显示的重量增加100克。例如,当用户预估食物200例如肉类的重量x=500克时,可以按压解冻键22五次,其中,每按压一次解冻键22,微波炉100A上显示的重量依次增加100克。
解冻食物200例如肉类的操作过程如图30所示,预估食物200例如肉类的重量x,并将食物200例如肉类放入微波炉100A内,然后根据重量x按下一次或多次解冻键22,以选择合适的解冻重量,微波炉100A可以根据上述解冻重量计算出总解冻时间T,接着按下微波炉100A上的启动键,解冻开始,此时微波发生装置启动,从而对食物200例如肉类解冻,当解冻至第二时间段t2之后、第三时间段t3之前时,微波炉100A暂停并提示翻面,用户翻面后重新启动微波炉100A解冻,直至解冻结束。
当然,解冻键22还可以包括与多个重量克数对应的多个解冻键22(图未示出)。此时微波炉100A的控制面板2上设有多个解冻键22,且与多个解冻键22对应的重量各不相同,当需要对食物200例如肉类进行解冻时,可以首先预估肉类的重量,然后在多个解冻键22中找出与肉类的重量的预估值最接近的解冻键22,并按压该解冻键22即可。
根据本发明的另一个可选实施例,还可以根据设在微波炉100A内的重量传感器4判断冻食物200的重量x。例如在图31的示例中,重量传感器4设在微波炉100A底部的炉脚12上,当微波炉100A内空置时,此时经重量传感器4检测得到的是微波炉100A未放置食物200的重量,在将食物200放入微波炉100A内后,此时重量传感器4检测到的是具有食物200的微波炉100A的重量,取上述两个重量的差值可得食物200的重量。可以理解,重量传感器4的个数可以根据实际要求具体设计,以准确地获取食物200例如肉类的重量。
例如在图32的示例中,微波炉100A内具有炉腔11,炉腔11通过隔板13分隔成烹饪腔111和位于烹饪腔111下方的加热腔112,食物200适于放置在烹饪腔111内,重量传感器4设在隔板13的底部,此时重量传感器4可以直接检测隔板13上食物200的重量。
解冻食物200例如肉类的操作过程如图33和图34所示,首先将食物200例如肉类放入微波炉100A内,微波炉100A内的重量传感器4可以自动检测食物200例如肉类的重量,微波炉100A可以根据上述检测得到的重量计算出总解冻时间T,然后按下解冻键22,接着按下启动键,解冻开始,此时微波发生装置启动,从而对食物200例如肉类解冻,当解冻至第二时间段t2之后、第三时间段t3之前时,微波炉100A暂停并提示翻面,用户翻面后重新启动微波炉100A解冻,直至解冻结束。
当然,重量传感器4还可以同时设在炉脚12和隔板13的底部,以进一步准确获取食物200例如肉类的重量。由此,通过在微波炉100A内设置重量传感器4,实现了微波炉100A自动检测,使得微波炉100A更加智能。
如图28、图31和图32所示,根据本发明第二方面实施例的微波炉100A,包括炉体1、控制面板2以及微波发生装置。其中,微波炉100A采用根据本发明上述第一方面实施例的微波炉100A的食物解冻控制方法对食物200进行解冻。
具体而言,炉体1内限定出适于放置食物200例如肉类的炉腔11,控制面板2设在炉体1上,例如炉体1的前表面上,控制面板2具有解冻键22和启动键,微波发生装置设在炉体1内,微波发生装置用于向炉腔11内发出微波以解冻食物200例如肉类。
根据本发明实施例的微波炉100A,通过采用根据本发明上述第一方面实施例的微波炉100A的食物解冻控制方法,解冻后的食物例如肉类营养无损失。
如图31所示,炉体1设有适于检测食物重量的重量传感器4,炉体1的底部具有炉脚12,重量传感器4设在炉脚12上。当微波炉100A内空置时,此时经重量传感器4检测得到的是微波炉100A未放置食物200的重量,在将食物200放入微波炉100A内后,此时重量传感器4检测到的是具有食物200的微波炉100A的重量,取上述两个重量的差值可得食物200的重量。
或者,如图32所示,炉体1设有适于检测食物重量的重量传感器4,炉腔11通过隔板13分隔成烹饪腔111和位于烹饪腔111下方的加热腔112,重量传感器4设在隔板13的底部,此时重量传感器4可以直接检测隔板13上食物200的重量。由此,通过在微波炉100A内设置重量传感器4,实现了微波炉100A自动检测,使得微波炉100A更加智能。
解冻食物200例如肉类的操作过程如图34所示,首先将食物200例如肉类放入微波炉100A内,微波炉100A内的重量传感器4可以自动检测食物200例如肉类的重量,微波炉100A可以根据上述检测得到的重量计算出总解冻时间T,然后按下解冻键22,接着按下启 动键,解冻开始,此时微波发生装置启动,从而对食物200例如肉类解冻,当解冻至第二时间段t2之后、第三时间段t3之前时,微波炉100A暂停并提示翻面,用户翻面后重新启动微波炉100A解冻,直至解冻结束。
当然,食物200的重量x可以根据解冻键22的触动状态来判断。例如,微波炉100A上设有1个解冻键22,解冻键22被构造成每按压一次、使得微波炉100A上显示的重量依次增加50克~100克。也就是说,用户可以首先预估食物200的重量x,然后根据重量x的预估值多次按压解冻键22,每按压一次解冻键22,微波炉100A上显示的重量逐次增加直至达到用户的预估值。可以理解,每按压一次解冻键22,微波炉100A上显示的重量的具体数值可以根据实际要求具体设计,本发明对此不作具体限定。
参照图28并结合图29a-图29e,微波炉100A的控制面板2上具有显示屏21,显示屏21的下方设有解冻键22,解冻键22为一个,每按压一次解冻键22,微波炉100A上显示的重量增加100克。例如,当用户预估食物200例如肉类的重量x=500克时,可以按压解冻键22五次,其中,每按压一次解冻键22,微波炉100A上显示的重量依次增加100克。
解冻食物200例如肉类的操作过程如图30所示,预估食物200例如肉类的重量x,并将食物200例如肉类放入微波炉100A内,然后根据重量x按下一次或多次解冻键22,以选择合适的解冻重量,微波炉100A可以根据上述解冻重量计算出总解冻时间T,接着按下微波炉100A上的启动键,解冻开始,此时微波发生装置启动,从而对食物200例如肉类解冻,当解冻至第二时间段t2之后、第三时间段t3之前时,微波炉100A暂停并提示翻面,用户翻面后重新启动微波炉100A解冻,直至解冻结束。
当然,解冻键22还可以包括与多个重量克数对应的多个解冻键22(图未示出)。此时微波炉100A的控制面板2上设有多个解冻键22,且与多个解冻键22对应的重量各不相同,当需要对食物200例如肉类进行解冻时,可以首先预估肉类的重量,然后在多个解冻键22中找出与肉类的重量的预估值最接近的解冻键22,并按压该解冻键22即可。
根据本发明实施例的微波炉100A的其他构成以及操作对于本领域技术人员而言都是已知的,这里不再详细描述。
本发明还提出了另一种微波炉解冻的控制方法。
下面参考图35-图40描述根据本发明实施例的微波炉100B解冻的控制方法。其中,微波炉100B具有解冻键22和微波发生装置,按下解冻键22,可以对放入微波炉100B内的食物200例如肉类(包括猪肉、鸡肉、鱼肉等)解冻。这里,需要说明的是,微波发生装置(包括微波源31、微波源馈能装置32、波导33、加热天线34或搅拌片35等)的结构以及工作原理等已为本领域的技术人员所熟知,这里不再详细说明。
如图35所示,根据本发明第一方面实施例的微波炉100B解冻的控制方法,包括以下步骤:
S3501、检测微波炉100B内的食物200上多个测温点131的温度;
S3502、控制微波发生装置启动,并根据食物200例如肉类上多个测温点131的温度对食物200进行解冻。
其中,在步骤S3501中,测温点131的个数以及在食物200上的分布情况可以根据实际要求具体设计,例如,如图39所示,当食物200放置在微波炉100B内的隔板13上时,多个测温点131可以在隔板13上呈矩阵排布,此时食物200上的测温点131也呈多排多列分布;或者,如图40所示,多个测温点131也可以以隔板13上的一点为圆心、呈多圈环状分布,每圈测温点131包括沿周向分布的多个测温点131,此时隔板13上的至少部分测温点131落在食物200上,以达到更好的检测效果。
在步骤S3502中,在微波炉100B对食物200例如肉类进行解冻的过程中,可以根据上述食物200上多个测温点131的温度来控制解冻火力和/或解冻时间,从而可以达到较好的解冻效果,解决了传统的微波炉100B的解冻营养流失、部分熟的现象。
可选地,解冻过程结束后,食物例如肉类的温度为-3℃~0℃,优选为-1℃。从而可以实现快速解冻,解冻均匀,且营养无损失。另外,通过将-1℃作为食物解冻的终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
根据本发明实施例的微波炉100B解冻的控制方法,通过根据食物200例如肉类上多个测温点131的温度对食物200进行解冻,解冻效果好。
其中,步骤S3501中可以根据设在微波炉100B内的红外测温传感器5检测食物200上多个测温点131的温度。红外测温传感器5可以扫描食物200例如肉类的初温,并统计食物200例如肉类上测温点131的个数,例如在图39的示例中食物200例如肉类上测温点131的个数均为14个,在图40的示例中食物200例如肉类上测温点131的个数均为15个。
如图36所示,红外测温传感器5设在微波炉100B内,具体而言,微波炉100B内限定出炉腔11,炉腔11通过隔板13分隔成烹饪腔111和位于烹饪腔111下方的加热腔112,红外测温传感器5设在炉腔11外且位于烹饪腔111的上部,烹饪腔111上形成有通孔141,红外测温传感器5具有红外测温传感探头,红外测温传感探头与通孔141对应。
可选地,红外测温传感器5倾斜地设在炉腔11外的侧壁上,且靠近炉腔11的顶壁设置,微波炉100B内设有适于安装红外测温传感器5的安装部14,安装部14由炉腔11的侧壁的一部分向外凸出形成,通孔141形成在安装部14上。当然,红外测温传感器5还可以设在炉腔11外的顶壁上(图未示出)。可以理解,红外测温传感器5的具体设置位置, 安装部14的形状、成型方式等可以根据实际要求具体设计,本发明对此不作特殊限定。
具体而言,红外测温传感器5具有M个红外测温传感探头,例如在图39的示例中红外测温传感器5具有1-64共64个红外测温传感探头;在图40的示例中红外测温传感器5具有1-8共8个红外测温传感探头,当红外测温传感器5转动时,可以实现隔板13全表面扫描。其中,红外测温传感器5可以由电机6例如步进电机驱动旋转。
食物200例如肉类上多个测温点131的温度由N个红外测温传感探头检测得到,如图39所示,食物200例如肉类表面分布14个测温点131,编号分别为:20、21、22、27、28、29、30、35、36、37、38、43、44、45;如图40所示,通过扫描得出食物200例如肉类表面分布15个测温点131。
其中,N和M均为正整数,且N小于等于M。当食物200例如肉类覆盖整个隔板13的上表面时,N等于M。
根据本发明的一个具体实施例,步骤S3502包括根据N个红外测温传感探头的温度检测值依次采用多个火力等级解冻食物200。换言之,根据食物200例如肉类上的多个测温点131的温度值,分布采用不同、或部分相同的火力等级对食物200例如肉类进行解冻。
具体而言,步骤S3502具体包括:
S35021、微波发生装置启动后以第一火力等级解冻,第一火力等级为满火力的30%~60%;
S35022、当N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,第二火力等级为满火力的20%~40%;
S35023、当N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,第三火力等级为满火力的30%~60%;
S35024、当N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,第四火力等级为满火力的0%~30%;
S35025、当N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
其中,满火力是100%。可以理解,满火力的具体数值可以根据食物200的种类等而适应性改变,本发明对此不作具体限定。
也就是说,在微波发生装置启动后,首先采用第一火力等级对食物200例如肉类进行解冻,第一火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,采用第二火力等级对食物200例如肉类进行解冻,第二火力等级为满火力的20%~40%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有60%的测温点131的温度大于-4℃时,采用第三火力等级对食物200例如肉类进行解冻,第三火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有 30%的测温点131的温度在-3℃~0℃内时,采用第四火力等级对食物200例如肉类进行解冻,第四火力等级为满火力的0%~30%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
如图36所示,红外测温传感器5是固定不动的,红外测温传感器5具有64个红外测温传感探头,隔板13上对应均布有64个测温点131。
解冻时,参照图37和图38并结合图39,首先将食物200例如肉类放入微波炉100B内,红外测温传感器5扫描肉类初温,并统计肉类上测温点131的个数(14个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻。
具体而言,首先采用第一火力等级对食物200例如肉类进行解冻,第一火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,采用第二火力等级对食物200例如肉类进行解冻,第二火力等级为满火力的20%~40%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有60%的测温点131的温度大于-4℃时,采用第三火力等级对食物200例如肉类进行解冻,第三火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度在-3℃~0℃内时,采用第四火力等级对食物200例如肉类进行解冻,第四火力等级为满火力的0%~30%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
如图36所示,红外测温传感器5可以通过与其相连的电机6驱动其转动,红外测温传感器5具有8个红外测温传感探头,隔板13上对应均布有8个测温点131,8个测温点131在隔板13上排成一条直线。
解冻时,参照图37和图38并结合图40,首先将食物200(即待解冻食物)例如肉类放入微波炉100B内,步进电机驱动红外测温传感器5旋转,从而实现全表面扫描,检测肉类的初温,并通过扫描得出肉类表面分布的测温点131的个数(15个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻,启动微波发生装置以对肉类进行解冻。
具体而言,首先采用第一火力等级对食物200例如肉类进行解冻,第一火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,采用第二火力等级对食物200例如肉类进行解冻,第二火力等级为满火力的20%~40%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有60%的测温点131的温度大于-4℃时,采用第三火力等级 对食物200例如肉类进行解冻,第三火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度在-3℃~0℃内时,采用第四火力等级对食物200例如肉类进行解冻,第四火力等级为满火力的0%~30%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
如图36所示,根据本发明第二方面实施例的微波炉100B,包括炉体1、测温装置以及微波发生装置。其中,微波炉100B采用根据本发明上述第一方面实施例的微波炉100B解冻的控制方法对食物200进行解冻。
具体而言,炉体1内限定出适于放置食物200例如肉类的炉腔11,控制面板2设在炉体1上,例如炉体1的前表面上,控制面板2具有解冻键22,微波发生装置设在炉体1内,微波发生装置用于向炉腔11内发出微波以解冻食物200例如肉类。
测温装置设在炉体1内以检测食物200上多个测温点131的温度。可选地,测温装置为红外测温传感器5,红外测温传感器5设在炉体1内的上部。
红外测温传感器5设在炉腔11内,具体而言,参照图36,炉腔11通过隔板13分隔成烹饪腔111和位于烹饪腔111下方的加热腔112,红外测温传感器5设在炉腔11外且位于烹饪腔111的上部,烹饪腔111上形成有通孔141,红外测温传感器5具有红外测温传感探头,红外测温传感探头与通孔141对应。
例如,红外测温传感器5倾斜地设在炉腔11外的侧壁上,且靠近炉腔11的顶壁设置,微波炉100B内设有适于安装红外测温传感器5的安装部14,安装部14由炉腔11的侧壁的一部分向外凸出形成,通孔141形成在安装部14上。当然,红外测温传感器5还可以设在炉腔11外的顶壁上(图未示出)。可以理解,红外测温传感器5的具体设置位置,安装部14的形状、成型方式等可以根据实际要求具体设计,本发明对此不作特殊限定。
如图36所示,红外测温传感器5是固定不动的,红外测温传感器5具有64个红外测温传感探头,隔板13上对应均布有64个测温点131。
解冻时,参照图37和图38并结合图39,首先将食物200例如肉类放入微波炉100B内,红外测温传感器5扫描肉类初温,并统计肉类上测温点131的个数(14个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻。
具体而言,首先采用第一火力等级对食物200例如肉类进行解冻,第一火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,采用第二火力等级对食物200例如肉类进行解冻,第二火力等级为满火力的20%~40%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有60%的测温点131的温度大于-4℃时,采用第三火力等级 对食物200例如肉类进行解冻,第三火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度在-3℃~0℃内时,采用第四火力等级对食物200例如肉类进行解冻,第四火力等级为满火力的0%~30%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
如图36所示,红外测温传感器5可以通过与其相连的电机6驱动其转动,红外测温传感器5具有8个红外测温传感探头,隔板13上对应均布有8个测温点131,8个测温点131在隔板13上排成一条直线。
解冻时,参照图37和图38并结合图40,首先将食物200例如肉类放入微波炉100B内,步进电机驱动红外测温传感器5旋转,从而实现全表面扫描,检测肉类的初温,并通过扫描得出肉类表面分布的测温点131的个数(15个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻,启动微波发生装置以对肉类进行解冻。
具体而言,首先采用第一火力等级对食物200例如肉类进行解冻,第一火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,采用第二火力等级对食物200例如肉类进行解冻,第二火力等级为满火力的20%~40%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有60%的测温点131的温度大于-4℃时,采用第三火力等级对食物200例如肉类进行解冻,第三火力等级为满火力的30%~60%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有30%的测温点131的温度在-3℃~0℃内时,采用第四火力等级对食物200例如肉类进行解冻,第四火力等级为满火力的0%~30%;不断检测食物200例如肉类的温度,当食物200例如肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
根据本发明实施例的微波炉100B,通过采用根据本发明上述第一方面实施例的微波炉100B解冻的控制方法,解冻后的食物例如肉类营养无损失。
根据本发明实施例的微波炉100B的其他构成以及操作对于本领域技术人员而言都是已知的,这里不再详细描述。
本发明又提出了另一种微波炉解冻的控制方法。可以理解,本发明实施例的微波炉的结构可与上述实施例的微波炉100B的结构相同,为了节省篇幅,对于下面针对本发明实施例的微波炉的结构的说明可参照上述实施例的微波炉100B的结构。
下面参考图36-图41描述根据本发明实施例的微波炉100B解冻的控制方法。其中,微 波炉100B具有解冻键22和微波发生装置,按下解冻键22,可以对放入微波炉100B内的食物200例如肉类(包括猪肉、鸡肉、鱼肉等)解冻。这里,需要说明的是,微波发生装置(包括微波源31、微波源馈能装置32、波导33等)的结构以及工作原理等已为本领域的技术人员所熟知,这里不再详细说明。
如图41所示,根据本发明第一方面实施例的微波炉100B解冻的控制方法,微波炉100B中具有可旋转的加热天线34,该控制方法包括以下步骤:
S4101、检测微波炉100B内食物200多个测温点131的温度。
S4102、根据多个测温点131的温度确定加热天线34的加热角度。
S4103、根据加热角度控制加热天线34转动。
其中,在步骤S4101中,测温点131的个数以及在食物200上的分布情况可以根据实际要求具体设计,例如,如图39所示,当食物200放置在微波炉100B内的隔板13上时,多个测温点131可以在隔板13上呈矩阵排布,此时食物200上的测温点131也呈多排多列分布;或者,如图40所示,多个测温点131也可以以隔板13上的一点为圆心、呈多圈环状分布,每圈测温点131包括沿周向分布的多个测温点131,此时隔板13上的至少部分测温点131落在食物200上,以达到更好的检测效果。
在步骤S4102和S4103中,在微波炉100B对食物200例如肉类进行解冻的过程中,可以不断地对食物200例如肉类上多个测温点131的温度进行检测,以确定加热天线34的加热角度,在加热角度确定后,将加热天线34转动至加热角度以解冻食物200例如肉类。
例如,在步骤S4102中,可以判断多个测温点131中的最低温度点的位置;在步骤S4103中,控制加热天线34转动至最低温度点,以使被解冻食物上的最低温度点得到更强的微波加热。由此,根据上述食物200上多个测温点131的温度来控制加热天线34的加热位置,可以达到较好的解冻效果,且解决了传统的微波炉100B的解冻营养流失、部分熟的现象。
根据本发明实施例的微波炉100B的食物解冻控制方法,通过根据食物200例如肉类上多个测温点131的温度对食物200进行解冻,解冻效果好。
在步骤S4101和步骤S4102之间,微波炉100B解冻的控制方法还包括:
S41011、控制加热天线34匀速旋转。
S41012、当多个测温点131中的30%的温度大于-4℃时,解冻过程被控制进入步骤S4102。
也就是说,在微波炉100B内的微波发生装置被控制启动后,可以首先控制加热天线34匀速转动,从而对食物200例如肉类进行均匀解冻;在解冻过程中,当食物200例如肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,启动定向加热模式,即判断食物200例如肉类上多个测温点131中的最低温度点,旋转加热天线34到一定位置,使被 解冻食物例如肉类上的最低温度点得到更强的微波加热。
步骤S4103之后,微波炉100B解冻的控制方法还包括:
S4104、当多个测温点131中的80%的温度在-3℃~0℃内时,停止解冻。
换言之,解冻过程中不断检测被解冻食物例如肉类上多个测温点131的温度,当食物200例如肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止对食物200例如肉类解冻,此时解冻过程结束。
其中,步骤S4101中根据设在微波炉100B内的红外测温传感器5检测多个测温点131的温度。红外测温传感器5可以扫描食物200例如肉类的初温,并统计食物200例如肉类上测温点131的个数,例如在图39的示例中食物200例如肉类上测温点131的个数均为14个,在图40的示例中食物200例如肉类上测温点131的个数均为15个。
如图36所示,红外测温传感器5设在微波炉100B内,具体而言,微波炉100B内限定出炉腔11,炉腔11通过隔板13分隔成烹饪腔111和位于烹饪腔111下方的加热腔112,红外测温传感器5设在炉腔11外且位于烹饪腔111的上部,烹饪腔111上形成有通孔141,红外测温传感器5具有红外测温传感探头,红外测温传感探头与通孔141对应。
可选地,红外测温传感器5倾斜地设在炉腔11外的侧壁上,且靠近炉腔11的顶壁设置,微波炉100B内设有适于安装红外测温传感器5的安装部14,安装部14由炉腔11的侧壁的一部分向外凸出形成,通孔141形成在安装部14上。当然,红外测温传感器5还可以设在炉腔11外的顶壁上(图未示出)。可以理解,红外测温传感器5的具体设置位置,安装部14的形状、成型方式等可以根据实际要求具体设计,本发明对此不作特殊限定。
具体而言,红外测温传感器5具有M个红外测温传感探头,例如在图39的示例中红外测温传感器5具有1-64共64个红外测温传感探头;在图40的示例中红外测温传感器5具有1-8共8个红外测温传感探头,当红外测温传感器5转动时,可以实现隔板13全表面扫描。其中,红外测温传感器5可以由电机6例如步进电机驱动旋转。
食物200例如肉类上多个测温点131的温度由N个红外测温传感探头检测得到,如图39所示,食物200例如肉类表面分布14个测温点131,编号分别为:20、21、22、27、28、29、30、35、36、37、38、43、44、45;如图40所示,通过扫描得出食物200例如肉类表面分布15个测温点131。
其中,N和M均为正整数,且N小于等于M。当食物200例如肉类覆盖整个隔板13的上表面时,N等于M。
如图36所示,红外测温传感器5是固定不动的,红外测温传感器5具有64个红外测温传感探头,隔板13上对应均布有64个测温点131。
解冻时,参照图37和图38并结合图39,首先将食物200例如肉类放入微波炉100B 内,红外测温传感器5扫描肉类初温,并统计肉类上测温点131的个数(14个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻。
具体而言,首先控制加热天线34匀速旋转,不断检测肉类的温度,当出现肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,启动定向加热模式;判断肉类上多个测温点131中的最低温度点,旋转加热天线34到一定位置,使肉类上的最低温度点得到更强的微波加热;不断检测肉类上多个测温点131的温度,当肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
如图36所示,红外测温传感器5可以通过与其相连的电机6驱动其转动,红外测温传感器5具有8个红外测温传感探头,隔板13上对应均布有8个测温点131,8个测温点131在隔板13上排成一条直线。
解冻时,参照图37和图38并结合图40,首先将食物200例如肉类放入微波炉100B内,步进电机驱动红外测温传感器5旋转,从而实现全表面扫描,检测肉类的初温,并通过扫描得出肉类表面分布的测温点131的个数(15个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻,启动微波发生装置以对肉类进行解冻。
具体而言,首先控制加热天线34匀速旋转,不断检测肉类的温度,当出现肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,启动定向加热模式;判断肉类上多个测温点131中的最低温度点,旋转加热天线34到一定位置,使肉类上的最低温度点得到更强的微波加热;不断检测肉类上多个测温点131的温度,当肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
在解冻过程结束后,食物例如肉类的温度为-3℃~0℃,优选为-1℃。从而可以实现快速解冻,解冻均匀,且营养无损失。另外,通过将-1℃作为食物解冻的终点温度,至少具有以下优点:(1)解冻后的食物更营养;(2)解冻后的食物更卫生;(3)解冻后的食物温差更低,无煮熟变色现象;(4)解冻后的食物剪切力适中,更易切割和操作。
如图36所示,根据本发明第二方面实施例的微波炉100B,包括炉体1、测温装置以及微波发生装置。其中,微波炉100B采用根据本发明上述第一方面实施例的微波炉100B解冻的控制方法对食物200进行解冻。
具体而言,炉体1内限定出适于放置食物200例如肉类的炉腔11,控制面板2设在炉体1上,例如炉体1的前表面上,控制面板2具有解冻键22,微波发生装置设在炉体1内,微波发生装置用于向炉腔11内发出微波以解冻食物200例如肉类。
测温装置设在炉体1内以检测食物200上多个测温点131的温度。可选地,测温装置为红外测温传感器5,红外测温传感器5设在炉体1内的上部。
红外测温传感器5设在炉腔11内,具体而言,参照图36,炉腔11通过隔板13分隔成烹饪腔111和位于烹饪腔111下方的加热腔112,红外测温传感器5设在炉腔11外且位于烹饪腔111的上部,烹饪腔111上形成有通孔141,红外测温传感器5具有红外测温传感探头,红外测温传感探头与通孔141对应。
例如,红外测温传感器5倾斜地设在炉腔11外的侧壁上,且靠近炉腔11的顶壁设置,微波炉100B内设有适于安装红外测温传感器5的安装部14,安装部14由炉腔11的侧壁的一部分向外凸出形成,通孔141形成在安装部14上。当然,红外测温传感器5还可以设在炉腔11外的顶壁上(图未示出)。可以理解,红外测温传感器5的具体设置位置,安装部14的形状、成型方式等可以根据实际要求具体设计,本发明对此不作特殊限定。
如图36所示,红外测温传感器5是固定不动的,红外测温传感器5具有64个红外测温传感探头,隔板13上对应均布有64个测温点131。
解冻时,参照图37和图38并结合图39,首先将食物200例如肉类放入微波炉100B内,红外测温传感器5扫描肉类初温,并统计肉类上测温点131的个数(14个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻。
具体而言,首先控制加热天线34匀速旋转,不断检测肉类的温度,当出现肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,启动定向加热模式;判断肉类上多个测温点131中的最低温度点,旋转加热天线34到一定位置,使肉类上的最低温度点得到更强的微波加热;不断检测肉类上多个测温点131的温度,当肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
如图36所示,红外测温传感器5可以通过与其相连的电机6驱动其转动,红外测温传感器5具有8个红外测温传感探头,隔板13上对应均布有8个测温点131,8个测温点131在隔板13上排成一条直线。
解冻时,参照图37和图38并结合图40,首先将食物200例如肉类放入微波炉100B内,步进电机驱动红外测温传感器5旋转,从而实现全表面扫描,检测肉类的初温,并通过扫描得出肉类表面分布的测温点131的个数(15个),然后按下微波炉100B的控制面板2上的解冻键22,启动微波发生装置以对肉类进行解冻,启动微波发生装置以对肉类进行解冻。
具体而言,首先控制加热天线34匀速旋转,不断检测肉类的温度,当出现肉类上多个测温点131中有30%的测温点131的温度大于-4℃时,启动定向加热模式;判断肉类上多个测温点131中的最低温度点,旋转加热天线34到一定位置,使肉类上的最低温度点得到更强的微波加热;不断检测肉类上多个测温点131的温度,当肉类上多个测温点131中有80%的测温点131的温度在-3℃~0℃内时,停止解冻,此时解冻过程结束。
根据本发明实施例的微波炉100B,通过采用根据本发明上述第一方面实施例的微波炉100B解冻的控制方法,解冻后的食物例如肉类营养无损失。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现 场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (107)

  1. 一种微波炉解冻的控制方法,其特征在于,包括以下步骤:
    S1、接收解冻指令;
    S2、启动进行解冻;以及
    S3、控制解冻条件以使所述微波炉中的食物的温度保持在-3-0℃。
  2. 如权利要求1所述的微波炉解冻的控制方法,其特征在于,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
  3. 如权利要求1所述的微波炉解冻的控制方法,其特征在于,其中,所述微波炉具有微波发生装置,所述步骤S2具体包括:
    控制所述微波发生装置启动,并进行解冻。
  4. 如权利要求1所述的微波炉解冻的控制方法,其特征在于,还包括:
    S4、判断所述微波炉中的食物的重量x。
  5. 如权利要求4所述的微波炉解冻的控制方法,其特征在于,所述步骤S3具体包括:
    S31A、根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;
    S32A、控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
  6. 如权利要求5所述的微波炉解冻的控制方法,其特征在于,所述步骤S32A包括在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
  7. 如权利要求6所述的微波炉解冻的控制方法,其特征在于,所述步骤S32A具体包括:
    S321、在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    S322、在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;
    S323、在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;
    S324、在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
  8. 如权利要求7所述的微波炉解冻的控制方法,其特征在于,所述第一时间段t1、 所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:
    t1=K(n+1+a)/4,
    t2=K(n-1-a)/4,
    t3=K(n+1-a)/4,
    t4=K(n-1+a)/4
    其中,所述n=x/100克,所述a=[1+(-1)n]/2。
  9. 如权利要求7或8所述的微波炉解冻的控制方法,其特征在于,在所述步骤S322和步骤S323之间,还包括:
    S3221A、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;
    S3222A、在检测到食物被翻面后,解冻过程被控制进入所述步骤S323。
  10. 如权利要求7或8所述的微波炉解冻的控制方法,其特征在于,在所述步骤S322和步骤S323之间,还包括:
    S3221B、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;
    S3222B、检测所述微波发生装置被启动后,解冻过程被控制进入所述步骤S323。
  11. 如权利要求4所述的微波炉解冻的控制方法,其特征在于,所述微波炉具有解冻键,其中,根据所述解冻键的触动状态判断所述食物的重量x。
  12. 如权利要求11所述的微波炉解冻的控制方法,其特征在于,所述解冻键为1个,所述解冻键被构造成每按压一次、使得所述微波炉上显示的重量依次增加50克~100克。
  13. 如权利要求11所述的微波炉解冻的控制方法,其特征在于,所述解冻键包括与多个重量克数对应的多个解冻键。
  14. 如权利要求4所述的微波炉解冻的控制方法,其特征在于,根据设在所述微波炉内的重量传感器判断所述食物的重量x。
  15. 如权利要求1所述的微波炉解冻的控制方法,其特征在于,还包括:
    S5、检测所述微波炉中的食物上多个测温点的温度。
  16. 如权利要求15所述的微波炉解冻的控制方法,其特征在于,所述步骤S3具体包括:
    S31B、根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
  17. 如权利要求15所述的微波炉解冻的控制方法,其特征在于,所述步骤S5中 根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
  18. 如权利要求17所述的微波炉解冻的控制方法,其特征在于,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
  19. 如权利要求18所述的微波炉解冻的控制方法,其特征在于,所述步骤S31B包括根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
  20. 如权利要求19所述的微波炉解冻的控制方法,其特征在于,所述步骤S31B具体包括:
    S311、以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    S312、当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;
    S313、当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;
    S314、当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;
    S315、当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
  21. 如权利要求17所述的微波炉解冻的控制方法,其特征在于,所述红外测温传感器由电机驱动旋转。
  22. 如权利要求15所述的微波炉解冻的控制方法,其特征在于,所述微波炉中具有可旋转的加热天线,其中,所述步骤S3具体包括:
    S31C、根据所述多个测温点的温度确定所述加热天线的加热角度;
    S32C、根据所述加热角度控制所述加热天线转动以使所述食物的温度保持在-3-0℃。
  23. 如权利要求22所述的微波炉解冻的控制方法,其特征在于,所述步骤S31C中,判断所述多个测温点中的最低温度点的位置;
    所述步骤S32C中,控制所述加热天线转动至所述最低温度点。
  24. 如权利要求22所述的微波炉解冻的控制方法,其特征在于,在所述步骤S5和所述步骤S31C之间,还包括:
    S6、控制所述加热天线匀速旋转;
    S7、当所述多个测温点中的30%的温度大于-4℃时,解冻过程被控制进入所述步骤 S31C。
  25. 如权利要求22所述的微波炉解冻的控制方法,其特征在于,所述步骤S32C具体包括:
    当所述多个测温点中的80%的温度在-3℃~0℃内时,停止解冻。
  26. 如权利要求1至25中任一项所述的微波炉解冻的控制方法,其特征在于,所述食物为肉类或鱼类。
  27. 如权利要求1至26中任一项所述的微波炉解冻的控制方法,其特征在于,其中,控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
  28. 一种微波炉解冻的控制方法,其特征在于,包括以下步骤:
    S1、接收解冻指令;
    S2、启动进行解冻;以及
    S3、控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-3-0℃。
  29. 如权利要求28所述的微波炉解冻的控制方法,其特征在于,所述控制解冻条件具体包括控制解冻时间、解冻加热功率或加热方向中的一种或多种。
  30. 如权利要求28所述的微波炉解冻的控制方法,其特征在于,其中,所述微波炉具有微波发生装置,所述步骤S2具体包括:
    控制所述微波发生装置启动,并进行解冻。
  31. 如权利要求28所述的微波炉解冻的控制方法,其特征在于,还包括:
    S4、判断所述微波炉中的食物的重量x。
  32. 如权利要求31所述的微波炉解冻的控制方法,其特征在于,所述步骤S3具体包括:
    S31A、根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;
    S32A、控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
  33. 如权利要求32所述的微波炉解冻的控制方法,其特征在于,所述步骤S32A包括在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
  34. 如权利要求33所述的微波炉解冻的控制方法,其特征在于,所述步骤S32A具体包括:
    S321、在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    S322、在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;
    S323、在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;
    S324、在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
  35. 如权利要求34所述的微波炉解冻的控制方法,其特征在于,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:
    t1=K(n+1+a)/4,
    t2=K(n-1-a)/4,
    t3=K(n+1-a)/4,
    t4=K(n-1+a)/4
    其中,所述n=x/100克,所述a=[1+(-1)n]/2。
  36. 如权利要求34或35所述的微波炉解冻的控制方法,其特征在于,在所述步骤S322和步骤S323之间,还包括:
    S3221A、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;
    S3222A、在检测到食物被翻面后,解冻过程被控制进入所述步骤S323。
  37. 如权利要求34或35所述的微波炉解冻的控制方法,其特征在于,在所述步骤S322和步骤S323之间,还包括:
    S3221B、在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;
    S3222B、检测所述微波发生装置被启动后,解冻过程被控制进入所述步骤S323。
  38. 如权利要求31所述的微波炉解冻的控制方法,其特征在于,所述微波炉具有解冻键,其中,根据所述解冻键的触动状态判断所述食物的重量x。
  39. 如权利要求38所述的微波炉解冻的控制方法,其特征在于,所述解冻键为1个,所述解冻键被构造成每按压一次、使得所述微波炉上显示的重量依次增加50克~100克。
  40. 如权利要求38所述的微波炉解冻的控制方法,其特征在于,所述解冻键包括与多个重量克数对应的多个解冻键。
  41. 如权利要求31所述的微波炉解冻的控制方法,其特征在于,根据设在所述微波炉内的重量传感器判断所述食物的重量x。
  42. 如权利要求28所述的微波炉解冻的控制方法,其特征在于,还包括:
    S5、检测所述微波炉中的食物上多个测温点的温度。
  43. 如权利要求42所述的微波炉解冻的控制方法,其特征在于,所述步骤S3具体包括:
    S31B、根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
  44. 如权利要求42所述的微波炉解冻的控制方法,其特征在于,所述步骤S5中根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
  45. 如权利要求44所述的微波炉解冻的控制方法,其特征在于,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
  46. 如权利要求45所述的微波炉解冻的控制方法,其特征在于,所述步骤S31B包括根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
  47. 如权利要求46所述的微波炉解冻的控制方法,其特征在于,所述步骤S31B具体包括:
    S311、以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    S312、当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;
    S313、当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;
    S314、当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;
    S315、当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
  48. 如权利要求44所述的微波炉解冻的控制方法,其特征在于,所述红外测温传感器由电机驱动旋转。
  49. 如权利要求42所述的微波炉解冻的控制方法,其特征在于,所述微波炉中具有可旋转的加热天线,其中,所述步骤S3具体包括:
    S31C、根据所述多个测温点的温度确定所述加热天线的加热角度;
    S32C、根据所述加热角度控制所述加热天线转动以使所述食物的温度在解冻之后保持在-3-0℃。
  50. 如权利要求49所述的微波炉解冻的控制方法,其特征在于,所述步骤S31C中,判断所述多个测温点中的最低温度点的位置;
    所述步骤S32C中,控制所述加热天线转动至所述最低温度点。
  51. 如权利要求49所述的微波炉解冻的控制方法,其特征在于,在所述步骤S5和所述步骤S31C之间,还包括:
    S6、控制所述加热天线匀速旋转;
    S7、当所述多个测温点中的30%的温度大于-4℃时,解冻过程被控制进入所述步骤S31C。
  52. 如权利要求49所述的微波炉解冻的控制方法,其特征在于,所述步骤S32C具体包括:
    当所述多个测温点中的80%的温度在-3℃~0℃内时,停止解冻。
  53. 如权利要求28至52中任一项所述的微波炉解冻的控制方法,其特征在于,所述食物为肉类或鱼类。
  54. 如权利要求28至53中任一项所述的微波炉解冻的控制方法,其特征在于,其中,控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
  55. 一种微波炉解冻的控制方法,其特征在于,在解冻过程中,检测所述微波炉中的食物的温度,并控制在解冻过程中所述食物的温度低于-3-0℃,且在解冻之后所述食物的温度保持在-3-0℃。
  56. 如权利要求55所述的微波炉解冻的控制方法,其特征在于,其中,在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
  57. 一种微波炉解冻的控制方法,其特征在于,包括以下步骤:
    接收解冻指令;
    启动进行解冻,并检测微波炉中食物的温度;以及
    控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
  58. 一种微波炉解冻的控制方法,其特征在于,包括以下步骤:
    接收解冻指令;
    启动进行解冻,并检测微波炉中食物的温度;以及
    控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
  59. 一种微波炉解冻的控制方法,其特征在于,在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
  60. 一种微波炉解冻的控制方法,其特征在于,所述微波炉中具有可旋转的加热天线,所述方法包括以下步骤:
    S1、检测所述微波炉中的食物多个测温点的温度;
    S2、根据所述多个测温点的温度确定所述加热天线的加热角度;以及
    S3、根据所述加热角度控制所述加热天线转动。
  61. 一种微波炉解冻的控制方法,所述微波炉包括微波发生装置,其特征在于,所述方法包括以下步骤:
    S1、检测所述微波炉中的食物上多个测温点的温度;
    S2、控制所述微波发生装置启动,并根据所述食物上所述多个测温点的温度对所述食物进行解冻。
  62. 一种微波炉解冻的控制方法,所述微波炉具有解冻键和微波发生装置,其特征在于,所述方法包括以下步骤:
    S1、根据微波炉中的食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;
    S2、控制所述微波发生装置启动,并以所述总解冻时间T对所述食物进行解冻。
  63. 一种微波炉解冻的控制装置,其特征在于,包括:
    接收模块,用于接收解冻指令;
    解冻模块,用于启动进行解冻;以及
    控制模块,用于控制解冻条件以使所述微波炉中的食物的温度保持在-3-0℃。
  64. 如权利要求63所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于判断所述微波炉中的食物的重量x。
  65. 如权利要求64所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;
    控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
  66. 如权利要求65所述的微波炉解冻的控制装置,其特征在于,所述控制模块在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
  67. 如权利要求66所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;
    在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;
    在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
  68. 如权利要求67所述的微波炉解冻的控制装置,其特征在于,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:
    t1=K(n+1+a)/4,
    t2=K(n-1-a)/4,
    t3=K(n+1-a)/4,
    t4=K(n-1+a)/4
    其中,所述n=x/100克,所述a=[1+(-1)n]/2。
  69. 如权利要求67或68所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于:
    在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;
    在检测到食物被翻面后,控制在第三时间段t3内以第三火力等级解冻。
  70. 如权利要求67或68所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于:
    在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;
    检测所述微波发生装置被启动后,控制在第三时间段t3内以第三火力等级解冻。
  71. 如权利要求63所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于:
    检测所述微波炉中的食物上多个测温点的温度。
  72. 如权利要求71所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度保持在-3-0℃。
  73. 如权利要求71所述的微波炉解冻的控制装置,其特征在于,所述控制模块根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
  74. 如权利要求73所述的微波炉解冻的控制装置,其特征在于,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
  75. 如权利要求74所述的微波炉解冻的控制装置,其特征在于,所述控制模块用于根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
  76. 如权利要求75所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;
    当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;
    当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;
    当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
  77. 如权利要求71所述的微波炉解冻的控制装置,其特征在于,所述微波炉中具有可旋转的加热天线,其中,所述控制模块具体用于:
    根据所述多个测温点的温度确定所述加热天线的加热角度;
    根据所述加热角度控制所述加热天线转动以使所述食物的温度保持在-3-0℃。
  78. 如权利要求63至77中任一项所述的微波炉解冻的控制装置,其特征在于,其中,所述控制模块控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
  79. 一种微波炉解冻的控制装置,其特征在于,包括:
    接收模块,用于接收解冻指令;
    解冻模块,用于启动进行解冻;以及
    控制模块,用于控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-3-0℃。
  80. 如权利要求79所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于判断所述微波炉中的食物的重量x。
  81. 如权利要求80所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    根据所述食物的重量x计算总解冻时间T,其中所述总解冻时间T满足:T=K(x/100)秒,其中,20秒/克≤K≤120秒/克;
    控制所述解冻条件并以所述总解冻时间T对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
  82. 如权利要求81所述的微波炉解冻的控制装置,其特征在于,所述控制模块在依次连续的多个时间段依次采用多个火力等级解冻所述食物。
  83. 如权利要求82所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    在第一时间段t1内以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    在第二时间段t2内以第二火力等级解冻,所述第二火力等级为所述满火力的20%~40%;
    在第三时间段t3内以第三火力等级解冻,所述第三火力等级为所述满火力的30%~60%;
    在第四时间段t4内以第四火力等级解冻,所述第四火力等级为所述满火力的0%~30%。
  84. 如权利要求83所述的微波炉解冻的控制装置,其特征在于,所述第一时间段t1、所述第二时间段t2、所述第三时间段t3和所述第四时间段t4分别满足:
    t1=K(n+1+a)/4,
    t2=K(n-1-a)/4,
    t3=K(n+1-a)/4,
    t4=K(n-1+a)/4
    其中,所述n=x/100克,所述a=[1+(-1)n]/2。
  85. 如权利要求83或84所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于:
    在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测食物是否被翻面;
    在检测到食物被翻面后,控制在第三时间段t3内以第三火力等级解冻。
  86. 如权利要求83或84所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于:
    在所述第二时间段t2之后解冻过程被控制暂停且提示将食物翻面,并开始检测微波发生装置是否被重新启动;
    检测所述微波发生装置被启动后,控制在第三时间段t3内以第三火力等级解冻。
  87. 如权利要求79所述的微波炉解冻的控制装置,其特征在于,所述控制模块还用于:
    检测所述微波炉中的食物上多个测温点的温度。
  88. 如权利要求87所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    根据所述食物上所述多个测温点的温度对所述食物进行解冻以使所述食物的温度在解冻之后保持在-3-0℃。
  89. 如权利要求87所述的微波炉解冻的控制装置,其特征在于,所述控制模块根据设在所述微波炉内的红外测温传感器检测所述食物上所述多个测温点的温度。
  90. 如权利要求89所述的微波炉解冻的控制装置,其特征在于,所述红外测温传感器具有M个红外测温传感探头,所述食物上所述多个测温点的温度由N个所述红外测温传感探头检测得到,其中,N和M均为正整数,且N小于等于M。
  91. 如权利要求90所述的微波炉解冻的控制装置,其特征在于,所述控制模块根据所述N个红外测温传感探头的温度检测值依次采用多个火力等级解冻所述食物。
  92. 如权利要求91所述的微波炉解冻的控制装置,其特征在于,所述控制模块具体用于:
    以第一火力等级解冻,所述第一火力等级为满火力的30%~60%;
    当所述N个红外测温传感探头中的30%的温度检测值大于-4℃时,以第二火力等级解冻,所述第二火力等级为满火力的20%~40%;
    当所述N个红外测温传感探头中的60%的温度检测值大于-4℃时,以第三火力等级解冻,所述第三火力等级为满火力的30%~60%;
    当所述N个红外测温传感探头中的30%的温度检测值在-3℃~0℃内时,以第四火力等级解冻,所述第四火力等级为满火力的0%~30%;
    当所述N个红外测温传感探头中的80%的温度检测值在-3℃~0℃内时,停止解冻。
  93. 如权利要求87所述的微波炉解冻的控制装置,其特征在于,所述微波炉中具有可旋转的加热天线,其中,所述控制模块具体用于:
    根据所述多个测温点的温度确定所述加热天线的加热角度;
    根据所述加热角度控制所述加热天线转动以使所述食物的温度在解冻之后保持在-3-0℃。
  94. 如权利要求79至93中任一项所述的微波炉解冻的控制装置,其特征在于,其中,所述控制模块控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
  95. 一种微波炉解冻的控制装置,其特征在于,在解冻过程中,检测所述微波炉中的食物的温度,并控制在解冻过程中所述食物的温度低于-3-0℃,且在解冻之后所述食物的温度保持在-3-0℃。
  96. 如权利要求95所述的微波炉解冻的控制装置,其特征在于,其中,所述控制装置在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
  97. 一种微波炉解冻的控制装置,其特征在于,包括:
    接收模块,用于接收解冻指令;
    检测模块,用于启动进行解冻,并检测微波炉中食物的温度;以及
    控制模块,用于控制解冻条件以使所述微波炉中的食物的温度保持在-1℃。
  98. 一种微波炉解冻的控制装置,其特征在于,包括:
    接收模块,用于接收解冻指令;
    检测模块,用于启动进行解冻,并检测微波炉中食物的温度;以及
    控制模块,用于控制解冻条件以使所述微波炉中的食物的温度在解冻之后保持在-1℃。
  99. 一种微波炉解冻的控制装置,其特征在于,在解冻过程中,所述微波炉中的食物的温度低于-1℃,且在解冻之后所述食物的温度保持在-1℃。
  100. 一种微波炉,其特征在于,包括:如权利要求63至78中任一项所述的微波炉解冻的控制装置。
  101. 一种微波炉,其特征在于,包括:如权利要求79至94中任一项所述的微波炉解 冻的控制装置。
  102. 一种微波炉,其特征在于,包括:如权利要求95或96所述的微波炉解冻的控制装置。
  103. 一种微波炉,其特征在于,包括:
    炉体,所述炉体内限定出炉腔,所述食物适于放置在所述炉腔内;
    控制面板,所述控制面板设在所述炉体上,且所述控制面板具有解冻键和启动键;
    微波发生装置,所述微波发生装置设在所述炉体内,所述微波发生装置用于向所述炉腔内发出微波以解冻所述食物;
    控制器,所述控制器用于执行如权利要求1至14中任一项所述的微波炉解冻的控制方法所包括的步骤。
  104. 如权利要求103所述的微波炉,其特征在于,所述炉体设有适于检测所述食物重量的重量传感器,所述炉体的底部具有炉脚,所述重量传感器设在所述炉脚上。
  105. 如权利要求103所述的微波炉,其特征在于,所述炉体设有适于检测所述食物重量的重量传感器,所述炉腔通过隔板分隔成烹饪腔和位于所述烹饪腔下方的加热腔,所述重量传感器设在所述隔板的底部。
  106. 一种微波炉,其特征在于,包括:
    炉体,所述炉体内限定出炉腔,所述食物适于放置在所述炉腔内;
    测温装置,所述测温装置设在所述炉体内以检测所述食物上多个测温点的温度;
    微波发生装置,所述微波发生装置设在所述炉体内,所述微波发生装置用于向所述炉腔内发出微波以解冻所述食物;
    控制器,所述控制器用于执行如权利要求1及15至25中任一项所述的微波炉解冻的控制方法所包括的步骤。
  107. 如权利要求106所述的微波炉,其特征在于,所述测温装置为红外测温传感器,所述红外测温传感器设在所述炉体内的上部。
PCT/CN2015/090806 2014-09-25 2015-09-25 微波炉解冻的控制方法、装置及微波炉 WO2016045629A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2017516302A JP6526183B2 (ja) 2014-09-25 2015-09-25 電子レンジの解凍制御方法、解凍制御装置及び電子レンジ
BR112017006266A BR112017006266A2 (pt) 2014-09-25 2015-09-25 método de controle de descongelamento para um forno de micro-ondas, dispositivo de controle de descongelamento para um forno de micro-ondas, e, forno de micro-ondas
AU2015320087A AU2015320087A1 (en) 2014-09-25 2015-09-25 Microwave oven and thawing control method and device for the same
EP15845000.7A EP3199873A4 (en) 2014-09-25 2015-09-25 Microwave oven thawing control method, device, and microwave oven
RU2017114102A RU2671654C2 (ru) 2014-09-25 2015-09-25 Микроволновая печь и способ и устройство управления размораживанием для микроволновой печи
KR1020177011292A KR102042199B1 (ko) 2014-09-25 2015-09-25 전자 레인지의 해동 제어 방법, 장치 및 전자 레인지
EP17167008.6A EP3285548B1 (en) 2014-09-25 2015-09-25 Microwave oven and thawing control method and device for the same
CA2962660A CA2962660C (en) 2014-09-25 2015-09-25 Microwave oven thawing control method, device and microwave oven
US15/514,231 US20170280518A1 (en) 2014-09-25 2015-09-25 Microwave oven and thawing control method and device for the same
US15/468,937 US10588181B2 (en) 2014-09-25 2017-03-24 Microwave oven and thawing control method and device for the same
US15/468,994 US10397990B2 (en) 2014-09-25 2017-03-24 Microwave oven and thawing control method and device for the same
AU2017202618A AU2017202618B2 (en) 2014-09-25 2017-04-20 Microwave oven and thawing control method and device for the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201410499499.5A CN104235902B (zh) 2014-09-25 2014-09-25 微波炉的食物解冻控制方法及微波炉
CN201410499499.5 2014-09-25
CN201410499543.2 2014-09-25
CN201410499543.2A CN104235903A (zh) 2014-09-25 2014-09-25 微波炉的食物解冻控制方法及微波炉
CN201410499395.4A CN104235901A (zh) 2014-09-25 2014-09-25 微波炉的食物解冻控制方法及微波炉
CN201410499395.4 2014-09-25
CN201410510143.7 2014-09-28
CN201410510143.7A CN104266236A (zh) 2014-09-28 2014-09-28 微波炉解冻的控制方法、装置及微波炉
CN201410508374.4 2014-09-28
CN201410508374.4A CN104235904A (zh) 2014-09-28 2014-09-28 微波炉解冻的控制方法、装置及微波炉

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/468,937 Continuation US10588181B2 (en) 2014-09-25 2017-03-24 Microwave oven and thawing control method and device for the same
US15/468,994 Continuation US10397990B2 (en) 2014-09-25 2017-03-24 Microwave oven and thawing control method and device for the same

Publications (1)

Publication Number Publication Date
WO2016045629A1 true WO2016045629A1 (zh) 2016-03-31

Family

ID=55580337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090806 WO2016045629A1 (zh) 2014-09-25 2015-09-25 微波炉解冻的控制方法、装置及微波炉

Country Status (9)

Country Link
US (3) US20170280518A1 (zh)
EP (3) EP3285007A3 (zh)
JP (1) JP6526183B2 (zh)
KR (1) KR102042199B1 (zh)
AU (1) AU2015320087A1 (zh)
BR (1) BR112017006266A2 (zh)
CA (1) CA2962660C (zh)
RU (1) RU2671654C2 (zh)
WO (1) WO2016045629A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2814004T3 (es) 2016-08-09 2021-03-25 John Bean Technologies Corp Aparato y procedimiento de procesamiento de radiofrecuencia
DE102022204877A1 (de) 2022-05-17 2023-11-23 BSH Hausgeräte GmbH Betreiben eines Haushalts-Mikrowellengeräts mit IR-Kamera
US20240015862A1 (en) * 2022-07-07 2024-01-11 Aquachile Inc. Microwave Thawing Process for Salmon

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2200770Y (zh) * 1994-08-03 1995-06-14 陈焕文 微波解冻器
CN1284628A (zh) * 1999-08-12 2001-02-21 东芝株式会社 加热烹调器
CN1346583A (zh) * 1999-01-15 2002-04-24 惠而浦有限公司 微波炉中的解冻法
CN1450310A (zh) * 2002-04-09 2003-10-22 乐金电子(天津)电器有限公司 微波炉的解冻控制方法
CN1704674A (zh) * 2004-05-27 2005-12-07 乐金电子(天津)电器有限公司 微波炉的解冻控制方法
CN101473692A (zh) * 2006-06-19 2009-07-01 松下电器产业株式会社 微波加热装置
CN104235904A (zh) * 2014-09-28 2014-12-24 广东美的厨房电器制造有限公司 微波炉解冻的控制方法、装置及微波炉
CN104235903A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
CN104235902A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
CN104235901A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
CN104266236A (zh) * 2014-09-28 2015-01-07 广东美的厨房电器制造有限公司 微波炉解冻的控制方法、装置及微波炉
CN104879803A (zh) * 2015-05-21 2015-09-02 广东美的厨房电器制造有限公司 微波炉及用于微波炉的解冻控制方法、装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413168A (en) * 1980-09-24 1983-11-01 Raytheon Company Heating time coupling factor for microwave oven
JPS58158430A (ja) * 1982-03-16 1983-09-20 Matsushita Electric Ind Co Ltd 高周波加熱装置
JPS5927133A (ja) * 1982-08-05 1984-02-13 Matsushita Electric Ind Co Ltd 高周波加熱装置
FR2558997B1 (fr) * 1984-01-31 1989-02-03 Thomson Csf Amplificateur correcteur du temps de propagation de groupe de signaux electriques et chaine d'amplification a frequence intermediaire de faisceaux hertziens comportant un tel amplificateur
JPS60258895A (ja) * 1984-06-04 1985-12-20 松下電器産業株式会社 高周波加熱装置
SU1830197A3 (ru) * 1990-11-16 1993-07-23 Удaлob Baлehtиh Hиkoлaebич c b ч-paзmopaжиbateль
JPH06101847A (ja) * 1992-09-22 1994-04-12 Matsushita Electric Ind Co Ltd 高周波加熱装置
SE505555C2 (sv) * 1995-12-21 1997-09-15 Whirlpool Europ Förfarande för styrning av ett uppvärmningsförlopp i en mikrovågsugn samt mikrovågsugn
KR970062531A (ko) * 1996-02-23 1997-09-12 김광호 전자렌지의 구동제어방법
KR20030056982A (ko) * 2001-12-28 2003-07-04 주식회사 엘지이아이 전자레인지의 해동제어방법
US8653482B2 (en) * 2006-02-21 2014-02-18 Goji Limited RF controlled freezing
EP2055146B1 (en) * 2006-07-10 2013-11-20 Goji Limited Food preparation
KR100991764B1 (ko) * 2008-05-29 2010-11-03 이진희 냉동식품 해동 방법
KR101931361B1 (ko) * 2012-08-29 2018-12-21 삼성전자주식회사 온도 측정 장치 및 이를 구비하는 전자레인지
US9420641B2 (en) * 2013-01-23 2016-08-16 Whirlpool Corporation Microwave oven multiview silhouette volume calculation for mass estimation
JP7056248B2 (ja) * 2018-03-09 2022-04-19 富士フイルムビジネスイノベーション株式会社 情報処理システム、端末装置、プログラムおよび情報通信システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2200770Y (zh) * 1994-08-03 1995-06-14 陈焕文 微波解冻器
CN1346583A (zh) * 1999-01-15 2002-04-24 惠而浦有限公司 微波炉中的解冻法
CN1284628A (zh) * 1999-08-12 2001-02-21 东芝株式会社 加热烹调器
CN1450310A (zh) * 2002-04-09 2003-10-22 乐金电子(天津)电器有限公司 微波炉的解冻控制方法
CN1704674A (zh) * 2004-05-27 2005-12-07 乐金电子(天津)电器有限公司 微波炉的解冻控制方法
CN101473692A (zh) * 2006-06-19 2009-07-01 松下电器产业株式会社 微波加热装置
CN104235903A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
CN104235902A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
CN104235901A (zh) * 2014-09-25 2014-12-24 广东美的厨房电器制造有限公司 微波炉的食物解冻控制方法及微波炉
CN104235904A (zh) * 2014-09-28 2014-12-24 广东美的厨房电器制造有限公司 微波炉解冻的控制方法、装置及微波炉
CN104266236A (zh) * 2014-09-28 2015-01-07 广东美的厨房电器制造有限公司 微波炉解冻的控制方法、装置及微波炉
CN104879803A (zh) * 2015-05-21 2015-09-02 广东美的厨房电器制造有限公司 微波炉及用于微波炉的解冻控制方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199873A4 *

Also Published As

Publication number Publication date
EP3285548B1 (en) 2020-12-09
US20170280518A1 (en) 2017-09-28
KR102042199B1 (ko) 2019-11-07
US20170196050A1 (en) 2017-07-06
JP2017528681A (ja) 2017-09-28
JP6526183B2 (ja) 2019-06-05
CA2962660A1 (en) 2016-03-31
EP3285007A2 (en) 2018-02-21
RU2017114102A3 (zh) 2018-10-29
US10588181B2 (en) 2020-03-10
AU2015320087A1 (en) 2017-05-11
EP3199873A4 (en) 2018-05-16
CA2962660C (en) 2019-06-11
RU2017114102A (ru) 2018-10-29
KR20170072225A (ko) 2017-06-26
EP3199873A1 (en) 2017-08-02
EP3285548A1 (en) 2018-02-21
US10397990B2 (en) 2019-08-27
EP3285007A3 (en) 2018-06-20
US20170202060A1 (en) 2017-07-13
BR112017006266A2 (pt) 2017-12-12
RU2671654C2 (ru) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108141925B (zh) 多功能射频电容式加热食物制备装置
CA2288380C (en) Defrosting method for a microwave oven using an infrared sensor
WO2016045629A1 (zh) 微波炉解冻的控制方法、装置及微波炉
CN105972906B (zh) 冰箱储存物的解冻方法与冰箱
CN111365937A (zh) 冰箱解冻控制方法、冰箱、可读取存储介质及控制器
CN110477084A (zh) 一种冷冻牛肉三段式解冻方法
Wang et al. Effect of processing parameters on the pulsed-spouted microwave vacuum drying of puffed salted duck egg white/starch products
CN104266236A (zh) 微波炉解冻的控制方法、装置及微波炉
JP7149465B2 (ja) 調理器
CN104061752A (zh) 冰箱的控制系统及冰箱
CN104235904A (zh) 微波炉解冻的控制方法、装置及微波炉
JP7378020B2 (ja) 冷蔵庫、システム
CN204373001U (zh) 微波炉
CN114246287A (zh) 解冻方法、装置、设备及智能家居系统
US20120006039A1 (en) Kimchi refrigerator and control method thereof
AU2017202618B2 (en) Microwave oven and thawing control method and device for the same
CN114061256B (zh) 一种冰箱解冻控制方法、系统及冰箱
US20220163214A1 (en) Cooking apparatus and control method thereof
CN104595943A (zh) 微波炉及其控制方法
JP7241350B2 (ja) 加熱調理器
RU2796469C2 (ru) Устройство для приготовления пищи
EP4280813A1 (en) System and method for moisture and ambient humidity level prediction for food doneness
CN115638601A (zh) 一种米面制品的冻藏方法、制冷设备以及冻藏装置
KR20150095141A (ko) 음식물을 조리하는 방법 및 그 조리 기기
JP2002005449A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516302

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2962660

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15514231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017006266

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015845000

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177011292

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2017114102

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015320087

Country of ref document: AU

Date of ref document: 20150925

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017006266

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170327