WO2016043239A1 - 保護フィルム、フィルム積層体および偏光板 - Google Patents
保護フィルム、フィルム積層体および偏光板 Download PDFInfo
- Publication number
- WO2016043239A1 WO2016043239A1 PCT/JP2015/076352 JP2015076352W WO2016043239A1 WO 2016043239 A1 WO2016043239 A1 WO 2016043239A1 JP 2015076352 W JP2015076352 W JP 2015076352W WO 2016043239 A1 WO2016043239 A1 WO 2016043239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protective film
- film
- layer
- group
- repeating unit
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/048—Forming gas barrier coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/06—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/12—Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a protective film, a film laminate, and a polarizing plate.
- a polarizing plate is adhered to both sides of a polarizing film made of a polyvinyl alcohol film uniaxially stretched by adsorbing iodine with an adhesive such as an optical film such as triacetyl cellulose (hereinafter referred to as TAC) as a protective film. It has a combined configuration. In order to bond the TAC film to the polarizing film, a hydrophilic adhesive is used.
- Such a conventional polarizing plate has a high moisture permeability of a TAC film as a protective film and a large expansion and contraction due to moisture absorption and dehumidification.
- a TAC film as a protective film
- a large expansion and contraction due to moisture absorption and dehumidification When exposed to a long period of time, there are problems that the optical function as a polarizing plate is impaired, and physical troubles due to curling and warping of the polarizing plate occur.
- Patent Document 1 an uncured ionizing radiation curable resin (energy ray curable resin) is applied on a base film or a base film on which a release layer is formed.
- a method of forming a protective film on a polarizing film by bonding the polarizing film to the coated surface, curing the cured resin, and peeling the base film.
- Patent Document 2 describes a method of forming a protective film having a low moisture permeability and a hard coat property by providing a hard coat layer on a 40 ⁇ m film obtained by stretching.
- the water vapor transmission rate is generally greater than 90 g / (m 2 ⁇ 24 hours) and 120 g / (m 2 ⁇ 24 hours) or less.
- the thinner the protective film the easier it is for moisture to permeate. Therefore, the moisture permeability tends to increase, and the polarizing plate bonded to the protective film tends to absorb moisture and dehumidify.
- the moisture permeability is required to be low and the film thickness is less than 40 ⁇ m, for example, the moisture permeability is 80 g / (m 2 ⁇ 24 hours) or less.
- a high surface hardness is required for the protective film. It is also required to have a hard coat property by performing a treatment such as providing a hard coat layer.
- Patent Document 1 describes an optical member that can achieve a reduction in thickness and weight and a price, and a simple manufacturing method thereof, but a specific description of the surface hardness (hard coat property) of the protective film. Or, there is no description regarding moisture permeability and performance is unknown.
- the protective film of the patent document 2 discloses a method of forming a protective film having a hard coat layer is greater than approximately 90g / (m 2 ⁇ 24 hours) for moisture permeability, 120 g / (m (2 ⁇ 24 hours) or less, and there is a problem that moisture permeability is high.
- an object of the present invention is to provide a protective film having a high surface hardness, with a protective film having a thickness of less than 40 ⁇ m and a moisture permeability of 80 g / (m 2 ⁇ 24 hours) or less.
- the obtained protective film is a film thinner than 40 ⁇ m, has low moisture permeability and high surface hardness, and the film laminate provided with the functional layer on the protective film has high surface hardness of the protective film. As a result, it was found that the surface hardness is high.
- the present invention includes the following forms.
- the repeating unit is The following structure A containing a saturated cycloaliphatic group R 1 , and
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- r and s each represent an integer of 0 to 2
- r And the sum of s is 1 to 2
- x is an integer of 0 to 3
- the protective film according to item 1. ⁇ 6> The protective film according to any one of ⁇ 1> to ⁇ 5>, wherein the moisture permeability is 150 g / (m 2 ⁇ 24 hours) or less.
- the hard coat layer is provided on at least one surface of the protective film, ⁇ 7>
- a polarizing plate comprising the protective film according to any one of ⁇ 1> to ⁇ 6> on at least one surface of a polarizing film.
- the protective film according to the present invention is formed by a predetermined repeating unit, even a film thinner than 40 ⁇ m has low moisture permeability and high surface hardness.
- the film laminate provided with a functional layer on the protective film has a high surface hardness (hard coat property) due to the protective film, and therefore can prevent scratches that occur during processing of the protective film. Even if the polarizing film on which the protective film is bonded is in a high-temperature and high-humidity environment, the polarizing film is difficult to absorb moisture, and expansion and contraction of the polarizing film is suppressed.
- the protective film according to the present invention is formed by a repeating unit having a structure derived from a bifunctional urethane methacrylate, and the repeating unit has a plurality of types of saturated cycloaliphatic groups. That is, in the protective film, the matrix forming the polymer is formed of repeating units having a structure derived from urethane methacrylate.
- the structure derived from the urethane methacrylate means a urethane methacrylate monomer unit, that is, a structure in which the double bond of the methacrylate group is cleaved in the urethane methacrylate as a monomer, and the site where the double bond of the methacrylate group is cleaved. Because it has both ends, it is bifunctional.
- the above repeating unit has a urethane bond (—NH—CO—O—).
- the number of urethane bonds is not particularly limited and is, for example, 1-8.
- the urethane bond is a polar group, and the urethane bonds in each repeating unit are close to each other by intermolecular force.
- saturated cycloaliphatic groups are nonpolar cyclic structures and have a high molecular weight. It is considered that the intermolecular force generates a high cohesive force due to the high molecular weight of the saturated cycloaliphatic group contributing to the intermolecular interaction between the urethane bonds.
- the protective film composed of the above repeating units is thin and has a low moisture permeability and a high surface hardness.
- the urethane methacrylate monomer unit has a plurality of types of saturated cyclic aliphatic groups. Although it does not specifically limit as a saturated cycloaliphatic group, From a viewpoint of raising the cohesion force resulting from molecular weight, it is preferable that it is a saturated cycloaliphatic group 5 or more membered ring. Although the upper limit of the number of member rings is not particularly limited, it is, for example, 15-membered ring or less, preferably 10-membered ring or less, from the viewpoint of easy synthesis of a monomer that is a raw material for the protective film.
- the number of member rings represents the maximum number of member rings of the cyclic structure, and the saturated cyclic aliphatic group has a bicyclo ring or a tricyclo ring.
- the number of member rings is nine.
- the main chain of the cyclic structure of the saturated cycloaliphatic group may be formed only by carbon atoms, or may be formed by oxygen atoms and / or nitrogen atoms in addition to carbon atoms.
- a linear and / or branched structure having 1 to 10 carbon atoms may be added to the carbon atom of the cyclic structure.
- saturated cycloaliphatic group examples include a 3,5,5-trimethylcyclohexane ring, a tricyclodecane ring, an adamantane ring, and the like.
- the saturated cycloaliphatic group may be bonded to a urethane bonding group via a saturated aliphatic chain, and the rigidity of the repeating unit can be suitably adjusted by changing the carbon number of the saturated aliphatic chain.
- the saturated aliphatic chain includes a straight chain structure and a branched chain structure, and an example of the straight chain structure is — (CH 2 ) n — (n is an integer of 1 to 10), From the viewpoint of reducing the flexibility and increasing the rigidity, it is particularly preferably — (CH 2 ) — or — (CH 2 ) 2 —.
- examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
- the 3-methylene-3,5,5-trimethylcyclohexane ring and the dimethylenetricyclodecane ring are preferable ring structures, and a protective film containing the ring structure in a polymer chain preferably has low moisture permeability and surface hardness. Expressed.
- the main chain of the repeating unit preferably contains a saturated aliphatic chain having 5 to 10 carbon atoms in addition to the saturated cyclic aliphatic group.
- a saturated aliphatic chain having 5 or more carbon atoms
- flexibility is imparted to the repeating unit by the saturated aliphatic chain having a long chain length and flexibility, and the brittleness of the protective film is reduced.
- the carbon number is 10 or less
- an increase in moisture permeability in the protective film can be suppressed.
- the saturated aliphatic chain may have a straight chain structure or a branched chain structure.
- the saturated aliphatic chain constitutes a part of the repeating unit, for example, in a structure via a urethane bond or an ester bond.
- linear structure is — (CH 2 ) n1 — (where n1 is an integer of 5 to 10), and — (CH 2 ) 5 — is particularly preferable.
- examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
- a structure including the following structure A including a saturated cycloaliphatic group R 1 and a structure including the following structure C including a saturated cycloaliphatic group R 3 can be exemplified.
- the repeating unit for example, diisocyanates containing R 1, diols containing R 3, and can be obtained from a urethane methacrylate obtained with methacrylate and readily manufactured.
- the ratio of the structure A and the structure C can be m + 1: m or m: m + 1, where m is an integer of 1 to 4.
- repeating unit may further include the following saturated aliphatic chain R 2. —O—R 2 —CO— (Structure B)
- the repeating unit can be obtained by using, for example, a diisocyanate containing R 1 , an ester containing R 2 (optionally used), a diol containing R 3 , a methacrylate, or an isocyanate having a methacryl group. Can be manufactured easily.
- the ratio of the structure A, the structure B, and the structure C can be m + 1: m (r + s): m, m + 1: k + n: m, m: m (r + s): m + 1, m: k + n: m + 1.
- M represents an integer of 1 to 4, r and s each represents an integer of 0 to 2, and the sum of r and s is 1 to 2, k represents an integer of 0 to 2, n Represents an integer of 0-2.
- the repeating unit having the saturated cycloaliphatic group and saturated aliphatic chain described above are shown below.
- the structure derived from methacrylate is a single bond formed by cleavage of the carbon-carbon double bond of the methacrylate structure (H 2 C ⁇ C (CH 3 ) —CO 2 —). It is a structure.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- r and s each represent an integer of 0 to 2
- r And the sum of s is 1 to 2
- x is an integer of 0 to 3
- m in the general formula (1) is an integer of 1 to 4, the moisture permeability of the protective film can be further reduced, and the surface hardness can be further increased.
- m is more preferably 1 or 2, and even more preferably 1. The same applies to general formulas (2), (3), and (4) described later.
- R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
- R 2 is — (CH 2 ) 5 —
- R 3 is a dimethylenetricyclodecane ring.
- R 4 is a hydrogen atom, r and s are 1, and x is 1 is shown below.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- k represents an integer of 0 to 2
- n represents an integer of 0 to 2 Represents an integer
- x represents an integer of 0 to 3
- R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
- R 2 is — (CH 2 ) 5 —
- R 3 is a dimethylenetricyclodecane ring.
- R 4 is a hydrogen atom
- k and n are 1 and x is 1 is shown below.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- r and s each represent an integer of 0 to 2
- r And the sum of s is 1 to 2
- x is an integer of 0 to 3
- R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
- R 2 is — (CH 2 ) 5 —
- R 3 is a dimethylene tricyclodecane ring.
- R 4 is a hydrogen atom
- r and s are 1 and x is 1 are shown below.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- k represents an integer of 0 to 2
- n represents an integer of 0 to 2 Represents an integer
- x represents an integer of 0 to 3
- R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
- R 2 is — (CH 2 ) 5 —
- R 3 is a dimethylenetricyclodecane ring.
- R 4 is a hydrogen atom
- k and n are 1 and x is 1 is shown below.
- the isomer of the structure represented by the general formula (1a), the general formula (2a), the general formula (3a), and the general formula (4a) is also included in the repeating unit according to the present invention.
- the repeating unit is not necessarily determined to be one structure. That is, for example, in the repeating unit of the general formula (1) and the repeating unit adjacent to the repeating unit, even if one m is 1, the other m is not limited to 1, but 1 to Any of 4 may be sufficient.
- r, s, x, k, n, y, z, and p in other general formulas (including general formulas described later).
- the structure of the polymer chain of the protective film according to the present invention can be determined by analyzing the protective film by pyrolysis GC-MS and FT-IR.
- pyrolysis GC-MS is useful because it can detect a monomer unit contained in a protective film as a monomer component.
- the protective film according to the present embodiment is a co-polymer containing the above repeating unit which is block A and block B including a structure derived from a bifunctional (meth) acrylate having one kind of saturated cycloaliphatic group. It is constituted by a polymer.
- the protective film according to the copolymer comprises a block A (repeating unit) comprising a bifunctional urethane methacrylate monomer unit having a plurality of types of saturated cycloaliphatic groups, and one type of saturated cyclic fat. It can be said that it comprises a copolymer containing a block B comprising a bifunctional (meth) acrylate monomer unit having a group.
- Block B comprises a bifunctional (meth) acrylate monomer unit having one type of saturated cycloaliphatic group.
- This block B contains a (meth) acrylate monomer unit and does not contain a urethane bond.
- the methacrylate-derived site of block A is bonded to the other acrylate-derived site of block A or block B (-block A-block A- or -block A-block B-).
- the —CO—O— of the (meth) acrylate moiety in Block B is more linear and less flexible than —CO—NH—, which is the nonlinear structure of the urethane (meth) acrylate moiety.
- the block B since the block B has only one type of saturated cycloaliphatic group, it has a linear structure and higher rigidity than the block A.
- the protective film containing the polymer containing only the block A has low moisture permeability and high surface hardness even in a thin layer state, but the surface hardness is further increased by using the block B having high rigidity together.
- the protective film which can suppress the expansion-contraction of the polarizing film resulting from moisture absorption and dehumidification can be provided.
- the bifunctional (meth) acrylate monomer unit according to Block B has one kind of saturated cycloaliphatic group.
- the saturated cycloaliphatic group is not particularly limited, but is preferably a 5-membered or higher saturated cycloaliphatic group from the viewpoint of obtaining a moisture permeability lowering effect due to molecular weight.
- the upper limit of the number of member rings is not particularly limited, but is, for example, 15-membered ring or less, preferably 10-membered ring or less, from the viewpoint of easy synthesis of the monomer that is the raw material of block B.
- the number of member rings represents the maximum number of member rings of the cyclic structure, and the saturated cyclic aliphatic group has a bicyclo ring or a tricyclo ring.
- the number of member rings is nine.
- the main chain of the cyclic structure of the saturated cycloaliphatic group may be formed only by carbon atoms, or may be formed by oxygen atoms and / or nitrogen atoms in addition to carbon atoms.
- a linear and / or branched structure having 1 to 10 carbon atoms may be added to the carbon atom of the cyclic structure.
- saturated cycloaliphatic group examples include a tricyclodecane ring, a 3,5,5-trimethylcyclohexane ring, an adamantane ring, and the like.
- the saturated cycloaliphatic group may be bonded to the structure derived from (meth) acrylate via a saturated aliphatic chain, and the rigidity of the repeating unit is suitably improved by changing the carbon number of the saturated aliphatic chain. Can be adjusted.
- the saturated aliphatic chain includes a straight chain structure and a branched chain structure.
- An example of the straight chain structure is — (CH 2 ) n — (n is an integer of 1 to 10), and a copolymer From the viewpoint of reducing the flexibility of the resin and increasing the rigidity, it is particularly preferably — (CH 2 ) — or — (CH 2 ) 2 —.
- the block B is a structure which does not have a linear structure, rigidity is increased (the above n is 0).
- examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
- each 3-methylene-3,5,5-trimethylcyclohexane ring is (
- each dimethylenetricyclodecane ring is bonded to each ( It is combined with a structure derived from (meth) acrylate.
- the dimethylene tricyclodecane ring is a preferable ring structure, and low moisture permeability and surface hardness are suitably expressed in a protective film including the ring structure in a polymer chain.
- Block B has a structure derived from (meth) acrylate at both ends, and the structure derived from (meth) acrylate is bonded to another block B or to block A (-block B-block B-, Or -Block B-Block A-).
- the acrylate-derived site is a structure in which the carbon-carbon double bond of the acrylate structure H 2 C ⁇ HC—CO 2 — is cleaved to form a single bond (methacrylate).
- the structure is the same).
- R 5 represents a saturated cycloaliphatic group
- R 6 represents a hydrogen atom or a methyl group
- y and z are integers of 0 to 2
- R 5 is a tricyclodecane ring and y and z are 1 is shown below.
- the ratio of the copolymer in the protective film according to the present invention is desirably high from the viewpoint of reducing the moisture permeability of the protective film and increasing the surface hardness, and is 70% by mass or more based on the total mass of the protective film, It is preferably 99.5% by mass or less, more preferably 80% by mass or more and 99.5% by mass or less.
- the protective film may contain various additives such as an ultraviolet absorber, a leveling agent, an antistatic agent, and a thiol as long as the film formability, surface hardness, and low moisture permeability of the protective film are not impaired. Thereby, it is possible to give an ultraviolet absorption characteristic, a peeling characteristic, an antistatic characteristic, and a softness
- UV absorber known ones can be used.
- benzophenone series such as 2-hydroxy-4-octoxybenzophenone and 2-hydroxy-4-methoxy-5-sulfobenzophenone
- 2- (2′-hydroxy) Benzotriazoles such as -5-methylphenyl) benzotriazole
- hindered amines such as phenyl salsylate, pt-butylphenyl salsylate, and the like.
- leveling agents, antistatic agents and thiols can also be used.
- the protective film according to the present invention is formed into a thin film, for example, the upper limit value of the film thickness is 40 ⁇ m, and more preferably 30 ⁇ m.
- a lower limit is not specifically limited, From a viewpoint of ensuring low moisture permeability reliably, it is preferable that it is 5 micrometers, and it is more preferable that it is 10 micrometers.
- the moisture permeability of the protective film according to the present invention is a low value, and is preferably 150 g / (m 2 ⁇ 24 o'clock) or less in a 30 ⁇ m thin layer state (thickness of 30 ⁇ m or less), and 80 g / ( m 2 ⁇ 24 hours) or less, more preferably 70 g / (m 2 ⁇ 24 hours) or less, and most preferably 60 g / (m 2 ⁇ 24 hours) or less.
- the lower limit of moisture permeability is not particularly limited, it is, for example, 15 g / (m 2 ⁇ 24 o'clock) or more.
- the protective film according to the present invention has a high surface hardness.
- High surface hardness means that the protective film itself has a certain degree of hardness, and as one criterion, if the pencil hardness of the protective film is F or higher, the protective film has a high surface hardness. Shall have.
- the film laminate according to the present invention is provided on at least one side of the protective film.
- One of an antireflection layer including a high refractive index layer provided on the protective film and a low refractive index layer provided on the high refractive index layer is provided.
- the film laminate may include any of the above (1) to (4) on both sides of the protective film.
- the same type of layers on both sides for example, (1) on the surface of the protective film, (1) on the back side
- different layers for example, (1) on the front side of the protective film, (2) on the back side, or the surface (2) and (3)
- (1) to (4) are provided with other layers (1) to (4), and may have a laminated structure.
- (1) to (4) will be described.
- the protective film which concerns on this invention can be handled integrally in the state laminated
- the film substrate should be used as part of the film laminate. You can also.
- the film substrate plays a role of supporting the protective film, and finally has a release layer on the side where the protective film is laminated in order to peel and remove.
- a film base material is equipped with a functional layer via a release layer, after the film base material is bonded to the functional layer side of the protective film and then removed by removing the film base material, the functional layer is usually Is not transferred to the film substrate side but transferred to the protective film side.
- the film substrate does not have an ultraviolet absorbing ability so as not to prevent ultraviolet irradiation.
- the optical properties may be inspected in various manufacturing processes in which other films are provided on the polarizing plate and processed up to the display device, and this influences the measurement of the optical properties of the polarizing film and protective film, which are the basic components of the polarizing plate.
- the film substrate has transparency so as to minimize the thickness. From such a viewpoint, a polyester film substrate having a release layer is preferably used as the film substrate.
- the polyester film substrate may have a release layer, and other functional layers may be formed in addition to the release layer.
- the functional layer include a hard coat layer (HC layer), an antiglare layer (AG layer), and an antireflection layer (LR layer). These layers are formed on the release layer of the polyester film, laminated on the protective film, and then peeled off the polyester substrate from the release layer, whereby each functional layer and the protective film are laminated. The body is easily obtained.
- the formation order of a functional layer is not specifically limited, After forming a protective film on the release layer of a polyester film base material, you may form a functional layer on a protective film. In any method, it is possible to obtain a film laminate.
- the hard coat layer has a hard coat property (abrasion resistance).
- the hard coat property in the present invention is based on JIS K5600: 1999, and the scratch hardness according to the pencil method under a load of 500 g and a speed of 1 mm / s is 2H or more.
- an ionizing radiation curable resin is suitable because it can be cured efficiently with a simple processing operation, and after curing, a coating having sufficient strength and transparency is provided.
- An ionizing radiation curable resin can be used without any particular limitation.
- the ionizing radiation curable resin examples include monomers and oligomers having radical polymerizable functional groups such as acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group, and cationic polymerizable functional groups such as epoxy group, vinyl ether group, and oxetane group. , Prepolymers, and compositions obtained by mixing polymers alone or as appropriate are used.
- Examples of monomers include methyl acrylate, methyl methacrylate, methoxy polyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, and the like. it can.
- polystyrene resin examples include polyacrylate, polyurethane acrylate, and polyester acrylate. These can be used alone or in combination.
- a polyfunctional monomer having 3 or more functional groups can increase the curing speed and improve the hardness of the cured product.
- polyfunctional urethane acrylate the hardness and flexibility of the cured product can be imparted.
- the ionizing radiation curable resin can be cured by irradiation with ionizing radiation as it is, but when curing by ultraviolet irradiation, it is necessary to add a photopolymerization initiator.
- Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds.
- the agents can be used alone or in appropriate combination.
- the film thickness of the hard coat layer is not particularly limited as long as the hard coat property is exhibited, but is generally 2 ⁇ m or more and 10 ⁇ m or less.
- various additives can be added to the hard coat layer.
- fluorine or silicone leveling agents added to improve releasability when peeling from polyester film substrates, and electrons added to prevent dust adhesion due to peeling charge during peeling.
- a conjugated, metal oxide or ionic antistatic agent may be appropriately selected and used according to the required function.
- the point which can use an additive agent is the same also about the following glare-proof layer and a low refractive index layer.
- the antiglare layer has an antiglare function that scatters light, and realizes the antiglare function by external haze and / or internal haze. It contains translucent fine particles, or both.
- the method of forming the unevenness on the surface of the antiglare layer there is no particular limitation on the method of forming the unevenness on the surface of the antiglare layer, but the method of applying an ionizing radiation curable resin on the polyester film substrate on which the unevenness is formed, and curing after application is It is preferable because the shape can be easily controlled.
- the shape of the surface irregularities on the polyester substrate side of the antiglare layer is determined by the required antiglare property.
- a more preferable uneven shape can be defined by the roughness parameter Ra, and Ra: 0.01 ⁇ m or more, Sm: 50 ⁇ m to 500 ⁇ m, and average inclination angle: 0.1 ° to 3.0 °. More preferred.
- the thickness of the antiglare layer is not particularly limited, but if it is too thin, the uneven shape formed on the support side remains on the uneven surface formed on the support side, which is not preferable in terms of preventing glare. On the other hand, if it is too thick, curling and cracking due to curing shrinkage of the resin occur, which is not preferable in terms of handling, and therefore it is preferably in the range of 1 to 12 ⁇ m.
- the translucent fine particles added to the ionizing radiation curable resin to cause internal haze include, for example, acrylic resin, polystyrene resin, styrene-acrylic copolymer, nylon resin, silicone resin, melamine resin, polyether.
- Organic resin fine particles such as sulfone resin and inorganic fine particles such as silica can be used.
- the translucent fine particles preferably have a refractive index difference of 0.04 or less from the resin component, and more preferably 0.01 or less. A large difference in refractive index from the resin component is not preferable because internal scattering occurs in the antiglare layer and the contrast is lowered.
- the film thickness of the antiglare layer is not particularly limited as long as the antiglare property is exhibited, but is generally 2 ⁇ m or more and 10 ⁇ m or less.
- the antiglare layer can also have a hard coat property. In this case, the hard coat property is imparted by adjusting the resin component used.
- the antireflection layer is composed of a low refractive index layer and a high refractive index layer.
- a low refractive index layer is a layer having a refractive index lower than that of an adjacent high refractive index layer (for example, a hard coat layer, an antiglare layer, or a protective film), and is low when laminated with a high refractive index layer. This contributes to preventing reflection of light from the refractive index layer side.
- the high refractive index and the low refractive index do not define an absolute refractive index, but rather specify that the refractive indices of the two layers are relatively high or low compared.
- the reflectance is said to be lowest when both have the relationship of the following formula 1.
- n2 (n1) 1/2 (Formula 1) (N1 is the refractive index of the high refractive index layer, n2 is the refractive index of the low refractive index layer)
- the refractive index of the low refractive index layer is preferably 1.45 or less.
- the fluorine-based fluorine-containing material is excellent in antifouling property, and therefore, it is preferable in terms of preventing contamination when the low refractive index layer becomes the surface.
- fluorine-containing material examples include vinylidene fluoride copolymers, fluoroolefin / hydrocarbon copolymers, fluorine-containing epoxy resins, fluorine-containing epoxy acrylates, fluorine-containing silicones, which are easily dissolved in organic solvents. , Fluorine-containing alkoxysilane, fluorine-containing polysiloxane, and the like. These can be used alone or in combination.
- the fluorine-containing polysiloxane is obtained by curing a hydrolyzable silane compound and / or a mixture containing at least a hydrolyzate thereof and a curing accelerator, as a hydrolyzable silane compound, as a film forming agent and an antistatic agent.
- a cation-modified silane compound having the above function can also be contained.
- the film thickness of the low refractive index layer is not particularly limited as long as the antireflection function is exhibited in relation to the high refractive index layer, but is generally 0.05 ⁇ m or more and 0.2 ⁇ m or less. In general, the thickness is preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
- the low refractive index layer exhibits an antireflection function in relation to the high refractive index layer, but can also have a hard coat property by selecting a raw material. Further, the high refractive index layer may have a hard coat property or may have an antiglare property depending on the selection of raw materials. Similarly, each layer can have other functions.
- the polarizing plate according to the present invention includes the protective film (including a laminate including the protective film) on at least one surface of the polarizing film.
- the polarizing film is made of a polyvinyl alcohol resin (PVA resin), and has a property of transmitting light having a vibration surface in a certain direction out of light incident on the polarizing film and absorbing light having a vibration surface orthogonal to the direction.
- a dichroic dye is typically adsorbed and oriented on a PVA resin.
- the PVA resin constituting the polarizing film can be obtained by saponifying a polyvinyl acetate resin.
- the polyvinyl acetate resin used as the raw material for the PVA resin may be a copolymer of polyvinyl acetate, which is a homopolymer of vinyl acetate, or a copolymer of vinyl acetate and other monomers copolymerizable therewith. Good.
- a polarizing film can be produced by subjecting the film made of the PVA resin to uniaxial stretching, dyeing with a dichroic dye, and boric acid crosslinking treatment after dyeing.
- a dichroic dye iodine or a dichroic organic dye is used.
- Uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or after dyeing with a dichroic dye, for example, during a boric acid crosslinking treatment. May be.
- the polarizing film which consists of PVA resin which is manufactured and the dichroic dye adsorbs and becomes one of the constituent materials of a polarizing plate.
- an ultraviolet curable adhesive is preferably used for the bonding of the polarizing film and the protective film.
- the ultraviolet curable adhesive is supplied in a liquid coatable state, a known one that has been conventionally used in the production of polarizing plates can be used, but from the viewpoint of weather resistance, polymerizability, etc.
- a polymerizable compound for example, one containing an epoxy compound as one of the ultraviolet curable components is preferable.
- polymerization initiators In addition to cationically polymerizable compounds such as epoxy compounds as representative examples of ultraviolet curable adhesives, polymerization initiators, particularly to generate cationic species or Lewis acids upon irradiation with ultraviolet rays, initiate polymerization of cationically polymerizable compounds.
- the photocationic polymerization initiator is blended.
- a thermal cationic polymerization initiator that initiates polymerization by heating, and various other additives such as a photosensitizer may be blended.
- the polarizing plate according to the present invention includes the above-described protective film on at least one surface, and includes a configuration in which the protective film is provided on both surfaces of the polarizing plate. Since the protective film has a low moisture permeability even if it is a thin layer, the polarizing film is difficult to absorb moisture even in a high temperature and high humidity environment, and the expansion and contraction of the polarizing film is suppressed.
- Step (A1) The energy beam curable composition is applied on the film substrate or the release layer of the film substrate.
- the energy beam curable composition contains urethane methacrylate as an essential component.
- the urethane methacrylate which is a monomer is a raw material for the protective film, and the monomer is polymerized to form the repeating unit described in the ⁇ protective film >>.
- the energy ray-curable composition includes, as a raw material for the protective film, urethane methacrylate that generates the repeating unit (block A) and (meth) acrylate that generates block B. These monomers are copolymerized to form the copolymer described in the above ⁇ Protective film >>.
- the urethane methacrylate differs from the repeating unit in that the methacrylate-derived structure at both ends is a methacrylate group, but the monomer has a plurality of types or one type of saturated cycloaliphatic groups other than both ends.
- the structure is common and the same applies to methacrylate.
- Specific examples of the saturated cycloaliphatic group, saturated aliphatic chain and the like are the same as the description of the repeating unit (block A) and block B, and thus the description thereof is omitted.
- Examples of the urethane methacrylate include the following structure A having a saturated cycloaliphatic group R 1 , structure B (optionally included) having the following saturated aliphatic chain R 2 , and a saturated cycloaliphatic group R 3 .
- the structure containing the following structure C can be illustrated.
- the structure B is an optional component. —CO—NH—R 1 —NH—CO— (Structure A) —O—R 2 —CO— (Structure B) —O—R 3 —O— (Structure C)
- the urethane methacrylate can be obtained using, for example, a diisocyanate containing R 1 , an ester containing R 2 (optionally used), a diol containing R 3 , a methacrylate or an isocyanate having a methacryl group.
- the ratio of the structure A, the structure B, and the structure C is m + 1: m (r + s): m, m + 1: k + n: m, m: m (r + s): m + 1, or m: k + n: m + 1.
- M represents an integer of 1 to 4
- r and s each represents an integer of 0 to 2
- the sum of r and s is 1 to 2
- k represents an integer of 0 to 2
- the method for synthesizing urethane methacrylate is not particularly limited, an example is a method of first synthesizing a bifunctional intermediate and synthesizing an isocyanate having a methacrylate or a methacryl group at both ends of the intermediate.
- urethane methacrylate corresponding to the repeating unit of the general formula (1) described above is exemplified.
- An ester having R 2 and a diol having R 3 are represented by m (r + s): The reaction is carried out at a molar ratio of m, and further, m + 1 mol of diisocyanate having R 1 is reacted to obtain an intermediate having —N ⁇ C ⁇ O groups at both ends.
- urethane methacrylate represented by the following general formula (8) is obtained by reacting 1 mol of the intermediate with 2 mol of methacrylate.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- r and s each represent an integer of 0 to 2
- r And the sum of s is 1 to 2
- x is an integer of 0 to 3
- An example of a method of synthesizing urethane methacrylate corresponding to the repeating unit of the general formula (2) is as follows: [1] A diisocyanate having R 1 and a diol having R 3 are reacted at a molar ratio of m + 1: m. An intermediate having a —N ⁇ C ⁇ O group at the end is obtained. [2-1] Thereafter, 2 mol of methacrylate is reacted with 1 mol of the above intermediate, or [2-2] ester having k + n mol of R 2 with respect to 1 mol of the above intermediate.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- k represents an integer of 0 to 2
- n represents an integer of 0 to 2
- x represents an integer of 0 to 3
- urethane methacrylate corresponding to the repeating unit of the general formula (3) [1] reacting a diisocyanate having R 1 and an ester having R 2 in a molar ratio of m: m (r + s). Further, m + 1 mol of diol having R 3 is reacted to obtain an intermediate having hydroxyl groups at both ends. [2] Thereafter, urethane methacrylate corresponding to the repeating unit represented by the general formula (10) is obtained by reacting 1 mol of an intermediate with an isocyanate having 2 mol of methacrylic group.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- r and s each represent an integer of 0 to 2
- r And the sum of s is 1 to 2
- x is an integer of 0 to 3
- An example of a method of synthesizing urethane methacrylate corresponding to the repeating unit of the general formula (4) is as follows: [1] A diisocyanate having R 1 and a diol having R 3 are reacted at a molar ratio of m: m + 1. An intermediate having a hydroxyl group at the end is obtained.
- R 1 represents a saturated cycloaliphatic group
- R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
- R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
- R 4 represents a hydrogen atom, a methyl group or an ethyl group
- m represents an integer of 1 to 4
- k represents an integer of 0 to 2
- n represents an integer of 0 to 2 Represents an integer
- x represents an integer of 0 to 3
- R 5 represents a saturated cycloaliphatic group
- R 6 represents a hydrogen atom or a methyl group
- y and z are integers of 0 to 2
- Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds.
- the agents can be used alone or in appropriate combination.
- additives such as an ultraviolet absorber, a leveling agent, an antistatic agent, and a thiol described in ⁇ Protective film >> may be added to the energy ray curable composition.
- each ratio of the monomer (the total amount of the monomer that generates the repeating unit (block A) and the monomer that generates the block B), the photopolymerization initiator, and any of various additives (including thiols) is
- the total amount of monomers is 50% by mass or more and 99% by mass or less
- the photopolymerization initiator is 0.5% by mass or more.
- the mass% or less and various additives can be 0.01 mass% or more and 50 mass% or less.
- the mass ratio of the monomer A that generates the block A and the monomer B that generates the block B is such that the degree of improvement in the tensile elastic modulus of the protective film caused by the block B is suitable.
- the range is preferably from 70:30 to 15:85, more preferably from 60:40 to 15:85, and particularly preferably from 50:40 to 15:85.
- the energy ray-curable composition can be applied so as to form a thin layer, for example, a protective film of 50 ⁇ m or less, preferably 30 ⁇ m or less.
- Curing in the step (A2) can be performed by irradiating ultraviolet rays from an ultraviolet irradiation device.
- the ultraviolet light source to be used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, etc. Can be used.
- a high-pressure mercury lamp or a metal halide lamp having a lot of light of 400 nm or less is preferably used as an ultraviolet light source in consideration of an absorption wavelength exhibited by a general polymerization initiator. It is done.
- a protective film is formed on the film substrate or the release layer of the film substrate, and a film laminate in which the protective film is laminated on the film substrate is obtained. . Furthermore, a single protective film can be obtained by peeling the protective film from the film laminate.
- the manufacturing method including a functional layer formation process (B) is mentioned.
- the energy ray curable composition which is a raw material of the functional layer, is applied on the film base material or the release layer of the film base material and cured to function on the film base material. Form a layer.
- the functional layer forming step (B) is performed before the protective film forming steps (A1) and (A2).
- the functional layer is formed after the protective film forming steps (A1) and (A2). You may perform a formation process (B). In this case, the film laminated body laminated
- the functional layer is not particularly limited, and examples thereof include the hard coat layer, the antiglare layer, and the antireflection layer described above.
- the energy ray curable composition that is a raw material of the functional layer includes the resin described above in the description of the hard coat layer, the antiglare layer, and the antireflection layer.
- An organic solvent such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone (MIBK), isopropyl alcohol (IPA), or toluene may be added.
- the functional layer forming step (B) is performed before the protective film forming steps (A1) and (A2)
- the functional layer forming step When performing (B) what is necessary is just to form a functional layer with the following methods on the protective film formed on the film base material.
- the energy ray curable composition which is the raw material of the functional layer, on the film substrate or the release layer of the film substrate, considering continuous productivity, roll coating method, gravure coating method, etc. It is preferable to use this coating method.
- a method of arbitrarily heating and then crosslinking and curing by ultraviolet irradiation or the like may be used.
- the energy ray curable composition containing urethane methacrylate is applied to the functional layer side of the film substrate in the protective film forming step (A1).
- the functional layer is a plurality of layers, it is usually applied to the last formed functional layer side.
- irregularities are formed on the functional layer formed on the film base material and function as an antiglare layer having antiglare properties.
- the shape of the unevenness is determined by the required antiglare property, and a more preferable uneven shape can be defined by the roughness parameter Ra, Ra: 0.01 ⁇ m or more, Sm: 50 ⁇ m to 500 ⁇ m, average slope Angle: More preferably from 0.1 ° to 3.0 °.
- a plurality of layers can be formed.
- the first hard coat layer is formed on the film substrate or the release layer of the film substrate, and the second hard coat layer is formed on the first hard coat layer.
- an energy ray curable composition containing urethane methacrylate is applied to the second hard coat layer side.
- An antiglare layer may be formed in place of the second hard coat layer.
- a low refractive index layer is formed on the film substrate or a release layer of the film substrate, and a high refractive index layer is formed on the low refractive index layer.
- an energy ray-curable composition containing urethane methacrylate is applied to the high refractive index layer side.
- the polarizing plate according to the present invention includes the protective film according to the present invention on at least one surface of the polarizing film.
- the bonding method may be a known method, and is not particularly limited.
- the protective film may be used alone, but it is preferable to use the protective film together with the film laminate, that is, the film substrate, for ease of handling.
- the polarizing film is bonded to the protective film side of the film laminate.
- a polarizing plate according to the present invention is obtained.
- the process related to the method for producing a polarizing plate will be described more specifically.
- the following steps (C1) to (C4) are performed after the protective film forming step or after the functional layer forming step and the protective film forming step.
- (C1) a coating step of applying an ultraviolet curable adhesive to the protective film side (or polarizing film) of the film laminate
- (C2) A laminating step in which a polarizing film (or a protective film side of the film laminate) is applied to the UV curable adhesive surface applied in the coating step and pressed.
- (C3) A curing step of curing the ultraviolet curable adhesive by irradiating ultraviolet rays from an ultraviolet irradiation device to the film laminate in which the protective film is bonded to the polarizing film via the ultraviolet curable adhesive,
- the peeling process which peels and removes a film base material (support base material) from a laminated
- an ultraviolet curable adhesive is applied to the protective film side of the film laminate, which becomes the bonding surface of the polarizing film (or instead of the protective film side of the film laminate, the polarizing film is applied to the polarizing film).
- Apply UV curable adhesive As a coating machine used here, a well-known thing can be used suitably, for example, the coating machine using a gravure roll etc. are mentioned.
- the bonding step (C2) after passing through the coating step (C1), the polarizing film is laminated on the adhesive-coated surface of the film laminate, and the bonding is performed while pressing (polarization in the coating step (C1)).
- an ultraviolet curable adhesive is applied to the film, the film is laminated while pressing the protective film side of the film laminate on the surface of the ultraviolet curable adhesive).
- a known means can be used for pressurization in the bonding step, but from the viewpoint that pressurization while continuous conveyance is possible, a method of sandwiching between a pair of nip rolls is preferably used. Is preferably about 150 to 500 N / cm as a linear pressure when sandwiched between a pair of nip rolls.
- ultraviolet rays are irradiated from an ultraviolet irradiation device to cure the ultraviolet curable adhesive.
- Ultraviolet rays are irradiated through the film laminate.
- the ultraviolet light source to be used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, etc. Can be used.
- a high-pressure mercury lamp or metal halide lamp having a large amount of light of 400 nm or less is preferably used as an ultraviolet light source in consideration of the absorption wavelength exhibited by a general polymerization initiator.
- the peeling step (C4) is a step that is appropriately performed as necessary.
- the film base material laminated on the protective film by this step is peeled off and removed (if the film base material has a plurality of layers, the film base A part of the material is peeled and removed), whereby a polarizing plate is obtained.
- the polarizing plate is further processed, when the surface of the protective film is desired to be protected in the post-processing step, the film substrate may be peeled after the completion of the processing.
- a film laminated body is obtained by performing a functional layer forming step after the protective film forming step, that is, when the film laminated body has a structure of film base material / protective film / functional layer, (C1) Since it is necessary to peel a film base material from a film laminated body before an application
- the protective film obtained by peeling the polyester film substrate from the obtained film laminate (when the functional layer is formed on the film substrate, the protective film and the functional layer) are measured, and the moisture permeability and tensile strength of the protective film are as follows: The measurement method was used.
- the thickness of the protective film was measured using a digital linear gauge D-10HS and a digital counter C-7HS (manufactured by Ozaki Mfg. Co., Ltd.).
- Example 1 Polyester film substrate / protective film
- the following energy beam curable composition (P1) for forming a protective film was applied to the release layer side of non-silicone release PET SG-1 (38 ⁇ m thickness) manufactured by Panac.
- the energy ray curable composition (P1) contains toluene and has a solid content (NV) of 60%.
- the coating thickness of the energy ray curable composition (P1) was adjusted so that the film thickness after drying was 20 ⁇ m to 30 ⁇ m.
- the coating film is dried in a clean oven set at a drying oven temperature of 100 ° C, and then UV cured under conditions of peak illuminance of 326 mW / cm 2 and integrated light intensity of 192 mJ / cm 2 in a nitrogen atmosphere.
- a film laminate having a protective film formed on one side was obtained. The evaluation results for this film laminate are shown in Table 7.
- Example 2 Polyester film substrate / HC layer (normal) / protective film]
- the following energy beam curable composition for HC layer formation (HC1) was applied to the release layer side of Panac's non-silicone release PET SG-1 (38 ⁇ m thickness) by reverse coating.
- the formed coating film is dried at 100 ° C for 1 minute, and then irradiated with ultraviolet light using a 120W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere (irradiation distance 10cm, irradiation time 30 seconds).
- the film was cured to form a hard coat layer (HC layer) having a thickness of 3.5 ⁇ m and a refractive index of 1.52.
- Example 7 the energy ray curable composition (P1) described in Example 1 was coated and dried on the HC layer side under the same conditions as in Example 1, and a film laminate in which a protective film was formed on the HC layer side. Got.
- the evaluation results for this film laminate are shown in Table 7.
- Example 3 Polyester film substrate / AG layer (containing filler) / protective film]
- the coating liquid for the release layer (filler) so that the dry film thickness is 2 ⁇ m on one side of the PET film (product name: Emblet S-50, manufactured by Unitika), which is the support for the release film, by the bar coating method Coating), and the coated film was dried at 140 ° C. for 1 minute and then cured.
- a support having a 2 ⁇ m-thick release layer having surface irregularities on the PET film was obtained.
- the following energy layer curable composition for AG layer formation (AG1) was applied on the release layer.
- the coating thickness was adjusted by a bar coating method so that the dry film thickness was 6 ⁇ m.
- the coating film of AG1 was dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet rays (lamp: high pressure mercury lamp, lamp output: 120 W / cm, integrated light amount: 120 mJ / cm) to cure the coating film.
- the energy ray curable composition (P1) described in Example 1 was coated and dried on the AG layer side under the same conditions as in Example 1, and a film laminate in which a protective film was formed on the AG layer side. Got the body.
- the evaluation results for this film laminate are shown in Table 7.
- Example 4 Polyester film substrate / HC layer (fillerless AG) / protective film]
- the coating liquid for the release layer (filler) so that the dry film thickness is 2 ⁇ m on one side of the PET film (product name: Emblet S-50, manufactured by Unitika) by the bar coating method. Coating), and the coated film was dried at 140 ° C. for 1 minute and then cured.
- a support having a 2 ⁇ m-thick release layer having surface irregularities on the PET film was obtained.
- the following energy beam curable composition for HC layer formation was applied on the release layer and then cured.
- Example 7 the energy ray curable composition (P1) described in Example 1 was applied and dried on the HC layer side under the same conditions as in Example 1, and a film laminate in which a protective film was formed on the HC layer side. Got the body.
- the evaluation results for this film laminate are shown in Table 7.
- Example 5 Polyester film substrate / low refractive index layer / high refractive index layer / AG layer / protective film]
- a release layer coating solution on one side of a PET film (product name: Emblet S-50, manufactured by Unitika) as a support for the release film so that the dry film thickness is 2 ⁇ m.
- the coating film was dried at 140 ° C. for 1 minute and then cured.
- a support having a 2 ⁇ m-thick release layer having surface irregularities on the PET film was obtained.
- the following low-refractive-index paint (LR1) is applied on the release layer by the reverse coating method, and the coating film is dried at 100 ° C. for 1 minute, resulting in a rugged surface with a thickness of 0.1 ⁇ m and a refractive index of 1.38. A refractive index layer was formed. Then, it left still at 60 degreeC for 120 hours for hardening of a low refractive index layer.
- the energy ray curable composition for AG layer formation (AG1) described in Example 3 was applied onto the low refractive index layer by a bar coating method so that the dry film thickness was 6 ⁇ m, and the coating was performed at 100 ° C. After drying for 1 minute, UV irradiation was performed (lamp: high-pressure mercury lamp, lamp output: 120 W / cm, integrated light amount: 120 mJ / cm), the coating film was cured, and an AG layer was formed.
- Example 7 the energy ray curable composition (P1) described in Example 1 was coated and dried on the AG layer side under the same conditions as in Example 1, and a film laminate in which a protective film was formed on the AG layer side. Got the body.
- the evaluation results for this film laminate are shown in Table 7.
- Example 6 Polyester film substrate / low refractive index layer / high refractive index layer / HC layer / protective film]
- the low refractive index paint (LR1) described in Example 5 was applied to the release layer side of a non-silicone release PET SG-1 (38 ⁇ m thickness) manufactured by Panac Co., Ltd. And dried for 1 minute, followed by curing to form a low refractive index layer having a thickness of 0.1 ⁇ m and a refractive index of 1.38. Then, it left still at 60 degreeC for 120 hours for hardening of a low refractive index layer.
- the following energy beam curable composition (HC3) for HC layer formation was applied on the low refractive index layer by a reverse coating method. After drying at 100 ° C for 1 minute, ultraviolet irradiation (irradiation distance 10 cm, irradiation time 30 seconds) with one 120 W / cm condensing type high-pressure mercury lamp in a nitrogen atmosphere to cure the coating film, thickness 2.5 ⁇ m, An HC layer having a refractive index of 1.64 was formed.
- Example 7 the energy ray curable composition (P1) described in Example 1 was applied and dried on the HC layer side under the same conditions as in Example 1, and a film laminate in which a protective film was formed on the HC layer side. Got the body.
- the evaluation results for this film laminate are shown in Table 7.
- Example 1 and Comparative Example 1 were compared with a protective film not provided with a functional layer, the protective film using Compound 1 in Example 1 had a moisture permeability of 65 g / th in a state thinner than 40 ⁇ m. (M 2 ⁇ 24h), pencil hardness F, which was markedly improved as compared with the moisture permeability of 80 g / (m 2 ⁇ 24h) and pencil hardness of 6B or less in Comparative Example 1.
- the film laminate when the protective film similar to that of Example 1 was laminated on the functional layer, the film laminate had a low permeability of 60 to 64 g / (m 2 ⁇ 24 h) due to the protective film. It has a pencil hardness of 2H as well as humidity, and has both low moisture permeability and hard coat properties, and is very useful.
- Comparative Examples 2 to 6 when the functional layer was laminated on the functional layer on the protective film similar to Comparative Example 1, the moisture permeability was 76 to 79 g / (m 2 ⁇ 24 h), and the pencil hardness was H. It is clearly shown that the characteristic urethane methacrylate structure of Compound 1 is effective in reducing moisture permeability and improving surface hardness.
- the protective film according to the present invention has a low moisture permeability in the state of a thin layer, and has a high surface hardness, and the film laminate having a functional layer on the protective film also has a high surface hardness, It is useful as a constituent member for polarizing plates, particularly for polarizing plates, and can be used in various fields.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Polyurethanes Or Polyureas (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
【課題】保護フィルムが40μmより薄い膜で且つ、透湿度が80g/(m2・24時間)以下であり、表面硬度が高い保護フィルムを提供することにある。 【解決手段】本発明に係る保護フィルムは、2官能性のウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有するため、当該保護フィルムは、40μmよりも薄くとも低透湿度であり、表面硬度が高いため、保護フィルムの搬送等における表面の傷付きを防止することができ、当該保護フィルムを貼合した偏光フィルムは、高温高湿環境下であっても、偏光フィルムが吸湿し難く、偏光フィルムの伸縮が抑制される。
Description
本発明は、保護フィルム、フィルム積層体、および偏光板に関する。
近年、TVやモバイル機器に用いられる液晶ディスプレイは、益々薄型化されており、これらのディスプレイに用いられる構成部品、特に偏光板も究極の薄さを目指して技術開発が進められている。偏光板は、一般的には、ヨウ素を吸着させ一軸延伸したポリビニルアルコール系フィルムからなる偏光フィルムの両面に、トリアセチルセルロース(以下、TACと称する)等の光学フィルムを保護フィルムとして接着剤により貼合した構成となっている。TACフィルムを偏光フィルムに貼合するためには親水性の接着剤が用いられる。
このような従来型の偏光板は、保護フィルムとしてのTACフィルムの透湿度が高いことや、吸湿脱湿による伸縮が大きいことに起因して、偏光板を高湿環境、特に高温高湿環境下に長期間晒すと、偏光板としての光学機能が損なわれたり、偏光板のカール、反りによる物理的なトラブルが発生したりするという問題があった。
これらを改善するために、透湿度が低いアクリル系フィルム、またはポリエステル系フィルムが用いられるケースが増加している。また、保護フィルムを偏光フィルムに接着する方法として、エネルギー線硬化型組成物を接着剤として用いる方法も採用されるようになった。しかしながら、保護フィルムを偏光フィルムに接着する方法では、作業時の取扱い性や耐久性の観点から、保護フィルムを薄層化(例えば、40μm以下)、かつ、低透湿化することが困難であり、大きな課題となっている。
このような問題点を解決するために、特許文献1では、基材フィルム上または離型層を形成した基材フィルム上に未硬化の電離放射線硬化樹脂(エネルギー線硬化樹脂)を塗布し、この塗布面に偏光フィルムを貼合した後、上記硬化樹脂を硬化し、基材フィルムを剥離することにより、偏光フィルムに保護膜を形成する方法が提案されている。
また、特許文献2には延伸して得られた40μmのフィルムにハードコート層を設けて低透湿性とハードコート性を備えた保護膜を形成する方法が記載されており、その実施例によれば、透湿度は、おおむね90g/(m2・24時間)より大きく、120g/(m2・24時間)以下である。
しかしながら、保護フィルムは薄膜になるほど、水分が透過し易くなるため、透湿度が高くなる傾向にあり、保護フィルムに貼合された偏光板は吸湿脱湿し易くなるが、近年、更なる薄膜化と低透湿化が要求されており、40μmより薄い膜にて、例えば、透湿度80g/(m2・24時間)以下となる低透湿性が求められている。
また、保護フィルムを偏光板に貼合する際、保護フィルムとガイドロールとの接触などによる保護フィルム表面への傷付きを防止する為には、保護フィルムに高い表面硬度が求められ、必要に応じてハードコート層を設ける等の処理を施し、ハードコート性を兼ね備えることも要求される。
これらの要求に対し、特許文献1には薄型軽量化、低価格化を達成できる光学部材およびその簡便な製造方法の記載はあるが、保護膜の表面硬度(ハードコート性)に関する具体的な記載、または透湿度に関して記載が無く性能が不明である。
また、特許文献2の保護膜にはハードコート層を備えた保護膜を形成する方法が記載されているが、透湿度についてはおおむね90g/(m2・24時間)より大きく、120g/(m2・24時間)以下であり、透湿度が高いという問題がある。
また、保護フィルムを偏光板に貼合する際、保護フィルムとガイドロールとの接触などによる保護フィルム表面への傷付きを防止する為には、保護フィルムに高い表面硬度が求められ、必要に応じてハードコート層を設ける等の処理を施し、ハードコート性を兼ね備えることも要求される。
これらの要求に対し、特許文献1には薄型軽量化、低価格化を達成できる光学部材およびその簡便な製造方法の記載はあるが、保護膜の表面硬度(ハードコート性)に関する具体的な記載、または透湿度に関して記載が無く性能が不明である。
また、特許文献2の保護膜にはハードコート層を備えた保護膜を形成する方法が記載されているが、透湿度についてはおおむね90g/(m2・24時間)より大きく、120g/(m2・24時間)以下であり、透湿度が高いという問題がある。
上記問題点を鑑み、本発明の課題は保護フィルムが40μmより薄い膜で且つ、透湿度が80g/(m2・24時間)以下であり、表面硬度が高い保護フィルムを提供することにある。
上記課題に対し、本発明者らは鋭意検討を重ねた結果、従来、保護フィルム材料としてほとんど着眼されていなかったウレタンメタクリレートモノマーに着眼し、複数種類の飽和環状脂肪族基を有するウレタンメタクリレートモノマーから得られた保護フィルムは、40μmよりも薄い膜で、透湿度が低く、尚且つ表面硬度が高いこと、および、当該保護フィルムに機能層を設けたフィルム積層体は、保護フィルムの高い表面硬度に起因して、表面硬度が高いことを見出した。
すなわち、本発明には以下の形態が含まれる。
<1>2官能性のウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有することを特徴とする保護フィルム。
<2>上記繰り返し単位は、
飽和環状脂肪族基R1を含む下記構造A、および、
飽和環状脂肪族基R3を含む下記構造Cを含むことを特徴とする<1>に記載の保護フィルム。
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R3-O-・・・(構造C)
<3>上記繰り返し単位は、
さらに、飽和脂肪族鎖R2を含む下記構造Bを含むことを特徴とする<2>に記載の保護フィルム。
-O-R2-CO-・・・(構造B)
<4>上記繰り返し単位が、下記一般式(1)で表される構造であることを特徴とする<3>に記載の保護フィルム。
(一般式(1)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
<5>上記R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R3がジメチレントリシクロデカン環であることを特徴とする<2>~<4>の何れか1項に記載の保護フィルム。
<6>透湿度が150g/(m2・24時間)以下であることを特徴とする<1>~<5>の何れか1項に記載の保護フィルム。
<7><1>~<6>の何れか1項に記載の保護フィルムの少なくとも片面に、
(1)上記保護フィルムを支持するフィルム基材、
(2)耐擦傷性を有するハードコート層、
(3)光を散乱させる防眩層、および、
(4)上記保護フィルム上に備えられた高屈折率層と、上記高屈折率層に備えられた低屈折率層とで構成された反射防止層、の何れかを備えることを特徴とするフィルム積層体。
<8>上記保護フィルムの少なくとも片面に、上記ハードコート層を備えており、
上記ハードコート層を備えた面の鉛筆硬度が2H以上であることを特徴とする<7>に記載のフィルム積層体。
<9>偏光フィルムの少なくとも片面に、<1>~<6>の何れか1項に記載の保護フィルムを備えることを特徴とする偏光板。
<1>2官能性のウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有することを特徴とする保護フィルム。
<2>上記繰り返し単位は、
飽和環状脂肪族基R1を含む下記構造A、および、
飽和環状脂肪族基R3を含む下記構造Cを含むことを特徴とする<1>に記載の保護フィルム。
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R3-O-・・・(構造C)
<3>上記繰り返し単位は、
さらに、飽和脂肪族鎖R2を含む下記構造Bを含むことを特徴とする<2>に記載の保護フィルム。
-O-R2-CO-・・・(構造B)
<4>上記繰り返し単位が、下記一般式(1)で表される構造であることを特徴とする<3>に記載の保護フィルム。
<5>上記R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R3がジメチレントリシクロデカン環であることを特徴とする<2>~<4>の何れか1項に記載の保護フィルム。
<6>透湿度が150g/(m2・24時間)以下であることを特徴とする<1>~<5>の何れか1項に記載の保護フィルム。
<7><1>~<6>の何れか1項に記載の保護フィルムの少なくとも片面に、
(1)上記保護フィルムを支持するフィルム基材、
(2)耐擦傷性を有するハードコート層、
(3)光を散乱させる防眩層、および、
(4)上記保護フィルム上に備えられた高屈折率層と、上記高屈折率層に備えられた低屈折率層とで構成された反射防止層、の何れかを備えることを特徴とするフィルム積層体。
<8>上記保護フィルムの少なくとも片面に、上記ハードコート層を備えており、
上記ハードコート層を備えた面の鉛筆硬度が2H以上であることを特徴とする<7>に記載のフィルム積層体。
<9>偏光フィルムの少なくとも片面に、<1>~<6>の何れか1項に記載の保護フィルムを備えることを特徴とする偏光板。
本発明に係る保護フィルムは、所定の繰り返し単位によって形成されているため、40μmよりも薄い膜であっても低透湿度であり、表面硬度が高いものである。また、当該保護フィルムに機能層を設けたフィルム積層体は、保護フィルムに起因して高い表面硬度(ハードコート性)を兼ね備えているため保護フィルム加工時に生じる傷付きを防止することができ、当該保護フィルムを貼合した偏光フィルムは、高温高湿環境下であっても、偏光フィルムが吸湿し難く、偏光フィルムの伸縮が抑制される。
以下、本発明に係る保護フィルム、フィルム積層体および偏光板について説明するが、本発明は以下の説明に限定して解釈されるものではない。
《保護フィルム》
本発明に係る保護フィルムは、2官能性のウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有するものである。すなわち、当該保護フィルムにおいて、高分子を形成するマトリックスは、ウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されている。
本発明に係る保護フィルムは、2官能性のウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有するものである。すなわち、当該保護フィルムにおいて、高分子を形成するマトリックスは、ウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されている。
上記ウレタンメタクリレート由来の構造とは、ウレタンメタクリレート単量体単位、すなわち、モノマーであるウレタンメタクリレートにおける、メタクリレート基の2重結合が開裂した構造を意味し、メタクリレート基の2重結合が開裂した部位を両末端に有しているため、2官能性である。
上記繰り返し単位はウレタン結合(-NH-CO-O-)を有している。当該ウレタン結合の数は特に限定されず、例えば、1~8である。上記ウレタン結合は極性基であり、各繰り返し単位中のウレタン結合同士が分子間力によって近接する。一方、飽和環状脂肪族基は非極性な環状構造であり、分子量が高い。このウレタン結合同士の分子間相互作用において飽和環状脂肪族基の高い分子量が寄与することにより、上記分子間力は高い凝集力を生ぜしめることとなると考えられる。その結果、上記繰り返し単位によって構成された保護フィルムは、薄層の状態で、低透湿性であり、高い表面硬度をも備えることとなる。
上記ウレタンメタクリレート単量体単位は、複数種類の飽和環状脂肪族基を有している。飽和環状脂肪族基としては、特に限定されるものではないが、分子量に起因する凝集力を高める観点から、5員環以上の飽和環状脂肪族基であることが好ましい。員環数の上限は特に限定されないが、保護フィルムの原料となるモノマーの合成し易さから、例えば、15員環以下であり、好ましくは10員環以下である。上記員環数とは、飽和環状脂肪族基が複数の環状構造を有する場合、最大の環状構造の員環数を表すものとし、飽和環状脂肪族基が、ビシクロ環、またはトリシクロ環を有する場合、橋頭炭素を結ぶ橋の炭素を除いた環状構造の員環数を意味する。例えば、トリシクロデカン環の場合、員環数は9である。
飽和環状脂肪族基の環状構造の主鎖は、炭素原子のみによって形成されていてもよいし、炭素原子に加え、酸素原子および/または窒素原子によって形成されていてもよい。また、上記環状構造の炭素原子には、炭素数1~10の直鎖および/または分鎖構造が付加していてもよい。
上記飽和環状脂肪族基の一例としては、3,5,5-トリメチルシクロヘキサン環、トリシクロデカン環、アダマンタン環などが挙げられる。上記飽和環状脂肪族基は、飽和脂肪族鎖を介してウレタン結合基と結合していてもよく、飽和脂肪族鎖の炭素数を変更することで、繰り返し単位の剛性を好適に調整できる。飽和脂肪族鎖としては、直鎖構造および分鎖構造があり、直鎖構造の一例としては、-(CH2)n-(nは1~10の整数である)が挙げられ、繰り返し単位の屈曲性を低下させ、剛性を高める観点から、特に、-(CH2)-または-(CH2)2-であることが好ましい。一方、分鎖構造としては、上記直鎖構造の少なくとも1つの炭素上の水素が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などによって置換された構造が例示される。
上述した3,5,5-トリメチルシクロヘキサン環が、メチレン鎖を介して2つのウレタン結合と結合している場合、3-メチレン-3,5,5-トリメチルシクロヘキサン環が各ウレタン結合と結合していることとなり、トリシクロデカン環が、メチレン鎖を介して2つのウレタン結合と結合している場合、ジメチレントリシクロデカン環が各ウレタン結合と結合していることとなる。
上記3-メチレン-3,5,5-トリメチルシクロヘキサン環およびジメチレントリシクロデカン環は好ましい環構造であり、当該環構造を高分子鎖に含む保護フィルムにおいて、低透湿性および表面硬度が好適に発現される。
繰り返し単位の主鎖には、飽和環状脂肪族基以外に、炭素数5~10の飽和脂肪族鎖が含まれることが好ましい。飽和脂肪族鎖の炭素数が5以上であることにより、鎖長が長く、屈曲性を有する飽和脂肪族鎖によって繰り返し単位に柔軟性が付与され、保護フィルムの脆性が低減される。一方、炭素数が10以下であることにより、保護フィルムにおける透湿度の増加を抑制できる。飽和脂肪族鎖は直鎖構造であってもよく、分鎖構造であってもよい。上記飽和脂肪族鎖は、例えば、ウレタン結合、または、エステル結合を介した構造にて繰り返し単位の一部を構成している。
上記直鎖構造の一例としては、-(CH2)n1-(n1は5~10の整数)が挙げられ、特に、-(CH2)5-であることが好ましい。一方、分鎖構造としては、上記直鎖構造の少なくとも1つの炭素上の水素が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などによって置換された構造が例示される。
上記繰り返し単位の一例として、飽和環状脂肪族基R1を含む下記構造A、および、飽和環状脂肪族基R3を含む下記構造Cを含む構造を例示できる。
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R3-O-・・・(構造C)
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R3-O-・・・(構造C)
当該繰り返し単位は、例えば、R1を含むジイソシアネート、R3を含むジオール、および、メタクリレートを用いて得たウレタンメタクリレートから得ることができ、容易に製造可能である。一例として、上記構造A、および構造Cの割合は、m+1:m、または、m:m+1とすることができ、上記mは1~4の整数を示す。
また、上記繰り返し単位は、さらに、下記飽和脂肪族鎖R2を含んでいてもよい。
-O-R2-CO-・・・(構造B)
-O-R2-CO-・・・(構造B)
当該繰り返し単位は、例えば、R1を含むジイソシアネート、R2を含むエステル(任意に使用される)、R3を含むジオールに加えて、メタクリレート、または、メタクリル基を有するイソシアネートを用いて得ることができ、容易に製造可能である。一例として、上記構造A、構造Bおよび構造Cの割合は、m+1:m(r+s):m、m+1:k+n:m、m:m(r+s):m+1、m:k+n:m+1とすることができる。上記mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、kは0~2の整数を示し、nは0~2の整数を示す。
上述した飽和環状脂肪族基および飽和脂肪族鎖を有する繰り返し単位の具体例を以下に示す。一般式(1)に示すように、メタクリレート由来の構造とは、メタクリレート構造(H2C=C(CH3)-CO2-)の炭素-炭素2重結合が開裂して単結合となった構造である。
(一般式(1)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
上記一般式(1)中のmが1~4の整数であることにより、保護フィルムの透湿度をより低減でき、さらに、表面硬度がより高められる。mは1または2であることがより好ましく、さらに好ましくは1である。後述する一般式(2)、(3)および(4)においても同様である。
上記一般式(1)において、R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R2が-(CH2)5-であり、R3がジメチレントリシクロデカン環であり、R4が水素原子であり、rおよびsが1であり、xが1である好適な構造を以下に示す。
繰り返し単位の他の具体例を以下に示す。
(一般式(2)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
上記一般式(2)において、R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R2が-(CH2)5-であり、R3がジメチレントリシクロデカン環であり、R4が水素原子であり、kおよびnが1であり、xが1である好適な繰り返し単位を以下に示す。
また、繰り返し単位の他の具体例を以下に示す。
(一般式(3)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
上記一般式(3)において、R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R2が-(CH2)5-であり、R3がジメチレントリシクロデカン環であり、R4が水素原子であり、rおよびsが1であり、xが1である好適な繰り返し単位を以下に示す。
繰り返し単位の他の具体例を以下に示す。
(一般式(4)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
上記一般式(4)において、R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R2が-(CH2)5-であり、R3がジメチレントリシクロデカン環であり、R4が水素原子であり、kおよびnが1であり、xが1である好適な繰り返し単位を以下に示す。
なお、上記一般式(1a)、一般式(2a)、一般式(3a)および一般式(4a)で表される構造の異性体も本発明に係る繰り返し単位に含まれる。さらに、上記繰り返し単位は必ずしもひとつの構造に決定されるとは限らない。すなわち、例えば一般式(1)の繰り返し単位、および、当該繰り返し単位に隣り合う繰り返し単位において、一方のmが1であったとしても、他方のmは1に限定されるものでは無く、1~4のいずれであってもよい。これは、その他の一般式(後述の一般式を含む)におけるr、s、x、k、n、y、z、pについても同様である。
本発明に係る保護フィルムが、どのような構造の高分子鎖によって形成されているかは、熱分解GC-MSおよびFT-IRによって保護フィルムを分析することによって判断可能である。特に、熱分解GC-MSは、保護フィルムに含まれる単量体単位をモノマー成分として検知できるため有用である。
次に、本発明の保護フィルムのうち共重合体に関する形態について説明する。本形態に係る保護フィルムは、ブロックAである上記繰り返し単位と、1種類の飽和環状脂肪族基を有する2官能性の(メタ)アクリレート由来の構造を含んでなるブロックBと、を含有した共重合体によって構成されている。換言すると、共重合体に係る保護フィルムは、複数種類の飽和環状脂肪族基を有する2官能性のウレタンメタクリレート単量体単位を含んでなるブロックA(繰り返し単位)と、1種類の飽和環状脂肪族基を有する2官能性の(メタ)アクリレート単量体単位を含んでなるブロックBとを含有した共重合体を含んでなる、といえる。
ブロックAである繰り返し単位については、上述した通りである。ブロックBは、1種類の飽和環状脂肪族基を有する2官能性の(メタ)アクリレート単量体単位を含んでなる。このブロックBは(メタ)アクリレート単量体単位を含み、ウレタン結合を含まない。ブロックAのメタクリレート由来の部位は、他のブロックA、またはブロックBのアクリレート由来の部位と結合している(-ブロックA-ブロックA-、または、-ブロックA-ブロックB-)。
ブロックBにおける(メタ)アクリレート部位の-CO-O-は、ウレタン(メタ)アクリレート部位の非直線構造である-CO-NH-よりも直線的であり、屈曲性が低い。また、ブロックBは、1種類の飽和環状脂肪族基しか有しないため、ブロックAよりも直線的な構造であり、剛性が高い。ブロックAのみを含有した重合体を含有する保護フィルムは、薄層の状態であっても透湿度が低く、高い表面硬度を有するが、剛性が高いブロックBを併用することで表面硬度をより高め、吸湿脱湿に起因する偏光フィルムの伸縮を抑制できる保護フィルムを提供できる。
ブロックBに係る上記2官能性の(メタ)アクリレート単量体単位は、1種類の飽和環状脂肪族基を有している。飽和環状脂肪族基としては、特に限定されるものではないが、分子量に起因する透湿度の低下効果を得る観点から、5員環以上の飽和環状脂肪族基であることが好ましい。員環数の上限は特に限定されないが、ブロックBの原料となるモノマーの合成し易さから、例えば、15員環以下であり、好ましくは10員環以下である。上記員環数とは、飽和環状脂肪族基が複数の環状構造を有する場合、最大の環状構造の員環数を表すものとし、飽和環状脂肪族基が、ビシクロ環、またはトリシクロ環を有する場合、橋頭炭素を結ぶ橋の炭素を除いた環状構造の員環数を意味する。例えば、トリシクロデカン環の場合、員環数は9である。
飽和環状脂肪族基の環状構造の主鎖は、炭素原子のみによって形成されていてもよいし、炭素原子に加え、酸素原子および/または窒素原子によって形成されていてもよい。また、上記環状構造の炭素原子には、炭素数1~10の直鎖および/または分鎖構造が付加していてもよい。
上記飽和環状脂肪族基の一例としては、トリシクロデカン環、3,5,5-トリメチルシクロヘキサン環、アダマンタン環などが挙げられる。上記飽和環状脂肪族基は、(メタ)アクリレート由来の構造と飽和脂肪族鎖を介して結合していてもよく、飽和脂肪族鎖の炭素数を変更することで、繰り返し単位の剛性を好適に調整できる。飽和脂肪族鎖としては、直鎖構造および分鎖構造があり、直鎖構造の一例としては、-(CH2)n-(nは1~10の整数である)が挙げられ、共重合体の屈曲性を低下させ、剛性を高める観点から、特に、-(CH2)-または-(CH2)2-であることが好ましい。また、ブロックBが直鎖構造を有さない構造の場合も、剛性が高まる(上記、nが0)。一方、分鎖構造としては、上記直鎖構造の少なくとも1つの炭素上の水素が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などによって置換された構造が例示される。
上述した3,5,5-トリメチルシクロヘキサン環が、メチレン鎖を介して2つの(メタ)アクリレート由来の構造と結合している場合、3-メチレン-3,5,5-トリメチルシクロヘキサン環が各(メタ)アクリレート由来の構造と結合していることとなり、トリシクロデカン環が、メチレン鎖を介して2つの(メタ)アクリレート由来の構造と結合している場合、ジメチレントリシクロデカン環が各(メタ)アクリレート由来の構造と結合していることとなる。
上記ジメチレントリシクロデカン環は好ましい環構造であり、当該環構造を高分子鎖に含む保護フィルムにおいて、低透湿性および表面硬度が好適に発現される。
上述した飽和環状脂肪族基および飽和脂肪族鎖を有するブロックBの具体例を以下に示す。ブロックBは、両末端に(メタ)アクリレート由来の構造を有し、(メタ)アクリレート由来の構造は、他のブロックBと、またはブロックAと結合している(-ブロックB-ブロックB-、または、-ブロックB-ブロックA-)。一般式(5)に示すように、アクリレート由来の部位とは、アクリレート構造H2C=HC-CO2-の炭素-炭素2重結合が開裂して1重結合となった構造である(メタクリレート構造も同様)。
(一般式(5)中、R5は飽和環状脂肪族基を示し、R6は水素原子またはメチル基を示し、yおよびzは、0~2の整数である)
共重合体におけるブロックAとブロックBとの質量比は、特に限定されないが、ブロックBに起因する保護フィルムの引張弾性率の程度を好適なものとすべく、ブロックA:ブロックB=70:30~15:85であることが好ましく、60:40~15:85であることがより好ましく、50:50~15:85であることが特に好ましい。
また、本発明に係る保護フィルム中の共重合体の割合は、保護フィルムの透湿度を低下させ、表面硬度を高める観点から高いことが望ましく、保護フィルムの総質量に対し、70質量%以上、99.5質量%以下であることが好ましく、80質量%以上、99.5質量%以下であることがより好ましい。
保護フィルムには、保護フィルムの成膜性、表面硬度、低透湿度を損なわなければ、紫外線吸収剤、レベリング剤や帯電防止剤、チオール等、各種添加剤を含有させてもよい。これにより、保護フィルムに紫外線吸収特性、剥離特性、帯電防止特性、柔軟性を付与することが可能である。
紫外線吸収剤としては、公知のものを使用でき、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルフォベンゾフェノン等のベンゾフェノン系、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系、フェニルサルシレート、p-t-ブチルフェニルサルシレート等のヒンダートアミン系等が挙げられる。レベリング剤、帯電防止剤、チオールについても公知のものを使用可能である。
本発明に係る保護フィルムは薄膜に形成されるため、例えば、膜厚の上限値は、40μmであり、より好ましくは30μmである。下限値は特に限定されないが、低透湿度を確実に担保する観点から5μmであることが好ましく、10μmであることがより好ましい。
本発明に係る保護フィルムの透湿度は低い値となっており、30μmの薄層の状態(30μm以下の厚さ)で150g/(m2・24時)以下であることが好ましく、80g/(m2・24時)以下であることがより好ましく、さらに好ましくは70g/(m2・24時)以下であり、最も好ましくは60g/(m2・24時)以下である。透湿度の下限値は特に限定されないが、例えば、15g/(m2・24時)以上である。
本発明に係る保護フィルムは高い表面硬度を有する。高い表面硬度とは、保護フィルム単体で、ある程度以上の硬度を有していることを意味し、1つの判断基準として、保護フィルムの鉛筆硬度がF以上であれば、保護フィルムは高い表面硬度を有するものとする。
《フィルム積層体》
次に、フィルム積層体について説明する。本発明に係るフィルム積層体は、上記保護フィルムの少なくとも片面に、
(1)上記保護フィルムを支持するフィルム基材、
(2)耐擦傷性を有するハードコート層、
(3)光を散乱させる防眩層、および、
(4)上記保護フィルム上に備えられた高屈折率層と、上記高屈折率層に備えられた低屈折率層とで構成された反射防止層、の何れかを備えるものである。もちろん、上記フィルム積層体は、保護フィルムの両面に任意の上記(1)~(4)を備えていてもよい。すなわち、両面に同種の層(例えば、保護フィルムの表面に(1)、裏面に(1))または異種の層(例えば、保護フィルムの表面に(1)、裏面に(2)、または、表面に(2)、裏面に(3))を備えていてもよい。さらには、(1)~(4)には他の(1)~(4)の層が備えられており、積層構造であってもよい。また、フィルム積層体としての表面硬度の向上のため、(2)の層を含むことが好ましい。以下、(1)~(4)について説明する。なお、本発明の効果を阻害しない範囲において、公知のその他の層を設けても良い。
次に、フィルム積層体について説明する。本発明に係るフィルム積層体は、上記保護フィルムの少なくとも片面に、
(1)上記保護フィルムを支持するフィルム基材、
(2)耐擦傷性を有するハードコート層、
(3)光を散乱させる防眩層、および、
(4)上記保護フィルム上に備えられた高屈折率層と、上記高屈折率層に備えられた低屈折率層とで構成された反射防止層、の何れかを備えるものである。もちろん、上記フィルム積層体は、保護フィルムの両面に任意の上記(1)~(4)を備えていてもよい。すなわち、両面に同種の層(例えば、保護フィルムの表面に(1)、裏面に(1))または異種の層(例えば、保護フィルムの表面に(1)、裏面に(2)、または、表面に(2)、裏面に(3))を備えていてもよい。さらには、(1)~(4)には他の(1)~(4)の層が備えられており、積層構造であってもよい。また、フィルム積層体としての表面硬度の向上のため、(2)の層を含むことが好ましい。以下、(1)~(4)について説明する。なお、本発明の効果を阻害しない範囲において、公知のその他の層を設けても良い。
〔フィルム基材〕
本発明に係る保護フィルムは、他のフィルムと積層された状態で一体的に取り扱うことができる。また、ロールコーティング法、グラビアコーティング法等のコーティング法によって、保護フィルムをフィルム基材上に形成することでフィルム積層体を製造する場合、フィルム基材をフィルム積層体の一部としてそのまま利用することもできる。
本発明に係る保護フィルムは、他のフィルムと積層された状態で一体的に取り扱うことができる。また、ロールコーティング法、グラビアコーティング法等のコーティング法によって、保護フィルムをフィルム基材上に形成することでフィルム積層体を製造する場合、フィルム基材をフィルム積層体の一部としてそのまま利用することもできる。
フィルム基材は保護フィルムを支持する役割を担い、最終的には剥離して除去するため保護フィルムを積層する側に離型層を有することが好ましい。なお、フィルム基材が離型層を介して機能層を備えている場合、保護フィルムの機能層側にフィルム基材を貼合した後、フィルム基材を剥離して除去すると、通常、機能層はフィルム基材側に残らず、保護フィルム側に転写される。
通常、保護フィルムと偏光フィルムとを紫外線硬化型接着剤にて貼合することから、フィルム基材が紫外線照射を妨げないよう、紫外線吸収能を有しないことが好ましい。さらには、偏光板に他のフィルムを設け、表示装置まで加工する各種製造工程において光学特性を検査することもあり、偏光板の基本構成である、偏光フィルムおよび保護フィルムの光学特性測定への影響を最小限とすることができるよう、フィルム基材は透明性を有することが好ましい。このような観点から、フィルム基材として、離型層を有するポリエステルフィルム基材が好ましく用いられる。
上記ポリエステルフィルム基材は、上述したように離型層を有していてもよいし、離型層以外にさらに他の機能層が形成されていてもよい。機能層としては、ハードコート層(HC層)、防眩層(AG層)、反射防止層(LR層)が挙げられる。これらの層は、ポリエステルフィルムの離型層上に形成され、保護フィルムに積層された後、離型層からポリエステル基材を剥離することで、各機能層と保護フィルムとが積層されたフィルム積層体が容易に得られる。
なお、機能層の形成順序は特に限定されず、ポリエステルフィルム基材の離型層上に保護フィルムを形成した後、保護フィルム上に機能層を形成してもよい。いずれの方法であっても、フィルム積層体を得ることが可能である。
なお、機能層の形成順序は特に限定されず、ポリエステルフィルム基材の離型層上に保護フィルムを形成した後、保護フィルム上に機能層を形成してもよい。いずれの方法であっても、フィルム積層体を得ることが可能である。
〔ハードコート層〕
ハードコート層はハードコート性(耐擦傷性)を有する。本発明におけるハードコート性とは、JIS K5600:1999に準拠し、荷重500g、速度1mm/sの条件下での鉛筆法による引っかき硬度が2H以上である。
ハードコート層はハードコート性(耐擦傷性)を有する。本発明におけるハードコート性とは、JIS K5600:1999に準拠し、荷重500g、速度1mm/sの条件下での鉛筆法による引っかき硬度が2H以上である。
ハードコート層を構成する樹脂成分としては、電離放射線硬化型樹脂が簡易な加工操作で効率よく硬化することができるため好適であり、硬化後に、十分な強度を持ち、透明性を有する被膜を与える電離放射線硬化型樹脂を特に制限なく使用できる。
電離放射線硬化型樹脂としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等のラジカル重合性官能基や、エポキシ基、ビニルエーテル基、オキセタン基等のカチオン重合性官能基を有するモノマー、オリゴマー、プレポリマー、ポリマーを単独で、または適宜混合した組成物が用いられる。モノマーの例としては、アクリル酸メチル、メチルメタクリレート、メトキシポリエチレンメタクリレート、シクロヘキシルメタクリレート、フェノキシエチルメタクリレート、エチレングリコールジメタクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート等を挙げることができる。オリゴマー、プレポリマーとしては、ポリエステルアクリレート、ポリウレタンアクリレート、多官能ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、アルキットアクリレート、メラミンアクリレート、シリコーンアクリレート等のアクリレート化合物、不飽和ポリエステル、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルや各種脂環式エポキシ等のエポキシ系化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、ジ[1-エチル(3-オキセタニル)]メチルエーテル等のオキセタン化合物を挙げることができる。ポリマーとしては、ポリアクリレート、ポリウレタンアクリレート、ポリエステルアクリレート等を挙げることができる。これらは単独、もしくは複数混合して使用することができる。これら電離放射線硬化型樹脂の中で、特に官能基数が3個以上の多官能モノマーは、硬化速度が上がることや硬化物の硬度が向上させることができる。さらに、多官能ウレタンアクリレートを使用することにより、硬化物の硬度や柔軟性などを付与することができる。
電離放射線硬化型樹脂は、そのままで電離放射線照射により硬化可能であるが、紫外線照射による硬化を行う場合は、光重合開始剤の添加が必要である。光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独または適宜組み合わせて使用することができる。
ハードコート層の膜厚はハードコート性が発揮されれば特に制限されないが、概して、2μm以上、10μm以下である。
ハードコート性以外の機能を付与するために、上記ハードコート層には各種添加剤を添加することができる。例として、ポリエステルフィルム基材から剥離する際の離型性を向上させるために添加するフッ素系またはシリコーン系のレベリング剤や、剥離時の剥離帯電による埃付着などを防止するために添加する、電子共役系、金属酸化物系またはイオン系の帯電防止剤などを、必要とされる機能に応じて適宜選択して使用してもよい。添加剤を使用できる点は、下記防眩層および低屈折率層についても同様である。
〔防眩層〕
防眩層は、光を散乱させる防眩機能を有し、外部ヘイズおよび/または内部ヘイズによって防眩機能を実現するものであり、防眩層は、表面に凹凸が形成されているか、内部に透光性微粒子を含有している、または、その両方である。
防眩層は、光を散乱させる防眩機能を有し、外部ヘイズおよび/または内部ヘイズによって防眩機能を実現するものであり、防眩層は、表面に凹凸が形成されているか、内部に透光性微粒子を含有している、または、その両方である。
防眩層の表面の凹凸を形成する方法に特に制限はないが、凹凸が形成されたポリエステルフィルム基材の上に、電離放射線硬化型樹脂を塗布し、塗布後、硬化する方法が、凹凸の形状をコントロールし易いことから好ましい。
防眩層のポリエステル基材側の表面凹凸の形状は、求められる防眩性によって決定される。より好適な凹凸の形状は粗さパラメータRaによって規定することが可能であり、Ra:0.01μm以上、Sm:50μm~500μm、平均傾斜角:0.1°~3.0°であることがより好ましい。
防眩層の厚さについては特に制限はないが、薄すぎると支持体側に形成される凹凸の形状が、担持体側に形成される凹凸にも残ることとなり、ギラツキ防止の点で好ましくない。一方、厚すぎる場合には樹脂の硬化収縮によるカールやクラックが発生するため、ハンドリングの点で好ましくないことから、1~12μmの範囲であることが好ましい。
一方、内部ヘイズを生ずるため、電離放射線硬化型樹脂中に添加する透光性微粒子としては、例えば、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合体、ナイロン樹脂、シリコーン樹脂、メラミン樹脂、ポリエーテルスルホン樹脂等の有機樹脂微粒子、シリカ等の無機微粒子を使用することができる。ここで、透光性微粒子は、樹脂成分との屈折率差が0.04以下であることが好適であり、0.01以下であることがより好適である。樹脂成分との屈折率差が大きいと、防眩層中にて内部散乱が生じ、コントラストが低下することとなるため好ましくない。
防眩層の膜厚は防眩性が発揮されれば特に制限されないが、概して2μm以上、10μm以下である。なお、上記防眩層は防眩性に加え、ハードコート性を兼ね備えることも可能であり、この場合、使用する樹脂成分を調整することでハードコート性が付与される。
〔反射防止層〕
反射防止層は、低屈折率層と高屈折率層とから構成される。低屈折率層とは、隣接する高屈折率層(例えば、ハードコート層、防眩層、または、保護フィルム)よりも屈折率が低い層であり、高屈折率層と積層された状態で低屈折率層側からの光の反射防止に寄与する。なお、ここで高屈折率、低屈折率というのは絶対的な屈折率を規定するものではなく、2つの層の屈折率を相対的に比較して高い、または、低いと規定しているのであり、両者が下記式1の関係を有する時に最も反射率が低くなるとされている。
反射防止層は、低屈折率層と高屈折率層とから構成される。低屈折率層とは、隣接する高屈折率層(例えば、ハードコート層、防眩層、または、保護フィルム)よりも屈折率が低い層であり、高屈折率層と積層された状態で低屈折率層側からの光の反射防止に寄与する。なお、ここで高屈折率、低屈折率というのは絶対的な屈折率を規定するものではなく、2つの層の屈折率を相対的に比較して高い、または、低いと規定しているのであり、両者が下記式1の関係を有する時に最も反射率が低くなるとされている。
n2=(n1)1/2・・・(式1)
(n1は高屈折率層の屈折率、n2は低屈折率層の屈折率)
(n1は高屈折率層の屈折率、n2は低屈折率層の屈折率)
好適に反射防止機能が発揮されるために、低屈折率層の屈折率は1.45以下であることが好ましい。これらの特徴を有する材料としては、例えばLiF(屈折率n=1.4)、MgF2(n=1.4)、3NaF・AlF3(n=1.4)、AlF3(n=1.4)、Na3AlF6(n=1.33)等の無機材料を微粒子化し、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低反射材料、フッ素系、シリコーン系の有機化合物、熱可塑性樹脂、熱硬化型樹脂、放射線硬化型樹脂等の有機低反射材料を挙げることができる。その中で、特に、フッ素系の含フッ素材料が防汚性に優れるため、低屈折率層が表面となった際の汚れ防止の点において好ましい。
上記含フッ素材料としては、有機溶剤に溶解し、その取り扱いが容易であるフッ化ビニリデン系共重合体や、フルオロオレフィン/炭化水素共重合体、含フッ素エポキシ樹脂、含フッ素エポキシアクリレート、含フッ素シリコーン、含フッ素アルコキシシラン、含フッ素ポリシロキサン等を挙げることができる。これらは単独でも複数組み合わせて使用することも可能である。含フッ素ポリシロキサンは、加水分解性シラン化合物および/またはその加水分解物と硬化促進剤とを少なくとも含有する混合物が硬化したものであり、加水分解性シラン化合物として、皮膜形成剤および帯電防止剤としての機能を有するカチオン変性シラン化合物を含有させることもできる。
低屈折率層の膜厚は、高屈折率層との関係で反射防止機能が発揮されれば特に制限されないが、概して、0.05μm以上、0.2μm以下であり、高屈折率層の膜厚は、概して、0.05μm以上、10μm以下であることが好ましい。上記低屈折率層は高屈折率層との関係で反射防止機能を発揮するが、原料選定により、ハードコート性を兼ね備えることも可能である。また、高屈折率層は、原料選定により、ハードコート性を有していてもよいし、さらに防眩性を備えていてもよい。同様に、それぞれの層は他の機能を兼ね備えることができる。
《偏光板》
次に、本発明の保護フィルムを備える偏光板について説明する。本発明に係る偏光板は、偏光フィルムの少なくとも片面に、上記保護フィルム(保護フィルムを備える積層体を含む)を備えるものである。
次に、本発明の保護フィルムを備える偏光板について説明する。本発明に係る偏光板は、偏光フィルムの少なくとも片面に、上記保護フィルム(保護フィルムを備える積層体を含む)を備えるものである。
偏光フィルムは、ポリビニルアルコール系樹脂(PVA樹脂)からなり、偏光フィルムに入射する光のうち、ある方向の振動面を有する光を透過し、それと直交する振動面を有する光を吸収する性質を有するフィルムであり、典型的には、PVA樹脂に二色性色素が吸着配向している。偏光フィルムを構成するPVA樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。PVA樹脂の原料となるポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルおよびこれと共重合可能な他の単量体との共重合体であってもよい。上記PVA樹脂からなるフィルムに、一軸延伸、二色性色素による染色、および染色後のホウ酸架橋処理を施すことによって、偏光フィルムを製造できる。二色性色素としては、ヨウ素や二色性の有機染料が用いられる。一軸延伸は、二色性色素による染色の前に行なってもよいし、二色性色素による染色と同時に行なってもよいし、二色性色素による染色の後、たとえばホウ酸架橋処理中に行なってもよい。かくして製造され、二色性色素が吸着配向しているPVA樹脂からなる偏光フィルムが、偏光板の構成材料の一つとなる。
偏光フィルムと保護フィルムとの貼合には、好ましくは紫外線硬化型接着剤が用いられる。紫外線硬化型接着剤は、液状の塗布可能な状態で供給される限りにおいて、従来から偏光板の製造に使用されている公知のものを使用できるが、耐候性や重合性などの観点から、カチオン重合性の化合物、たとえば、エポキシ化合物を紫外線硬化性成分の一つとして含有するものが好ましい。
紫外線硬化型接着剤には、エポキシ化合物を代表例とするカチオン重合性化合物のほか、重合開始剤、特に紫外線の照射によりカチオン種またはルイス酸を発生し、カチオン重合性化合物の重合を開始させるための光カチオン重合開始剤が配合される。さらに、加熱によって重合を開始させる熱カチオン重合開始剤、その他、光増感剤などの各種添加剤が配合されていてもよい。
本発明に係る偏光板は、少なくとも一方の面に上記保護フィルムを備えており、偏光板の両面に保護フィルムを備える構成が含まれる。当該保護フィルムは、薄層であっても低透湿度であるため、高温高湿環境下であっても、偏光フィルムが吸湿し難く、偏光フィルムの伸縮が抑制される。
《保護フィルムおよびフィルム積層体の製造方法》
[保護フィルム形成工程]
本発明に係る保護フィルムの製造方法は、上記保護フィルムを製造できれば特に限定されないが、一例として、以下の工程(A1)および(A2)を含む保護フィルム形成工程を含む方法が挙げられる。
工程(A1):エネルギー線硬化型組成物を、フィルム基材上、または、フィルム基材の離型層上に塗布する。
工程(A2):塗布後、上記エネルギー線硬化型組成物を硬化させて保護フィルムを形成する。
[保護フィルム形成工程]
本発明に係る保護フィルムの製造方法は、上記保護フィルムを製造できれば特に限定されないが、一例として、以下の工程(A1)および(A2)を含む保護フィルム形成工程を含む方法が挙げられる。
工程(A1):エネルギー線硬化型組成物を、フィルム基材上、または、フィルム基材の離型層上に塗布する。
工程(A2):塗布後、上記エネルギー線硬化型組成物を硬化させて保護フィルムを形成する。
エネルギー線硬化型組成物は、必須成分としてウレタンメタクリレートを含んでいる。モノマーである上記ウレタンメタクリレートは、保護フィルムの原料であり、当該モノマーが重合することで上記《保護フィルム》にて述べた繰り返し単位が形成される。
他の実施形態では、保護フィルムの原料として、上記エネルギー線硬化型組成物は、上記繰り返し単位(ブロックA)を生じるウレタンメタクリレート、およびブロックBを生じる(メタ)アクリレートを含む。これらのモノマーが共重合することで上記《保護フィルム》にて述べた共重合体が形成される。
他の実施形態では、保護フィルムの原料として、上記エネルギー線硬化型組成物は、上記繰り返し単位(ブロックA)を生じるウレタンメタクリレート、およびブロックBを生じる(メタ)アクリレートを含む。これらのモノマーが共重合することで上記《保護フィルム》にて述べた共重合体が形成される。
上記ウレタンメタクリレートは、両末端のメタクリレート由来の構造がメタクリレート基である点で上記繰り返し単位と異なっているが、モノマーが複数種類または1種類の飽和環状脂肪族基を有する点など、両末端以外の構造は共通し、メタクリレートについても同様である。飽和環状脂肪族基、および、飽和脂肪族鎖等の具体例については繰り返し単位(ブロックA)、およびブロックBについての説明と共通するため、記載を省略する。
上記ウレタンメタクリレートの一例としては、飽和環状脂肪族基R1を有する下記構造A、下記飽和脂肪族鎖R2を有する構造B(任意に含まれる)、および、飽和環状脂肪族基R3を有する下記構造Cを含む構造を例示できる。上記構造Bは任意成分である。
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R2-CO-・・・(構造B)
-O-R3-O-・・・(構造C)
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R2-CO-・・・(構造B)
-O-R3-O-・・・(構造C)
当該ウレタンメタクリレートは、例えば、R1を含むジイソシアネート、R2を含むエステル(任意に使用される)、R3を含むジオールに加えて、メタクリレート、または、メタクリル基を有するイソシアネートを用いて得ることができ、容易に製造可能である。
一例として、上記構造A、構造Bおよび構造Cの割合は、m+1:m(r+s):m、m+1:k+n:m、m:m(r+s):m+1、または、m:k+n:m+1とすることができる。上記mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、kは0~2の整数を示し、nは0~2の整数を示す。
一例として、上記構造A、構造Bおよび構造Cの割合は、m+1:m(r+s):m、m+1:k+n:m、m:m(r+s):m+1、または、m:k+n:m+1とすることができる。上記mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、kは0~2の整数を示し、nは0~2の整数を示す。
ウレタンメタクリレートを合成する手法は特に限定されないが、一例として、まず、2官能性の中間体を合成し、メタクリレートまたはメタクリル基を有するイソシアネートを中間体の両末端に合成する手法が挙げられる。
具体的に、上述した一般式(1)の繰り返し単位に対応するウレタンメタクリレートを合成する手法を例示すると、〔1〕R2を有するエステルと、R3を有するジオールとを、m(r+s):mのモル比で反応させて、さらに、m+1モルのR1を有するジイソシアネートを反応させて、両末端に-N=C=O基を有する中間体を得る。〔2〕その後、1モルの上記中間体に対して、2モルのメタクリレートを反応させることで、下記一般式(8)で表されるウレタンメタクリレートが得られる。
(一般式(8)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
一般式(2)の繰り返し単位に対応するウレタンメタクリレートを合成する手法を例示すると、〔1〕R1を有するジイソシアネートと、R3を有するジオールとをm+1:mのモル比で反応させて、両末端に-N=C=O基を有する中間体を得る。〔2-1〕その後、1モルの上記中間体に対して、2モルのメタクリレートを反応させるか、〔2-2〕1モルの上記中間体に対して、k+nモルのR2を有するエステルを反応させた後、2モルのメタクリレートを反応させるか、〔2-3〕2モルのメタクリレートに対して、k+nモルのR2を有するエステルを反応させて得られたメタクリレートを、1モルの上記中間体に対して反応させる、何れかの手法によって一般式(9)で表される繰り返し単位に対応するウレタンメタクリレートが得られる。
(一般式(9)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示しR4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
一般式(3)の繰り返し単位に対応するウレタンメタクリレートを合成する手法を例示すると、〔1〕R1を有するジイソシアネートと、R2を有するエステルとを、m:m(r+s)のモル比で反応させ、さらに、m+1モルのR3を有するジオールを反応させて、両末端に水酸基を有する中間体を得る。〔2〕その後、1モルの中間体に対して、2モルのメタクリル基を有するイソシアネートを反応させることで、一般式(10)で表される繰り返し単位に対応するウレタンメタクリレートが得られる。
(一般式(10)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
一般式(4)の繰り返し単位に対応するウレタンメタクリレートを合成する手法を例示すると、〔1〕R1を有するジイソシアネートと、R3を有するジオールとをm:m+1のモル比で反応させて、両末端に水酸基を有する中間体を得る。〔2-1〕その後、1モルの上記中間体に対して、2モルのメタクリル基を有するイソシアネートを反応させるか、〔2-2〕1モルの上記中間体に対して、k+nモルのR2を有するエステルを反応させた後、2モルのメタクリル基を有するイソシアネートを反応させるか、〔2-3〕2モルのメタクリル基を有するイソシアネートに対して、k+nモルのR2を有するエステルを反応させて得られたウレタンメタクリレートを、1モルの上記中間体に対して反応させる、何れかの手法によって一般式(11)で表される繰り返し単位に対応するウレタンメタクリレートが得られる。
(一般式(11)中、R1は飽和環状脂肪族基を示し、R2は炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、R3は、R1と異なる飽和環状脂肪族基を示し、R4は、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独または適宜組み合わせて使用することができる。
エネルギー線硬化型組成物に、《保護フィルム》にて上述した紫外線吸収剤、レベリング剤や帯電防止剤、チオール等、各種添加剤を添加してもよい。
エネルギー線硬化型組成物における、モノマー(繰り返し単位(ブロックA)を生じさせるモノマーおよびブロックBを生じさせるモノマーの総量)、光重合開始剤および任意の各種添加剤(チオールを含む)の各割合は、各材料の種類によって異なり、一義的に規定することは困難であるが、一例として、モノマーの合計が50質量%以上、99質量%以下、光重合開始剤が0.5質量%以上、10質量%以下、各種添加剤が0.01質量%以上、50質量%以下とすることができる。また、トルエンなどの有機溶剤をエネルギー線硬化型組成物に添加してもよい。
ブロックAを生じさせるモノマーAと、ブロックBを生じさせるモノマーBとの質量比は、ブロックBに起因する保護フィルムの引張弾性率向上の程度を好適なものとすべく、モノマーA:モノマーB=70:30~15:85の範囲であることが好ましく、60:40~15:85であることがさらに好ましく、50:40~15:85であることが特に好ましい。
調製したエネルギー線硬化型組成物を、フィルム基材上、または、フィルム基材の離型層上に塗布するには、連続生産性を考えると、ロールコーティング法、グラビアコーティング法等のコーティング法を用いることが好ましい。当該コーティング法によって、薄層、例えば、50μm以下、好ましくは30μm以下の保護フィルムを形成するようエネルギー線硬化型組成物を塗布できる。
工程(A2)における硬化は、紫外線照射装置から紫外線を照射することで行うことができる。用いる紫外線光源は特に限定されないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどを用いることができる。エポキシ化合物を活性エネルギー線硬化性成分とする接着剤を用いる場合、一般的な重合開始剤が示す吸収波長を考慮すると、400nm以下の光を多く有する高圧水銀灯またはメタルハライドランプが、紫外線光源として好ましく用いられる。
エネルギー線硬化型組成物を硬化することで、フィルム基材上、または、フィルム基材の離型層上に保護フィルムが形成され、フィルム基材に保護フィルムが積層されたフィルム積層体が得られる。さらに、フィルム積層体から保護フィルムを剥離することで単体の保護フィルムを得ることもできる。
[機能層形成工程]
フィルム積層体の製造方法のバリエーションとして、保護フィルム形成工程(A1)および(A2)に加えて、機能層形成工程(B)を含む製造方法が挙げられる。機能層形成工程(B)では、フィルム基材上、または、フィルム基材の離型層上に、機能層の原料であるエネルギー線硬化型組成物を塗布し、硬化させてフィルム基材に機能層を形成する。上記の場合、保護フィルム形成工程(A1)および(A2)の前に、機能層形成工程(B)を行うが、変形例として、保護フィルム形成工程(A1)および(A2)の後に、機能層形成工程(B)を行ってもよい。この場合、フィルム基材/保護フィルム/機能層の順序で積層されたフィルム積層体が得られる。
フィルム積層体の製造方法のバリエーションとして、保護フィルム形成工程(A1)および(A2)に加えて、機能層形成工程(B)を含む製造方法が挙げられる。機能層形成工程(B)では、フィルム基材上、または、フィルム基材の離型層上に、機能層の原料であるエネルギー線硬化型組成物を塗布し、硬化させてフィルム基材に機能層を形成する。上記の場合、保護フィルム形成工程(A1)および(A2)の前に、機能層形成工程(B)を行うが、変形例として、保護フィルム形成工程(A1)および(A2)の後に、機能層形成工程(B)を行ってもよい。この場合、フィルム基材/保護フィルム/機能層の順序で積層されたフィルム積層体が得られる。
上記機能層としては特に限定されないが、上述したハードコート層、防眩層および反射防止層が挙げられる。機能層の原料であるエネルギー線硬化型組成物は、ハードコート層、防眩層、および反射防止層の説明にて上述した樹脂等を含む。また、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン(MIBK)、イソプロピルアルコール(IPA)、トルエンなどの有機溶剤が添加されていてもよい。
以下、保護フィルム形成工程(A1)および(A2)の前に、機能層形成工程(B)を行う場合について説明するが、保護フィルム形成工程(A1)および(A2)の後に、機能層形成工程(B)を行う場合、フィルム基材上に形成した保護フィルム上に、以下の手法によって機能層を形成すればよい。
機能層の原料であるエネルギー線硬化型組成物を、フィルム基材上、または、フィルム基材の離型層上に塗布するには、連続生産性を考えると、ロールコーティング法、グラビアコーティング法等のコーティング法を用いることが好ましい。使用するエネルギー線硬化型組成物に応じて、任意に加熱を行った後、紫外線照射等によって架橋、硬化する方法を用いればよい。
機能層の原料であるエネルギー線硬化型組成物を、フィルム基材上、または、フィルム基材の離型層上に塗布するには、連続生産性を考えると、ロールコーティング法、グラビアコーティング法等のコーティング法を用いることが好ましい。使用するエネルギー線硬化型組成物に応じて、任意に加熱を行った後、紫外線照射等によって架橋、硬化する方法を用いればよい。
機能層形成工程にてフィルム基材に機能層を形成した場合、保護フィルム形成工程(A1)において、ウレタンメタクリレートを含むエネルギー線硬化型組成物をフィルム基材の機能層側に塗布する。機能層が複数層である場合には、通常、最後に形成した機能層側に塗布する。
凹凸が形成されたフィルム基材を用いた場合、当該フィルム基材に形成された機能層に凹凸が形成され、防眩性を有する防眩層として機能する。上記凹凸の形状は、求められる防眩性によって決定され、より好適な凹凸の形状は粗さパラメータRaによって規定することが可能であり、Ra:0.01μm以上、Sm:50μm~500μm、平均傾斜角:0.1°~3.0°であることがより好ましい。
機能層を形成する際、複数層を形成することもできる。例えば、複数のハードコート層を形成する場合、フィルム基材上、または、フィルム基材の離型層上に第1ハードコート層を形成し、第1ハードコート層上に第2ハードコート層を形成する。その後、工程(A1)にて、第2ハードコート層側にウレタンメタクリレートを含むエネルギー線硬化型組成物を塗布する。上記第2ハードコート層に代えて、防眩層を形成してもよい。
また、反射防止層を形成する場合、フィルム基材上、または、フィルム基材の離型層上に低屈折率層を形成し、上記低屈折率層上に高屈折率層を形成する。さらに、工程(A1)にて高屈折率層側にウレタンメタクリレートを含むエネルギー線硬化型組成物を塗布する。これにより、フィルム基材、機能層、保護フィルムの順で積層されたフィルム積層体が得られる。
《偏光板の製造方法》
本発明に係る偏光板は、偏光フィルムの少なくとも片面に本発明に係る保護フィルムを備える。本発明に係る偏光板の製造方法では、上記保護フィルムを偏光フィルムに貼合する点が重要であり、貼合手法は公知の手法を採用すればよく、特に限定されるものではない。
本発明に係る偏光板は、偏光フィルムの少なくとも片面に本発明に係る保護フィルムを備える。本発明に係る偏光板の製造方法では、上記保護フィルムを偏光フィルムに貼合する点が重要であり、貼合手法は公知の手法を採用すればよく、特に限定されるものではない。
保護フィルムとしては、保護フィルムを単独で使用してもよいが、取り扱い易さから、フィルム積層体、すなわち、フィルム基材と共に保護フィルムを使用することが好ましい。
例えば、保護フィルム形成工程の後、または、機能層形成工程および保護フィルム形成工程後、保護フィルムを備えるフィルム積層体を得た後、上記フィルム積層体の保護フィルム側に偏光フィルムに貼合すれば、本発明に係る偏光板が得られる。
偏光板の製造方法に係る工程をより具体的に説明する。下記工程(C1)~(C4)は、保護フィルム形成工程の後、または、機能層形成工程および保護フィルム形成工程の後に実施される。
(C1)フィルム積層体の保護フィルム側(または偏光フィルム)に紫外線硬化型接着剤を塗布する塗工工程、
(C2)塗工工程で塗布された紫外線硬化型接着剤面に偏光フィルム(またはフィルム積層体の保護フィルム側)を重ねて加圧する貼合工程、
(C3)偏光フィルムに紫外線硬化型接着剤を介して保護フィルムが貼合されたフィルム積層体に対して、紫外線照射装置から紫外線を照射することにより、紫外線硬化型接着剤を硬化させる硬化工程、
(C4)必要に応じて積層フィルムからフィルム基材(支持基材)を剥離除去する剥離工程。
(C2)塗工工程で塗布された紫外線硬化型接着剤面に偏光フィルム(またはフィルム積層体の保護フィルム側)を重ねて加圧する貼合工程、
(C3)偏光フィルムに紫外線硬化型接着剤を介して保護フィルムが貼合されたフィルム積層体に対して、紫外線照射装置から紫外線を照射することにより、紫外線硬化型接着剤を硬化させる硬化工程、
(C4)必要に応じて積層フィルムからフィルム基材(支持基材)を剥離除去する剥離工程。
塗工工程(C1)では、偏光フィルムの貼合面となる、フィルム積層体の保護フィルム側に紫外線硬化型接着剤を塗布する(または、フィルム積層体の保護フィルム側に代えて、偏光フィルムに紫外線硬化型接着剤を塗布する)。ここで用いる塗工機としては、公知のものを適宜用いることができ、例えば、グラビアロールを用いる塗工機などが挙げられる。
貼合工程(C2)では、塗工工程(C1)を経た後、フィルム積層体の接着剤塗布面に、偏光フィルムを重ねて加圧しながら貼合が行なわれる(塗工工程(C1)で偏光フィルムに紫外線硬化型接着剤を塗布した場合、紫外線硬化型接着剤面にフィルム積層体の保護フィルム側を重ねて加圧しながら貼合が行なわれる)。貼合工程での加圧には、公知の手段を用いることができるが、連続搬送しながらの加圧が可能であるという観点からは、一対のニップロールにより挟む方式が好ましく用いられ、加圧時の圧力は、一対のニップロールにより挟む場合の線圧で150~500N/cm程度とするのが好ましい。
硬化工程(C3)では、偏光フィルムにフィルム積層体を貼合した後、紫外線照射装置から紫外線を照射し、紫外線硬化型接着剤を硬化させる。紫外線は、フィルム積層体越しに照射される。用いる紫外線光源は特に限定されないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどを用いることができる。エポキシ化合物をエネルギー線硬化性成分とする接着剤を用いる場合、一般的な重合開始剤が示す吸収波長を考慮すると、400nm以下の光を多く有する高圧水銀灯またはメタルハライドランプが、紫外線光源として好ましく用いられる。
剥離工程(C4)は、必要に応じて適宜行われる工程であり、本工程により保護フィルム上に積層されているフィルム基材を剥離し、除去する(フィルム基材が複数層の場合、フィルム基材の一部を剥離して除去する)ことで、偏光板が得られる。偏光板をさらに加工する場合等において、保護フィルムの表面を後加工工程において保護しておきたい場合などは、これら加工の終了後にフィルム基材を剥離すればよい。
なお、保護フィルム形成工程の後、機能層形成工程を行うことでフィルム積層体を得た場合、すなわち、フィルム積層体が、フィルム基材/保護フィルム/機能層の構造を有する場合、(C1)塗布工程の前に、フィルム積層体からフィルム基材を剥離する必要があるため、(C4)剥離工程を行わずに偏光板が得られ、必要に応じて機能層側にカバーフィルムを貼り合わせる。
なお、保護フィルム形成工程の後、機能層形成工程を行うことでフィルム積層体を得た場合、すなわち、フィルム積層体が、フィルム基材/保護フィルム/機能層の構造を有する場合、(C1)塗布工程の前に、フィルム積層体からフィルム基材を剥離する必要があるため、(C4)剥離工程を行わずに偏光板が得られ、必要に応じて機能層側にカバーフィルムを貼り合わせる。
以下、実施例および比較例に基づき、本発明を説明するが、本発明は実施例の内容に限定されるものではない。得られたフィルム積層体からポリエステルフィルム基材を剥離した保護フィルム(フィルム基材に機能層を形成した場合、保護フィルムおよび機能層)を測定対象とし、当該保護フィルムの透湿度および引張強度は以下の測定方法にて測定した。
〔膜厚〕
デジタルリニアゲージD-10HSおよびデジタルカウンタC-7HS(株式会社尾崎製作所製)を用いて、保護フィルム(または保護フィルム+機能層)の膜厚を測定した。
デジタルリニアゲージD-10HSおよびデジタルカウンタC-7HS(株式会社尾崎製作所製)を用いて、保護フィルム(または保護フィルム+機能層)の膜厚を測定した。
〔透湿度〕
JIS Z0208の透湿度試験法(カップ法)に準じて、保護フィルムに対し、温度40℃、湿度90%RHの雰囲気中、試験片の面積1m2あたりの24時間に通過する水蒸気のグラム数を測定した。
JIS Z0208の透湿度試験法(カップ法)に準じて、保護フィルムに対し、温度40℃、湿度90%RHの雰囲気中、試験片の面積1m2あたりの24時間に通過する水蒸気のグラム数を測定した。
〔鉛筆硬度評価〕
JIS K5600:1999に準拠し、荷重500g、速度1mm/sの条件下での鉛筆法による引っかき硬度測定した。
JIS K5600:1999に準拠し、荷重500g、速度1mm/sの条件下での鉛筆法による引っかき硬度測定した。
〔製造例1〕
化合物1の合成:
トリシクロデカンジメタノール196.29g(1モル)とε-カプロラクトン228.29g(2モル)をフラスコに仕込み、120℃まで昇温し、触媒としてモノブチルスズオキシド50ppmを添加した。その後、窒素気流下で、残存したε-カプロラクトンがガスクロマトグラフィーで1%以下になるまで反応を行い、ジオール(1)を得た。
化合物1の合成:
トリシクロデカンジメタノール196.29g(1モル)とε-カプロラクトン228.29g(2モル)をフラスコに仕込み、120℃まで昇温し、触媒としてモノブチルスズオキシド50ppmを添加した。その後、窒素気流下で、残存したε-カプロラクトンがガスクロマトグラフィーで1%以下になるまで反応を行い、ジオール(1)を得た。
別のフラスコにイソホロンジイソシアネート444.58g(2モル)を仕込み、反応温度70℃で、ジオール(1)425.57g(1モル)を加え、残存したイソシアネート基が5.7%となった時点で2-ヒドロキシエチルメタクリレート260.28g(2モル)、ジブチルスズラウリレート0.35gを加え、残存したイソシアネート基が0.1%になるまで反応を行い、繰り返し単位(ブロックA)を生じさせるモノマーであるウレタンメタクリレート(化合物1)を得た。
化合物1は、一般式(1a)においてmが1の繰り返し単位によって形成される保護フィルムの原料である。
化合物1は、一般式(1a)においてmが1の繰り返し単位によって形成される保護フィルムの原料である。
〔製造例2〕
化合物2の合成:
トリシクロデカンジメタノール196.29g(1モル)とε-カプロラクトン228.29g(2モル)をフラスコに仕込み、120℃まで昇温し、触媒としてモノブチルスズオキシド50ppmを添加した。その後、窒素気流下で、残存したε-カプロラクトンがガスクロマトグラフィーで1%以下になるまで反応を行い、ジオール(1)を得た。
化合物2の合成:
トリシクロデカンジメタノール196.29g(1モル)とε-カプロラクトン228.29g(2モル)をフラスコに仕込み、120℃まで昇温し、触媒としてモノブチルスズオキシド50ppmを添加した。その後、窒素気流下で、残存したε-カプロラクトンがガスクロマトグラフィーで1%以下になるまで反応を行い、ジオール(1)を得た。
別のフラスコにイソホロンジイソシアネート444.58g(2モル)を仕込み、反応温度70℃で、ジオール(1)425.57g(1モル)を加え、残存したイソシアネート基が5.7%となった時点で2-ヒドロキシエチルアクリレート232.24g(2モル)、ジブチルスズラウリレート0.35gを加え、残存したイソシアネート基が0.1%になるまで反応を行い、繰り返し単位(ブロックA)を生じさせるモノマーであるウレタンアクリレート(化合物2)を得た。化合物2は、メタクリレートである化合物1のメタクリレート基がアクリレート基である点以外は、分子構造が共通する。
〔実施例1:ポリエステルフィルム基材/保護フィルム〕
アプリケーターを用いて、パナック社製非シリコーン系剥離 PET SG-1(38μm厚さ)の剥離層側に下記保護フィルム形成用エネルギー線硬化型組成物(P1)を塗布した。エネルギー線硬化型組成物(P1)はトルエンを含有しており、固形分率(NV)が60%である。
アプリケーターを用いて、パナック社製非シリコーン系剥離 PET SG-1(38μm厚さ)の剥離層側に下記保護フィルム形成用エネルギー線硬化型組成物(P1)を塗布した。エネルギー線硬化型組成物(P1)はトルエンを含有しており、固形分率(NV)が60%である。
エネルギー線硬化型組成物(P1)の塗布厚は、乾燥後の膜厚が20μm~30μmとなるよう調整した。乾燥炉内温度100℃に設定したクリーンオーブン内で、塗工膜を乾燥させ、その後、窒素雰囲気下でピーク照度326mW/cm2、積算光量192mJ/cm2の条件で紫外線硬化させ、PETフィルムの片面に保護フィルムが形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表7に示す。
〔実施例2:ポリエステルフィルム基材/HC層(通常)/保護フィルム〕
リバースコーティング法によって、パナック社製非シリコーン系剥離PET SG-1(38μm厚さ)の剥離層側に下記HC層形成用エネルギー線硬化型組成物(HC1)を塗布した。形成した塗工膜を100℃ で1分間乾燥し、窒素雰囲気中で、1灯の120W/cm集光型高圧水銀灯を用いて紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化し、厚さ3.5μm、屈折率1.52のハードコート層(HC層)を形成した。
リバースコーティング法によって、パナック社製非シリコーン系剥離PET SG-1(38μm厚さ)の剥離層側に下記HC層形成用エネルギー線硬化型組成物(HC1)を塗布した。形成した塗工膜を100℃ で1分間乾燥し、窒素雰囲気中で、1灯の120W/cm集光型高圧水銀灯を用いて紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化し、厚さ3.5μm、屈折率1.52のハードコート層(HC層)を形成した。
続いて、実施例1に記載のエネルギー線硬化型組成物(P1)を上記HC層側に実施例1と同一条件で、塗布および乾燥し、HC層側に保護フィルムが形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表7に示す。
〔実施例3:ポリエステルフィルム基材/AG層(フィラー含有)/保護フィルム〕
バーコーティング法によって、離型フィルムの支持体となるPETフィルム(ユニチカ製 製品名:エンブレットS-50)の片面上に乾燥膜厚が2μmとなるように離型層用の塗工液(フィラー含有)を塗工し、塗工膜を140℃で1分間乾燥した後、硬化させた。このようにしてPETフィルム上に表面凹凸を有した厚さ2μmの離型層を有する支持体を得た。続いて、上記離型層上に下記のAG層形成用エネルギー線硬化型組成物(AG1)を塗布した。
バーコーティング法によって、離型フィルムの支持体となるPETフィルム(ユニチカ製 製品名:エンブレットS-50)の片面上に乾燥膜厚が2μmとなるように離型層用の塗工液(フィラー含有)を塗工し、塗工膜を140℃で1分間乾燥した後、硬化させた。このようにしてPETフィルム上に表面凹凸を有した厚さ2μmの離型層を有する支持体を得た。続いて、上記離型層上に下記のAG層形成用エネルギー線硬化型組成物(AG1)を塗布した。
塗布厚は、バーコーティング方式にてドライ膜厚が6μmとなるように調整した。AG1の塗工膜を100℃で1分間乾燥した後、紫外線照射(ランプ:高圧水銀灯、ランプ出力:120W/cm、積算光量:120mJ/cm)し、塗工膜を硬化させた。更に続いて、実施例1に記載のエネルギー線硬化型組成物(P1)を上記AG層側に実施例1と同一条件で、塗布および乾燥し、AG層側に保護フィルムが形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表7に示す。
〔実施例4:ポリエステルフィルム基材/HC層(フィラーレスAG)/保護フィルム〕
バーコーティング法によって、離型フィルムの支持体となるPETフィルム(ユニチカ製 製品名:エンブレットS-50)の片面上に乾燥膜厚が2μmとなるように離型層用の塗工液(フィラー含有)を塗工し、塗工膜を140℃で1分間乾燥した後、硬化させた。このようにしてPETフィルム上に表面凹凸を有した厚さ2μmの離型層を有する支持体を得た。続いて、実施例3のAG1の塗布と同様にして、上記離型層上に下記のHC層形成用エネルギー線硬化型組成物(HC2)を塗布後、硬化させた。
バーコーティング法によって、離型フィルムの支持体となるPETフィルム(ユニチカ製 製品名:エンブレットS-50)の片面上に乾燥膜厚が2μmとなるように離型層用の塗工液(フィラー含有)を塗工し、塗工膜を140℃で1分間乾燥した後、硬化させた。このようにしてPETフィルム上に表面凹凸を有した厚さ2μmの離型層を有する支持体を得た。続いて、実施例3のAG1の塗布と同様にして、上記離型層上に下記のHC層形成用エネルギー線硬化型組成物(HC2)を塗布後、硬化させた。
更に続いて、実施例1に記載のエネルギー線硬化型組成物(P1)を上記HC層側に実施例1と同一条件で、塗布および乾燥し、HC層側に保護フィルムが形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表7に示す。
〔実施例5:ポリエステルフィルム基材/低屈折率層/高屈折率層兼AG層/保護フィルム〕
バーコーティング法によって、離型フィルムの支持体となるPETフィルム(ユニチカ製 製品名:エンブレットS-50)の片面上に乾燥膜厚が2μmとなるように離型層用の塗工液を塗工し、塗工膜を140℃で1分間乾燥した後、硬化させた。このようにしてPETフィルム上に表面凹凸を有した厚さ2μmの離型層を有する支持体を得た。
バーコーティング法によって、離型フィルムの支持体となるPETフィルム(ユニチカ製 製品名:エンブレットS-50)の片面上に乾燥膜厚が2μmとなるように離型層用の塗工液を塗工し、塗工膜を140℃で1分間乾燥した後、硬化させた。このようにしてPETフィルム上に表面凹凸を有した厚さ2μmの離型層を有する支持体を得た。
リバースコーティング法によって、上記離型層上に以下の低屈折率塗料(LR1)を塗布し、100℃ で1分間、塗工膜を乾燥させ、厚さ0.1μm、屈折率1.38の凹凸のある低屈折率層を形成した。その後、低屈折率層の硬化のため、60℃で120時間静置した。
更に続いて、実施例1に記載のエネルギー線硬化型組成物(P1)を上記AG層側に実施例1と同一条件で、塗布および乾燥し、AG層側に保護フィルムが形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表7に示す。
〔実施例6:ポリエステルフィルム基材/低屈折率層/高屈折率層兼HC層/保護フィルム〕
アプリケーターを用いて、パナック社製非シリコーン系剥離PET SG-1(38μm厚さ)の剥離層側に実施例5に記載した低屈折率塗料(LR1)を塗工し、塗工膜を100℃で1分間乾燥した後、硬化させて厚さ0.1μm、屈折率1.38の低屈折率層を形成した。その後、低屈折率層の硬化のため、60℃で120時間静置した。
アプリケーターを用いて、パナック社製非シリコーン系剥離PET SG-1(38μm厚さ)の剥離層側に実施例5に記載した低屈折率塗料(LR1)を塗工し、塗工膜を100℃で1分間乾燥した後、硬化させて厚さ0.1μm、屈折率1.38の低屈折率層を形成した。その後、低屈折率層の硬化のため、60℃で120時間静置した。
続いて、リバースコーティング法によって、上記低屈折率層上に下記のHC層形成用エネルギー線硬化型組成物(HC3)を塗布した。100℃ で1分間乾燥後、窒素雰囲気中で120W/cm集光型高圧水銀灯1灯で紫外線照射(照射距離10cm、照射時間30秒)を行い、塗工膜を硬化させ、厚さ2.5μm、屈折率1.64のHC層を形成した。
更に続いて、実施例1に記載のエネルギー線硬化型組成物(P1)を上記HC層側に実施例1と同一条件で、塗布および乾燥し、HC層側に保護フィルムが形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表7に示す。
〔比較例1~6:ポリエステルフィルム基材/(機能層)/保護フィルム〕
実施例1に記載のエネルギー線硬化型組成物(P1)における化合物1(繰り返し単位を生じさせるモノマーであるウレタンメタクリレート)を化合物2(ウレタンアクリレート)に変更した以外は実施例1~6と同様にしてPETフィルムの片面に保護フィルムが形成されたフィルム積層体〔比較例1〕または、PETフィルムの片面に各種機能層が設けられ、更に保護フィルムが形成されたフィルム積層体〔比較例2~6〕を得た。このフィルム積層体に対する評価結果を表7に示す。
実施例1に記載のエネルギー線硬化型組成物(P1)における化合物1(繰り返し単位を生じさせるモノマーであるウレタンメタクリレート)を化合物2(ウレタンアクリレート)に変更した以外は実施例1~6と同様にしてPETフィルムの片面に保護フィルムが形成されたフィルム積層体〔比較例1〕または、PETフィルムの片面に各種機能層が設けられ、更に保護フィルムが形成されたフィルム積層体〔比較例2~6〕を得た。このフィルム積層体に対する評価結果を表7に示す。
表7に示すように、機能層を設けない保護フィルムにて実施例1と比較例1を比べると、実施例1における化合物1を用いた保護フィルムは、40μmよりも薄い状態で透湿度65g/(m2・24h)、鉛筆硬度Fであり、比較例1の透湿度80g/(m2・24h)、鉛筆硬度6B以下と比較して格段に向上していた。
一方、実施例2~6では、機能層に、実施例1と同様の保護フィルムを積層したところ、フィルム積層体は、保護フィルムに起因して60~64g/(m2・24h)の低透湿度であると共に鉛筆硬度2Hであり、低透湿度とハードコート性とを兼ね備え、非常に有用であることが分かる。
これに対し、比較例2~6では、機能層に、比較例1と同様の保護フィルムに機能層を積層したところ、透湿度76~79g/(m2・24h)、鉛筆硬度Hであり、化合物1の特徴あるウレタンメタクリレート構造が低透湿化と表面硬度の向上に効果的であることが明示されている。
本発明に係る保護フィルムは、薄層の状態で低透湿であり、尚且つ表面硬度が高く、保護フィルムに機能層を設けたフィルム積層体の表面硬度も高い為、低透湿性やハードコート性が要求される用途、特に、偏光板の構成部材として有用であり、種々の分野にて利用可能である。
Claims (9)
- 2官能性のウレタンメタクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有することを特徴とする保護フィルム。
- 上記繰り返し単位は、
飽和環状脂肪族基R1を含む下記構造A、および、
飽和環状脂肪族基R3を含む下記構造Cを含むことを特徴とする請求項1に記載の保護フィルム。
-CO-NH-R1-NH-CO-・・・(構造A)
-O-R3-O-・・・(構造C) - 上記繰り返し単位は、
さらに、飽和脂肪族鎖R2を含む下記構造Bを含むことを特徴とする請求項2に記載の保護フィルム。
-O-R2-CO-・・・(構造B) - 上記R1が、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、R3がジメチレントリシクロデカン環であることを特徴とする請求項2~4の何れか1項に記載の保護フィルム。
- 透湿度が150g/(m2・24時間)以下であることを特徴とする請求項1~5の何れか1項に記載の保護フィルム。
- 請求項1~6の何れか1項に記載の保護フィルムの少なくとも片面に、
(1)上記保護フィルムを支持するフィルム基材、
(2)耐擦傷性を有するハードコート層、
(3)光を散乱させる防眩層、および、
(4)上記保護フィルム上に備えられた高屈折率層と、上記高屈折率層に備えられた低屈折率層とで構成された反射防止層、の何れかを備えることを特徴とするフィルム積層体。 - 上記保護フィルムの少なくとも片面に、上記ハードコート層を備えており、
上記ハードコート層を備えた面の鉛筆硬度が2H以上であることを特徴とする請求項7に記載のフィルム積層体。 - 偏光フィルムの少なくとも片面に、請求項1~6の何れか1項に記載の保護フィルムを備えることを特徴とする偏光板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016548921A JPWO2016043239A1 (ja) | 2014-09-16 | 2015-09-16 | 保護フィルム、フィルム積層体および偏光板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-187306 | 2014-09-16 | ||
JP2014187306 | 2014-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016043239A1 true WO2016043239A1 (ja) | 2016-03-24 |
Family
ID=55533275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076352 WO2016043239A1 (ja) | 2014-09-16 | 2015-09-16 | 保護フィルム、フィルム積層体および偏光板 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016043239A1 (ja) |
WO (1) | WO2016043239A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05105747A (ja) * | 1991-10-16 | 1993-04-27 | Kuraray Co Ltd | ポリオール、硬化性樹脂およびそれを含む組成物 |
JPH05105746A (ja) * | 1991-10-15 | 1993-04-27 | Kuraray Co Ltd | ポリオール、硬化性樹脂およびそれを含む組成物 |
JP2005255979A (ja) * | 2004-02-10 | 2005-09-22 | Daicel Ucb Co Ltd | 活性エネルギー線硬化型樹脂組成物の硬化物 |
JP2011094108A (ja) * | 2009-09-30 | 2011-05-12 | Daicel-Cytec Co Ltd | 金属蒸着向けアンダーコート用樹脂組成物 |
WO2011122519A1 (ja) * | 2010-03-30 | 2011-10-06 | 宇部興産株式会社 | 光硬化性水性ポリウレタン樹脂分散体及びその製造方法 |
WO2012096111A1 (ja) * | 2011-01-13 | 2012-07-19 | Dic株式会社 | ラジカル硬化性ホットメルトウレタン樹脂組成物、及び光学用成形体 |
JP2012236938A (ja) * | 2011-05-12 | 2012-12-06 | Dh Material Kk | 封止材ならびにそれを用いた成形品、光学部材及び発光ダイオード |
-
2015
- 2015-09-16 JP JP2016548921A patent/JPWO2016043239A1/ja active Pending
- 2015-09-16 WO PCT/JP2015/076352 patent/WO2016043239A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05105746A (ja) * | 1991-10-15 | 1993-04-27 | Kuraray Co Ltd | ポリオール、硬化性樹脂およびそれを含む組成物 |
JPH05105747A (ja) * | 1991-10-16 | 1993-04-27 | Kuraray Co Ltd | ポリオール、硬化性樹脂およびそれを含む組成物 |
JP2005255979A (ja) * | 2004-02-10 | 2005-09-22 | Daicel Ucb Co Ltd | 活性エネルギー線硬化型樹脂組成物の硬化物 |
JP2011094108A (ja) * | 2009-09-30 | 2011-05-12 | Daicel-Cytec Co Ltd | 金属蒸着向けアンダーコート用樹脂組成物 |
WO2011122519A1 (ja) * | 2010-03-30 | 2011-10-06 | 宇部興産株式会社 | 光硬化性水性ポリウレタン樹脂分散体及びその製造方法 |
WO2012096111A1 (ja) * | 2011-01-13 | 2012-07-19 | Dic株式会社 | ラジカル硬化性ホットメルトウレタン樹脂組成物、及び光学用成形体 |
JP2012236938A (ja) * | 2011-05-12 | 2012-12-06 | Dh Material Kk | 封止材ならびにそれを用いた成形品、光学部材及び発光ダイオード |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016043239A1 (ja) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6289637B2 (ja) | プラスチックフィルム積層体 | |
KR101470463B1 (ko) | 하드코팅 필름 | |
KR101415840B1 (ko) | 하드코팅 필름 | |
KR101389967B1 (ko) | 하드코팅 필름의 제조방법 | |
KR102025965B1 (ko) | 보호 필름, 필름 적층체 및 편광판 | |
JP6577768B2 (ja) | ハードコートフィルム、これを用いた偏光板、ディスプレイ部材及び表示装置 | |
JP2010228314A (ja) | ハードコートフィルム、並びにそれを用いた偏光板及び画像表示装置 | |
KR101886589B1 (ko) | 보호 필름, 필름 적층체 및 편광판 | |
JP2015217530A (ja) | 粘着型高硬度透明フィルム | |
JP5616036B2 (ja) | 基材、中間膜及び微細凹凸構造膜を積層してなる積層体 | |
JP6721410B2 (ja) | 保護フィルム、フィルム積層体、および偏光板 | |
WO2016043240A1 (ja) | 保護フィルム、フィルム積層体および偏光板 | |
JP2014073610A (ja) | 保護部材付き成形体 | |
JPWO2016043241A1 (ja) | 偏光板 | |
WO2016043242A1 (ja) | フィルム積層体および偏光板 | |
TWI601971B (zh) | 保護薄膜、薄膜積層體及偏光板 | |
CN112654685B (zh) | 自由基系粘接剂组合物、粘接剂层、偏振片和影像显示装置 | |
JP6757177B2 (ja) | 保護フィルム、フィルム積層体および偏光板 | |
JP2017078840A (ja) | 保護フィルム、フィルム積層体、および偏光板 | |
TWI572886B (zh) | 保護膜、膜積層體及偏光板 | |
WO2016043239A1 (ja) | 保護フィルム、フィルム積層体および偏光板 | |
JP2012139899A (ja) | (メタ)アクリレート系重合性組成物、それを用いた反射防止フィルム積層体及びその製造方法 | |
JP2016216618A (ja) | 樹脂組成物、保護フィルムおよび偏光板 | |
JP2017009886A (ja) | 樹脂組成物、保護フィルムおよび偏光板 | |
JP2016071086A (ja) | 機能性フィルムの製造方法及び機能性フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842291 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016548921 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15842291 Country of ref document: EP Kind code of ref document: A1 |