WO2016043221A1 - 基板処理装置、クリーニング方法及び半導体装置の製造方法並びに記録媒体 - Google Patents

基板処理装置、クリーニング方法及び半導体装置の製造方法並びに記録媒体 Download PDF

Info

Publication number
WO2016043221A1
WO2016043221A1 PCT/JP2015/076284 JP2015076284W WO2016043221A1 WO 2016043221 A1 WO2016043221 A1 WO 2016043221A1 JP 2015076284 W JP2015076284 W JP 2015076284W WO 2016043221 A1 WO2016043221 A1 WO 2016043221A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
processing
mounting member
reaction chamber
Prior art date
Application number
PCT/JP2015/076284
Other languages
English (en)
French (fr)
Inventor
上田立志
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Publication of WO2016043221A1 publication Critical patent/WO2016043221A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a cleaning technique for extending a maintenance cycle by increasing a film thickness that can be deposited on a substrate mounting member on which a substrate is mounted.
  • the cumulative film thickness of a substrate mounting member such as a susceptor increases as the number of film deposition processes increases regardless of the type of film to be formed, and when a certain cumulative film thickness is reached, the generation of particles increases rapidly. It is known to do. Therefore, in the film forming process in the method of manufacturing a semiconductor device using such a substrate processing apparatus, when a certain cumulative film thickness is reached, the work of replacing all susceptors and the like with those that have been cleaned in advance (hereinafter referred to as full maintenance). To prevent the generation of particles.
  • Patent Document 1 describes a technique for detecting the accumulated film thickness.
  • An object of the present invention is to provide a configuration that suppresses an increase in the frequency of cleaning due to the influence of a deposited film deposited on a susceptor on which a substrate is placed.
  • a substrate mounting member provided in a reaction chamber for processing a substrate, a reaction gas supply unit for supplying a reaction gas for processing a substrate, and at least one fluorine
  • a substrate mounting member that supplies a fluorine-containing gas into the reaction chamber in a state in which the cleaning gas supply unit that supplies the fluorine-containing gas containing atoms, a plasma mechanism that activates the reaction gas, and the substrate is removed from the reaction chamber.
  • the deposited film deposited on the substrate is removed, activated reaction gas is supplied into the reaction chamber, fluorine atoms adhering to the substrate mounting member are removed, and the surface of the substrate mounting member is made hydrophilic.
  • a control unit configured to control at least the reaction gas supply unit, the cleaning gas supply unit, and the plasma mechanism.
  • the operating rate of the apparatus can be improved by increasing the film thickness that can be deposited on the susceptor and decreasing the cleaning frequency.
  • FIG. 1 is a schematic configuration diagram of a multi-wafer type substrate processing apparatus 10 according to the first embodiment.
  • a FOUP Front Opening Unified Pod, hereinafter referred to as a pod
  • a substrate wafer
  • front, rear, left and right are based on FIG. That is, the X1 direction shown in FIG. 1 is the right, the X2 direction is the left, the Y1 direction is the front, and the Y2 direction is the back.
  • the substrate processing apparatus includes a first transfer chamber 103 configured in a load lock chamber structure that can withstand a pressure (negative pressure) less than atmospheric pressure such as a vacuum state. Yes.
  • the casing 101 of the first transfer chamber 103 is formed in a box shape with a pentagonal plan view and closed both upper and lower ends.
  • a first substrate transfer machine 112 capable of simultaneously transferring two substrates 200 under a negative pressure is installed.
  • the first substrate transfer machine 112 may be one that can transfer a single substrate 200.
  • the first substrate transfer machine 112 is configured to be moved up and down by the first substrate transfer machine elevator 115 while maintaining the airtightness of the first transfer chamber 103.
  • a spare chamber 122 and a spare chamber 123 that can be used together with a carry-in spare chamber and a carry-out spare chamber are respectively provided with a gate valve 126 and a gate valve 127.
  • a gate valve 126 and a gate valve 127 are connected to each other, and each has a structure capable of withstanding negative pressure.
  • two substrates 200 can be stacked in the reserve chamber (load lock chamber) 122 and the reserve chamber (load lock chamber) 123 by the substrate support 140.
  • a partition plate 141 is installed between the substrates.
  • the temperature of the substrate that has been previously processed and is being cooled is slowed down due to the heat effect of the processed substrate that has entered next.
  • the thermal interference can be prevented by providing the partition plate.
  • Cooling water, a chiller, or the like is passed through the preliminary chamber 122, the preliminary chamber 123, and the partition plate 141.
  • the wall surface temperature can be kept low, and the cooling efficiency can be increased for any processed substrate in any slot.
  • the cooling efficiency due to heat exchange will decrease. Therefore, as a method to improve the cooling efficiency, after placing the substrate support on the substrate support (pin), There is a case where a drive mechanism is provided for moving up and down to approach the spare chamber wall surface.
  • a second transfer chamber 121 used under substantially atmospheric pressure is connected to the front side of the spare chamber 122 and the spare chamber 123 via a gate valve 128 and a gate valve 129.
  • a second substrate transfer machine 124 for transferring the substrate 200 is installed in the second transfer chamber 121.
  • the second substrate transfer machine 124 is configured to be moved up and down by a second substrate transfer machine elevator 131 installed in the second transfer chamber 121 and is reciprocated in the left-right direction by a linear actuator 132. It is comprised so that.
  • a notch or orientation flat aligning device 106 can be installed on the left side of the second transfer chamber 121. Further, as shown in FIG. 2, a clean unit 118 for supplying clean air is installed in the upper part of the second transfer chamber 121.
  • a substrate loading / unloading port 134 for loading and unloading the substrate 200 to and from the second transfer chamber 121.
  • a pod opener 108 is installed.
  • a load port (IO stage) 105 is installed on the opposite side of the pod opener 108 across the substrate loading / unloading port 134, that is, on the outside of the housing 125.
  • the pod opener 108 includes a closure 142 that can open and close the cap 100 a of the pod 100 and close the substrate loading / unloading port 134, and a drive mechanism 136 that drives the closure 142, and the pod placed on the load port 105.
  • By opening and closing the cap 100a of 100 the substrate 200 can be taken in and out of the pod 100.
  • the pod 100 is supplied to and discharged from the load port 105 by an in-process transfer device (OHT or the like) (not shown).
  • OHT in-process transfer device
  • a processing furnace for performing a desired process on a substrate is provided on four side walls located on the rear side (back side) among the five side walls of the first transfer chamber casing 101.
  • a (process chamber) 202 is provided. Specifically, the first processing furnace 202a, the second processing furnace 202b, the third processing furnace 202c, and the fourth processing furnace 202d are adjacent to each other via gate valves 150, 151, 152, and 153, respectively. It is connected.
  • the controller 300 controls the entire apparatus in the above configuration. Further, the controller 300 has a storage unit (ROM) in which a program for executing a cleaning recipe to be described later is stored, and is configured to be activated when the controller 300 is activated.
  • ROM storage unit
  • the substrate 200 is transported by the in-process transport apparatus to the substrate processing apparatus that performs the processing process in a state where a maximum of 25 substrates 200 are stored in the pod 100.
  • the pod 100 that has been transported is delivered and placed on the load port 105 from the in-process transport device.
  • the cap 100a of the pod 100 is removed by the pod opener 108, and the substrate outlet of the pod 100 is opened.
  • the second substrate transfer machine 124 installed in the second transfer chamber 121 picks up the substrate 200 from the pod 100. Further, the second substrate transfer machine 124 carries the substrate 200 into the preliminary chamber 122 and transfers the substrate 200 to the substrate support 140.
  • the gate valve 126 on the first transfer chamber 103 side of the preliminary chamber 122 is closed, and the negative pressure in the first transfer chamber 103 is maintained.
  • the gate valve 128 is closed, and the inside of the preliminary chamber 122 is exhausted to a negative pressure by an exhaust device (not shown).
  • the gate valve 126 When the pressure in the preliminary chamber 122 reaches a preset pressure value, the gate valve 126 is opened, and the preliminary chamber 122 and the first transfer chamber 103 communicate with each other. Subsequently, the first substrate transfer machine 112 in the first transfer chamber 103 loads the substrate 200 from the substrate support 140 into the first transfer chamber 103. After the gate valve 126 is closed, the gate valve 151 is opened, and the first transfer chamber 103 and the second processing furnace 202b are communicated with each other. After the gate valve 151 is closed, a processing gas is supplied into the second processing furnace 202 and a desired process is performed on the substrate 200.
  • the gate valve 151 is opened, and the substrate 200 is carried out to the first transfer chamber 103 by the first substrate transfer machine 112. After unloading, the gate valve 151 is closed.
  • the gate valve 127 is opened, and the first substrate transfer machine 112 transports the substrate 200 unloaded from the second processing furnace 202b to the substrate support 140 in the preliminary chamber 123, and the processed substrate 200 is cooled. Is done.
  • the preliminary chamber 123 When the processed substrate 200 is transferred to the preliminary chamber 123 and a preset cooling time has elapsed, the preliminary chamber 123 is returned to approximately atmospheric pressure by the inert gas. When the inside of the preliminary chamber 123 is returned to substantially atmospheric pressure, the gate valve 129 is opened, and the cap 100 a of the empty pod 100 placed on the load port 105 is opened by the pod opener 108.
  • the second substrate transfer machine 124 in the second transfer chamber 121 carries the substrate 200 from the substrate support base 140 to the second transfer chamber 121 and passes through the substrate loading / unloading port 134 in the second transfer chamber 121. Store it in the pod 100.
  • the cap 100a of the pod 100 may continue to be emptied until a maximum of 25 substrates are returned, or may be returned to the pod from which the substrate is carried out without being stored in the empty pod 100.
  • the cap 100a of the pod 100 is closed by the pod opener 108.
  • the closed pod 100 is transported from the top of the load port 105 to the next process by the in-process transport device.
  • the above operation has been described by taking the case where the second processing furnace 202b, the preliminary chamber 122, and the preliminary chamber 123 are used as an example. However, the first processing furnace 202a, the third processing furnace 202c, and the fourth processing furnace are used. The same operation is performed when 202d is used.
  • the number of processing chambers may be determined depending on the type of the corresponding substrate and the film to be formed.
  • the spare chamber 122 is used for carrying in and the spare chamber 123 is used for carrying out.
  • the spare chamber 123 may be used for carrying in, and the spare chamber 122 may be used for carrying out, or the spare chamber 122 or the spare chamber may be used. 123 may be used in combination for loading and unloading.
  • the same processing may be performed in all the processing furnaces, or different processing may be performed in each processing furnace.
  • the second processing furnace 202b continues. May be performed.
  • the processing may be performed via the spare chamber 122 or the spare chamber 123.
  • processing furnace 202a and the processing furnace 202b are connected to the processing furnace, and a maximum of four processing furnaces 202a to 202d, such as two processing furnaces 202c and 202d. Any number of possible combinations may be connected.
  • the number of substrates 200 processed by the apparatus may be one or plural.
  • the substrate 200 to be cooled may be one or plural.
  • the number of processed substrates that can be cooled may be any combination as long as it is within a range of up to five sheets that can be inserted into the slots of the spare chamber 122 and the spare chamber 123.
  • the substrate 200 may be processed by loading the substrate 200 into the processing furnace by opening and closing the gate valve of the preliminary chamber 122 while the processed substrate 200 is being carried in the preliminary chamber 122 and being cooled.
  • the substrate processing may be performed by opening and closing the gate valve of the preliminary chamber 123 and loading the substrate 200 into the processing furnace while the processed substrate 200 is being cooled in the preliminary chamber 123 while being cooled.
  • the gate valve 128 and the gate valve 129 on the substantially atmospheric side are opened without passing through a sufficient cooling time, the electrical components connected around the spare chamber 122, the spare chamber 123, or the spare chamber by the radiant heat of the substrate 200. May cause damage. Therefore, when cooling a high-temperature substrate, the substrate having a large radiant heat that has been processed is transferred into the preliminary chamber 122 and cooling is performed, and the gate valve of the preliminary chamber 123 is opened and closed to place the substrate in the processing furnace. Carry in and process substrates. Similarly, while the processed substrate is being carried into the spare chamber 123 and cooling is being performed, the gate valve of the spare chamber 122 can be opened and closed, and the substrate can be carried into the processing furnace to process the substrate.
  • wafer when the term “wafer” is used in this specification, it means “wafer itself” or “a laminated body (aggregate) of a wafer and a predetermined layer or film formed on the surface thereof”. ) ", That is, a predetermined layer or film formed on the surface may be referred to as a wafer.
  • wafer surface when the term “wafer surface” is used in this specification, it means “surface of the wafer itself (exposed surface)” or “surface of a predetermined layer or film formed on the wafer”. That is, it may mean “the outermost surface of the wafer as a laminate”.
  • the phrase “supplying a predetermined gas to the wafer” means “supplying a predetermined gas to the surface (exposed surface) of the wafer itself”, It may mean that “a predetermined gas is supplied to a layer, a film, or the like formed on the wafer, that is, to the outermost surface of the wafer as a laminated body”. Further, in this specification, when “describe a predetermined layer (or film) on the wafer” is described, “form a predetermined layer (or film) on the surface (exposed surface) of the wafer itself”. , Or “to form a predetermined layer (or film) on the layer or film formed on the wafer, that is, on the outermost surface of the wafer as a laminate” There is.
  • substrate is synonymous with the term “wafer”.
  • FIG. 3 is a schematic cross-sectional view of the processing furnace according to the first embodiment.
  • FIG. 4 is an explanatory diagram for explaining a specific structure of the processing furnace according to the first embodiment, and
  • FIG. 5 is a vertical cross-sectional view taken along AB in FIG.
  • the process chamber 202 as a processing furnace includes a reaction vessel 203 that is a cylindrical airtight vessel.
  • a processing chamber which is a processing space 207 for the substrate 200 is formed in the reaction vessel 203.
  • four partition plates 205 extending radially from the center are provided.
  • the four partition plates 205 as the dividing unit divide the processing space 207 into four regions, that is, a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge region 204b. It is configured to divide. In other words, the processing area and the purge area are arranged adjacent to each other.
  • the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b are arranged in this order along the rotation direction of a susceptor (substrate mounting member) 217 described later. Is configured to do.
  • the partition plate 205 is arranged as follows.
  • the partition plate 205a is provided upstream of the first processing region and between the first processing region 201a and the second purge region 204b.
  • the partition plate 205b is provided downstream of the first processing region and between the first processing region 201a and the first purge region 204a.
  • the partition plate 205c is provided upstream of the second processing region and between the first purge region 204a and the second processing region 201b.
  • the partition plate 205d is provided downstream of the second processing region and between the second processing region 201b and the second purge region 204b.
  • the substrate 200 placed on the susceptor 217 has a first processing region 201a, a first purge region 204a, a second processing region 201b, and a second purge. It moves in the order of the area 204b.
  • a first processing gas as a first gas raw material gas
  • a second gas as a second gas is supplied into the second processing region 201b.
  • a second processing gas (reactive gas) is supplied, and an inert gas (non-reactive gas) is supplied into the first purge region 204a and the second purge region 204b. Therefore, by rotating the susceptor 217, the first processing gas, the inert gas, the second processing gas, and the inert gas are supplied onto the substrate 200 in this order.
  • the configurations of the susceptor 217 and the gas supply system will be described later.
  • a gap with a predetermined width is provided between the end of the partition plate 205 and the side wall of the reaction vessel 203 and between the bottom of the partition plate 205 and the substrate mounting table (susceptor) 217, and gas can pass through the gap. It is configured as follows. Through this gap, an inert gas is ejected from the first purge region 204a and the second purge region 204b toward the first processing region 201a and the second processing region 201b. By doing in this way, the penetration of the processing gas into the first purge region 204a and the second purge region 204b can be suppressed, and the reaction due to the mixing of the processing gas can be prevented.
  • the bottom of the partition plate 205 and the bottom center in the reaction vessel 203 has the center of the rotation axis at the center of the reaction vessel 203, so that it can rotate freely.
  • a susceptor 217 as a configured substrate mounting table is provided.
  • the susceptor 217 is formed of a non-metallic material such as SiC (silicon carbide), carbon (C), aluminum nitride (AlN), ceramics, or quartz so that the metal contamination of the substrate 200 can be reduced. Yes. In the case of substrate processing not considering metal contamination, aluminum (Al) may be used.
  • the susceptor 217 is electrically insulated from the reaction vessel 203.
  • the soot susceptor 217 is configured to support a plurality of (for example, five in this embodiment) substrates 200 side by side on the same surface and on the same circumference in the reaction vessel 203.
  • “on the same plane” is not limited to the completely same plane.
  • the susceptor 217 has a mounting surface on which a plurality of substrates 200 are mounted concentrically, and the mounting surface is configured to face the ceiling of the reaction vessel 203.
  • substrate placement portions 217b are provided at positions where the substrate 200 is supported on the surface of the susceptor 217 corresponding to the number of substrates 200 to be processed.
  • the substrate platform 217b may have a circular shape when viewed from the top surface and a concave shape when viewed from the side surface.
  • the diameter of the substrate mounting portion is configured to be slightly larger than the diameter of the substrate 200.
  • the eaves susceptor 217 is provided with an elevating mechanism 268 for elevating the susceptor 217.
  • the susceptor 217 is provided with a plurality of through holes (not shown).
  • a plurality of substrate push-up pins that push up the substrate 200 and support the back surface of the substrate 200 when the substrate 200 is carried into and out of the reaction vessel 203 are provided on the bottom surface of the reaction vessel 203 described above.
  • the through-hole and the substrate push-up pin are arranged so that the substrate push-up pin penetrates the through-hole in a non-contact state with the susceptor 217 when the substrate push-up pin is raised or when the susceptor 217 is lowered by the lifting mechanism 268. Has been.
  • the elevating mechanism 268 is provided with a rotation mechanism 267 that rotates the susceptor 217.
  • a rotation shaft (not shown) of the rotation mechanism 267 is connected to the susceptor 217.
  • the susceptor 217 is configured to rotate in a direction parallel to the mounting surface of the susceptor 217.
  • a control unit 300 described later is connected to the rotation mechanism 267 through a coupling unit 267a.
  • the coupling portion 267a is configured as a slip ring mechanism that electrically connects the rotating side and the fixed side with a metal brush or the like. This prevents the rotation of the susceptor 217 from being hindered.
  • the controller 300 is configured to control the energization of the rotation mechanism 267 so that the susceptor 217 is rotated at a predetermined speed for a predetermined time. As described above, by rotating the susceptor 217, the substrate 200 placed on the susceptor 217 has the first processing region 201 a, the first purge region 204 a, the second processing region 201 b, and the second purge. The region 204b is moved in this order.
  • a heater 218 as a heating unit is integrally embedded in the susceptor 217.
  • the substrate 200 placed on the substrate platform 217b is heated.
  • the surface of the substrate 200 is heated to a predetermined temperature (for example, room temperature to about 1000 ° C.).
  • a plurality (for example, five) of heaters 218 may be provided on the same surface so as to individually heat the respective substrates 200 placed on the susceptor 217.
  • the susceptor 217 is provided with a temperature sensor 274.
  • a temperature regulator 223, a power regulator 224, and a heater power source 225 are electrically connected to the heater 218 and the temperature sensor 274 via a power supply line 222. Based on the temperature information detected by the temperature sensor 274, the power supply to the heater 218 is controlled.
  • a gas supply mechanism 250 including a first processing gas introduction mechanism 251, a second processing gas introduction mechanism 252, and an inert gas introduction mechanism 253 is provided above the inside of the reaction vessel 203.
  • the gas supply mechanism 250 is provided in an airtight manner above the susceptor 217 and in an opening formed in the upper part of the reaction vessel 203.
  • the first process gas introduction mechanism 251 is provided in the partition plate 205 a and has a gas ejection port 254.
  • the second processing gas introduction mechanism 252 is provided in the second partition plate 205c, and the first inert gas ejection port 256 and the second inert gas ejection mechanism 253 having the gas ejection port 254 are provided on the side wall.
  • Inert gas outlets 257 are provided so as to face each other.
  • the gas ejection port 254 has gas ejection holes 254 (1)... 254 (n) which are a plurality of ejection holes, and is provided in a straight line at the center of the processing region. That is, the ejection port 254 is provided above the susceptor 217 and so as to face the mounted wafer 200.
  • the gas supply mechanism 250 supplies the first processing gas from the first processing gas introduction mechanism 251 into the first processing region 201a, and the second processing gas introduction mechanism 252 supplies the first processing gas into the second processing region 201b.
  • the second processing gas is supplied, and the inert gas is supplied from the inert gas introduction mechanism 253 into the first purge region 204a and the second purge region 204b.
  • the gas supply mechanism 250 can supply each processing gas and inert gas individually to each region without mixing them, and can supply each processing gas and inert gas to each region in parallel. It is configured to be able to.
  • the first gas supply pipe 232a is connected to the upstream side of the first processing gas introduction mechanism 251.
  • a source gas supply source 232b On the upstream side of the first gas supply pipe 232a, a source gas supply source 232b, a mass flow controller (MFC) 232c as a flow rate controller (flow rate control unit), and a valve 232d as an on-off valve are provided in order from the upstream direction. It has been.
  • MFC mass flow controller
  • the first gas for example, a silicon-containing gas is supplied from the mass flow controller 232c, the valve 232d, the first gas introduction mechanism 251 and the gas outlet. It is supplied into the first processing area 201a via H.254.
  • a silicon-containing gas for example, a precursor butylaminosilane (SiH 2 (NH (C 4 H 9) 2), abbreviation: BTBAS) gas can be used as a precursor.
  • the first processing gas may be any of solid, liquid, and gas at normal temperature and pressure, but will be described as a gas here.
  • a vaporizer (not shown) is provided between the source gas supply source 232b and the mass flow controller 232c. As long as the first processing gas can be supplied as a gas.
  • the silicon-containing gas in addition to the BTBAS gas, for example, hexamethyldisilazane (C6H19NSi2, abbreviated as HMDS) gas, trisdimethylaminosilane (Si [N (CH3) 2] 3H, abbreviated as 3DMAS) which is an organic silicon material.
  • HMDS hexamethyldisilazane
  • 3DMAS trisdimethylaminosilane
  • TSA trisilylamine
  • the first gas is made of a material having higher adhesion than the second gas described later.
  • a second gas supply pipe 233a is connected to the upstream side of the second processing gas introduction mechanism 252.
  • a source gas supply source 233b On the upstream side of the second gas supply pipe 233a, a source gas supply source 233b, a mass flow controller (MFC) 233c that is a flow rate controller (flow rate control unit), and a valve 233d that is an on-off valve are provided in order from the upstream direction. It has been.
  • MFC mass flow controller
  • the second gas for example, oxygen (O2) gas, which is an oxygen-containing gas
  • O2 gas which is an oxygen-containing gas
  • the gas is supplied into the second processing region 201b through the introduction mechanism 252 and the gas outlet 254.
  • the O 2 gas that is the second processing gas is brought into a plasma state by the plasma generation unit 206 and exposed to the substrate 200.
  • the O 2 gas which is the second processing gas, may be activated by adjusting the temperature of the heater 218 and the pressure in the reaction vessel 203 within a predetermined range.
  • oxygen-containing gas ozone (O3) gas or water vapor (H2O) may be used.
  • the second gas is made of a material having a lower degree of adhesion than the first gas.
  • the first process gas supply unit (also referred to as a source gas supply system) 232 is mainly configured by the first gas supply pipe 232a, the mass flow controller 232c, and the valve 232d.
  • the source gas supply source 232b, the first process gas introduction mechanism 251 and the gas jet outlet 254 may be included in the first process gas supply unit.
  • a second process gas supply unit (also referred to as a reaction gas supply system) 233 is mainly configured by the second gas supply pipe 233a, the mass flow controller 233c, and the valve 233d.
  • the source gas supply source 233b, the second process gas introduction mechanism 252 and the gas jet outlet 255 may be included in the second process gas supply unit.
  • a process gas supply part is mainly comprised by the 1st gas supply part and the 2nd gas supply part.
  • a first inert gas supply pipe 234a is connected to the upstream side of the inert gas introduction mechanism 253.
  • an inert gas supply source 234b On the upstream side of the first inert gas supply pipe 234a, in order from the upstream direction, a mass flow controller (MFC) 234c that is a flow rate controller (flow rate control unit), and a valve that is an on-off valve 234d is provided.
  • MFC mass flow controller
  • an inert gas composed of, for example, nitrogen (N2) gas is supplied to the mass flow controller 234c, the valve 234d, the inert gas introduction mechanism 253, and the first inert gas outlet 256.
  • the first purge region 204a and the second purge region 204b are supplied through the second inert gas outlet 257, respectively.
  • the N 2 gas supplied into the first purge region 204a and the second purge region 204b acts as a purge gas in the film forming step (S106) described later.
  • a rare gas such as helium (He) gas, neon (Ne) gas, or argon (Ar) gas can be used as the inert gas.
  • the downstream end of the second inert gas supply pipe 235a is connected to the downstream side of the valve 232d of the first gas supply pipe 232a.
  • an inert gas supply source 235b In order from the upstream direction, an inert gas supply source 235b, a mass flow controller (MFC) 235c that is a flow rate controller (flow rate control unit), and a valve 235d that is an on-off valve are provided.
  • MFC mass flow controller
  • N2 gas is used as an inert gas, such as a mass flow controller 235c, a valve 235d, a first gas supply pipe 232a, a first processing gas introduction mechanism 251 and a gas jet 254.
  • N2 gas supplied into the first processing region 201a acts as a carrier gas or a dilution gas in the film forming step (S106).
  • the downstream end of the third inert gas supply pipe 236a is connected to the downstream side of the valve 233d of the second gas supply pipe 233a.
  • an inert gas supply source 236b a mass flow controller (MFC) 236c that is a flow rate controller (flow rate control unit), and a valve 236d that is an on-off valve are provided.
  • MFC mass flow controller
  • N 2 gas is used as an inert gas, such as a mass flow controller 236c, a valve 236d, a second gas supply pipe 233a, a second processing gas introduction mechanism 252 and a gas outlet 254. Is supplied into the second processing area 201b. Similar to the N 2 gas supplied into the first processing region 201a, the N 2 gas supplied into the second processing region 201b acts as a carrier gas or a dilution gas in the film forming step (S106).
  • the first inert gas supply unit 234 is mainly composed of the first inert gas supply pipe 234a, the mass flow controller 234c, and the valve 234d. It should be noted that the inert gas supply source 234b, the inert gas introduction mechanism 253, the first inert gas outlet 256, and the second inert gas outlet 257 are included in the first inert gas supply unit 234. May be.
  • the second inert gas supply unit 235 is mainly configured by the second inert gas supply pipe 235a, the mass flow controller 235c, and the valve 235d.
  • the inert gas supply source 235b, the first gas supply pipe 232a, the first process gas introduction mechanism 251 and the gas outlet 254 may be included in the second inert gas supply unit 235.
  • the third inert gas supply unit 236 is mainly configured by the third inert gas supply pipe 236a, the mass flow controller 236c, and the valve 236d.
  • the inert gas supply source 236b, the second gas supply pipe 233a, the second processing gas introduction mechanism 252 and the gas outlet 254 may be included in the third inert gas supply unit.
  • the inert gas supply part is mainly comprised by the 3rd inert gas supply part from the 1st inert gas supply part.
  • the cleaning gas introduction section may be provided as a gas introduction mechanism 253 at the center of the susceptor as shown in FIGS. 4 and 5, or may be provided as a gas introduction mechanism about 200 mm from the center on the edge side. Good.
  • a cleaning gas supply pipe 234 a is connected to the upstream side of the gas introduction mechanism 253.
  • a cleaning gas supply source 234b On the upstream side of the cleaning gas supply pipe 234a, a cleaning gas supply source 234b, a mass flow controller (MFC) 234c that is a flow rate controller (flow rate control unit), and a valve 234d that is an on-off valve are provided in order from the upstream direction. Yes.
  • MFC mass flow controller
  • a cleaning gas composed of a gas containing fluorine (F) atoms is supplied onto the substrate platform 217 via the mass flow controller 234c, the valve 234d, and the gas introduction mechanism 253. .
  • fluorine (F2) gas nitrogen trifluoride (NF3) gas, hydrogen fluoride (HF) gas, chlorine trifluoride (ClF3) gas, xenon difluoride (XeF2) gas, trifluoride
  • a gas containing a fluorine atom such as bromine (BrF3) gas, bromine pentafluoride (BrF5) gas, iodine pentafluoride (IF5) gas, iodine heptafluoride (IF7) gas, or the like can be used.
  • the process gas supply unit and the inert gas supply unit constitute a gas supply unit.
  • the exhaust port 259 is an outer peripheral part of the susceptor 217 and is arranged at the bottom of the susceptor, and exhausts the gas supplied from the gas outlet 254 to the first processing region 201a. .
  • the exhaust port 259 exhausts the gas supplied from the gas ejection port 255 to the second processing region 201b.
  • the reaction vessel 203 is provided with an exhaust pipe 231 for exhausting the atmosphere in the processing region 201 a and the processing region 201 b and the purge region 204 a and the purge region 204 b below the reaction vessel 203.
  • a vacuum pump as a vacuum exhaust device via a flow rate control valve 245 as a flow rate controller (flow rate control unit) for controlling the gas flow rate and an APC (Auto Pressure Controller) valve 243 as a pressure regulator (pressure adjustment unit). 246 is connected, and is configured so that the pressure in the reaction vessel 203 can be exhausted to a predetermined pressure (degree of vacuum).
  • the APC valve 243 is an open / close valve that can open and close the valve to exhaust or stop the exhaust in the reaction vessel 203 and further adjust the valve opening to adjust the pressure.
  • the exhaust pipe 231, the APC valve 243 and the flow rate control valve 245 mainly constitute a gas exhaust unit.
  • a vacuum pump 246 may be included in the gas exhaust unit.
  • Control part 300 which is a control part (controller) controls each structure demonstrated above.
  • the reaction container 203 is provided with the first transfer chamber casing 101 so as to be adjacent to the gate valve 150 through one of the gate valves 153. For example, when the gate valve 151 is opened, the inside of the reaction vessel 203 and the first transfer chamber casing 101 communicate with each other.
  • the first substrate transfer machine 112 transports the substrate 200 from the pod to the placement unit 217 b of the susceptor 217 via the second substrate transfer machine 124.
  • the susceptor 217 is formed with a plurality of placement portions 217b on which the substrate 200 is placed.
  • five placement portions 217b are provided so that each of the placement portions 217b is equidistant with respect to the forward clockwise direction (for example, an interval of 72 degrees).
  • the placement portion 217b is rotated in the direction of the arrow collectively.
  • FIG. 6 is a flowchart showing a substrate processing process according to the first embodiment
  • FIG. 7 is a flowchart showing a process on the substrate in the film forming process in the substrate processing process according to the first embodiment
  • FIG. 8 is a flowchart for explaining a cleaning process in the substrate processing process according to the present invention. Moreover, it demonstrates using FIG. 3 thru
  • the operation of each part of the process chamber 202 of the substrate processing apparatus 10 is controlled by the control unit 300.
  • a BTBAS gas that is a silicon-containing gas is used as the first gas
  • an O 2 gas that is an oxygen-containing gas is used as the second processing gas
  • a silicon oxide film (SiO 2 film Hereinafter, an example of forming a simple SiO) film will be described.
  • the substrate push-up pin is raised to the transfer position of the substrate 200, and the substrate push-up pin is passed through the through hole of the susceptor 217. As a result, the substrate push-up pin is in a state of protruding from the surface of the susceptor 217 by a predetermined height. Subsequently, the gate valve 151 is opened, and a predetermined number (for example, five) of substrates 200 (processing substrates) is loaded into the reaction vessel 203 using the first substrate transfer machine 112.
  • a predetermined number for example, five
  • the susceptor 217 is placed on the same surface of the susceptor 217 so that the substrates 200 do not overlap with each other about the rotation axis (not shown).
  • the substrate 200 is supported in a horizontal posture on the substrate push-up pins protruding from the surface of the susceptor 217.
  • the first substrate transfer machine 112 is retracted out of the reaction vessel 203, the gate valve 151 is closed, and the inside of the reaction vessel 203 is sealed.
  • the substrate push-up pin is lowered to place the mounting portions provided on the susceptors 217 on the bottom surfaces of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b.
  • the substrate 200 is placed on the 217b.
  • N 2 gas as a purge gas from the inert gas supply unit into the reaction vessel 203 while exhausting the reaction vessel 203 by the exhaust unit. . That is, by operating the vacuum pump 246 and opening the APC valve 243, while exhausting the inside of the reaction vessel 203, at least the valve 234 d of the first inert gas supply unit is opened, whereby N 2 gas is introduced into the reaction vessel 203. Is preferably supplied. Thereby, it is possible to suppress intrusion of particles into the processing region 201 and adhesion of particles onto the substrate 200.
  • N2 gas may be further supplied from the second inert gas supply unit and the third inert gas supply unit.
  • the vacuum pump 246 is always operated at least from the substrate loading / mounting step (S102) to the substrate unloading step (S108) described later.
  • the surface temperature is heated to 750 ° C. or higher, impurities are diffused in a source region, a drain region, or the like formed on the surface of the substrate 200, and circuit characteristics deteriorate.
  • the performance of the semiconductor device may be degraded.
  • diffusion of impurities in the source region and drain region formed on the surface of the substrate 200, deterioration in circuit characteristics, and reduction in performance of the semiconductor device can be suppressed.
  • the inside of the reaction vessel 203 is evacuated by a vacuum pump 246 so that the inside of the reaction vessel 203 has a desired pressure (for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa).
  • a desired pressure for example, 0.1 Pa to 300 Pa, preferably 20 Pa to 40 Pa.
  • the pressure in the reaction vessel 203 is measured by a pressure sensor (not shown), and the opening degree of the APC valve 243 is feedback controlled based on the measured pressure information.
  • the rotation mechanism 267 is operated to start the rotation of the susceptor 217.
  • the rotation speed of the susceptor 217 is controlled by the controller 300.
  • the rotation speed of the susceptor 217 is, for example, 1 rotation / second.
  • BTBAS gas as the first processing gas is supplied into the first processing region 201a, and O2 gas as the second processing gas is supplied into the second processing region 201b.
  • the film forming process will be described by taking as an example a process of supplying and forming a SiO film on the substrate 200. In the following description, BTBAS gas supply, O2 gas supply, and N2 gas are supplied to the respective regions in parallel.
  • the processing gas is supplied to the processing region 201, and the inert gas is supplied.
  • the valve 233d is opened and O 2 gas is supplied into the second processing region 201b via the gas outlet 254. In this way, the processing gas is supplied from the processing gas supply unit.
  • N2 gas which is an inert gas
  • the APC valve 243 is appropriately adjusted so that the pressure in the reaction vessel 203 is, for example, a pressure within a range of 10 Pa to 1000 Pa.
  • the temperature of the heater 218 is set to such a temperature that the temperature of the substrate 200 becomes a temperature within the range of room temperature to 400 ° C., for example. In addition, Preferably, it is the range of 200 to 400 degreeC.
  • the exhaust port 259 is opened while the valve 232d is opened and the BTBAS gas is supplied from the first gas supply pipe 232a to the first processing region 201a via the first gas introduction mechanism 251 and the gas outlet 254. Then, the exhaust is exhausted through the exhaust pipe 231.
  • the flow rate of BTBAS gas is controlled by adjusting the mass flow controller 232c so as to be a predetermined flow rate.
  • the supply flow rate of the BTBAS gas controlled by the mass flow controller 232c is set to a flow rate in the range of 10 sccm to 500 sccm, for example.
  • the valve 235d When supplying the BTBAS gas into the first processing region 201a, the valve 235d is opened, and N2 gas as a carrier gas or dilution gas is supplied into the first processing region 201a from the second inert gas supply pipe 235a. It is preferable to supply. Thereby, supply of BTBAS gas into the 1st processing field 201a can be promoted.
  • valve 233d is opened, and the O2 gas is supplied from the second gas supply pipe 233a to the second processing region 201b via the second gas introduction mechanism 252 and the gas outlet 255, and the exhaust port 259 and the exhaust pipe are supplied. Exhaust through 231.
  • O2 gas having the same flow rate as that of the center of the wafer 200 can be supplied even at a location near the center of the susceptor 217 and a location near the side edge of the susceptor 217 in the surface of the wafer 200.
  • the O 2 gas can be uniformly supplied to the surface of the wafer 200. By supplying uniformly, it becomes possible to perform film processing uniformly on the wafer 200 surface.
  • a film is also deposited on the susceptor 217.
  • the deposited film is a film different from the material of the substrate mounting member, and is formed from the group consisting of an oxide film, a nitride film, a carbonized film, an oxynitride film, an oxycarbide film, a carbonitride film, and an oxycarbonitride film. It is at least one film selected.
  • the mass flow controller 233c is adjusted so that the flow rate of the O 2 gas becomes a predetermined flow rate.
  • the supply flow rate of the O 2 gas controlled by the mass flow controller 233c is, for example, a flow rate in the range of 1000 sccm to 10000 sccm.
  • the valve 236d When supplying the O2 gas into the second processing region 201b, the valve 236d is opened, and N2 gas as a carrier gas or a dilution gas is supplied into the second processing region 201b from the third inert gas supply pipe 236a. It is preferable to supply. Thereby, supply of O2 gas into the 2nd processing field 201b can be promoted.
  • valve 232d, the valve 233d, and the valve 234d are opened, and N2 gas that is an inert gas as a purge gas is supplied from the first inert gas supply pipe 234a to the inert gas introduction mechanism 253, the first inert gas jet outlet.
  • the exhaust gas is exhausted while being supplied to the first purge region 204a and the second purge region 204b via the 256 and the second inert gas outlet 257, respectively.
  • the mass flow controller 234c is adjusted so that the flow rate of the N2 gas becomes a predetermined flow rate.
  • the first processing region 201a and the second processing region 201b from the first purge region 204a and the second purge region 204b.
  • the intrusion of the processing gas into the first purge region 204a and the second purge region 204b can be suppressed.
  • high-frequency power is supplied from a high-frequency power source (not shown) to the plasma generation unit 206 provided above the second processing region 201b.
  • the O 2 gas that has been supplied into the second processing region 201b and has passed under the plasma generation unit 206 is in a plasma state within the second processing region 201b, and the active species contained therein are supplied to the substrate 200.
  • O2 gas has a high reaction temperature, and it is difficult to react at the processing temperature of the substrate 200 and the pressure in the reaction vessel 203 as described above, but when the O2 gas is in a plasma state and activated species contained therein are supplied, For example, the film formation process can be performed even in a temperature range of 400 ° C. or lower.
  • the required processing temperature is different between the first processing gas and the second processing gas, it is necessary to increase the processing temperature by controlling the heater 218 in accordance with the temperature of the processing gas having the lower processing temperature.
  • the other processing gas may be supplied in a plasma state. By using plasma in this way, the substrate 200 can be processed at a low temperature, and for example, thermal damage to the substrate 200 having a wiring weak to heat such as aluminum can be suppressed.
  • the substrate processing productivity can be improved, for example, the oxidation processing time can be shortened by the high oxidizing power of the O 2 gas in the plasma state.
  • the substrate 200 repeats moving in the order of the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region 204b. Therefore, BTBAS gas supply, N2 gas supply (purge), plasma O2 gas supply, and N2 gas supply (purge) are alternately performed on the substrate 200 a predetermined number of times.
  • the processing gas having the same flow rate as that of the center of the wafer 200 can be supplied even at a location near the center of the susceptor 217 or a location near the side edge of the susceptor 217 in the surface of the wafer 200.
  • the processing gas can be supplied uniformly to the 200 plane.
  • a specific example of the film forming process sequence will be described with reference to FIG.
  • BTBAS gas is supplied to the surface of the substrate 200 that has passed through the first processing area 201a, and is located on the substrate 200, near the center of the wafer and the center of the susceptor 217.
  • the silicon-containing layer is uniformly formed at a location near the side end of the susceptor 217.
  • ⁇ Gas is ejected from the first process gas introduction mechanism 251 through the gas ejection port 254 toward the substrate in the first process region 201a.
  • the ejected gas is supplied to the passing wafer 200 and contributes to the formation of the silicon-containing layer on the wafer 200, and the gas that has not contributed is exhausted from the first exhaust port 259.
  • the substrate 200 on which the SiO layer is formed in the second processing area 201b passes through the second purge area 204b.
  • N 2 gas is supplied to the substrate 200 that passes through the second purge region.
  • one rotation of the susceptor 217 is set to one cycle, that is, the first processing region 201a, the first purge region 204a, the second processing region 201b, and the second purge region.
  • a SiO film having a predetermined thickness can be formed on the substrate 200.
  • it is confirmed whether or not the above-described cycle has been performed a predetermined number of times.
  • the heel cycle is performed a predetermined number of times, it is determined that the desired film thickness has been reached, and the film forming process is terminated. If the cycle has not been performed a predetermined number of times, that is, it is determined that the desired film thickness has not been reached, the process returns to S202 and the cycle process is continued.
  • the above-described cycle is performed a predetermined number of times, and after determining that the SiO film having a desired film thickness is formed on the substrate 200, at least the valve 232d and the valve 233d are closed, and the first processing region 201a of the BTBAS gas is processed. And the supply of O 2 gas to the second processing region 201b are stopped. At this time, power supply to the plasma generation unit 206 is also stopped. Further, the rotation of the susceptor 217 is stopped and the film forming process is ended.
  • the substrate is unloaded as follows. First, the substrate push-up pins 266 are raised, and the substrate 200 is supported on the substrate push-up pins 266 that protrude from the surface of the susceptor 217. Then, the gate valve 151 is opened, the substrate 200 is carried out of the reaction vessel 203 using the first substrate transfer machine 112, and the substrate processing step according to the first embodiment is completed.
  • the conditions such as the temperature of the substrate 200, the pressure in the reaction vessel 203, the flow rate of each gas, the power applied to the plasma generation unit 206, the processing time, etc. Adjust as desired.
  • the fluorine-containing gas may be activated by plasma.
  • Haldrophilic treatment step (S304) When the fluorine cleaning step is completed, oxygen plasma cleaning treatment is performed by supplying O2 into the reaction vessel 203 in plasma form. When cleaning is performed with a gas containing fluorine, immediately after cleaning, fluorine atoms (F) remain on the surface of the susceptor 217, so that the surface of the susceptor 217 has water repellency. If a film formation process is performed on the surface of the susceptor 217 that has water repellency as it is, the adhesion of the film may deteriorate depending on the type of film, and film peeling may occur even with a slight stress.
  • the plasma cleaning conditions are the same as the film forming conditions.
  • the substrate temperature is 60 ° C.
  • the oxygen is 7000 Sccm
  • the pressure is 300 Pa
  • the high-frequency power is 200 W
  • the rotation speed is 60 rpm
  • the time is 120 minutes.
  • Precoat treatment step (S306) Subsequently, the surface of the susceptor 217 is subjected to a precoat treatment.
  • a precoat film is repeatedly formed on the surface of the susceptor 217, and the precoat film deposited on the surface of the susceptor 217 becomes a thick film. Hateful. Therefore, since the accumulated film thickness can be increased as compared with the conventional case, the production possible time is extended and the operating rate of the apparatus is improved. Even in the process of depositing a film during film formation on the precoat film, the accumulated film thickness on the susceptor 217 can be increased. Is extended.
  • the substrate temperature is 60 ° C.
  • BTBAS / N 2 40/225 Sccm, oxygen 3000 Sccm, pressure 120 Pa, high frequency power 300 W, rotation speed 60 rpm, and time 20 min.
  • the precoat treatment conditions are the same as the film formation conditions, the conditions are not limited to the above conditions.
  • a silicon-containing gas and an oxygen-containing gas are used as the processing gas, and the SiO film is formed on the substrate 200. That is, for example, a hafnium oxide film (HfO film) using a hafnium (Hf) -containing gas and an oxygen-containing gas, a zirconium (Zr) -containing gas and an oxygen-containing gas, a titanium (Ti) -containing gas, and an oxygen-containing gas as the processing gas.
  • a High-K film such as zirconium oxide (ZrO film) or titanium oxide film (TiO film) may be formed on the substrate 200.
  • ammonia (NH 3) gas which is a nitrogen (N) -containing gas, or the like may be used as the processing gas to be converted into plasma.
  • oxygen gas is supplied to the processing chamber, and plasma is generated by the plasma generation unit 206.
  • plasma is generated by the plasma generation unit 206.
  • the present invention is not limited thereto, and a remote plasma method for generating plasma outside the processing chamber, Ozone with a high energy level may be used.
  • the controller 300 according to the embodiment of the present invention can be realized using a normal computer system, not a dedicated system. For example, by installing the program from a recording medium (flexible disk, CD-ROM, USB, etc.) storing a program for executing the above-described processing in a general-purpose computer, an operation unit that executes the above-described processing is configured. can do.
  • a recording medium flexible disk, CD-ROM, USB, etc.
  • And means for supplying these programs is arbitrary.
  • it in addition to being supplied via a predetermined recording medium, it may be supplied via a communication line, a communication network, a communication system, or the like.
  • the program may be posted on a bulletin board of a communication network and provided by being superimposed on a carrier wave via the network.
  • the above-described processing can be executed by starting the program provided in this way and executing it in the same manner as other application programs under the control of the OS.
  • the film forming process includes, for example, a process for forming a CVD, PVD, oxide film, and nitride film, and a process for forming a film containing a metal.
  • the present invention can be suitably applied to other substrate processes such as a diffusion process, an annealing process, an oxidation process, a nitriding process, and a lithography process.
  • the present invention can be applied not only to a semiconductor manufacturing apparatus but also to an apparatus for processing a glass substrate such as an LCD device as a substrate processing apparatus.
  • the present invention can also be suitably applied to other substrate processing apparatuses such as an annealing processing apparatus, an oxidation processing apparatus, a nitriding processing apparatus, an exposure apparatus, a coating apparatus, a drying apparatus, and a heating apparatus.
  • substrate processing apparatuses such as an annealing processing apparatus, an oxidation processing apparatus, a nitriding processing apparatus, an exposure apparatus, a coating apparatus, a drying apparatus, and a heating apparatus.
  • a substrate mounting member (susceptor) provided in a reaction chamber for processing a substrate, and a reaction gas (second processing gas) for processing the substrate
  • a reactive gas supply unit (second processing gas supply unit) for supplying the gas
  • a cleaning gas supply unit for supplying a fluorine-containing gas containing at least one fluorine atom
  • a plasma mechanism for activating the reactive gas
  • the substrate processing apparatus further includes a raw material gas supply unit (first processing gas supply unit) for supplying a raw material gas (first processing gas) to the substrate,
  • the control unit supplies the source gas and the reaction gas to the reaction chamber while leaving the substrate out of the reaction chamber, and forms a film formed on the substrate on the substrate mounting member. It is configured to control at least the source gas supply unit, the reaction gas supply unit, and the plasma mechanism so as to form a film having the same composition.
  • the substrate processing apparatus of Supplementary Note 1 is used for protecting a substrate placement part of the substrate placement member in a state where the substrate placement member is loaded instead of the substrate.
  • a transfer unit that transfers the dummy substrate in the same manner as the substrate, and the control unit removes the substrate from the reaction chamber and then loads the dummy substrate on the substrate mounting member. Configured to supply gas to the reaction chamber
  • the substrate processing apparatus further comprising a rotation mechanism for rotating the substrate mounting member, wherein the reaction chamber is supplied with the source gas.
  • a rotation mechanism for rotating the substrate mounting member, wherein the reaction chamber is supplied with the source gas.
  • the substrate placement member is rotated by the rotation mechanism, the substrate placed on the substrate placement member is changed into the first processing region, the first purge region, and the second processing region.
  • the rotation mechanism is controlled to move in the order of the second purge region.
  • the susceptor is a member containing a non-metallic material such as SiC (silicon carbide), carbon (C), aluminum nitride (AlN), ceramics, or quartz. It comprises at least one member.
  • a non-metallic material such as SiC (silicon carbide), carbon (C), aluminum nitride (AlN), ceramics, or quartz. It comprises at least one member.
  • the control unit includes a group consisting of an oxide film, a nitride film, a carbonized film, an oxynitride film, an oxycarbide film, a carbonitride film, and an oxycarbonitride film. At least one film selected from the above is configured to be formed on the substrate mounting member.
  • the deposited film is a film different from the material of the substrate mounting member, and is an oxide film, a nitride film, a carbide film, an oxynitride film, an acid It is at least one film selected from the group consisting of a carbide film, a carbonitride film, and an oxycarbonitride film.
  • control unit desorbs fluorine atoms (F) attached to the surface of the substrate mounting member, and the surface of the substrate mounting member is It is configured to have hydrophilicity (terminated with OH).
  • the substrate processing apparatus according to Supplementary Note 1, further including a heating unit that heats the substrate, wherein the heating unit is configured to be provided on the substrate mounting member.
  • control unit is configured to supply the fluorine-containing gas containing fluorine atom (F) into plasma to the reaction chamber.
  • the cleaning gas supply unit is at least selected from the group consisting of F2, NF3, HF, ClF3, XeF2, BrF3, BrF5, IF5, and IF7. It is configured to supply any one of the fluorine-containing gases to the reaction chamber.
  • the first process gas is a silicon (Si) -containing gas
  • the second process gas is an oxygen (O2) -containing gas.
  • the source gas supply unit is at least one silicon (Si) selected from the group consisting of BTBAS gas, HMDS gas, 3DMAS gas, and TSA gas. It is configured to supply a contained gas.
  • the source gas supply unit is selected from the group consisting of a hafnium (Hf) -containing gas, a zirconium (Zr) -containing gas, and a titanium (Ti) -containing gas.
  • the source gas containing at least one metal-containing gas is supplied.
  • the fluorine-containing gas is supplied into the reaction chamber, and the deposition deposited on the substrate mounting member on which the substrate is mounted A removing step for removing the film; and a reactive gas (second processing gas) is activated and supplied into the reaction chamber to remove fluorine atoms adhering to the substrate mounting member; And a hydrophilic treatment step for making the surface hydrophilic.
  • a film forming process for forming a predetermined film on a substrate in a reaction chamber, and a fluorine-containing gas is supplied into the reaction chamber after the substrate is unloaded from the reaction chamber. Removing the deposited film deposited on the substrate mounting member on which the substrate is mounted, and activating and supplying a reaction gas (second processing gas) into the reaction chamber, to the substrate mounting member.
  • a method of manufacturing a semiconductor device including a hydrophilic treatment step of removing attached fluorine atoms and making the surface of the substrate mounting member hydrophilic.
  • the source gas and the reaction gas are respectively supplied to the reaction chamber while the substrate is taken out from the reaction chamber.
  • the substrate mounting member includes a precoat treatment step of forming a film having the same composition as the film formed on the substrate, and after the hydrophilic treatment step is completed, the precoat treatment step is performed.
  • the source gas and the reaction gas are respectively supplied to the reaction chamber while the substrate is taken out from the reaction chamber.
  • the film forming step includes a precoat treatment step for forming a film having the same composition as the film deposited on the substrate mounting member. After the hydrophilic treatment step is completed, the precoat treatment step is performed.
  • a fluorine-containing gas is supplied into the reaction chamber and deposited on the substrate mounting member on which the substrate is mounted.
  • a computer-readable recording medium on which the program is recorded are provided.
  • the present invention is applied to a substrate processing apparatus having a configuration for cleaning a deposited film deposited on a substrate mounting member provided in a reaction chamber for processing a substrate.
  • Substrate processing apparatus 202 Processing furnace 217 ..
  • Substrate mounting member (susceptor) 218 .. Heating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

基板を処理するための反応室内に設けられた基板載置部材と、基板を処理するための反応ガスを供給する反応ガス供給部と、少なくとも一つ以上のフッ素原子を含むフッ素含有ガスを供給するクリーニングガス供給部と、反応ガスを活性化するプラズマ機構と、基板を反応室から取り出した状態で、反応室内にフッ素含有ガスを供給して、基板載置部材に堆積された堆積膜を除去し、反応室内に活性化した反応ガスを供給して、基板載置部材に付着したフッ素原子を除去し、基板載置部材の表面を親水性にするように、少なくとも反応ガス供給部、クリーニングガス供給部、プラズマ機構を制御するよう構成される制御部と、を有する構成が提供される。

Description

基板処理装置、クリーニング方法及び半導体装置の製造方法並びに記録媒体
  本発明は、基板を載置する基板載置部材に堆積できる膜厚を大きくして、メンテナンス周期を延伸させるクリーニング技術に関する。
基板処理装置においては、形成する膜種に関係なく成膜処理回数が増えるに従ってサセプタ等の基板載置部材における累積膜厚が増加し、ある累積膜厚に達すると、パーティクルの発生が急激に増加することが知られている。そこで、このような基板処理装置が使用された半導体装置の製造方法における成膜工程においては、ある累積膜厚に達すると、サセプタ等を予め洗浄されたものと全て交換する作業(以下、フルメンテナンスという。)を実施することにより、パーティクルの発生を防止することが行われている。
ところが、フルメンテナンスにおいて、サセプタ等の取り付け取り外し作業に時間が消費されるばかりでなく、基板処理室内の温度の降下および再上昇に時間が消費されてしまうため、基板処理装置のダウンタイム(休止時間)がきわめて長く(例えば、一回当たり三十時間)なり、成膜工程ひいては半導体装置の製造方法全体としてのスループットを低下させてしまうという問題点があった。例えば特許文献1には、累積膜厚を検知する一手法が記載されている。
特許登録4294972号公報
  本発明の目的は、基板を載置するサセプタ上に堆積されてしまう堆積膜の影響により、クリーニングの頻度が高くなることを抑制する構成を提供することにある。
  本発明の一態様によれば、基板を処理するための反応室内に設けられた基板載置部材と、基板を処理するための反応ガスを供給する反応ガス供給部と、少なくとも一つ以上のフッ素原子を含むフッ素含有ガスを供給するクリーニングガス供給部と、反応ガスを活性化するプラズマ機構と、基板を反応室から取り出した状態で、反応室内にフッ素含有ガスを供給して、基板載置部材に堆積された堆積膜を除去し、反応室内に活性化した反応ガスを供給して、基板載置部材に付着したフッ素原子を除去し、前記基板載置部材の表面を親水性にするように、少なくとも反応ガス供給部、クリーニングガス供給部、プラズマ機構を制御するよう構成される制御部と、を有する構成が提供される。
上記の構成によれば、サセプタ上に堆積できる膜厚を高くし、クリーニング頻度を下げることによって、装置の稼働率を向上させることができる。
本発明に係る基板処理装置の概略構成図である。 本発明に係る基板処理装置の概略構成図である。 本発明に係る基板処理室の説明図である。 本発明に係る基板処理室の説明図である。 本発明に係る基板処理室の説明図である。 本発明に係る基板処理工程を説明するフローチャートである。 本発明に係る成膜工程を説明するフローチャートである。 本発明に係るクリーニング工程を説明するフローチャートである。
<第1実施形態>(1)基板処理装置の構成  まずは、第1実施形態に係る基板処理装置の構成について、図1を参照しながら説明する。図1は、第1実施形態に係る多枚葉式の基板処理装置10の概略構成図である。
  図1および図2を用いて、第1実施形態に係る基板処理装置の概要を説明する。
  なお、第1実施形態に係る基板処理装置においては、製品としての処理基板200などの基板(ウェハ)を搬送するキャリヤとしては、FOUP(FrontOpening Unified Pod 。以下、ポッドという。)が使用されている。また、以下の説明において、前後左右は図2を基準とする。すなわち、図1に示されているX1の方向を右、X2方向を左、Y1方向を前、Y2方向を後ろとする。
  図1および図2に示されているように、基板処理装置は真空状態などの大気圧未満の圧力(負圧)に耐え得るロードロックチャンバ構造に構成された第一の搬送室103を備えている。第一の搬送室103の筐体101は平面視が五角形で上下両端が閉塞した箱形状に形成されている。第一の搬送室103には負圧下で二枚の基板200を同時に移載出来る第一の基板移載機112が設置されている。ここで、第一の基板移載機112は、一枚の基板200を移載出来る物でも良い。第一の基板移載機112は、第一の基板移載機エレベータ115によって、第一の搬送室103の気密性を維持しつつ昇降できるように構成されている。
  筐体101の五枚の側壁のうち前側に位置する壁には、搬入用の予備室と搬出用の予備室とを併用可能な予備室122と予備室123がそれぞれゲートバルブ126,ゲートバルブ127を介して連結されており、それぞれ負圧に耐え得る構造で構成されている。さらに、予備室(ロードロック室)122,予備室(ロードロック室)123には基板支持台140により2枚の基板200を積み重ねるように置くことが可能である。
予備室122,予備室123には、基板の間に隔壁板141が設置される。複数枚の処理済基板が予備室122または予備室123に入る場合、先に入った処理済の冷却途中の基板が、次に入った処理済基板の熱影響で温度の下がり具合が遅くなるような熱干渉を、隔壁板を設けることで防止できる。
  ここで、一般的な冷却効率を上げるための手法を説明する。予備室122および予備室123、隔壁板141には冷却水やチラーなどを流す。このような構造とすることで、壁面温度を低く抑え、どのスロットに入った処理済基板であっても冷却効率を上げることができる。負圧においては、基板と隔壁板の距離が離れすぎていると熱交換による冷却効率が低下するため、冷却効率を向上させる手法として、基板支持台(ピン)に置いたあと、基板支持台を上下させ、予備室壁面に近づけるための駆動機構を設ける場合もある。
  予備室122および予備室123の前側には、略大気圧下で用いられる第二の搬送室121がゲートバルブ128、ゲートバルブ129を介して連結されている。第二の搬送室121には基板200を移載する第二の基板移載機124が設置されている。第二の基板移載機124は第二の搬送室121に設置された第二の基板移載機エレベータ131によって昇降されるように構成されているとともに、リニアアクチュエータ132によって左右方向に往復移動されるように構成されている。
  図1に示されているように、第二の搬送室121の左側にはノッチまたはオリフラ合わせ装置106を設置させることも出来る。また、図2に示されているように、第二の搬送室121の上部にはクリーンエアを供給するクリーンユニット118が設置されている。
  図1および図2に示されているように、第二の搬送室121の筐体125の前側には、基板200を第二の搬送室121に対して搬入搬出するための基板搬入搬出口134と、ポッドオープナ108が設置されている。基板搬入搬出口134を挟んでポッドオープナ108と反対側、すなわち筐体125の外側にはロードポート(IOステージ)105が設置されている。ポッドオープナ108は、ポッド100のキャップ100aを開閉すると共に基板搬入搬出口134を閉塞可能なクロージャ142と、クロージャ142を駆動する駆動機構136とを備えており、ロードポート105に載置されたポッド100のキャップ100aを開閉することにより、ポッド100に対する基板200の出し入れを可能にする。また、ポッド100は図示しない工程内搬送装置(OHTなど)によって、ロードポート105に対して、供給および排出されるようになっている。
  図1に示されているように、第一の搬送室筐体101の五枚の側壁のうち後ろ側(背面側)に位置する四枚の側壁には、基板に所望の処理を行う処理炉(プロセスチャンバ)202が設けられている。具体的には、第一の処理炉202aと、第二の処理炉202b、第三の処理炉202c、第四の処理炉202dがゲートバルブ150、151、152、153を介してそれぞれ隣接して連結されている。
  以下、前記構成を有する基板処理装置を使用した処理工程を説明する。以下の制御は、図1および図2に示されているように、コントローラ300によって制御される。コントローラ300は、前記構成において、装置全体を制御している。また、コントローラ300には、後述するクリーニングのレシピを実行するプログラムが記憶される記憶部(ROM)を有しており、コントローラ300の起動時に起動されるように構成されている。
  基板200は最大25枚がポッド100に収納された状態で、処理工程を実施する基板処理装置へ工程内搬送装置によって搬送されて来る。図1および図2に示されているように、搬送されて来たポッド100はロードポート105の上に工程内搬送装置から受け渡されて載置される。ポッド100のキャップ100aがポッドオープナ108によって取り外され、ポッド100の基板出し入れ口が開放される。
  ポッド100がポッドオープナ108により開放された後、第二の搬送室121に設置された第二の基板移載機124は、ポッド100から基板200をピックアップする。更に、第二の基板移載機124は、基板200を予備室122に搬入し、基板200を基板支持台140に移載する。この移載作業中の間、予備室122の第一の搬送室103側のゲートバルブ126は閉じられており、第一の搬送室103内の負圧は維持されている。ポッド100に収納されていた基板200を基板支持台140への移載が完了すると、ゲートバルブ128が閉じられ、予備室122内が排気装置(図示せず)によって負圧に排気される。
  予備室122内が予め設定された圧力値となると、ゲートバルブ126が開かれ、予備室122と第一の搬送室103とが連通される。続いて、第一の搬送室103の第一の基板移載機112は基板支持台140から基板200を第一の搬送室103に搬入する。ゲートバルブ126が閉じられた後、ゲートバルブ151が開かれ、第一の搬送室103と第二の処理炉202bとが連通される。ゲートバルブ151が閉じられた後、第二の処理炉202内に処理ガスが供給され、基板200に対して所望の処理が施される。
  第二の処理炉202bで基板200に対する処理が完了すると、ゲートバルブ151が開かれ、基板200は第一の基板移載機112によって第一の搬送室103に搬出される。搬出後、ゲートバルブ151は閉じられる。
  続いて、ゲートバルブ127が開かれ、第一の基板移載機112は第二の処理炉202bから搬出した基板200を予備室123の基板支持台140へ搬送し、処理済みの基板200は冷却される。
  予備室123に処理済み基板200を搬送し、予め設定された冷却時間が経過すると、予備室123が不活性ガスにより略大気圧に戻される。予備室123内が略大気圧に戻されると、ゲートバルブ129が開かれ、ロードポート105に載置された空のポッド100のキャップ100aがポッドオープナ108によって開かれる。
  続いて、第二の搬送室121の第二の基板移載機124は基板支持台140から基板200を第二の搬送室121に搬出し、第二の搬送室121の基板搬入搬出口134を通してポッド100に収納して行く。
  ここで、ポッド100のキャップ100aは、最大25枚の基板が戻されるまでずっと空け続けていても良く、空きのポッド100に収納せずに基板を搬出してきたポッドに戻しても良い。
  以上の動作が繰り返されることによって25枚の処理済み基板200がポッド100への収納が完了すると、ポッド100のキャップ100aがポッドオープナ108によって閉じられる。閉じられたポッド100はロードポート105の上から次の工程へ工程内搬送装置によって搬送されて行く。
  以上の動作は第二の処理炉202bおよび予備室122、予備室123が使用される場合を例にして説明したが、第一の処理炉202aおよび第三の処理炉202c、第四の処理炉202dが使用される場合についても同様の動作が実施される。
  また、ここでは4つの処理室で説明したが、それに限らず、対応する基板や形成する膜の種類によって、処理室数を決定しても良い。
  また、上述の基板処理装置では、予備室122を搬入用、予備室123を搬出用としたが、予備室123を搬入用、予備室122を搬出用としても良いし、予備室122または予備室123を搬入用と搬出用として併用しても良い。
  予備室122または予備室123を搬入用と搬出用を専用とすることによって、クロスコンタミネーションを低減することができ、併用とすることによって基板の搬送効率を向上させることができる。
  また、全ての処理炉で同じ処理を行っても良いし、各処理炉で別の処理を行っても良い。例えば、第一の処理炉202aと第二の処理炉202bで別の処理を行う場合、第一の処理炉202aで基板200にある処理を行った後、続けて第二の処理炉202bで別の処理を行わせてもよい。第一の処理炉202aで基板200にある処理を行った後、第二の処理炉202bで別の処理を行わせる場合、予備室122または予備室123を経由するようにしてもよい。
  また、処理炉は少なくとも、処理炉202a、処理炉202bのいずれか1箇所の連結が成されていれば良く、処理炉202cと処理炉202dの2箇所など、処理炉202aから202dの最大4箇所の範囲において可能な組合せであればいくつ連結しても良い。
  また、装置で処理する基板200の枚数は、一枚でも良く、複数枚でも良い。同様に予備室122または123において、クーリングする基板200についても一枚でも良く、複数枚でも良い。処理済基板をクーリング出来る枚数は、予備室122および予備室123のスロットに投入可能な最大5枚の範囲内であれば、どのような組合せでも良い。
  また、予備室122内で処理済みの基板200を搬入して冷却を行っている途中で予備室122のゲートバルブを開閉し処理炉に基板200を搬入し、基板処理を行っても良い。同様に、予備室123内で処理済みの基板200を搬入して冷却を行っている途中で予備室123のゲートバルブを開閉し処理炉に基板200を搬入し、基板処理を行っても良い。
  ここで、十分な冷却時間を経ずに略大気側のゲートバルブ128、ゲートバルブ129を開くと、基板200の輻射熱によって予備室122、予備室123または予備室の周りに接続されている電気部品に損害を与える可能性がある。そのため、高温な基板をクーリングする場合は、予備室122内に処理済みの大きな輻射熱を持つ基板を搬入して冷却を行っている途中で、予備室123のゲートバルブを開閉し処理炉に基板を搬入し、基板の処理を行うことが出来る。同様に、予備室123内に処理済みの基板を搬入して冷却を行っている途中で、予備室122のゲートバルブを開閉し処理炉に基板を搬入し、基板の処理を行うことも出来る。
 ここで、本明細書において「ウェハ」という言葉を用いた場合は、「ウェハそのもの」を意味する場合や、「ウェハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウェハと称する場合がある。また、本明細書において「ウェハの表面」という言葉を用いた場合は、「ウェハそのものの表面(露出面)」を意味する場合や、「ウェハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウェハの最表面」を意味する場合がある。
 従って、本明細書において「ウェハに対して所定のガスを供給する」と記載した場合は、「ウェハそのものの表面(露出面)に対して所定のガスを供給する」ことを意味する場合や、「ウェハ上に形成されている層や膜等に対して、すなわち、積層体としてのウェハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウェハ上に所定の層(または膜)を形成する」と記載した場合は、「ウェハそのものの表面(露出面)上に所定の層(または膜)を形成する」ことを意味する場合や、「ウェハ上に形成されている層や膜等の上、すなわち、積層体としてのウェハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。
 また、本明細書において「基板」という言葉を用いた場合も、「ウェハ」という言葉を用いた場合と同義である。
(2)プロセスチャンバの構成  続いて、第1実施形態に係る処理炉としてのプロセスチャンバ202の構成について、主に図3~図5を用いて説明する。このプロセスチャンバ202は、例えば上述した第一の処理炉202bである。図3は、第1実施形態に係る処理炉の横断面概略図である。図4は、第1実施形態に係る処理炉の具体的構造を説明する説明図であり、第5図は図4におけるA-B縦断面図である。
(反応容器)  図3~図5に示すように、処理炉としてのプロセスチャンバ202は、筒状の気密容器である反応容器203を備えている。反応容器203内には、基板200の処理空間207である処理室が形成されている。反応容器203内の処理空間207の上側には、中心部から放射状に延びる4枚の仕切板205が設けられている。分割部としての4枚の仕切板205は、処理空間207を4つの領域、すなわち、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bに分割するように構成されている。言い換えれば、処理領域とパージ領域が隣接した状態で配置されている。
第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bは、後述するサセプタ(基板載置部材)217の回転方向に沿って、この順番に配列するように構成されている。
仕切り板205は、具体的には次のように配設されている。仕切り板205aは、第一の処理領域の上流であって、第一の処理領域201aと第二のパージ領域204bの間に設けられる。仕切り板205bは、第一の処理領域の下流であって、第一の処理領域201aと第一のパージ領域204aの間に設けられる。仕切り板205cは、第二の処理領域の上流であって、第一のパージ領域204aと第二の処理領域201bの間に設けられる。仕切り板205dは、第二の処理領域の下流であって、第二の処理領域201bと第二のパージ領域204bの間に設けられる。
  後述するように、サセプタ217を回転させることで、サセプタ217上に載置された基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの順に移動することとなる。また、後述するように、第一の処理領域201a内には第一のガス(原料ガス)としての第一の処理ガスが供給され、第二の処理領域201b内には第二のガスとしての第二の処理ガス(反応ガス)が供給され、第一のパージ領域204a内及び第二のパージ領域204b内には不活性ガス(非反応ガス)が供給されるように構成されている。そのため、サセプタ217を回転させることで、基板200上に、第一の処理ガス、不活性ガス、第二の処理ガス、不活性ガスが、この順に供給されることとなる。サセプタ217及びガス供給系の構成については後述する。
仕切板205の端部と反応容器203の側壁との間及び仕切板205の底部と基板載置台(サセプタ)217には、所定の幅の隙間が設けられており、この隙間をガスが通過できるように構成されている。この隙間を介し、第一のパージ領域204a内及び第二のパージ領域204b内から第一の処理領域201a内及び第二の処理領域201b内に向けて不活性ガスを噴出させるようにする。このようにすることで、第一のパージ領域204a内及び第二のパージ領域204b内への処理ガスの侵入を抑制することができ、処理ガスの混合による反応を防止することができる。
(サセプタ)  図3~図5に示すように、仕切板205の下側であって反応容器203内の底側中央には、反応容器203の中心に回転軸の中心を有し、回転自在に構成された基板載置台としてのサセプタ217が設けられている。サセプタ217は、基板200の金属汚染を低減することができるように、例えば、SiC(シリコンカーバイド)や、カーボン(C)、窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料で形成されている。金属汚染を考慮しない基板処理である場合は、アルミニウム(Al)で形成しても良い。なお、サセプタ217は、反応容器203と電気的に絶縁されている。
  サセプタ217は、反応容器203内にて、複数枚(本実施形態では例えば5枚)の基板200を同一面上に、かつ同一円周上に並べて支持するように構成されている。ここで、同一面上とは、完全な同一面に限られるものではなく、サセプタ217を上面から見たときに、図3及び図4に示すように、複数枚の基板200が互いに重ならないように並べられていればよい。このように、サセプタ217は、複数の基板200を同心円状に載置する載置面を有し、該載置面が反応容器203の天井と対向するように構成されている。
  なお、サセプタ217表面における基板200の支持位置には、基板載置部217bが、処理する基板200の枚数に対応して設けられている。基板載置部217bは、例えば上面から見て円形状であり、側面から見て凹形状としてもよい。この場合、基板載置部の直径は基板200の直径よりもわずかに大きくなるように構成することが好ましい。この基板載置部217b内に基板200を載置することにより、基板200の位置決めを容易に行うことができる。更には、サセプタ217の回転に伴う遠心力により基板200がサセプタ217から飛び出してしまう場合等で発生する位置ズレを防止できるようになる。
  サセプタ217には、サセプタ217を昇降させる昇降機構268が設けられている。サセプタ217には、図示しない貫通孔が複数設けられている。上述の反応容器203の底面には、反応容器203内への基板200の搬入・搬出時に、基板200を突き上げて、基板200の裏面を支持する基板突き上げピンが複数設けられている。貫通孔及び基板突き上げピンは、基板突き上げピンが上昇した時、又は昇降機構268によりサセプタ217が下降した時に、基板突き上げピンがサセプタ217とは非接触な状態で貫通孔を突き抜けるように、互いに配置されている。
  昇降機構268には、サセプタ217を回転させる回転機構267が設けられている。回転機構267の図示しない回転軸は、サセプタ217に接続されている。回転機構267を作動させることで、サセプタ217は、サセプタ217の載置面と平行な方向に回転するように構成されている。回転機構267には、後述する制御部300が、カップリング部267aを介して接続されている。カップリング部267aは、回転側と固定側との間を金属ブラシ等により電気的に接続するスリップリング機構として構成されている。これにより、サセプタ217の回転が妨げられないようになっている。制御部300は、サセプタ217を所定の速度で所定時間回転させるように、回転機構267への通電具合を制御するように構成されている。上述したように、サセプタ217を回転させることにより、サセプタ217上に載置された基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b及び第二のパージ領域204bをこの順番に移動することとなる。
(加熱部)  サセプタ217の内部には、加熱部としてのヒータ218が一体的に埋め込まれている。ヒータ218に電力が供給されると、基板載置部217bに載置された基板200を加熱する。例えば、基板200の表面が所定温度(例えば室温~1000℃程度)にまで加熱されるようになっている。なお、ヒータ218は、サセプタ217に載置されたそれぞれの基板200を個別に加熱するように、同一面上に複数(例えば5つ)設けてもよい。
サセプタ217には温度センサ274が設けられている。ヒータ218及び温度センサ274には、電力供給線222を介して、温度調整器223、電力調整器224及びヒータ電源225が電気的に接続されている。温度センサ274により検出された温度情報に基づいて、ヒータ218への通電具合が制御されるように構成されている。
(処理ガス供給部)反応容器203内の上方には、第一の処理ガス導入機構251と、第二の処理ガス導入機構252と、不活性ガス導入機構253と、を備えるガス供給機構250が設けられている。ガス供給機構250は、サセプタ217の上方であって、反応容器203の上部に開設された開口に気密に設けられている。第一の処理ガス導入機構251は仕切り板205a内に設けられ、ガス噴出口254を有する。第二の処理ガス導入機構252は第二の仕切り板205c内に設けられ、ガス噴出口254を有する不活性ガス導入機構253の側壁には、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257がそれぞれ対向するように設けられている。
ガス噴出口254は複数の噴出孔であるガス噴出孔254(1)…254(n)を有し、処理領域中央部に直線状に設けられる。即ち、噴出口254はサセプタ217の上方であって、載置されたウェハ200と対向するように設けられる。
  ガス供給機構250は、第一の処理ガス導入機構251から第一の処理領域201a内に第一の処理ガスを供給し、第二の処理ガス導入機構252から第二の処理領域201b内に第二の処理ガスを供給し、不活性ガス導入機構253から第一のパージ領域204a内及び第二のパージ領域204b内に不活性ガスを供給するように構成されている。ガス供給機構250は、各処理ガス及び不活性ガスを混合させずに個別に各領域に供給することができ、更には、各処理ガス及び不活性ガスを併行して各領域に供給することができるように構成されている。
  第一の処理ガス導入機構251の上流側には、第一のガス供給管232aが接続されている。第一のガス供給管232aの上流側には、上流方向から順に、原料ガス供給源232b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)232c、及び開閉弁であるバルブ232dが設けられている。
  第一のガス供給管232aからは、第一のガス(第一の処理ガス、プリカーサー)として、例えば、シリコン含有ガスが、マスフローコントローラ232c、バルブ232d、第一のガス導入機構251及びガス噴出口254を介して、第一の処理領域201a内に供給される。ここで、シリコン含有ガスとしては、例えばプリカーサーとして、ビスターシャリブチルアミノシラン(SiH2(NH(C4H9))2、略称:BTBAS)ガスを用いることができる。なお、第一の処理ガスは、常温常圧で固体、液体、及び気体のいずれであっても構わない良いが、ここでは気体として説明する。例えば、第一の処理ガスが、本実施の形態におけるBTBASのように、常温常圧で液体の場合は、原料ガス供給源232bとマスフローコントローラ232cとの間に、図示しない気化器を設けることにより、第一の処理ガスを気体として供給することができればよい。
  なお、シリコン含有ガスとしては、BTBASガスの他に、例えば有機シリコン材料であるヘキサメチルジシラザン(C6H19NSi2、略称:HMDS)ガス、トリスジメチルアミノシラン(Si[N(CH3)2]3H、略称:3DMAS)ガス、トリシリルアミン((SiH3)3N、略称:TSA)ガス等を用いることができる。  これら、第一のガスは、後述する第二のガスより粘着度の高い材料が用いられる。
  第二の処理ガス導入機構252の上流側には、第二のガス供給管233aが接続されている。第二のガス供給管233aの上流側には、上流方向から順に、原料ガス供給源233b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)233c、及び開閉弁であるバルブ233dが設けられている。
  第二のガス供給管233aからは、第二のガス(第二の処理ガス、反応ガス)として、例えば酸素含有ガスである酸素(O2)ガスが、マスフローコントローラ233c、バルブ233d、第二のガス導入機構252及びガス噴出口254を介して、第二の処理領域201b内に供給される。第二の処理ガスであるO2ガスは、プラズマ生成部206によりプラズマ状態とされ、基板200上に晒される。なお、第二の処理ガスであるO2ガスは、ヒータ218の温度及び反応容器203内の圧力を所定の範囲に調整し、熱で活性化させてもよい。なお、酸素含有ガスとしては、オゾン(O3)ガスや水蒸気(H2O)を用いてもよい。  これら第二のガスは、第一のガスより粘着度の低い材料が用いられる。
  主に、第一のガス供給管232a、マスフローコントローラ232c及びバルブ232dにより、第一の処理ガス供給部(原料ガス供給系ともいう)232が構成される。なお、原料ガス供給源232b、第一の処理ガス導入機構251及びガス噴出口254を、第一の処理ガス供給部に含めて考えてもよい。
主に、第二のガス供給管233a、マスフローコントローラ233c及びバルブ233dにより、第二の処理ガス供給部(反応ガス供給系ともいう)233が構成される。なお、原料ガス供給源233b、第二の処理ガス導入機構252及びガス噴出口255を、第二の処理ガス供給部に含めて考えてもよい。そして、主に、第一のガス供給部及び第二のガス供給部により、処理ガス供給部が構成される。
(不活性ガス供給部)  不活性ガス導入機構253の上流側には、第一の不活性ガス供給管234aが接続されている。第一の不活性ガス供給管234aの上流側には、上流方向から順に、不活性ガス供給源234b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234c、及び開閉弁であるバルブ234dが設けられている。
  第一の不活性ガス供給管234aからは、例えば窒素(N2)ガスで構成される不活性ガスが、マスフローコントローラ234c、バルブ234d、不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を介して、第一のパージ領域204a内及び第二のパージ領域204b内にそれぞれ供給される。第一のパージ領域204a内及び第二のパージ領域204b内に供給されるN2ガスは、後述する成膜工程(S106)ではパージガスとして作用する。なお、不活性ガスとして、N2ガスのほか、例えばヘリウム(He)ガス、ネオン(Ne)ガス、アルゴン(Ar)ガス等の希ガスを用いることができる。
  第一のガス供給管232aのバルブ232dよりも下流側には、第二の不活性ガス供給管235aの下流端が接続されている。上流方向から順に、不活性ガス供給源235b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)235c、及び開閉弁であるバルブ235dが設けられている。
  第二の不活性ガス供給管235aからは、不活性ガスとして、例えばN2ガスが、マスフローコントローラ235c、バルブ235d、第一のガス供給管232a、第一の処理ガス導入機構251及びガス噴出口254を介して、第一の処理領域201a内に供給される。第一の処理領域201a内に供給されるN2ガスは、成膜工程(S106)ではキャリアガス或いは希釈ガスとして作用する。
  第二のガス供給管233aのバルブ233dよりも下流側には、第三の不活性ガス供給管236aの下流端が接続されている。上流方向から順に、不活性ガス供給源236b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)236c、及び開閉弁であるバルブ236dが設けられている。
  第三の不活性ガス供給管236aからは、不活性ガスとして、例えばN2ガスが、マスフローコントローラ236c、バルブ236d、第二のガス供給管233a、第二の処理ガス導入機構252及びガス噴出口254を介して、第二の処理領域201b内に供給される。第二の処理領域201b内に供給されるN2ガスは、第一の処理領域201a内に供給されるN2ガスと同様に、成膜工程(S106)ではキャリアガス或いは希釈ガスとして作用する。
  主に、第一の不活性ガス供給管234a、マスフローコントローラ234c及びバルブ234dにより第一の不活性ガス供給部234が構成される。なお、不活性ガス供給源234b、不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を、第一の不活性ガス供給部234に含めて考えてもよい。
  主に、第二の不活性ガス供給管235a、マスフローコントローラ235c及びバルブ235dにより第二の不活性ガス供給部235が構成される。なお、不活性ガス供給源235b、第一のガス供給管232a、第一の処理ガス導入機構251及びガス噴出口254を、第二の不活性ガス供給部235に含めて考えてもよい。
  また、主に、第三の不活性ガス供給管236a、マスフローコントローラ236c及びバルブ236dにより第三の不活性ガス供給部236が構成される。なお、不活性ガス供給源236b、第二のガス供給管233a、第二の処理ガス導入機構252及びガス噴出口254を、第三の不活性ガス供給部に含めて考えてもよい。そして、主に、第一不活性ガス供給部から第三の不活性ガス供給部により、不活性ガス供給部が構成される。
(クリーニングガス供給部)  クリーニングガス導入部は、図4及び図5のようにサセプタ中央部にガス導入機構253として設けてもよいし、中央から200mm程度エッジ側にガス導入機構として別に設けてもよい。ガス導入機構253の上流側には、クリーニングガス供給管234aが接続されている。クリーニングガス供給管234aの上流側には、上流方向から順に、クリーニングガス供給源234b、流量制御器(流量制御部)であるマスフローコントローラ(MFC)234c、及び開閉弁であるバルブ234dが設けられている。
  クリーニングガス供給管234aからは、例えばフッ素(F)原子を含むガスで構成されるクリーニングガスが、マスフローコントローラ234c、バルブ234d、ガス導入機構253を介して、基板載置部217上に供給される。なお、クリーニングガスとして、フッ素(F2)ガス、三フッ化窒素(NF3)ガス、フッ化水素(HF)ガス、三フッ化塩素(ClF3)ガス、二フッ化キセノン(XeF2)ガス、三フッ化臭素(BrF3)ガス、五フッ化臭素(BrF5)ガス、五フッ化ヨウ素(IF5)ガス、七フッ化ヨウ素(IF7)ガス等のフッ素原子を含むガスを用いることができる。
(ガス供給部) 処理ガス供給部と不活性ガス供給部により、ガス供給部が構成される。
(ガス排気部) 後述するように、排気口259は、サセプタ217の外周部でありサセプタ底部に配置され、ガス噴出口254から第一の処理領域201aに供給されるガスを排気するものである。排気口259は、ガス噴出口255から第二の処理領域201bに供給されるガスを排気するものである。
反応容器203には、処理領域201a,処理領域201b内及びパージ領域204a,パージ領域204b内の雰囲気を排気する排気管231が、反応容器203の下方に設けられている。
ガス流量を制御する流量制御器(流量制御部)としての流量制御バルブ245、及び圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ243を介して、真空排気装置としての真空ポンプ246が接続されており、反応容器203内の圧力が所定の圧力(真空度)となるよう排気し得るように構成されている。なお、APCバルブ243は、弁を開閉して反応容器203内の排気や排気停止ができ、更に弁開度を調節して圧力調整可能となっている開閉弁である。主に、排気管231、APCバルブ243及び流量制御バルブ245によりガス排気部が構成される。なお、ガス排気部には、真空ポンプ246を含めても良い。
(制御部)制御部(コントローラ)である制御部300は、以上説明した各構成の制御を行うものである。
次に、図3を用いてサセプタ217の周辺構造、及びサセプタ217の動作を説明する。
反応容器203には、第一の搬送室筐体101がゲートバルブ150からゲートバルブ153のいずれかを介して隣接するように設けられている。例えば、ゲートバルブ151が開かれることで、反応容器203内と第一の搬送室筐体101とが連通するようになっている。第一の基板移載機112はポッドから第二の基板移載機124を介して、サセプタ217の載置部217bとの間で、基板200を搬送する。
  ここで、サセプタ217には、基板200を載置する載置部217bが複数、形成されている。第1実施形態においては、載置部217bはそれぞれが順時計方向に対して等間隔(例えば72度の間隔)となるように、五つ設けられ、サセプタ217が回転することで、五つの載置部217bが一括して矢印方向に回転される。
(3)基板処理工程  続いて、第1実施形態にかかる半導体製造工程の一工程として、上述した反応容器203を備えるプロセスチャンバ202bを用いて実施される基板処理工程について、図6~図8を用いて説明する。図6は、第1実施形態に係る基板処理工程を示すフロー図であり、図7は、第1実施形態に係る基板処理工程における成膜工程での基板への処理を示すフロー図である。図8は、本発明に係る基板処理工程内におけるクリーニング工程を説明するフローチャートである。また、必要に応じて、図3乃至図5を用いて説明する。なお、以下の説明において、基板処理装置10のプロセスチャンバ202の構成各部の動作は、制御部300により制御される。
  ここでは、第一のガスとして、シリコン含有ガスであるBTBASガスを用い、第二の処理ガスとして、酸素含有ガスであるO2ガスを用い、基板200上に絶縁膜として酸化シリコン膜(SiO2膜、以下、単にSiO膜ともいう)を形成する例について説明する。
(基板搬入・載置工程(S102))  まず、基板200の搬送位置まで基板突き上げピンを上昇させ、サセプタ217の貫通孔に基板突き上げピンを貫通させる。その結果、基板突き上げピンが、サセプタ217表面よりも所定の高さ分だけ突出した状態となる。続いて、ゲートバルブ151を開き、第一の基板移載機112を用いて、反応容器203内に所定枚数(例えば5枚)の基板200(処理基板)を搬入する。そして、サセプタ217の図示しない回転軸を中心として、各基板200が重ならないように、サセプタ217の同一面上に載置する。これにより、基板200は、サセプタ217の表面から突出した基板突き上げピン上に水平姿勢で支持される。
  反応容器203内に基板200を搬入したら、第一の基板移載機112を反応容器203外へ退避させ、ゲートバルブ151を閉じて反応容器203内を密閉する。その後、基板突き上げピンを下降させて、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの各底面のサセプタ217に設けられた載置部217b上に基板200を載置する。
  なお、基板200を反応容器203内に搬入する際には、排気部により反応容器203内を排気しつつ、不活性ガス供給部から反応容器203内にパージガスとしてのN2ガスを供給することが好ましい。すなわち、真空ポンプ246を作動させ、APCバルブ243を開けることにより、反応容器203内を排気しつつ、少なくとも第一の不活性ガス供給部のバルブ234dを開けることにより、反応容器203内にN2ガスを供給することが好ましい。これにより、処理領域201内へのパーティクルの侵入や、基板200上へのパーティクルの付着を抑制することが可能となる。ここで、さらに第二の不活性ガス供給部及び第三の不活性ガス供給部からN2ガスを供給してもよい。なお、真空ポンプ246は、少なくとも基板搬入・載置工程(S102)から後述する基板搬出工程(S108)が終了するまでの間は、常に作動させた状態とする。
(昇温・圧力調整工程(S104))  続いて、サセプタ217の内部に埋め込まれたヒータ218に電力を供給し、基板200の表面が所定の温度(例えば200℃以上であって400℃以下)となるように加熱する。この際、ヒータ218の温度は、温度センサ274により検出された温度情報に基づいてヒータ218への通電具合を制御することによって調整される。
  なお、Siで構成される基板200の加熱処理では、表面温度を750℃以上にまで加熱すると、基板200の表面に形成されたソース領域やドレイン領域等に不純物の拡散が生じ、回路特性が劣化し、半導体デバイスの性能が低下してしまう場合がある。基板200の温度を上述のように制限することにより、基板200の表面に形成されたソース領域やドレイン領域における不純物の拡散、回路特性の劣化、半導体デバイスの性能の低下を抑制できる。
  また、反応容器203内が所望の圧力(例えば0.1Pa~300Pa、好ましくは20Pa~40Pa)となるように、反応容器203内を真空ポンプ246によって真空排気する。この際、反応容器203内の圧力は図中省略の圧力センサで測定され、この測定された圧力情報に基づきAPCバルブ243の開度をフィードバック制御する。
また、基板200を加熱しつつ、回転機構267を作動して、サセプタ217の回転を開始させる。この際、サセプタ217の回転速度は制御部300によって制御される。サセプタ217の回転速度は例えば1回転/秒である。サセプタ217を回転させることにより、基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの順に移動を開始し、各領域を基板200が通過する。
(成膜工程(S106))次に、第一の処理領域201a内に第一の処理ガスとしてのBTBASガスを供給し、第二の処理領域201b内に第二の処理ガスとしてのO2ガスを供給して、基板200上にSiO膜を成膜する工程を例に成膜工程を説明する。なお、以下の説明では、BTBASガスの供給、O2ガスの供給、N2ガスを併行してそれぞれの領域に供給する。
基板200を加熱して所望とする温度に達し、サセプタ217が所望とする回転速度に到達したら、少なくともバルブ232d,バルブ233d及びバルブ234dを同時に開け、処理ガスを処理領域201に、不活性ガスをパージ領域204に供給する。すなわち、バルブ232dを開け、ガス噴出口254を介して第一の処理領域201a内にBTBASガスを供給する。バルブ233dを開けて第二の処理領域201b内にガス噴出口254を介してO2ガスを供給する。このようにして、処理ガス供給部から処理ガスを供給する。バルブ234dを開けて第一のパージ領域204a及び第二のパージ領域204b内に不活性ガスであるN2ガスを供給することで、不活性ガス供給部からN2ガスを供給する。このとき、APCバルブ243を適正に調整して反応容器203内の圧力を、例えば10Pa~1000Paの範囲内の圧力とする。このときヒータ218の温度は、基板200の温度が、例えば室温~400℃の範囲内の温度となるような温度に設定する。尚、好ましくは、200℃~400℃の範囲である。
具体的には、バルブ232dを開け、第一のガス供給管232aから第一のガス導入機構251及びガス噴出口254を介して第一の処理領域201aにBTBASガスを供給しつつ、排気口259、排気管231を介して排気する。
 このようにすることで、ウェハ200表面の内、サセプタ217の中央部に近い箇所とサセプタ217の側端部に近い箇所においても、ウェハ中央と同流量のBTBASガスを供給することができるので、ウェハ面内に対して均一にBTBASガスを供給することが可能となる。均一に供給することで、ウェハ面内に対して均一に膜処理をすることが可能となる。
 BTBASガスの流量は、マスフローコントローラ232cを調整し、所定の流量となるように制御する。なお、マスフローコントローラ232cで制御するBTBASガスの供給流量は、例えば10sccm~500sccmの範囲内の流量とする。
  BTBASガスを第一の処理領域201a内に供給する際には、バルブ235dを開け、第二の不活性ガス供給管235aからキャリアガス或いは希釈ガスとしてのN2ガスを第一の処理領域201a内に供給することが好ましい。これにより、第一の処理領域201a内へのBTBASガスの供給を促進させることができる。
  また、バルブ233dを開け、第二のガス供給管233aから第二のガス導入機構252及びガス噴出口255を介して第二の処理領域201bにO2ガスを供給しつつ、排気口259、排気管231を介して排気する。このようにすることで、ウェハ200表面の内、サセプタ217の中央部に近い箇所とサセプタ217の側端部に近い箇所においても、ウェハ200中央と同流量のO2ガスを供給することができるので、ウェハ200面内に対して均一にO2ガスを供給することが可能となる。均一に供給することで、ウェハ200面内に対して均一に膜処理を行うことが可能となる。
しかしながら、サセプタ217にも膜が堆積されてしまう。この場合、堆積膜は、前記基板載置部材の材質と異なる膜であって、酸化膜、窒化膜、炭化膜、酸窒化膜、酸炭化膜、炭化窒化膜、酸炭化窒化膜からなる群より選択される少なくともいずれか一つの膜である。
このとき、O2ガスの流量が所定の流量となるように、マスフローコントローラ233cを調整する。なお、マスフローコントローラ233cで制御するO2ガスの供給流量は、例えば1000sccm~10000sccmの範囲内の流量とする。
O2ガスを第二の処理領域201b内に供給する際には、バルブ236dを開け、第三の不活性ガス供給管236aからキャリアガス或いは希釈ガスとしてのN2ガスを第二の処理領域201b内に供給することが好ましい。これにより、第二の処理領域201b内へのO2ガスの供給を促進することができる。
また、バルブ232d、バルブ233d、バルブ234dを開け、パージガスとしての不活性ガスであるN2ガスを、第一の不活性ガス供給管234aから不活性ガス導入機構253、第一の不活性ガス噴出口256及び第二の不活性ガス噴出口257を介して第一のパージ領域204a及び第二のパージ領域204bにそれぞれ供給しつつ排気する。このとき、N2ガスの流量が所定の流量となるように、マスフローコントローラ234cを調整する。なお、仕切板205の端部と反応容器203の側壁との隙間を介し、第一のパージ領域204a内及び第二のパージ領域204b内から第一の処理領域201a内及び第二の処理領域201b内に向けてN2ガスを噴出させることで、第一のパージ領域204a内及び第二のパージ領域204b内への処理ガスの侵入を抑制することができる。
ガスの供給開始と共に、第二の処理領域201bの上方に設けられたプラズマ生成部206に図示しない高周波電源から高周波電力を供給する。第二の処理領域201b内に供給され、プラズマ生成部206の下方を通過したO2ガスは、第二の処理領域201b内でプラズマ状態となり、これに含まれる活性種が基板200に供給される。
O2ガスは反応温度が高く、上述のような基板200の処理温度、反応容器203内の圧力では反応しづらいが、O2ガスをプラズマ状態とし、これに含まれる活性種を供給するようにすると、例えば400℃以下の温度帯でも成膜処理を行うことができる。なお、第一の処理ガスと第二の処理ガスとで要求する処理温度が異なる場合、処理温度が低い方の処理ガスの温度に合わせてヒータ218を制御し、処理温度を高くする必要のある他方の処理ガスを、プラズマ状態として供給するとよい。このようにプラズマを利用することにより基板200を低温で処理することができ、例えばアルミニウム等の熱に弱い配線等を有する基板200に対する熱ダメージを抑制することが可能となる。また、処理ガスの不完全反応による生成物等の異物の発生を抑制することができ、基板200上に形成する薄膜の均質性や耐電圧特性等を向上させることができる。また、プラズマ状態としたO2ガスの高い酸化力によって、酸化処理時間を短縮することができる等、基板処理の生産性を向上させることができる。
上述したように、サセプタ217を回転させることにより、基板200は、第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b、第二のパージ領域204bの順に移動を繰り返す。そのため、基板200には、BTBASガスの供給、N2ガスの供給(パージ)、プラズマ状態とされたO2ガスの供給、N2ガスの供給(パージ)が交互に所定回数実施されることになる。本発明においては、ウェハ200表面の内、サセプタ217の中央部に近い箇所やサセプタ217の側端部に近い箇所においても、ウェハ200中央と同流量の処理ガスを供給することができるので、ウェハ200面内に対して均一に処理ガスを供給することが可能となる。ここで、成膜処理シーケンスの具体例について、図7を用いて説明する。
(第一の処理ガス領域通過(S202))  まず、第一の処理領域201aを通過した基板200表面にBTBASガスが供給され、基板200上の内、ウェハ中央、サセプタ217の中央部に近い箇所やサセプタ217の側端部に近い箇所において均一にシリコン含有層が形成される。  第一の処理領域201aには、第一の処理ガス導入機構251からガス噴出口254を通して、基板に向けてガスが噴出される。噴出されたガスは通過するウェハ200に供給され、ウェハ200にシリコン含有層の形成に寄与すると共に、寄与しなかったガスは、第一の排気口259から排気される。
(第一のパージ領域通過(S204))  次に、シリコン含有層が形成された基板200が第一のパージ領域204aを通過する。このとき、第一のパージ領域を通過する基板200に対して不活性ガスであるN2ガスが供給される。
(第二の処理ガス領域通過(S206))  次に、第二の処理領域201bを通過した基板200上の内、ウェハ中央、サセプタ217の中央部に近い箇所やサセプタ217の側端部に近い箇所において均一にO2ガスが供給され、基板200上に均一にSiO層が形成される。すなわち、プラズマ状態とされたO2ガスは、第一の処理領域201aで基板200上に形成されたシリコン含有層の少なくとも一部と反応する。これにより、シリコン含有層は酸化されて、Si及びO2を含むSiO層へと改質される。更に、反応に寄与しないO2ガスは排気口259から排気される。
(第二のパージ領域通過(S208))  そして、第二の処理領域201bでSiO層が形成された基板200が第二のパージ領域204bを通過する。このとき、第二のパージ領域を通過する基板200に対してN2ガスが供給される。
(サイクル数の確認(S210))  このように、サセプタ217の1回転を1サイクルとし、すなわち第一の処理領域201a、第一のパージ領域204a、第二の処理領域201b及び第二のパージ領域204bの基板200の通過を1サイクルとし、このサイクルを少なくとも1回以上行うことにより、基板200上に所定膜厚のSiO膜を形成することができる。  ここでは、前述のサイクルを所定回数実施したか否かを確認する。  サイクルを所定の回数実施した場合、所望の膜厚に到達できたと判断し、成膜処理を終了する。サイクルを所定の回数実施しなかった場合、即ち所望の膜厚に到達できなかったと判断し、S202に戻りサイクル処理を継続する。
  S210にて、前述のサイクルを所定回数実施し、基板200上に所望の膜厚のSiO膜が形成されたと判断した後、少なくともバルブ232d及びバルブ233dを閉じ、BTBASガスの第一の処理領域201aへの供給及びO2ガスの第二の処理領域201bへの供給を停止する。このとき、プラズマ生成部206への電力供給も停止する。更に、サセプタ217の回転を停止し、成膜工程を終了する。
(基板搬出工程(S108))  成膜工程106が終了したら、次のように基板を搬出する。  まず、基板突き上げピン266を上昇させ、サセプタ217の表面から突出させた基板突き上げピン266上に基板200を支持させる。そして、ゲートバルブ151を開き、第一の基板移載機112を用いて基板200を反応容器203の外へ搬出し、第1実施形態に係る基板処理工程を終了する。なお、上記において、基板200の温度、反応容器203内の圧力、各ガスの流量、プラズマ生成部206に印加する電力、処理時間等の条件等は、改質対象の膜の材料や膜厚等によって任意に調整する。
(フッ素クリーニング工程(S302))  基板200への成膜処理を予め定めた回数終了したら、続いて、クリーニング工程を実施する(図8参照)。このクリーニング工程での処理室202内の温度は、成膜処理の際の温度と同じ温度とするとよい。  まず、基板200が排出された状態で、反応容器203内にフッ素含有ガスである例えばF2、NF3、HF、ClF3、XeF2、BrF5、IF5、IF7から選択される、いずれか一つ若しくは複数のガスを供給する(S302)。これにより、基板200を載せるサセプタ217に堆積した堆積膜を少なくとも除去する。なお、このフッ素含有ガスによるクリーニングの際に、フッ素含有ガスをプラズマにより活性化させてもよい。尚、特に記載していないが、ダミー基板をサセプタ217に載せた後、クリーニング工程(S302)を行うのが好ましい。このとき、ダミー基板は基板200と同様の手段でサセプタ217に載せられるのは言うまでもない。
(親水処理工程(S304)) フッ素クリーニング工程が終了したら、反応容器203内にO2をプラズマ化して供給することにより、酸素プラズマクリーニング処理を行う。フッ素を含むガスでクリーニングを実施すると、クリーニング直後には、サセプタ217の表面にフッ素原子(F)が残留するため、サセプタ217表面は撥水性を有する。撥水性を有したままのサセプタ217表面に、そのまま成膜処理を行うと、膜種によっては膜の密着性が悪くなり、わずかな応力でも膜剥離が生じる。これを防止するために、サセプタ217表面が撥水性を有した状態でプリコート膜を形成しても、わずかな応力でも膜剥離が生じてしまうため、プリコート膜の剥離が生じてしまう。また、剥離が生じなくても、プリコート膜の上に成膜時の膜が形成されると、すぐにクリーニング工程(S302)を実施する必要が生じ、稼働率が低下してしまう。そこで、クリーニング工程(S302)直後に酸素プラズマクリーニング処理により、サセプタ217表面の親水処理を実施する。この親水処理を実施することにより、サセプタ217表面からFが脱離し、OH基(ヒドロキシ基)終端となる。少なくとも、このプラズマクリーニング処理により、サセプタ217表面のFがOH基で置換されるため、サセプタ217表面が親水性を有する。これにより、酸化膜および窒化膜等のプリコート膜に関し、サセプタ217表面の膜密着性があがる。尚、プラズマクリーニングの条件は、成膜条件と同じであり、本実施例において、基板温度60℃、酸素7000Sccm、圧力300Pa、高周波電力200W、回転速度60rpm、時間120minであるが、この条件に限定されない。 
(プリコート処理工程(S306)) 続いて、サセプタ217の表面にプリコート処理を行う。例えば、サセプタ217表面に親水処理を施しているので、サセプタ217表面にプリコート膜が繰り返し形成され、サセプタ217表面に堆積されるプリコート膜が厚膜となり、応力が発生してもプリコート膜が剥離しにくい。従って、従来に比べ、累積膜厚を大きくすることができるので、生産可能時間が延び、装置の稼働率が向上する。また、プリコート膜上に成膜処理時の膜が堆積するプロセスであっても、サセプタ217上の累積膜厚を大きくすることができるので、従来の親水処理していない場合に比べ、生産可能時間が延びる。尚、本実施例においては、基板温度60℃、BTBAS/N=40/225Sccm、酸素3000Sccm、圧力120Pa、高周波電力300W、回転速度60rpm、時間20minである。また、プリコート処理条件は成膜条件と同じであるため、上記条件に限定されない。そして、プリコート処理が終わると、ダミー基板を使用していた場合には、基板200と同様の手段でダミー基板の搬出が行われる。 
(4)本実施形態に係る効果  第1実施形態によれば、以下(a)~(c)のうち、少なくとも一つ以上の効果を奏する。(a)従来に比し、サセプタ上に堆積する生産可能膜厚を高くし、クリーニング頻度を下げることができる。これによって、フルメンテナンス回数を低減することが可能となり、装置の稼働率を向上させることが可能となる。(b)サセプタ上の親水性が向上したため、サセプタに堆積された膜の膜剥がれが抑制され、基板への成膜処理の際にパーティクルの発生頻度を低減することが可能となる。(c)サセプタ上の親水性が向上したため、サセプタ上の膜密着性が上がり、堆積膜の膜厚を高くすることができる。よって、サセプタの寿命が延長するという効果が生じる。
<本発明の他の実施形態>  以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
  例えば、上述の実施形態では、処理ガスとしてシリコン含有ガス及び酸素含有ガスを用い、基板200上にSiO膜を形成する実施例を示しているが、これに限られるものではない。すなわち、処理ガスとして、例えばハフニウム(Hf)含有ガス及び酸素含有ガス、ジルコニウム(Zr)含有ガス及び酸素含有ガス、チタン(Ti)含有ガス及び酸素含有ガスを用いて、酸化ハフニウム膜(HfO膜)、酸化ジルコニウム(ZrO膜)、酸化チタン膜(TiO膜)等のHigh-K膜等を基板200上に形成してもよい。また、プラズマ化する処理ガスとして、酸素含有ガスのほかに、窒素(N)含有ガスであるアンモニア(NH3)ガス等を用いてもよい。
  また、上述の実施形態では、酸素ガスを処理室に供給し、プラズマ生成部206でプラズマを生成していたが、それに限るものではなく、処理室の外でプラズマを生成するリモートプラズマ法や、エネルギーレベルの高いオゾンを用いても良い。
 本発明の実施の形態にかかるコントローラ300は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、汎用コンピュータに、前述の処理を実行するためのプログラムを格納した記録媒体(フレキシブルディスク、CD-ROM、USBなど)から当該プログラムをインストールすることにより、前述の処理を実行する操作部を構成することができる。
 そして、これらのプログラム(例えば、インストーラ)を供給するための手段は任意である。前述のように、所定の記録媒体を介して供給できる他、例えば、通信回線、通信ネットワーク、通信システムなどを介して供給してもよい。この場合、例えば、通信ネットワークの掲示板に当該プログラムを掲示し、これをネットワークを介して搬送波に重畳して提供してもよい。そして、このように提供されたプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、前述の処理を実行する事が出来る。
 本発明は、成膜処理は、例えば、CVD、PVD、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理を含む。また、成膜処理の他、拡散処理、アニール処理、酸化処理、窒化処理、リソグラフィ処理等の他の基板処理にも好適に適用できる。さらに、本発明は、基板処理装置として、半導体製造装置だけでなく、LCD装置のようなガラス基板を処理する装置でも適用できる。また、薄膜形成装置の他、アニール処理装置、酸化処理装置、窒化処理装置、露光装置、塗布装置、乾燥装置、加熱装置等の他の基板処理装置にも好適に適用できる。
 以上、本発明の実施の形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
  以下に、付記として本発明の態様を記す。
<付記1>本発明の一態様によれば、基板を処理するための反応室内に設けられた基板載置部材(サセプタ)と、前記基板を処理するための反応ガス(第2の処理ガス)を供給する反応ガス供給部(第2の処理ガス供給部)と、少なくとも一つ以上のフッ素原子を含むフッ素含有ガスを供給するクリーニングガス供給部と、前記反応ガスを活性化するプラズマ機構と、前記基板を前記反応室から取り出した状態で、前記反応室内に前記フッ素含有ガスを供給して、前記基板載置部材に堆積された堆積膜を除去し、前記反応室内に活性化した前記反応ガス(第2の処理ガス)を供給して、前記基板載置部材に付着した前記フッ素原子を除去し、前記基板載置部材の表面を親水性にするように、少なくとも前記反応ガス供給部(第2の処理ガス供給部)、前記クリーニングガス供給部、前記プラズマ機構を制御するよう構成される制御部と、 を有する基板処理装置が提供される。
<付記2>好ましくは、付記1の基板処理装置において、更に、前記基板に原料ガス(第1の処理ガス)を供給する原料ガス供給部(第1の処理ガス供給部)を有し、前記制御部は、前記基板を前記反応室から取り出した状態のままで、前記原料ガス、前記反応ガスをそれぞれ前記反応室に供給して、前記基板載置部材に、前記基板に形成される膜と同じ組成を有する膜を形成するように、少なくとも前記原料ガス供給部、前記反応ガス供給部、前記プラズマ機構を制御するよう構成される。
<付記3>好ましくは、付記1の基板処理装置であって、更に、前記基板の代わりに前記基板載置部材に装填した状態で、前記基板載置部材の基板載置部の保護に使用されるダミー基板を前記基板と同様に搬送する搬送部を備え、前記制御部は、前記基板を前記反応室から取り出した後、前記ダミー基板を前記基板載置部材に装填した状態で、前記フッ素含有ガスが前記反応室に供給されるよう構成される
<付記4>好ましくは、付記1の基板処理装置であって、更に、前記基板載置部材を回転させる回転機構と、を備え、前記反応室が前記原料ガスが供給される第一の処理領域、不活性ガスが供給される第一のパージ領域、前記反応ガスが供給される第二の処理領域、不活性ガスが供給される第二のパージ領域を含む複数の領域に分離された状態で、前記回転機構により前記基板載置部材が回転させることにより、前記基板載置部材に載置された前記基板を、前記第一の処理領域、前記第一のパージ領域、前記第二の処理領域、前記第二のパージ領域の順に移動するように、前記回転機構を制御するよう構成される。
<付記5> 好ましくは、付記1の基板処理装置であって、前記サセプタは、SiC(シリコンカーバイド)や、カーボン(C)、窒化アルミニウム(AlN)、セラミックス、石英等の非金属材料を含む部材から少なくとも一つの部材で構成される。
<付記6> 好ましくは、付記1の基板処理装置であって、前記制御部は、酸化膜、窒化膜、炭化膜、酸窒化膜、酸炭化膜、炭化窒化膜、酸炭化窒化膜からなる群より選択される少なくともいずれか一つの膜を前記基板載置部材上に形成するよう構成される。
<付記7> 好ましくは、付記1の基板処理装置であって、前記堆積膜は、前記基板載置部材の材質と異なる膜であって、酸化膜、窒化膜、炭化膜、酸窒化膜、酸炭化膜、炭化窒化膜、酸炭化窒化膜からなる群より選択される少なくともいずれか一つの膜である。
 <付記8> 好ましくは、付記1の基板処理装置であって、前記制御部は、前記基板載置部材の表面に付着したフッ素原子(F)を脱離させ、前記基板載置部材の表面が親水性を有する(OH終端させる)よう構成される。
 <付記9>好ましくは、付記1の基板処理装置であって、更に、前記基板を加熱する加熱部を備え、前記加熱部は、前記基板載置部材に設けられるよう構成される。
 <付記10> 好ましくは、付記1の基板処理装置であって、前記制御部は、プラズマ化されたフッ素原子(F)を含む前記フッ素含有ガスを前記反応室に供給するよう構成される。
 <付記11> 好ましくは、付記1の基板処理装置であって、前記クリーニングガス供給部は、F2、NF3、HF、ClF3、XeF2、BrF3、BrF5、IF5、及びIF7からなる群より選択される少なくともいずれか一つの前記フッ素含有ガスを前記反応室に供給するよう構成される。
<付記12>好ましくは、付記2の基板処理装置であって、前記第1の処理ガスは、シリコン(Si)含有ガスであり、前記第2の処理ガスは、酸素(O2)含有ガスである。
<付記13>好ましくは、付記2の基板処理装置であって、前記原料ガス供給部は、BTBASガス、HMDSガス、3DMASガス、TSAガスからなる群より選択される少なくとも一つの前記シリコン(Si)含有ガスを供給するよう構成される。
<付記14>好ましくは、付記2の基板処理装置であって、前記原料ガス供給部は、ハフニウム(Hf)含有ガス、ジルコニウム(Zr)含有ガス、チタン(Ti)含有ガスからなる群より選択される少なくとも一つの金属含有ガスを含む前記原料ガスを供給するよう構成される。
<付記15>本発明の他の態様によれば、基板を反応室から取り出した状態で、前記反応室内にフッ素含有ガスを供給して、前記基板を載置する基板載置部材に堆積した堆積膜を除去する除去工程と、前記反応室内に反応ガス(第2の処理ガス)を活性化して供給し、前記基板載置部材に付着しているフッ素原子を除去し、前記基板載置部材の表面を親水性にする親水処理工程と、を有するクリーニング方法が提供される。
<付記16>本発明の更に他の態様によれば、反応室内で基板に所定の膜を形成する成膜工程と、前記基板を反応室から搬出後、前記反応室内にフッ素含有ガスを供給して、前記基板を載置する基板載置部材に堆積した堆積膜を除去する除去工程と、前記反応室内に反応ガス(第2の処理ガス)を活性化して供給し、前記基板載置部材に付着しているフッ素原子を除去し、前記基板載置部材の表面を親水性にする親水処理工程と、を含む半導体装置の製造方法が提供される。
 <付記17> 好ましくは、付記16の半導体装置の製造方法であって、前記成膜工程を終了した後、前記基板の処理温度を変えることなく前記クリーニング工程を実施する。
 <付記18> 好ましくは、付記16の半導体装置の製造方法であって、更に、前記基板を前記反応室から取り出した状態のままで、前記原料ガス、前記反応ガスをそれぞれ前記反応室に供給して、前記基板載置部材に、前記基板に形成される膜と同じ組成を有する膜を形成するプリコート処理工程を有し、前記親水処理工程を終了した後、前記プリコート処理工程を実施する。
 <付記19> 好ましくは、付記16の半導体装置の製造方法であって、更に、前記基板を前記反応室から取り出した状態のままで、前記原料ガス、前記反応ガスをそれぞれ前記反応室に供給して、前記成膜工程において前記基板載置部材に堆積される膜と同じ組成を有する膜を形成するプリコート処理工程を有し、前記親水処理工程を終了した後、前記プリコート処理工程を実施する。
 <付記20>本発明の更に他の態様によれば、基板を反応室から取り出した状態で、前記反応室内にフッ素含有ガスを供給して、前記基板を載置する基板載置部材に堆積した堆積膜を除去する手順と、前記反応室内に第2の処理ガスを活性化して供給し、前記基板載置部材に付着しているフッ素原子を除去し、前記基板載置部材の表面を親水性にする手順と、をコンピュータに実行させるプログラム、及び、該プログラムを記録したコンピュータ読取可能な記録媒体が提供される。
尚、この出願は、2014年9月18日に出願された日本出願特願2014-190077を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
基板を処理するための反応室に設けられた基板載置部材に堆積する堆積膜をクリーニングする構成を有する基板処理装置に適用される。
10・・基板処理装置202・・処理炉217・・基板載置部材(サセプタ)218・・加熱手段

Claims (12)

  1. 基板を処理するための反応室内に設けられた基板載置部材と、前記基板を処理するための反応ガスを供給する反応ガス供給部と、少なくとも一つ以上のフッ素原子を含むフッ素含有ガスを供給するクリーニングガス供給部と、前記反応ガスを活性化するプラズマ機構と、前記基板を前記反応室から取り出した状態で、前記反応室内に前記フッ素含有ガスを供給して、前記基板載置部材に堆積された堆積膜を除去し、前記反応室内に活性化した前記反応ガスを供給して、前記基板載置部材に付着した前記フッ素原子を除去し、前記基板載置部材の表面を親水性にするように、少なくとも前記反応ガス供給部、前記クリーニングガス供給部、前記プラズマ機構を制御するよう構成される制御部と、 を有する基板処理装置。
  2. 更に、前記基板に原料ガスを供給する原料ガス供給部を有し、前記制御部は、前記基板を前記反応室から取り出した状態のままで、前記原料ガス、前記反応ガスをそれぞれ前記反応室に供給して、前記基板載置部材に、前記基板に形成される膜と同じ組成を有する膜を形成するように、少なくとも前記原料ガス供給部、前記反応ガス供給部、前記プラズマ機構を制御するよう構成される請求項1記載の基板処理装置。
  3. 更に、前記基板の代わりに前記基板載置部材に装填した状態で、前記基板載置部材の基板載置部の保護に使用されるダミー基板を前記基板と同様に搬送する搬送部を備え、前記制御部は、前記基板を前記反応室から取り出した後、前記ダミー基板を前記基板載置部材に装填した状態で、前記フッ素含有ガスが前記反応室に供給されるよう構成される請求項1記載の基板処理装置。
  4. 更に、前記基板載置部材を回転させる回転機構と、を備え、前記制御部は、前記反応室が前記原料ガスが供給される第一の処理領域、不活性ガスが供給される第一のパージ領域、前記反応ガスが供給される第二の処理領域、不活性ガスが供給される第二のパージ領域を含む複数の領域に分離された状態で、前記回転機構により前記基板載置部材が回転させることにより、前記基板載置部材に載置された前記基板を、前記第一の処理領域、前記第一のパージ領域、前記第二の処理領域、前記第二のパージ領域の順に移動するように、前記回転機構を制御するよう構成される請求項1記載の基板処理装置。
  5. 前記クリーニングガス供給部は、F2、NF3、HF、ClF3、XeF2、BrF3、BrF5、IF5、及びIF7からなる群より選択される少なくともいずれか一つの前記フッ素含有ガスを供給するように構成される請求項1記載の基板処理装置。
  6. 前記原料ガス供給部は、シリコン含有ガスを少なくとも含む前記原料ガスを供給するよう構成され、前記反応ガス供給部は、酸素含有ガスを少なくとも含む前記反応ガスを供給するよう構成される請求項2記載の基板処理装置。
  7. 前記原料ガス供給部は、BTBASガス、HMDSガス、3DMASガス、TSAガスからなる群より選択される少なくとも一つのガスを含む前記シリコン含有ガスを供給するよう構成される請求項6記載の基板処理装置。
  8. 前記原料ガス供給部は、Hf含有ガス、Zr含有ガス、Ti含有ガスからなる群より選択される少なくとも一つの金属含有ガスを含む前記原料ガスを供給するよう構成される請求項2記載の基板処理装置。
  9. 前記制御部は、前記基板載置部材の表面に付着したフッ素原子を脱離させ、前記基板載置部材の表面を親水性を有するよう構成される請求項1記載の基板処理装置。
  10. 基板を反応室から取り出した状態で、前記反応室内にフッ素含有ガスを供給して、前記基板を載置する基板載置部材に堆積した堆積膜を除去する除去工程と、前記反応室内に反応ガスを活性化して供給し、前記基板載置部材に付着しているフッ素原子を除去し、前記基板載置部材の表面を親水性にする親水処理工程と、を有するクリーニング方法。
  11. 反応室内で基板に所定の膜を形成する成膜工程と、前記基板を反応室から搬出後、前記反応室内にフッ素含有ガスを供給して、前記基板を載置する基板載置部材に堆積した堆積膜を除去する除去工程と、前記反応室内に第2の処理ガスを活性化して供給し、前記基板載置部材に付着しているフッ素原子を除去し、前記基板載置部材の表面を親水性にする親水処理工程と、を含む半導体装置の製造方法。
  12. コンピュータに、基板を反応室から取り出した状態で、前記反応室内にフッ素含有ガスを供給して、前記基板を載置する基板載置部材に堆積した堆積膜を除去する手順と、前記反応室内に第2の処理ガスを活性化して供給し、前記基板載置部材に付着しているフッ素原子を除去し、前記基板載置部材の表面を親水性にする手順と、を実行させるプログラムを記録したコンピュータ読取可能な記録媒体。 
PCT/JP2015/076284 2014-09-18 2015-09-16 基板処理装置、クリーニング方法及び半導体装置の製造方法並びに記録媒体 WO2016043221A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-190077 2014-09-18
JP2014190077 2014-09-18

Publications (1)

Publication Number Publication Date
WO2016043221A1 true WO2016043221A1 (ja) 2016-03-24

Family

ID=55533257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076284 WO2016043221A1 (ja) 2014-09-18 2015-09-16 基板処理装置、クリーニング方法及び半導体装置の製造方法並びに記録媒体

Country Status (1)

Country Link
WO (1) WO2016043221A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155552A (ja) * 2019-03-19 2020-09-24 東京エレクトロン株式会社 成膜装置の洗浄方法
CN113913786A (zh) * 2021-10-09 2022-01-11 赛莱克斯微系统科技(北京)有限公司 一种薄膜沉积设备及其清洁方法
TWI823235B (zh) * 2021-03-19 2023-11-21 日商國際電氣股份有限公司 基板處理裝置、記錄媒體、基板處理方法及半導體裝置之製造方法
KR102674046B1 (ko) * 2019-03-19 2024-06-12 도쿄엘렉트론가부시키가이샤 성막 장치의 세정 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186149A (ja) * 1995-12-28 1997-07-15 Fujitsu Ltd 半導体製造装置のクリーニング方法及び半導体装置の製造方法
JP2010016033A (ja) * 2008-07-01 2010-01-21 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2012060036A (ja) * 2010-09-10 2012-03-22 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2014060309A (ja) * 2012-09-19 2014-04-03 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186149A (ja) * 1995-12-28 1997-07-15 Fujitsu Ltd 半導体製造装置のクリーニング方法及び半導体装置の製造方法
JP2010016033A (ja) * 2008-07-01 2010-01-21 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2012060036A (ja) * 2010-09-10 2012-03-22 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP2014060309A (ja) * 2012-09-19 2014-04-03 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155552A (ja) * 2019-03-19 2020-09-24 東京エレクトロン株式会社 成膜装置の洗浄方法
CN111719137A (zh) * 2019-03-19 2020-09-29 东京毅力科创株式会社 成膜装置的清洗方法
US11473194B2 (en) * 2019-03-19 2022-10-18 Tokyo Electron Limited Cleaning method of deposition apparatus
JP7246217B2 (ja) 2019-03-19 2023-03-27 東京エレクトロン株式会社 成膜装置の洗浄方法
CN111719137B (zh) * 2019-03-19 2023-09-05 东京毅力科创株式会社 成膜装置的清洗方法
KR102674046B1 (ko) * 2019-03-19 2024-06-12 도쿄엘렉트론가부시키가이샤 성막 장치의 세정 방법
TWI823235B (zh) * 2021-03-19 2023-11-21 日商國際電氣股份有限公司 基板處理裝置、記錄媒體、基板處理方法及半導體裝置之製造方法
CN113913786A (zh) * 2021-10-09 2022-01-11 赛莱克斯微系统科技(北京)有限公司 一种薄膜沉积设备及其清洁方法

Similar Documents

Publication Publication Date Title
JP6095172B2 (ja) 半導体装置の製造方法、基板処理方法及び基板処理装置
KR101850186B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기판 처리 방법
KR101745075B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP6000665B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US20160376699A1 (en) Substrate processing apparatus, and storage medium
KR20150121150A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체
JP6793031B2 (ja) 基板処理装置および基板処理方法、ならびに基板処理システム
JP2014060309A (ja) 基板処理装置、及び半導体装置の製造方法
JP2014195043A (ja) 基板処理装置及び半導体装置の製造方法並びにガス給排方法
JP6332746B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2016043221A1 (ja) 基板処理装置、クリーニング方法及び半導体装置の製造方法並びに記録媒体
JP2018101687A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2014192484A (ja) 半導体装置の製造方法及び基板処理装置
JP2017034013A (ja) 基板処理装置、半導体装置の製造方法及びプログラム
WO2014148490A1 (ja) 基板処理装置、及び半導体装置の製造方法
KR101590823B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법 및 가스 급배 방법
JP2015015272A (ja) 半導体装置の製造方法及び基板処理装置
WO2013141159A1 (ja) 基板処理装置、半導体装置の製造方法及び基板処理方法
JP6224263B2 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
JP2015185757A (ja) 基板処理装置及び半導体装置の製造方法
JP2014192304A (ja) 基板処理装置及び半導体装置の製造方法
JP2014175483A (ja) 基板処理装置、及び半導体装置の製造方法
TW202300689A (zh) 用於處理基板的方法及設備
JP2014187258A (ja) 基板処理装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP