WO2016042970A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016042970A1
WO2016042970A1 PCT/JP2015/073451 JP2015073451W WO2016042970A1 WO 2016042970 A1 WO2016042970 A1 WO 2016042970A1 JP 2015073451 W JP2015073451 W JP 2015073451W WO 2016042970 A1 WO2016042970 A1 WO 2016042970A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
conversion device
power conversion
power semiconductor
drive
Prior art date
Application number
PCT/JP2015/073451
Other languages
English (en)
French (fr)
Inventor
順一 坂野
航平 恩田
武司 玉腰
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/511,910 priority Critical patent/US20170282720A1/en
Priority to EP15841765.9A priority patent/EP3197036B1/en
Priority to CN201580048903.XA priority patent/CN106716814A/zh
Publication of WO2016042970A1 publication Critical patent/WO2016042970A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2608Circuits therefor for testing bipolar transistors
    • G01R31/2619Circuits therefor for testing bipolar transistors for measuring thermal properties thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a power conversion device, and more particularly, to a power conversion device constituted by a power semiconductor switching element used for controlling a motor for a railway vehicle or a large industry, or for a large-capacity frequency conversion device for a power system or the like. About.
  • a control drive command signal for a drive circuit that drives the power semiconductor and a drive circuit that conducts the power semiconductor or There is one that compares the operation information for detecting the operation state for driving to be shut off, and determines that the drive circuit has an abnormal operation when a mismatch occurs for a certain period or longer (see, for example, Patent Document 1).
  • FIG. 7 shows a configuration example thereof.
  • an abnormality can be detected only when the power semiconductor is short-circuited to the power source. Therefore, although the apparatus can be prevented from being damaged, it is difficult to continue the operation in that state because there are concerns about the occurrence of repeated abnormal operations.
  • the power supply is short-circuited due to a failure of the power semiconductor or the like, the operation itself becomes impossible.
  • the challenge is to provide a method that enables it.
  • the power conversion device of the present invention is, for example, a power conversion device including a power semiconductor and an arithmetic circuit that commands driving of the power semiconductor, and a driving command for conducting or blocking the power semiconductor. And a function for calculating a delay time until the output voltage of the drive circuit applied to the power semiconductor reaches a judgment value due to a change in the drive command, and compares the delay time under a specific drive condition with a reference value. It is characterized in that at least one of the previous drive command and the drive voltage is changed according to the result of the determination and the result of the determination is recorded or displayed or compared or determined.
  • the present invention it is possible to detect abnormalities and deterioration of power semiconductors and related power conversion devices with a simple configuration with high accuracy and prevent malfunctions and the like with high accuracy. It is possible to provide a method for enabling long-term use.
  • a power conversion device is a power conversion device including a power semiconductor and an arithmetic circuit for instructing driving of the power semiconductor, wherein the power semiconductor is turned on or off, and thereby applied to the power semiconductor. It has a function of calculating a delay time until the output voltage of the circuit reaches a determination value, compares and determines the delay time under a specific driving condition and a reference value, and records or displays the determination result. Alternatively, at least one of the previous drive command and the drive voltage is changed according to the result of the comparison determination.
  • the power semiconductor an insulated gate bipolar transistor, a power MOSFET, or a MOS gate control type power semiconductor element may be used.
  • the specific drive conditions for comparison with the reference value are the output current value of the power converter, the direction of the output current flowing in the power semiconductor, the voltage between the output terminals of the power semiconductor, and the power supply voltage.
  • any one of the temperatures in the power conversion device or a combination thereof may be used.
  • a delay time measured in advance by the power conversion device may be recorded, and a value obtained by calculating from this value may be used.
  • the comparison determination result may be recorded, and when the number of times or the time interval satisfies a certain condition, at least one of the display output or the previous driving command and the driving voltage may be changed. Good.
  • a determination circuit that compares and determines the delay time that receives a signal related to a condition and a reference value may be provided, and the determination result may be output to the arithmetic circuit or the drive circuit.
  • FIG. 1 shows a block configuration of Example 1 which is the first embodiment of the power conversion apparatus of the present invention
  • FIG. 2 shows an example of its drive signal, control voltage, and judgment output waveform.
  • the power conversion device of the present invention converts the drive command generated by the drive command calculation circuit 3 into a drive voltage by the drive circuit 2 and controls the conduction and interruption of the power semiconductor 1, thereby controlling the load 9.
  • the delay time until the drive voltage reaches a certain judgment value due to the change of the drive command is calculated by the delay calculation circuit 4, and the delay value is compared with the reference value by the abnormality judgment circuit 5. The result is output.
  • FIG. 2 shows an embodiment of the waveform of the present invention when the power semiconductor is cut off or turned off.
  • the drive voltage changes with a certain delay time td for the same drive command.
  • this delay time varies depending on the conditions due to the characteristics of the power semiconductor.
  • Our investigation confirmed that this delay time depends on the temperature of the power semiconductor.
  • Such temperature dependency occurs in power semiconductors in general, but the output voltage of the control circuit is several volts or more in the MOS gate control type device as compared with the case where the output voltage of the control circuit is 1 V or less like a bipolar transistor. Since the amplitude is as large as ⁇ 10 V and the margin for noise generated when the power semiconductor is turned on and off is increased, the evaluation accuracy of the delay time can be improved.
  • an insulated gate bipolar transistor ie, an IGBT, which is a MOS gate control type power semiconductor
  • an appropriate state determination voltage is set in the ON / OFF switching of the voltage amplitude of the control circuit of + 15V and -12V
  • An increase in the delay time of about 1 ns per 1 ° C rise in temperature for semiconductors has been confirmed by measurement.
  • This reflects the temperature dependency of the threshold voltage of the control voltage for turning on and off the power converter and the delay time when the current is turned on and off. For this reason, the same temperature dependence also occurs in the power MOSFET and other MOS control type power converters, and the temperature change can be detected by determining the delay time.
  • the first embodiment shows a configuration in which an abnormality determination is output when the delay time td increases beyond a specified value corresponding to a certain temperature rise. It is detected that the temperature of the semiconductor for the semiconductor device has exceeded the specified value, and measures can be taken to prevent damage to the power converter according to the output.
  • FIG. 3 shows another embodiment of the power conversion device of the present invention, and shows a configuration in which a drive command and a drive voltage are changed in order to prevent damage to the power conversion device based on the result of determining abnormality.
  • Specific measures for preventing damage to the power conversion device in these embodiments include turning off the power semiconductor in which the temperature rise is detected for a certain period of time, or power conversion in which the temperature rise is detected in the device.
  • a configuration may be used in which a control voltage for forcibly turning off the power semiconductor is output regardless of the drive command based on a determination output in which a temperature rise is detected.
  • the drive command is changed and output for a certain period of time.
  • Limiting and lowering the upper limit value of the current flowing to the semiconductor reduces heat generation of the power conversion semiconductor, or sets or decreases the upper limit of the duration time of the conduction command to turn on the power semiconductor, current flows and the temperature rises
  • the delay time td when the delay time td increases beyond a specified value, an abnormality determination is output.
  • the delay time may increase when the temperature rises.
  • a prescribed value may be provided so that an abnormality is determined when the delay time td is reduced.
  • FIG. 3 shows a block configuration of Example 2, which is another embodiment of the power conversion device of the present invention
  • FIG. 4 shows its signal waveform.
  • the present embodiment is different from the first embodiment in the method of determining abnormality, but the other points are the same as the first embodiment.
  • the delay time ⁇ td measured in advance by the power conversion device is recorded, and the minimum value ⁇ tdm and the maximum value ⁇ tdp of the allowable range of delay time change calculated and set based on this value during operation
  • it shows a configuration that outputs an abnormality determination when it deviates from this range, thereby detecting that the temperature of the power semiconductor has exceeded a specified value, and according to the output of the power conversion device Measures can be taken to prevent damage.
  • the same method as described above can be used.
  • FIG. 5 shows a block configuration of Example 3, which is still another embodiment of the power conversion device of the present invention, and is a three-phase two-level power conversion device connected to a power source 15 and having a three-phase motor 14 as a load.
  • the driving condition for determining the delay time, the recording of the determination result, and the details of the configuration for changing the drive command based on the determination result are shown.
  • the figure shows the details of the circuit that controls the U-phase lower arm, but the U-phase upper arm, other V-phases, and W-phases have the same configuration.
  • the IGBT serving as the power semiconductor 11 of the U-phase lower arm passes the drive command from the drive command calculation circuit 3 of the logic unit 25 via the communication means 18 of the communication unit 23 and is the gate of the IGBT that is the output of the drive circuit 2. It is driven by a drive voltage applied between the emitter terminals. The drive voltage is compared and determined by a voltage determination 20 with a predetermined value, and the result is transmitted to the logic unit 25 via the communication means 19. The delay time between the drive command and the transmitted determination result is calculated by the delay calculation circuit and input to the recording determination circuit 6. The recording determination circuit 6 records the delay time at the set timing and driving conditions.
  • the drive condition is determined based on a drive command condition such as a current command value from the drive command calculation circuit and signals from the temperature sensor 16, the current sensor 17, and the voltage sensor 18 installed in the vicinity of the IGBT.
  • a drive command condition such as a current command value from the drive command calculation circuit and signals from the temperature sensor 16, the current sensor 17, and the voltage sensor 18 installed in the vicinity of the IGBT.
  • the voltage sensor monitors the applied voltage of the power semiconductor, but the voltage of the power source 15 may be monitored.
  • the timing to be set is such that deterioration over time of the power conversion device can be ignored, for example, when the operation of the device starts or when the maintenance is completed.
  • the delay time recorded in this way is periodically compared with the delay time under the specified driving conditions when the power converter is operated, and the amount of change in the delay time exceeds or exceeds the set value.
  • the number of times exceeds a certain frequency it is determined as abnormal.
  • the driving condition for recording or determining the delay time defined here does not have to be one condition, and it is possible to further increase the determination accuracy of the temperature rise by increasing the number of conditions.
  • the delay time recorded by the recording judgment circuit 6 and the driving conditions at that time are output together by the external output circuit 8, and the numerical analysis and history investigation can be performed by an external PC or the like.
  • detailed evaluation of the presence or absence of abnormalities and remaining life becomes possible.
  • by changing the drive command in the command calculation circuit 7 in accordance with the result of the abnormality determination it becomes possible to reduce the heat generation of the power semiconductor, and even if the power semiconductor deteriorates, the method already described Therefore, it can be used for a long time by reducing the output of the power semiconductor.
  • FIG. 6 shows a block configuration of Example 4, which is still another embodiment of the power conversion device of the present invention, and particularly shows a configuration in which the function of the present invention is additionally provided in an existing power conversion device.
  • a signal branch circuit 31 is provided between the communication unit 23 and the sensor unit 33 connected to the logic unit 25, and abnormality is determined by the additional type determination circuit 36.
  • the signal branch circuit includes an optical or electric signal branch circuit, and an output buffer circuit 32 for transmitting the result to the additional determination circuit 36.
  • the output is numerically stabilized by the level determination circuit 34 and input to the delay time calculation abnormality determination circuit 35 as the extended time and drive condition, and the determination result based on this is output to the external output circuit 8 or the logic unit 25.
  • the power semiconductor and the power conversion device related thereto can be realized with a simple configuration. It is possible to provide a power conversion device that can detect abnormality and deterioration with high accuracy, prevent failures and other problems with high accuracy, and can be used for a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 電力用半導体の温度異常を電力用半導体を温度センサとして検出することで、素子や駆動回路、冷却系の劣化や異常を検出し、適切な処置を事前に講じることで稼働時の不良を防止しつつシステムの長寿命化を可能とする。具体的には、電力用半導体とこれを駆動指令する演算回路を備えた電力変換装置において、電力用半導体の駆動指令と、電力半導体に印加する制御用の駆動電圧の遅延時間から電力用半導体の温度異常を検出し、電力変換装置を保護する。電力用半導体とこれを駆動指令する演算回路を備えた電力変換装置において、駆動指令と電力半導体に印加する制御電圧の遅延時間と基準値とを比較判定し、その結果により、前期駆動指令および前記駆動電圧の少なくともいずれか一方を変化させる。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に鉄道車両や大型産業向けの電動機の制御用途や、電力系統用などの大容量の周波数変換装置に用いられる、電力用半導体スイッチ素子により構成される電力変換装置に関する。
 従来、電力用半導体が異常な動作をした場合に装置が損傷するのを回避するための技術として、電力用半導体を駆動する駆動回路に対する制御駆動指令信号と、駆動回路が電力用半導体を導通または遮断にするよう駆動する動作状態を検出する動作情報とを比較し、ある一定期間以上の不一致が生じた時に、駆動回路の異常動作と判定するものがあった(例えば、特許文献1参照)。
 また、従来、半導体チップ自身の温度異常を直接検知する技術として、制御指令信号と電力用半導体が遮断となるまでの遅れ時間を検出することで、電力用バイポーラトランジスタの温度上昇を検出するものがあった(例えば、特許文献2参照)。
特許第5049817号公報 特開平7-170724号公報
 鉄道車両や大型産業向けの電動機の制御用途や、電力系統用などの大容量の周波数変換装置などの電力変換器では、高圧かつ大電流の電力制御を行うが、素子の故障などが発生すると電源短絡などが発生し、装置が著しく不具合な状態に陥る可能性がある。こうした状況を防止する目的で、電力用半導体が異常な動作をした場合、極力早く装置を停止させ、装置の損傷を避ける必要がある。このため、電力用半導体を駆動する駆動回路に対する制御駆動指令信号と、駆動回路が電力用半導体を導通または遮断にするよう駆動する動作状態を検出する動作情報とを比較し、ある一定期間以上の不一致が生じた時に、駆動回路の異常動作と判定する異常検出方式が採用されている。このような方式の従来例としては、上記の特許文献1に記載の技術が挙げられ、図7にその構成例を示す。このような方式を用いた場合、駆動回路の異常動作を判定することが可能となるが、このようは検出方式では、電力半導体が電源短絡された状況となって初めて異常の検知が可能となるため、装置の損傷は防げるものの、その状態で稼働を継続することは、異常動作の繰り返し発生等も懸念されるため困難である。また、電力用半導体の故障等で電源短絡が発生した場合などでは、運転そのものが不可となってしまう。
 そこで、このような電源短絡に至るような装置の異常を事前に検知し、適切な処置を取ることが望ましい。このため、例えば電力用半導体の近傍に温度センサを設け、電力用半導体の過温度異常を検出する手法があるが、電力用半導体内での熱抵抗の上昇などによる半導体チップの温度上昇を検出することが困難である。そこで半導体チップ自身の温度異常を直接検知することが望まれる。このような例としては、従来、例えば、上記の特許文献2に記載された技術があった。その構成例を図8に示す。この例では、制御指令信号と電力用半導体が遮断となるまでの遅れ時間を検出することで、電力用バイポーラトランジスタの温度上昇を検出する。
 このような場合、電力用半導体の温度の異常な上昇を検知しようとするために、電療半導体の出力電圧を判定するための回路が必要となるが、大容量の電力変換装置では高電圧を制御するため、こうした分圧回路のサイズが大きく設置が困難であること、また3相交流を制御する場合などは、電力用半導体が少なくとも6素子必要でありこれらの電圧を評価するために最低でも3個の分圧回路が必要となること、また大電流を扱うためスイッチング時のノイズが大きくその対策が必要なことから適用が困難である。
 したがって、簡素な構成で電力用半導体ならびにこれに関連する電力変換装置の異常や劣化を高精度に検出して故障等の不具合を高精度に防ぐことが課題となり、さらには、それらを長期間使用可能とする方法を提供することが課題となる。
 上記の課題を解決するため、本発明の電力変換装置は、例えば、電力用半導体とこれを駆動指令する演算回路を備えた電力変換装置であって、前記電力用半導体の導通もしくは遮断の駆動指令と、前記駆動指令の変化により電力半導体に印加する駆動回路の出力電圧が判定値に到達するまでの遅延時間を算出する機能を持ち、特定の駆動条件での前記遅延時間と基準値とを比較判定し、その判定結果を記録、もしくは表示出力する、もしくは比較判定した結果により、前期駆動指令および前記駆動電圧の少なくともいずれか一方を変化させることを特徴とする。
 本発明によれば、簡素な構成で電力用半導体ならびにこれに関連する電力変換装置の異常や劣化を高精度に検出して故障等の不具合を高精度に防ぐことが可能となり、ひいては、それらを長期間使用可能とする方法を提供することが可能となる。
本発明の第1の実施形態である実施例1に係る電力変換装置のブロック構成を示す図である。 本発明の第1の実施形態である実施例1に係る電力変換装置の各信号の波形を示す図である。 本発明の第2の実施形態である実施例2に係る電力変換装置のブロック構成を示す図である。 本発明の第2の実施形態である実施例2に係る電力変換装置の各信号の波形を示す図である。 本発明の第3の実施形態である実施例3に係る電力変換装置のブロック構成を示す図である。 本発明の第4の実施形態である実施例4に係る電力変換装置のブロック構成を示す図である。 従来の電力変換装置の一例を示す図である。 従来の電力変換装置の他の一例を示す図である。
 本発明の電力変換装置は、電力用半導体とこれを駆動指令する演算回路を備えた電力変換装置であって、前記電力用半導体の導通もしくは遮断の駆動指令と、これにより電力半導体に印加する駆動回路の出力電圧が判定値に到達するまでの遅延時間を算出する機能を持ち、特定の駆動条件での前記遅延時間と基準値とを比較判定し、その判定結果を記録、もしくは表示出力する、もしくは比較判定した結果により、前期駆動指令および前記駆動電圧の少なくともいずれか一方を変化させることを特徴とする。電力用半導体としては、絶縁ゲートバイポーラトランジスタもしくはパワーMOSFET、もしくはMOSゲート制御型の電力半導体素子を用いてもよい。これらの構成において、前記基準値と比較判定する際の特定の駆動条件が、前記電力変換装置の出力電流値、電力用半導体に流れる出力電流の方向、電力用半導体の出力端子間電圧、電源電圧、電力変換装置内の温度のいずれか、もしくはこれらを組み合わせたものであるように構成してもよい。また、前記遅延時間と比較判定する前記基準値として、前記電力変換装置にて事前に計測した遅延時間を記録し、この値から演算して求めた値を用いてもよい。また、前記比較判定した結果を記録し、その回数もしくは時間間隔がある条件を満たした場合に、表示出力、もしくは前期駆動指令および前記駆動電圧の少なくともいずれか一方を変化させるように構成してもよい。また、前記比較判定した結果により、前記駆動指令もしくは前記駆動電圧を一定の期間、前記電力用半導体が遮断となるように変化させる構成としてもよい。また、前記比較判定した結果により、前記駆動指令での電力用半導体の導通指令の時間幅を減ずる構成としてもよい。また、前記演算回路と前記電力用半導体間に、前記駆動指令の信号、駆動回路の出力電圧が判定値に到達した結果の信号を通信する手段を備え、前記通信手段の信号および前記特定の駆動条件に関する信号を入力とする前記遅延時間と基準値とを比較判定する判定回路を備え、その判定結果を、前記演算回路もしくは前記駆動回路に出力する構成としてもよい。また、前記判定結果を記録し、その結果を外部に出力する通信手段を備える構成としてもよい。
 以下、本発明の電力変換装置の実施形態を、各実施例として、図面に基づいて詳細に説明する。
 図1は本発明の電力変換装置の第1の実施形態である実施例1のブロック構成を示し、図2はその駆動信号、制御電圧、判定出力波形の一例を示す。図1において本発明の電力変換装置は、駆動指令演算回路3により生成された駆動指令が駆動回路2により駆動電圧に変換され、電力用半導体1の導通、遮断を制御し、これにより負荷9を駆動する。さらに駆動指令に対し、駆動指令の変化により駆動電圧が一定の判定値に到達するまでの遅延時間を遅延算出回路4にて算出し、その遅延の値を異常判定回路5により基準値と比較し、その結果を出力するものである。図2は電力用半導体を遮断すなわちオフする場合の本発明の波形の実施の形態に示す。正常時には同一の駆動指令に対しある遅延時間tdを持って駆動電圧が変化する。しかるに電力半導体の特性からこの遅延時間は条件により変化するものとなっている。我々の調査から、この遅延時間は、電力用半導体の温度に依存することが確認された。このような温度依存性に関しては電力用半導体全般に生じるが、バイポーラトランジスタのように制御回路の出力電圧が1V以下の場合に比べ、MOSゲート制御型の素子では制御回路の出力電圧が数V~±10数Vと振幅が大きく、電力用半導体の導通、遮断時に発生するノイズに対するマージンが大きく取れるため、遅延時間の評価精度を高めることが可能となる。
 例えばMOSゲート制御型の電力用半導体である絶縁ゲートバイポーラトランジスタすなわちIGBTの場合、制御回路の電圧振幅が+15V、-12Vのオン、オフのスイッチングにおいて、適当な状態判定電圧を設定すれば、電力用半導体の温度上昇1℃当たり1ns程度の遅延時間の増加が測定で確認できている。これは、電力変換装置のオン、オフする制御電圧のしきい値や、これにより電流を導通、遮断する際の遅延時間の温度依存性を反映したものである。このため同様の温度依存性は、パワーMOSFETやそのほかのMOS制御型の電力変換装置でも生じ、遅延時間の判定で温度変化を検知可能である。
 図2の信号波形から解るように、実施例1は、ある一定の温度上昇に相当する規定値以上に遅延時間tdが増加した場合、異常の判定を出力する構成を示しており、これにより電力用半導体の温度が規定値以上となったことが検知され、その出力に応じで電力変換装置の損傷を防ぐための措置を取ることができる。図3は本発明の電力変換装置の別の実施の形態を示し、異常を判定した結果により、電力変換装置の損傷を防ぐため、駆動指令および駆動電圧を変化させる構成を示すものである。これらの実施例での電力変換装置の損傷を防ぐための具体的な措置としては、温度上昇が検知された電力用半導体を一定の期間オフする、もしくは装置内で温度上昇が検知された電力変換用半導体の温度上昇に関係する他の電力変換装置を一定の期間オフする、もしくは温度上昇が検知された電力変換用半導体の発熱を防ぐように、駆動指令を一定の期間変更して出力する構成がある。また、より高速に異常に対する処置を施すために、温度上昇が検知された判定出力により、駆動指令とは無関係に強制的に電力用半導体をオフさせる制御電圧を出力する構成でも良い。
 また、温度上昇が検知された電力変換用半導体の発熱を防ぐように、駆動指令を一定の期間変更して出力する構成としては、温度上昇が検知された時点から一定の期間、該当する電力用半導体に流れる電流の上限値を制限して低下させることで電力変換用半導体の発熱を減少させる、もしくは電力用半導体をオンする導通指令の時間幅の上限を設けるもしくは減少させ、電流が流れ温度上昇する期間を減じて、オフして温度を低下する期間を増やす、もしくは制御周期を減じてスイッチングの回数を減らし、導通、遮断で発生するスイッチング損失を減少させる構成がある。
 なお、図2の例では、規定値以上に遅延時間tdが増加した場合、異常の判定を出力する構成であるが、素子の特性の違いや出力電流などの動作条件によっては温度上昇時に遅延時間が減少する場合もあるため、その場合には遅延時間tdが減少した場合に異常判定するように規定値を設ければよい。
 図3は本発明の電力変換装置の別の実施形態である実施例2のブロック構成を示し、図4はその信号波形を示す。本実施例は異常を判定する方式の点で実施例1と異なるが、その他の点は実施例1と同様である。この実施例では、電力変換装置で事前に計測した遅延時間Δtdを記録しておき、稼働中にこの値を基に演算して設定する遅延時間変化の許容範囲の最小値Δtdm、最大値Δtdpと比較し、この範囲を逸脱した場合に異常の判定を出力する構成を示しており、これにより電力用半導体の温度が規定値以上となったことが検知され、その出力に応じで電力変換装置の損傷を防ぐための措置を取ることができる。損傷を防ぐための措置としては、先に述べたものと同様の方法をとることができる。
 図5は、本発明の電力変換装置の更に別の実施形態である実施例3のブロック構成を示し、電源15に接続され3相の電動機14を負荷とする3相の2レベルの電力変換装置を示すもので、特に遅延時間を判定する駆動条件と、判定結果の記録並びに判定結果に基づく駆動指令を変化させる構成の詳細を示すものである。図はU相下アームを制御する回路の詳細を示すが、U相上アームや、他のV相、W相も同様の構成となる。U相下アームの電力用半導体11となるIGBTは、論理部25の駆動指令演算回路3からの駆動指令を通信部23の通信手段18を経由し、駆動回路2の出力であるIGBTのゲートーエミッタ端子間に印加される駆動電圧により駆動される。この駆動電圧は電圧判定20により、既定の値との大小を比較判定され、その結果が通信手段19を経由して論理部25へ伝達される。駆動指令と、この伝達された判定結果との遅延時間が遅延算出回路にて算出され、記録判定回路6に入力する。記録判定回路6では、設定されたタイミングと駆動条件での遅延時間を記録する。この時駆動条件は駆動指令演算回路からの電流指令値などの駆動指令条件と、IGBTの近傍に設置された温度センサ16、電流センサ17、電圧センサ18からの信号から判定される温度、電流値並びに流れる方向、電力用半導体に印加される電圧の駆動条件の内、少なくとも1つ以上の条件があらかじめ設定した駆動条件に合致する場合に当たる。ここで、電圧センサは電力用半導体の印加電圧をモニタするものであるが、電源15の電圧をモニタしても良い。また設定するタイミングは、装置の稼働開始時や、メンテナンス完了時など、電力変換装置の経時劣化が無視できる場合が望ましい。
 このようにして記録した遅延時間と、その後電力変換装置が稼働した際の規定の駆動条件での遅延時間を定期的に比較し、遅延時間の変化量が設定した値を超えた場合、もしくは超えた回数がある一定の頻度を超えた場合に異常として判定する。また、遅延時間を一定のタイミングもしくは異常判定された時点で記録し、その間の遅延時間の変化量が一定の変化量を超えた場合に異常として判定することも可能である。なお、ここで規定する遅延時間を記録もしくは判定する駆動条件は、1つの条件である必要はなく、条件数を増やすことで温度上昇の判定精度をさらに高めることが可能である。
 上記の記録判定回路6で記録された遅延時間とその際の駆動条件は、併せて外部出力回路8により出力する構成となっており、外部のPC等でその数値解析や履歴の調査が可能で、異常の有無や残寿命の詳細評価が可能となる。さらに異常判定の結果に応じ、指令演算回路7で駆動指令を変更することで、電力用半導体の発熱を低減することが可能となり、電力用半導体の劣化が生じても、既に述べたような方法で、電力用半導体の出力を軽減することで長期間使用することが可能となる。
 図6は本発明の電力変換装置の更に別の実施形態である実施例4のブロック構成を示し、特に既存の電力変換装置に本発明の機能を追加で設ける構成を示すものである。この例では、論理部25と接続される通信部23、センサ部33の間に、信号分岐回路31を設け、追加型判定回路36にて異常判定するものである。信号分岐回路では、光もしくは電気信号の分岐回路を備え、その結果を追加型判定回路36に伝達するための出力バッファ回路32を備える。その出力はレベル判定回路34で数値安定され、延時間と駆動条件として遅延時間算出異常判定回路35に入力され、これに基づく判定結果が、外部出力回路8、もしくは論理部25に出力される。このような構成とすることで、既存の製品に追加で温度異常の検知や余寿命を評価する機能を付加することが可能となる。また、電力変換装置の定期検査などの際に、一時的に信号分岐回路31と追加型判定回路36とを挿入して稼働させ、遅延時間を評価することで、電力変換装置の健全性の確認が可能となる。
 以上、本発明の上記各実施例によれば、電力用半導体への駆動指令と駆動電圧の遅延時間から温度を検出することで、簡素な構成で電力用半導体ならびにこれに関連する電力変換装置の異常や劣化を高精度に検出し、故障等の不具合を高精度に防ぎ、さらに長期間使用可能な電力変換装置を提供可能である。
 なお、上記においては、本発明による電力用半導体の温度上昇検知による異常や劣化診断、保護の手法について説明したが、同様の温度異常を生じる電力変換装置の各部の劣化や異常に関しても、同様の方法で診断や保護が可能であることは言うまでもない。
 1 電力用半導体
 2 駆動回路
 3 駆動指令演算回路
 4 遅延算出回路
 5 異常判定回路
 6 記録判定回路
 7 指令演算回路
 8 外部出力回路
 9 負荷
 11、12 IGBT
 13 電流センサ
 14 電動機
 15 電源
 16 温度センサ
 17 電圧センサ
 18、19 通信手段
 20 電圧判定回路
 21、22 駆動部
 23、24 通信部
 25 論理部
 31 信号分岐回路
 32 出力バッファ回路
 33 センサ部
 34 レベル判定回路
 35 遅延算出・異常判定回路
 36 追加型判定回路

Claims (9)

  1.  電力用半導体とこれを駆動指令する演算回路を備えた電力変換装置であって、
     前記電力用半導体の導通もしくは遮断の駆動指令と、前記駆動指令の変化により電力半導体に印加する駆動回路の出力電圧が判定値に到達するまでの遅延時間を算出する機能を持ち、特定の駆動条件での前記遅延時間と基準値とを比較判定し、その判定結果を記録、もしくは表示出力する、もしくは比較判定した結果により、前期駆動指令および前記駆動電圧の少なくともいずれか一方を変化させる
    ことを特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記電力用半導体は、絶縁ゲートバイポーラトランジスタもしくはパワーMOSFET、もしくはMOSゲート制御型の電力半導体素子で構成される
    ことを特徴とする電力変換装置。
  3.  請求項1に記載の電力変換装置において、
     前記基準値と比較判定する際の特定の駆動条件が、前記電力変換装置の出力電流値、電力用半導体に流れる出力電流の方向、電力用半導体の出力端子間電圧、電源電圧、電力変換装置内の温度のいずれか、もしくはこれらの組合せで構成される
    ことを特徴とする電力変換装置。
  4.  請求項1に記載の電力変換装置において、
     前記遅延時間と比較判定する前記基準値として、前記電力変換装置にて事前に計測した遅延時間を記録し、この値から演算して求めた値を用いる
    ことを特徴とする電力変換装置。
  5.  請求項1に記載の電力変換装置において、
     前記比較判定した結果を記録し、その回数もしくは時間間隔がある条件を満たした場合に、表示出力、もしくは前期駆動指令および前記駆動電圧の少なくともいずれか一方を変化させる
    ことを特徴とする電力変換装置。
  6.  請求項1に記載の電力変換装置において、
     前記比較判定した結果により、前記駆動指令もしくは前記駆動電圧を一定の期間、前記電力用半導体が遮断となるように変化させる
    ことを特徴とする電力変換装置。
  7.  請求項1に記載の電力変換装置において、
     前記比較判定した結果により、電力用半導体に通流する電流の上限値を減ずる、もしくは前記駆動指令での電力用半導体の導通指令の時間幅を減ずる、もしくは導通、遮断の制御の周波数を減ずる
    ことを特徴とする電力変換装置。
  8.  請求項1に記載の電力変換装置において、
     前記演算回路と前記電力用半導体間に、前記駆動指令の信号、駆動回路の出力電圧が判定値に到達した結果の信号を通信する手段を備え、前記通信手段の信号および前記特定の駆動条件に関する信号を入力とする前記遅延時間と基準値とを比較判定する判定回路を備え、その判定結果を、前記演算回路もしくは前記駆動回路に出力する
    ことを特徴とする電力変換装置。
  9.  請求項1に記載の電力変換装置において、
     前記判定結果を記録し、その結果を外部に出力する通信手段を更に備える
    ことを特徴とする電力変換装置。
PCT/JP2015/073451 2014-09-19 2015-08-21 電力変換装置 WO2016042970A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/511,910 US20170282720A1 (en) 2014-09-19 2015-08-21 Power Converting Device
EP15841765.9A EP3197036B1 (en) 2014-09-19 2015-08-21 Power conversion device
CN201580048903.XA CN106716814A (zh) 2014-09-19 2015-08-21 电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-190673 2014-09-19
JP2014190673A JP6342275B2 (ja) 2014-09-19 2014-09-19 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016042970A1 true WO2016042970A1 (ja) 2016-03-24

Family

ID=55533012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073451 WO2016042970A1 (ja) 2014-09-19 2015-08-21 電力変換装置

Country Status (5)

Country Link
US (1) US20170282720A1 (ja)
EP (1) EP3197036B1 (ja)
JP (1) JP6342275B2 (ja)
CN (1) CN106716814A (ja)
WO (1) WO2016042970A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496088A (zh) * 2016-05-09 2018-09-04 株式会社日立制作所 电力变换装置的诊断系统、半导体模块的诊断方法以及电力变换装置
JP2020065386A (ja) * 2018-10-18 2020-04-23 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096718B2 (ja) * 2014-06-13 2017-03-15 ファナック株式会社 複数のptcサーミスタを備えた電動機の過熱検出装置
EP3522352B1 (en) * 2016-09-27 2022-04-27 Hitachi, Ltd. Electrical device, and diagnostic apparatus for electrical device
JP6825975B2 (ja) * 2017-04-21 2021-02-03 株式会社日立製作所 電力変換装置、その診断システム、診断方法、及びそれを用いた電動機制御システム
JP6853147B2 (ja) * 2017-09-06 2021-03-31 株式会社日立製作所 電力変換装置、電動機制御システム、および電力変換装置の診断方法
EP3738830A4 (en) 2018-01-11 2021-09-22 Koito Manufacturing Co., Ltd. VEHICLE LIGHT
JP7043327B2 (ja) * 2018-04-09 2022-03-29 株式会社日立製作所 電力変換装置および電力変換装置の診断システム
DE102018219293A1 (de) * 2018-11-12 2020-05-14 Kaco New Energy Gmbh Wechselrichter
JP7133502B2 (ja) * 2019-03-26 2022-09-08 株式会社日立ビルシステム 電力変換装置の診断装置及び電力変換装置の診断方法
JP7295519B2 (ja) * 2020-04-03 2023-06-21 学校法人長崎総合科学大学 電力変換装置の劣化推定装置および劣化推定プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281291A (ja) * 1992-03-31 1993-10-29 Osaka Gas Co Ltd 電子回路の劣化診断方法および装置とそのための異常波形検出方法および装置
JPH07170724A (ja) * 1993-12-10 1995-07-04 Toshiba Corp スイッチ素子の駆動回路
JPH1124762A (ja) * 1997-07-07 1999-01-29 Sanken Electric Co Ltd 過電流保護方法及び装置
JP2004140891A (ja) * 2002-10-16 2004-05-13 Mitsubishi Electric Corp 電力変換装置
JP2008172938A (ja) * 2007-01-12 2008-07-24 Meidensha Corp 冷却装置の異常診断装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385215B (zh) * 2006-02-27 2010-11-10 富士通株式会社 电源装置及其控制方法
JP4740320B2 (ja) * 2006-04-06 2011-08-03 三菱電機株式会社 半導体素子の駆動回路
US8102133B2 (en) * 2008-07-09 2012-01-24 System General Corporation Control circuit for BLDC motors
JP5418304B2 (ja) * 2010-02-26 2014-02-19 富士電機株式会社 電力変換器
US9391604B2 (en) * 2012-01-23 2016-07-12 Infineon Technologies Austria Ag Methods for monitoring functionality of a switch and driver units for switches

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281291A (ja) * 1992-03-31 1993-10-29 Osaka Gas Co Ltd 電子回路の劣化診断方法および装置とそのための異常波形検出方法および装置
JPH07170724A (ja) * 1993-12-10 1995-07-04 Toshiba Corp スイッチ素子の駆動回路
JPH1124762A (ja) * 1997-07-07 1999-01-29 Sanken Electric Co Ltd 過電流保護方法及び装置
JP2004140891A (ja) * 2002-10-16 2004-05-13 Mitsubishi Electric Corp 電力変換装置
JP2008172938A (ja) * 2007-01-12 2008-07-24 Meidensha Corp 冷却装置の異常診断装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496088A (zh) * 2016-05-09 2018-09-04 株式会社日立制作所 电力变换装置的诊断系统、半导体模块的诊断方法以及电力变换装置
EP3457149A4 (en) * 2016-05-09 2020-01-22 Hitachi, Ltd. DIAGNOSTIC SYSTEM FOR A POWER CONVERSION DEVICE, DIAGNOSTIC METHOD FOR A SEMICONDUCTOR MODULE, AND POWER CONVERSION DEVICE
US11016138B2 (en) 2016-05-09 2021-05-25 Hitachi, Ltd. Diagnosis system for power conversion device, diagnosis method for semiconductor module, and power conversion device
JP2020065386A (ja) * 2018-10-18 2020-04-23 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法
JP7085453B2 (ja) 2018-10-18 2022-06-16 株式会社日立製作所 電力変換装置及び電力変換装置の診断方法

Also Published As

Publication number Publication date
CN106716814A (zh) 2017-05-24
JP2016063667A (ja) 2016-04-25
EP3197036A4 (en) 2018-04-25
JP6342275B2 (ja) 2018-06-13
EP3197036A1 (en) 2017-07-26
US20170282720A1 (en) 2017-10-05
EP3197036B1 (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP6342275B2 (ja) 電力変換装置
JP6853147B2 (ja) 電力変換装置、電動機制御システム、および電力変換装置の診断方法
US20160173094A1 (en) Gate driver circuit and gate driving method for prevention of arm short
KR101592780B1 (ko) 친환경 자동차의 커넥터 체결 불량 검출 방법
KR102021864B1 (ko) 전력 제어용 스위칭 소자의 구동회로
WO2016207954A1 (ja) 電力変換装置、電力変換装置の診断システム、および診断方法
WO2018193712A1 (ja) 電力変換装置、その診断システム、診断方法、及びそれを用いた電動機制御システム
JP5911014B2 (ja) インバータ装置およびインバータ装置の異常検出方法
CN111092563B (zh) 功率变换装置以及功率变换装置的诊断方法
WO2019198775A1 (ja) 診断装置及び診断システム
WO2021241137A1 (ja) 故障検知装置及びその方法
JP6413825B2 (ja) 駆動装置
JP2001238432A (ja) 半導体電力変換装置
JP2010252576A (ja) 電流制御装置
JP6632936B2 (ja) エレベータの制御装置
JP7072497B2 (ja) 電力変換装置およびその状態監視方法
JP7438157B2 (ja) 故障検出装置、故障検出方法及び半導体スイッチ装置
WO2017085825A1 (ja) 電力変換装置、および車両制御システム
JP7259779B2 (ja) 過電流検出装置
US10288696B2 (en) Intelligent diagnosis system for power module and method thereof
JP2018026946A (ja) 電力変換装置、電力変換装置の寿命診断方法、電力変換装置のスイッチング素子温度検出方法および電力変換システム
JP2022528438A (ja) パワーデバイスモニタリングシステム及びモニタリング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841765

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015841765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15511910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE