WO2016042842A1 - ヘテロ接合型バックコンタクトセルおよび光電変換装置 - Google Patents
ヘテロ接合型バックコンタクトセルおよび光電変換装置 Download PDFInfo
- Publication number
- WO2016042842A1 WO2016042842A1 PCT/JP2015/064473 JP2015064473W WO2016042842A1 WO 2016042842 A1 WO2016042842 A1 WO 2016042842A1 JP 2015064473 W JP2015064473 W JP 2015064473W WO 2016042842 A1 WO2016042842 A1 WO 2016042842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor film
- wiring
- photoelectric conversion
- electrode
- conversion device
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 129
- 125000005842 heteroatom Chemical group 0.000 title abstract 2
- 239000004065 semiconductor Substances 0.000 claims abstract description 200
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 description 52
- 230000006866 deterioration Effects 0.000 description 43
- 239000012535 impurity Substances 0.000 description 25
- 229910021417 amorphous silicon Inorganic materials 0.000 description 23
- 238000000034 method Methods 0.000 description 21
- 238000009792 diffusion process Methods 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 12
- 229910052709 silver Inorganic materials 0.000 description 12
- 239000004332 silver Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 238000005530 etching Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000000969 carrier Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- -1 polyethylene naphthalate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
- H01L31/0747—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a heterojunction back contact cell and a photoelectric conversion device.
- the most manufactured and sold solar cells have a structure in which electrodes are formed on a light receiving surface that is a surface on which sunlight is incident and a back surface that is opposite to the light receiving surface, respectively.
- FIG. 19 shows a schematic cross-sectional view of a solar cell with a wiring sheet described in Patent Document 1.
- the conventional solar cell with a wiring sheet shown in FIG. 19 has a back electrode type solar cell 100, a wiring sheet 200, and an insulating resin 300 between the back electrode type solar cell 100 and the wiring sheet 200. is doing.
- the back electrode type solar cell 100 includes a substrate 101 made of polycrystalline silicon or single crystal silicon having n-type or p-type conductivity, and an n-type impurity diffusion region 102 provided on the back surface of the substrate 101. And a p-type impurity diffusion region 103, an n-type silver electrode 111 provided on the n-type impurity diffusion region 102, and a p-type silver electrode 112 provided on the p-type impurity diffusion region 103. Yes.
- the n-type impurity diffusion region 102 is formed by a method such as vapor phase diffusion using a gas containing an n-type impurity or coating diffusion in which a heat treatment is applied after applying a paste containing an n-type impurity (see paragraph [0076 of Patent Document 1). ]).
- the p-type impurity diffusion region 103 is formed by a method such as vapor phase diffusion using a gas containing a p-type impurity or coating diffusion in which a heat treatment is applied after applying a paste containing a p-type impurity (paragraph of Patent Document 1). [0076]).
- the wiring sheet 200 has an insulating base material 201, an n-type copper wiring 202 and a p-type copper wiring 203 provided on the insulating base material 201.
- the insulating base 201 for example, polyester, polyethylene naphthalate, polyimide, or the like is used (paragraph [0090] of Patent Document 1).
- the insulating resin 300 an epoxy resin, an acrylic resin, or a mixed resin of an epoxy resin and an acrylic resin is used (paragraph [0098] of Patent Document 1).
- the end in the width W5 direction of the n-type silver electrode 111 and the end in the width W5 direction of the p-type silver electrode 112 are respectively n-type copper wiring 202.
- the electric field strength applied to the surfaces of the n-type silver electrode 111 and the p-type silver electrode 112 is abruptly prevented from protruding from the end in the width W6 direction and the end of the p-type copper wiring 203 in the width W6 direction. It is said that an increase can be suppressed and a decrease in characteristics due to ion migration can be stably suppressed (paragraph [0061] of Patent Document 1).
- the heterojunction back contact cell Since the heterojunction back contact cell has high contact resistance between the electrode and the amorphous semiconductor film, the characteristics of the photoelectric conversion device configured by electrically connecting the heterojunction back contact cell to the wiring sheet From the viewpoint of suppressing the decrease, it is required to increase the contact area of the electrode with respect to the amorphous semiconductor film as compared with the back electrode type solar cell 100 of Patent Document 1 shown in FIG.
- the contact area of the electrode with respect to the amorphous semiconductor film is increased, the distance between the electrodes of the heterojunction back contact cell is reduced. Therefore, there is a high possibility that the wiring of the wiring sheet contacts with the electrodes of different polarities of the heterojunction back contact cell and short-circuits. Thereby, the reliability of the photoelectric conversion apparatus comprised by electrically connecting a heterojunction type back contact cell to a wiring sheet falls.
- An embodiment disclosed herein includes a semiconductor substrate of a first conductivity type or a second conductivity type, a first conductivity type amorphous semiconductor film provided on one side of the semiconductor substrate, and a second conductivity type amorphous A semiconductor film, a first electrode on the first conductive type amorphous semiconductor film, and a second electrode on the second conductive type amorphous semiconductor film, between the centers of adjacent electrodes of the same polarity adjacent to each other This is a heterojunction back contact cell having a distance of 1 mm to 3.5 mm.
- An embodiment disclosed herein includes the above heterojunction back contact cell and a wiring sheet electrically connected to the heterojunction back contact cell.
- the wiring sheet includes an insulating substrate and an insulating substrate.
- a photoelectric conversion device comprising a first wiring and a second wiring on a conductive substrate, wherein the first electrode is electrically connected to the first wiring, and the second electrode is electrically connected to the second wiring. .
- the reliability of the photoelectric conversion device can be improved while suppressing the deterioration of the characteristics of the photoelectric conversion device configured by electrically connecting the heterojunction back contact cell to the wiring sheet.
- a heterojunction back contact cell and a photoelectric conversion device that can be improved can be provided.
- FIG. 1 is a schematic cross-sectional view of a photoelectric conversion device according to Embodiment 1.
- FIG. It is a typical top view of the back surface of a heterojunction type back contact cell. It is a typical top view of a wiring sheet.
- FIG. 1 is a schematic plan view of a photoelectric conversion device according to Embodiment 1.
- FIG. 6 is a schematic cross-sectional view of a photoelectric conversion apparatus according to Embodiment 2.
- FIG. 1 is a schematic plan view of a photoelectric conversion device according to Embodiment 1.
- FIG. 6 is a schematic cross-sectional view of a photoelectric conversion apparatus according to Embodiment 2.
- FIG. 6 is a schematic cross-sectional view of a photoelectric conversion device according to a fourth embodiment. 2 is a schematic cross-sectional view of a solar cell with a wiring sheet described in Patent Document 1.
- FIG. 1 is a schematic cross-sectional view of the photoelectric conversion device according to the first embodiment.
- the photoelectric conversion device of Embodiment 1 includes a heterojunction back contact cell 10 and a wiring sheet 20 electrically connected to the heterojunction back contact cell 10.
- the heterojunction back contact cell 10 is provided in contact with the back surface of the semiconductor substrate 1 so as to be adjacent to the semiconductor substrate 1 that is an n-type single crystal silicon substrate and the one surface (back surface) of the semiconductor substrate 1.
- the first i-type amorphous semiconductor film 2 and the second i-type amorphous semiconductor film 4 are provided.
- each of the first i-type amorphous semiconductor film 2 and the second i-type amorphous semiconductor film 4 is an i-type amorphous silicon film.
- first conductive type amorphous semiconductor film 3 in contact with the first i-type amorphous semiconductor film 2 is provided.
- second i-type amorphous semiconductor film 4 On the second i-type amorphous semiconductor film 4, a second conductivity-type amorphous semiconductor film 5 in contact with the second i-type amorphous semiconductor film 4 is provided.
- the first conductive amorphous semiconductor film 3 is a p-type amorphous silicon film
- the second conductive amorphous semiconductor film 5 is an n-type amorphous silicon film.
- first electrode 11 in contact with the first conductive type amorphous semiconductor film 3 is provided on the first conductive type amorphous semiconductor film 3.
- a second electrode 12 in contact with the second conductive type amorphous semiconductor film 5 is provided on the second conductive type amorphous semiconductor film 5.
- both end portions of the stacked body of the second i-type amorphous semiconductor film 4 and the second conductive type amorphous semiconductor film 5 are respectively connected to the first i-type amorphous semiconductor film 2 and the first conductive type.
- the edge part of the laminated body with the type amorphous semiconductor film 3 is covered. Therefore, the end of the second i-type amorphous semiconductor film 4 is located between the first conductive type amorphous semiconductor film 3 and the second conductive type amorphous semiconductor film 5, and the second Both ends of the i-type amorphous semiconductor film 4 are in contact with both the first conductive type amorphous semiconductor film 3 and the second conductive type amorphous semiconductor film 5.
- the first conductive amorphous semiconductor film 3 and the second conductive amorphous semiconductor film 5 are separated by the second i-type amorphous semiconductor film 4. Further, the stacked body of the second i-type amorphous semiconductor film 4 and the second conductive type amorphous semiconductor film 5 has a back surface of the semiconductor substrate 1 between the adjacent first electrode 11 and second electrode 12. Protrudes to the side.
- Concavities and convexities 1 a are formed on the light receiving surface which is the other main surface of the semiconductor substrate 1.
- An amorphous semiconductor film 6 is provided on the unevenness 1 a of the light receiving surface of the semiconductor substrate 1.
- An antireflection film 7 is provided on the amorphous semiconductor film 6.
- the amorphous semiconductor film 6 may be, for example, an i-type amorphous silicon film or a laminate of an i-type amorphous silicon film and an n-type amorphous silicon film.
- the antireflection film 7 for example, a silicon nitride film or the like can be used.
- FIG. 2 is a schematic plan view of the back surface of the heterojunction back contact cell 10 according to the first embodiment. As shown in FIG. 2, a strip-shaped first electrode 11 and a strip-shaped second electrode 12 are spaced apart from each other on the back surface of the semiconductor substrate 1 of the heterojunction back contact cell 10. The second electrodes 12 are alternately arranged so that the longitudinal directions thereof are the same.
- the center distance D between adjacent electrodes of the same polarity adjacent to each other in the heterojunction back contact cell 10 is 1 mm or more and 3.5 mm or less, preferably 2 mm or more and 3.5 mm or less.
- the center-to-center distance D between adjacent electrodes of the same polarity adjacent to each other is the two adjacent electrodes that are adjacent to each other among the electrodes electrically connected to the same conductivity type semiconductor film.
- the shortest distance between the centers 11a in the width direction of the adjacent first electrodes 11 and the shortest distance between the centers 12a in the width direction of the adjacent second electrodes 12 are the closest. This corresponds to the center distance D between electrodes of the same polarity.
- FIG. 3 shows a schematic plan view of the wiring sheet 20.
- the wiring sheet 20 includes an insulating base material 21, first wirings 22 and second wirings 23 on the insulating base material 21.
- the first wirings 22 and the second wirings 23 are also formed in a band shape, and are spaced apart from each other on the insulating base material 21 so that the longitudinal directions of these wirings are the same direction. Has been placed.
- one end of the plurality of first wirings 22 and one end of the plurality of second wirings 23 are electrically connected to a strip-shaped current collection wiring 24, respectively.
- the current collecting wiring 24 is disposed on the insulating base material 21 so as to have a longitudinal direction in a direction orthogonal to the longitudinal directions of the first wiring 22 and the second wiring 23.
- the current collection wiring 24 has a function of collecting current from the plurality of first wirings 22 or the plurality of second wirings 23.
- an insulating substrate can be used.
- a film of polyester, polyethylene naphthalate, polyimide, or the like can be used.
- first wiring 22, the second wiring 23, and the current collecting wiring 24 a conductive material can be used, for example, copper or the like can be used.
- the first wiring 22, the second wiring 23, and the current collecting wiring 24 are each formed, for example, by forming a conductive film such as a metal film on the entire surface of the insulating base 21 and then etching a part thereof. It can be formed by removing and patterning.
- the wiring interval W1 between the first wiring 22 and the second wiring 23 adjacent to each other is equal to the first wiring 22 and the second wiring 23 adjacent to each other.
- the shortest distance between the side surface 22a on the second wiring 23 side and the side surface 23a on the first wiring 22 side of the second wiring 23 is set.
- a semiconductor substrate 1 is produced in which an unevenness 1 a is formed on a light receiving surface, and a laminated body of an amorphous semiconductor film 6 and an antireflection film 7 is provided on the unevenness 1 a, and the semiconductor A first i-type amorphous semiconductor film 2 is formed on the entire back surface of the substrate 1.
- the method for forming the first i-type amorphous semiconductor film 2 is not particularly limited. For example, a plasma CVD (Chemical Vapor Deposition) method can be used.
- an n-type single crystal silicon substrate can be preferably used, but is not limited to an n-type single crystal silicon substrate, and for example, a conventionally known n-type semiconductor substrate can be used as appropriate.
- an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film.
- a quality semiconductor film can also be used.
- the unevenness 1a on the light receiving surface of the semiconductor substrate 1 can be formed by, for example, texture etching, and the amorphous semiconductor film 6 and the antireflection film 7 can be formed by, for example, a plasma CVD method.
- i-type means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ (Less than 10 15 / cm 3 ) is meant to include n-type or p-type impurities.
- amorphous silicon includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon such as hydrogenated amorphous silicon. Also included are those in which dangling bonds of atoms are terminated with hydrogen.
- a first conductivity type amorphous semiconductor film 3 is formed on the first i-type amorphous semiconductor film 2.
- the formation method of the 1st conductivity type amorphous semiconductor film 3 is not specifically limited, For example, plasma CVD method can be used.
- the first conductive type amorphous semiconductor film 3 a p-type amorphous silicon film can be preferably used.
- the first conductive type amorphous semiconductor film 3 is not limited to a p-type amorphous silicon film.
- a semiconductor film can also be used.
- p-type impurity contained in the first conductive type amorphous semiconductor film 3 for example, boron can be used.
- p-type means a state where the p-type impurity concentration is 1 ⁇ 10 15 / cm 3 or more.
- a stacked body of the first i-type amorphous semiconductor film 2 and the first conductive-type amorphous semiconductor film 3 is formed on the first conductive-type amorphous semiconductor film 3.
- An etching mask 31 such as a photoresist having an opening at a portion to be etched in the thickness direction is formed.
- etching mask 31 As a mask, a part of the stack of the first i-type amorphous semiconductor film 2 and the first conductive amorphous semiconductor film 3 is formed in the thickness direction. Etch into. Thereby, a part of the back surface of the semiconductor substrate 1 is exposed. Thereafter, as shown in FIG. 8, all the etching mask 31 is removed.
- the second i-type is formed so as to cover the semiconductor substrate 1 and the stacked body of the first i-type amorphous semiconductor film 2 and the first conductive-type amorphous semiconductor film 3.
- An amorphous semiconductor film 4 is formed.
- the method for forming the second i-type amorphous semiconductor film 4 is not particularly limited, and for example, a plasma CVD method can be used.
- an i-type amorphous silicon film can be suitably used, but is not limited to an i-type amorphous silicon film.
- a conventionally known i-type amorphous silicon film is used.
- a quality semiconductor film can also be used.
- a second conductivity type amorphous semiconductor film 5 is formed on the second i-type amorphous semiconductor film 4.
- the formation method of the 2nd conductivity type amorphous semiconductor film 5 is not specifically limited, For example, plasma CVD method can be used.
- an n-type amorphous silicon film can be preferably used, but is not limited to an n-type amorphous silicon film.
- a conventionally known n-type amorphous silicon film is used.
- a semiconductor film can also be used.
- n-type impurity contained in the n-type amorphous silicon film constituting the second conductivity type amorphous semiconductor film 5 for example, phosphorus can be used.
- n-type means a state where the n-type impurity concentration is 1 ⁇ 10 15 / cm 3 or more.
- the photoresist is applied only to the portion where the stacked body of the second i-type amorphous semiconductor film 4 and the second conductive type amorphous semiconductor film 5 is left on the back surface of the semiconductor substrate 1.
- Etching mask 32 is formed.
- etching mask 32 As a mask, a part of the stacked body of the second i-type amorphous semiconductor film 4 and the second conductive type amorphous semiconductor film 5 is wet-etched in the thickness direction, As shown in FIG. 12, a part of the first conductive type amorphous semiconductor film 3 is exposed. Thereafter, the etching mask 32 is completely removed.
- the first electrode 11 is formed so as to contact the first conductive type amorphous semiconductor film 3, and the second electrode 12 is set so as to contact the second conductive type amorphous semiconductor film 5.
- the first electrode 11 and the second electrode 12 are preferably 2 mm or more and 3.5 mm or less so that the center-to-center distance D between adjacent adjacent electrodes of the same polarity is 1 mm or more and 3.5 mm or less.
- the formation method of the 1st electrode 11 and the 2nd electrode 12 is not specifically limited, For example, a vapor deposition method etc. can be used.
- the heterojunction back contact cell 10 is completed.
- the heterojunction back contact cell 10 and the wiring sheet 20 are overlaid as shown in FIG.
- the first electrode 11 of the heterojunction back contact cell 10 is in direct contact with the first wiring 22 of the wiring sheet 20
- the second electrode 12 of the heterojunction back contact cell 10 is the second wiring 23 of the wiring sheet 20.
- the heterojunction back contact cell 10 and the wiring sheet 20 are overlapped so as to be in direct contact with each other. Thereby, the first electrode 11 and the first wiring 22 are electrically connected, and the second electrode 12 and the second wiring 23 are electrically connected.
- the heterojunction back contact cell 10 and the wiring sheet 20 are fixed and mechanically connected by curing an insulating adhesive.
- FIG. 15 shows a schematic plan view of the photoelectric conversion device of Embodiment 1 as viewed from the light receiving surface side.
- a plurality of heterojunction back contact cells 10 are installed on the wiring sheet 20, but the number of heterojunction back contact cells 10 installed on the wiring sheet 20 is not particularly limited, for example, one It may be.
- the center-to-center distance D between adjacent electrodes of the same polarity adjacent to each other in the heterojunction back contact cell 10 is 1 mm to 3.5 mm, preferably 2 mm. It is 3.5 mm or less. This has been found by the inventors as a result of intensive studies by improving the characteristics of a photoelectric conversion device configured by electrically connecting the heterojunction back contact cell 10 to the wiring sheet 20.
- an n-type impurity and a p-type impurity are diffused into the substrate 101 having either n-type or p-type conductivity, respectively.
- a pn junction was formed by forming the type impurity diffusion region 102 and the p type impurity diffusion region 103.
- the contact resistance with the electrode becomes very small due to the diffused n-type impurity and p-type impurity, it is not necessary to form a wide electrode. Therefore, in the back electrode type solar cell 100 of Patent Document 1 shown in FIG.
- the end in the width W3 direction of the n-type silver electrode 111 and the end in the width W3 direction of the p-type silver electrode 112 are respectively n-type copper wirings.
- the electrode structure is such that it does not protrude from the end in the width W4 direction of 202 and the end in the width W4 direction of the p-type copper wiring 203 (see paragraph [0066] of Patent Document 1).
- the contact resistance between the first electrode 11 and the first conductive amorphous semiconductor film 3 and the second electrode 12 and the second conductive Since the contact resistance with the first amorphous semiconductor film 5 is high, the contact area of the first electrode 11 with respect to the first conductive amorphous semiconductor film 3 and the second electrode with respect to the second conductive amorphous semiconductor film 5
- the contact area of 12 is required to be larger than that of the back electrode type solar cell 100 of Patent Document 1 shown in FIG.
- Patent Literature Since the number of electrodes that can be disposed on the back surface of the semiconductor substrate 1 is reduced as compared with the single back electrode type solar battery cell 100, it is generally considered that the characteristics are deteriorated.
- the heterojunction back contact cell 10 in which the distance D between the centers of adjacent electrodes of the same polarity adjacent to each other is 1 mm or more and 3.5 mm or less. Is a short-circuit current density J sc and an open-circuit voltage compared to the case where the distance D between centers of adjacent electrodes of the same polarity adjacent to each other is less than 1 mm due to the long diffusion length of minority carriers unique to the heterojunction back contact cell 10. It has been confirmed that the loss of V oc can be reduced.
- the distance D between the centers of adjacent electrodes of the same polarity adjacent to each other is 1 mm or more, preferably 2 mm or more, the adjacent first wiring 22 of the wiring sheet 20 and Since the space between the second wiring 23 can be increased, the wiring of the wiring sheet 20 is in contact with electrodes of different polarities of the heterojunction back contact cell 10 (contact between the first wiring 22 and the second electrode 12, and the first It has been found that the possibility of short circuit due to contact between the two wirings 23 and the first electrode 11 can be significantly reduced.
- the first wiring 22 and the second wiring are connected to the heterojunction back contact cell 10.
- the photoelectric conversion device can be manufactured by using the wiring sheet 20 in which the width of each of the wirings 23 is about 400 ⁇ m and the wiring interval W1 between the adjacent first wirings 22 and the second wirings 23 is about 600 ⁇ m.
- the wiring of the wiring sheet 20 is heterojunction back contact cell 10. It is considered that the possibility of short-circuiting with electrodes having different polarities can be significantly reduced.
- the reliability of the photoelectric conversion device is improved while suppressing the deterioration of the characteristics of the photoelectric conversion device configured by electrically connecting the heterojunction back contact cell to the wiring sheet.
- a heterojunction back contact cell, a photoelectric conversion device, a method for manufacturing a heterojunction back contact cell, and a method for manufacturing a photoelectric conversion device that can be improved can be provided.
- the center-to-center distance D between at least a part of adjacent electrodes of the same polarity adjacent to each other on the back surface side of the semiconductor substrate 1 may be 1 mm or more and 3.5 mm or less.
- the center-to-center distance D between adjacent electrodes of the same polarity adjacent to each other may be smaller than the above range.
- the fill factor (FF) of the heterojunction back contact cell 10 can be increased. Thereby, the deterioration of the characteristic of the photoelectric conversion apparatus of Embodiment 1 comprised by electrically connecting the heterojunction type back contact cell 10 with the wiring sheet 20 can be suppressed.
- the center-to-center distance D between adjacent electrodes of the same polarity such as 1 mm to 3.5 mm, preferably 2 mm to 3.5 mm as described above, can be taken.
- the manufacturing efficiency of the first electrode 11 and the second electrode 12 of the contact cell 10 can be improved. Thereby, the manufacturing yield of the heterojunction back contact cell 10 can be improved.
- the manufacturing efficiency of the first wiring 22 and the second wiring 23 of the wiring sheet 20 can be increased. Can be improved. Thereby, the manufacturing yield of the wiring sheet 20 can be improved.
- FIG. 16 is a schematic cross-sectional view of the photoelectric conversion device according to the second embodiment.
- the first electrode 11 and the first wiring 22 are electrically connected through the conductive adhesive 41
- the second electrode 12 and the second wiring 23 are conductive. It is characterized by being electrically connected through an adhesive 41.
- the conductive adhesive 41 is conductive and can be made of a material that can bond the electrode and the wiring. For example, solder or the like can be used.
- At least one of the electrical connections between the first electrode 11 and the first wiring 22 is an electrical connection through the conductive adhesive 41, and the remaining electrical connection between the first electrode 11 and the first wiring 22. May be electrically connected by direct contact.
- at least one of the electrical connections between the second electrode 12 and the second wiring 23 is an electrical connection through the conductive adhesive 41, and the remaining electrical connection between the second electrode 12 and the second wiring 23. May be electrically connected by direct contact.
- FIG. 17A shows a schematic cross-sectional view illustrating a part of the manufacturing process of the photoelectric conversion device of the third embodiment
- FIG. 17B shows a schematic cross-sectional view of the photoelectric conversion device of the third embodiment. Show.
- the photoelectric conversion device of Embodiment 3 uses the above-described insulating adhesive and conductive adhesive 41 for joining the first electrode 11 and the first wiring 22 and joining the second electrode 12 and the second wiring 23. After the heterojunction back contact cell 10 and the wiring sheet 20 are aligned, the heterojunction back contact cell 10 and the wiring sheet 20 are adhered to each other by, for example, vacuum lamination as shown in FIG. Thus, the electrical connection between the first electrode 11 and the first wiring 22 and the electrical connection between the second electrode 12 and the second wiring 23 are performed. Thereby, similarly to the photoelectric conversion device of the first embodiment, the photoelectric conversion device of the third embodiment in which the distance between the centers of adjacent electrodes of the same polarity adjacent to each other is 1 mm or more and 3.5 mm or less is obtained.
- FIG. 18 is a schematic cross-sectional view of the photoelectric conversion device of Embodiment 4.
- the width W3 of the first electrode 11 is wider than the width W4 of the second electrode 12, and the width W3 of the first electrode 11 and the width W4 of the second electrode 12 are different. It is characterized by being. Also in this case, the above effect can be obtained when the distance D between the centers of adjacent electrodes of the same polarity adjacent to each other is 1 mm to 3.5 mm, preferably 2 mm to 3.5 mm. it can.
- the width W4 of the first electrode 11 may be different from the width W4 of the second electrode 12 by making the width W4 of the second electrode 12 wider than the width W3 of the first electrode 11. Also in this case, the above effect can be obtained when the distance D between the centers of adjacent electrodes of the same polarity adjacent to each other is 1 mm to 3.5 mm, preferably 2 mm to 3.5 mm. it can.
- An embodiment disclosed herein includes a semiconductor substrate of a first conductivity type or a second conductivity type, a first conductivity type amorphous semiconductor film provided on one side of the semiconductor substrate, and a second conductivity type
- An amorphous semiconductor film, a first electrode on the first conductive type amorphous semiconductor film, and a second electrode on the second conductive type amorphous semiconductor film, and adjacent adjacent electrodes of the same polarity Is a heterojunction back contact cell having a distance between the centers of 1 mm and 3.5 mm.
- the center-to-center distance between adjacent electrodes of the same polarity adjacent to each other is 1 mm or more and 3.5 mm or less. Therefore, the heterojunction back contact cell is used as a wiring sheet. It is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device configured by electrical connection.
- the distance between the centers of adjacent electrodes of the same polarity adjacent to each other is 2 mm or more. In this case, it is possible to further improve the reliability of the photoelectric conversion device while suppressing deterioration of the characteristics of the photoelectric conversion device.
- the first electrode and the second electrode each have a strip shape. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- a heterojunction back contact cell includes a first i-type amorphous semiconductor film between a semiconductor substrate and a first conductive amorphous semiconductor film, a semiconductor substrate, It is preferable to further include a second i-type amorphous semiconductor film between the second conductive type amorphous semiconductor film. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the first i-type amorphous semiconductor film preferably includes i-type amorphous silicon. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the second i-type amorphous semiconductor film preferably contains i-type amorphous silicon. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the semiconductor substrate and the first i-type amorphous semiconductor film are preferably in contact with each other. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the semiconductor substrate and the second i-type amorphous semiconductor film are in contact with each other. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the first i-type amorphous semiconductor film and the first conductive amorphous semiconductor film are in contact with each other. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the second i-type amorphous semiconductor film and the second conductive amorphous semiconductor film are in contact with each other. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the second i-type amorphous semiconductor film is interposed between the first conductive amorphous semiconductor film and the second conductive amorphous semiconductor film.
- the end of the semiconductor film is preferably located. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the end of the second i-type amorphous semiconductor film is formed of the first conductive type amorphous semiconductor film and the second conductive type amorphous semiconductor. It is preferable to be in contact with each of the crystalline semiconductor films. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the semiconductor substrate preferably contains n-type crystalline silicon. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the semiconductor substrate is provided with unevenness on the other side. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the heterojunction back contact cell of the embodiment disclosed herein further includes an uneven amorphous semiconductor film. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the heterojunction back contact cell of the embodiment disclosed herein preferably further includes an antireflection film on the amorphous semiconductor film. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- An embodiment disclosed herein includes the above heterojunction back contact cell and a wiring sheet electrically connected to the heterojunction back contact cell.
- the wiring sheet includes an insulating substrate. A first wiring on the insulating substrate, and a second wiring, wherein the first electrode is electrically connected to the first wiring, and the second electrode is electrically connected to the second wiring. It is a photoelectric conversion device. Also in this case, since the center-to-center distance between adjacent electrodes of the same polarity adjacent to each other in the heterojunction back contact cell is 1 mm or more and 3.5 mm or less, preferably 2 mm or more, the deterioration of the characteristics of the photoelectric conversion device is suppressed. However, the reliability of the photoelectric conversion device can be improved.
- the first wiring and the second wiring each have a strip shape. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- both end portions in the width direction of the first electrode protrude from the end portions in the width direction of the first wiring. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- both end portions in the width direction of the second electrode protrude from the end portions in the width direction of the second wiring. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the entire surface of the first wiring is electrically connected to the first electrode. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the entire surface of the second wiring is electrically connected to the second electrode. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the electrical connection between the first electrode and the first wiring is direct contact between the first electrode and the first wiring, and the first electrode and the first wiring. It is preferable that it is carried out by at least one of the conductive adhesives between the two. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the electrical connection between the second electrode and the second wiring is the direct contact between the second electrode and the second wiring, and the second electrode and the second wiring. It is preferable that it is performed by at least one of conductive adhesives between the wirings. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- An embodiment disclosed herein includes a step of forming a first conductivity type amorphous semiconductor film on one side of a semiconductor substrate of a first conductivity type or a second conductivity type, and a first conductivity type amorphous semiconductor Removing a part of the crystalline semiconductor film in the thickness direction to expose a part of the semiconductor substrate, and forming a second conductive type amorphous semiconductor film on the semiconductor substrate and the first conductive type amorphous semiconductor film Forming a first electrode on the first conductivity type amorphous semiconductor film, and forming a second electrode on the second conductivity type amorphous semiconductor film.
- An electrode and a 2nd electrode are the manufacturing methods of the heterojunction type back contact cell formed so that the center-to-center distance of the adjacent electrodes of the same polarity adjacent immediately may be 1 mm or more and 3.5 mm or less. Also in this case, since the center-to-center distance between adjacent electrodes of the same polarity adjacent to each other in the heterojunction back contact cell is 1 mm or more and 3.5 mm or less, the photoelectric conversion is performed while suppressing the deterioration of the characteristics of the photoelectric conversion device. The reliability of the apparatus can be improved.
- the distance between the centers of adjacent electrodes of the same polarity adjacent to each other is 2 mm or more. In this case, it is possible to further improve the reliability of the photoelectric conversion device while suppressing deterioration of the characteristics of the photoelectric conversion device.
- the step of forming the first conductivity type amorphous semiconductor film includes the step of forming a first i-type non-type on one side of the semiconductor substrate. It is preferable to include a step of forming a crystalline semiconductor film and a step of forming a first conductive amorphous semiconductor film on the first i-type amorphous semiconductor film. In this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing deterioration of the characteristics of the photoelectric conversion device.
- the step of forming the second conductive type amorphous semiconductor film includes the step of forming a second i-type non-contact on one side of the semiconductor substrate.
- the method includes a step of forming a crystalline semiconductor film and a step of forming a second conductivity type amorphous semiconductor film on the second i-type amorphous semiconductor film. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the first stacked body of the first i-type amorphous semiconductor film and the first conductive amorphous semiconductor film is manufactured.
- a method of manufacturing a heterojunction back contact cell includes a second stacked body of a second i-type amorphous semiconductor film and a second conductive type amorphous semiconductor film.
- the method further includes a step of exposing a part of the first conductive type amorphous semiconductor film by removing a part thereof, and forming the first electrode on the exposed surface of the first conductive type amorphous semiconductor film. . Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- a method of manufacturing a heterojunction back contact cell includes a step of forming irregularities on the other side of a semiconductor substrate before the step of forming an amorphous silicon film, It is preferable to include a step of forming an amorphous semiconductor film thereon and a step of forming an antireflection film on the amorphous semiconductor film. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- a method of manufacturing a photoelectric conversion device includes a step of manufacturing a heterojunction back contact cell including a first electrode and a second electrode, and a first wiring and a second wiring. Preparing a wiring sheet, electrically connecting the first electrode of the heterojunction back contact cell and the first wiring of the wiring sheet, the second electrode of the heterojunction back contact cell and the wiring sheet
- a heterojunction back contact cell including a first conductive type or a second conductive type semiconductor substrate and a first substrate provided on one side of the semiconductor substrate.
- a conductive type amorphous semiconductor film and a second conductive type amorphous semiconductor film are provided, the first electrode is provided on the first conductive type amorphous semiconductor film, and the second electrode is a second conductive type amorphous semiconductor film.
- the wire sheet includes an insulating substrate, and the first wiring and the second wiring are provided on the insulating substrate, and the distance between the centers of adjacent electrodes of the same polarity adjacent to each other is 1 mm or more and 3.5 mm. It is the manufacturing method of the photoelectric conversion apparatus which is the following.
- the center-to-center distance between adjacent electrodes of the same polarity adjacent to each other in the heterojunction back contact cell is 1 mm or more and 3.5 mm or less, the photoelectric conversion is performed while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the reliability of the apparatus can be improved.
- the distance between the centers of adjacent electrodes of the same polarity adjacent to each other is 2 mm or more. In this case, it is possible to further improve the reliability of the photoelectric conversion device while suppressing deterioration of the characteristics of the photoelectric conversion device.
- the step of manufacturing a heterojunction back contact cell preferably includes the method of manufacturing a heterojunction back contact cell. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the electrical connection between the first electrode and the first wiring is the direct contact between the first electrode and the first wiring, and the first electrode. It is preferable that this is performed by at least one of adhesion by a conductive adhesive between the first wiring and the first wiring. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the electrical connection between the second electrode and the second wiring is the direct contact between the second electrode and the second wiring, and the second electrode. It is preferable that this is performed by at least one of adhesion by a conductive adhesive between the first wiring and the second wiring. Also in this case, it is possible to improve the reliability of the photoelectric conversion device while suppressing the deterioration of the characteristics of the photoelectric conversion device.
- the embodiment disclosed herein can be suitably used for a heterojunction back contact cell and a manufacturing method thereof, a photoelectric conversion device in which the heterojunction back contact cell is electrically connected by a wiring sheet, and a manufacturing method thereof. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Photovoltaic Devices (AREA)
Abstract
ヘテロ接合型バックコンタクトセル(10)は、第1導電型または第2導電型の半導体基板(1)と、半導体基板(1)の一方の側に設けられた第1導電型非晶質半導体膜(3)と第2導電型非晶質半導体膜(5)と、第1導電型非晶質半導体膜(3)上の第1電極(11)と、第2導電型非晶質半導体膜(5)上の第2電極(12)とを備えている。隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下である。
Description
本発明は、ヘテロ接合型バックコンタクトセルおよび光電変換装置に関する。
太陽光エネルギを電気エネルギに直接変換する太陽電池は、近年、特に、地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。太陽電池には、化合物半導体または有機材料を用いたものなど様々な種類のものがあるが、現在、主流となっているのは、シリコン結晶を用いたものである。
現在、最も多く製造および販売されている太陽電池は、太陽光が入射する側の面である受光面と、受光面の反対側である裏面とにそれぞれ電極が形成された構造のものである。
しかしながら、受光面に電極を形成した場合には、電極における太陽光の反射および吸収があることから、電極の面積分だけ入射する太陽光の量が減少する。そのため、裏面のみに電極を形成した太陽電池の開発が進められている(たとえば特許文献1参照)。
図19に、特許文献1に記載の配線シート付き太陽電池の模式的な断面図を示す。図19に示される従来の配線シート付き太陽電池は、裏面電極型太陽電池セル100と、配線シート200と、裏面電極型太陽電池セル100と配線シート200との間の絶縁性樹脂300とを有している。
裏面電極型太陽電池セル100は、n型またはp型のいずれかの導電型を有する多結晶シリコンまたは単結晶シリコンなどからなる基板101と、基板101の裏面に設けられたn型不純物拡散領域102およびp型不純物拡散領域103と、n型不純物拡散領域102上に設けられたn型用銀電極111と、p型不純物拡散領域103上に設けられたp型用銀電極112とを有している。
n型不純物拡散領域102は、n型不純物を含むガスを用いた気相拡散またはn型不純物を含むペーストを塗布した後に熱処理する塗布拡散などの方法により形成される(特許文献1の段落[0076])。また、p型不純物拡散領域103は、p型不純物を含むガスを用いた気相拡散またはp型不純物を含むペーストを塗布した後に熱処理する塗布拡散などの方法により形成される(特許文献1の段落[0076])。
配線シート200は、絶縁性基材201と、絶縁性基材201上に設けられたn型用銅配線202とp型用銅配線203とを有している。絶縁性基材201としては、たとえば、ポリエステル、ポリエチレンナフタレートまたはポリイミドなどが用いられる(特許文献1の段落[0090])。絶縁性樹脂300としては、エポキシ樹脂、アクリル樹脂、またはエポキシ樹脂とアクリル樹脂との混合樹脂が用いられる(特許文献1の段落[0098])。
図19に示される従来の配線シート付き太陽電池においては、n型用銀電極111の幅W5方向の端およびp型用銀電極112の幅W5方向の端が、それぞれ、n型用銅配線202の幅W6方向の端およびp型用銅配線203の幅W6方向の端からはみ出ないようにすることによって、n型用銀電極111およびp型用銀電極112の表面にかかる電界強度の急激な増加を抑制して、イオンマイグレーションに起因する特性の低下を安定して抑制することができるとされている(特許文献1の段落[0061])。
ヘテロ接合型バックコンタクトセルは、電極と非晶質半導体膜との間のコンタクト抵抗が高いため、ヘテロ接合バックコンタクトセルを配線シートに電気的に接続することによって構成された光電変換装置の特性の低下を抑制する観点からは、図19に示す特許文献1の裏面電極型太陽電池セル100と比べて、非晶質半導体膜に対する電極のコンタクト面積を大きくすることが要求される。
しかしながら、非晶質半導体膜に対する電極のコンタクト面積を大きくした場合には、ヘテロ接合型バックコンタクトセルの電極間の間隔が狭くなる。そのため、配線シートの配線がヘテロ接合型バックコンタクトセルの異なる極性の電極と接触して短絡する可能性が高くなる。これにより、ヘテロ接合型バックコンタクトセルを配線シートに電気的に接続することによって構成された光電変換装置の信頼性が低下する。
したがって、従来においては、ヘテロ接合型バックコンタクトセルを配線シートに電気的に接続することによって構成された光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが技術的課題となっていた。
ここで開示された実施形態は、第1導電型または第2導電型の半導体基板と、半導体基板の一方の側に設けられた第1導電型非晶質半導体膜と第2導電型非晶質半導体膜と、第1導電型非晶質半導体膜上の第1電極と、第2導電型非晶質半導体膜上の第2電極とを備え、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下であるヘテロ接合型バックコンタクトセルである。
ここで開示された実施形態は、上記のヘテロ接合型バックコンタクトセルと、ヘテロ接合型バックコンタクトセルと電気的に接続されている配線シートとを備え、配線シートは、絶縁性基材と、絶縁性基材上の第1配線と第2配線とを備え、第1電極は第1配線に電気的に接続され、第2電極は第2配線に電気的に接続されている光電変換装置である。
ここで開示された実施形態によれば、ヘテロ接合型バックコンタクトセルを配線シートに電気的に接続することによって構成された光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能なヘテロ接合型バックコンタクトセルおよび光電変換装置を提供することができる。
以下、実施形態について説明する。なお、実施形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
[実施形態1]
<光電変換装置の構成>
図1に、実施形態1の光電変換装置の模式的な断面図を示す。実施形態1の光電変換装置は、ヘテロ接合型バックコンタクトセル10と、ヘテロ接合型バックコンタクトセル10と電気的に接続されている配線シート20とを備えている。
<光電変換装置の構成>
図1に、実施形態1の光電変換装置の模式的な断面図を示す。実施形態1の光電変換装置は、ヘテロ接合型バックコンタクトセル10と、ヘテロ接合型バックコンタクトセル10と電気的に接続されている配線シート20とを備えている。
<ヘテロ接合型バックコンタクトセル>
ヘテロ接合型バックコンタクトセル10は、n型単結晶シリコン基板である半導体基板1と、半導体基板1の一方側の表面(裏面)上に隣り合うようにして半導体基板1の裏面に接して設けられた第1のi型非晶質半導体膜2と第2のi型非晶質半導体膜4とを備えている。実施形態1においては、第1のi型非晶質半導体膜2および第2のi型非晶質半導体膜4は、それぞれ、i型非晶質シリコン膜である。
ヘテロ接合型バックコンタクトセル10は、n型単結晶シリコン基板である半導体基板1と、半導体基板1の一方側の表面(裏面)上に隣り合うようにして半導体基板1の裏面に接して設けられた第1のi型非晶質半導体膜2と第2のi型非晶質半導体膜4とを備えている。実施形態1においては、第1のi型非晶質半導体膜2および第2のi型非晶質半導体膜4は、それぞれ、i型非晶質シリコン膜である。
第1のi型非晶質半導体膜2上には、第1のi型非晶質半導体膜2に接する第1導電型非晶質半導体膜3が設けられている。また、第2のi型非晶質半導体膜4上には、第2のi型非晶質半導体膜4に接する第2導電型非晶質半導体膜5が設けられている。実施形態1において、第1導電型非晶質半導体膜3はp型非晶質シリコン膜であり、第2導電型非晶質半導体膜5はn型非晶質シリコン膜である。
第1導電型非晶質半導体膜3上には、第1導電型非晶質半導体膜3に接する第1電極11が設けられている。また、第2導電型非晶質半導体膜5上には、第2導電型非晶質半導体膜5に接する第2電極12が設けられている。
そして、第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5との積層体の両端部は、それぞれ、第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3との積層体の端部を覆っている。そのため、第1導電型非晶質半導体膜3と第2導電型非晶質半導体膜5との間には第2のi型非晶質半導体膜4の端部が位置しており、第2のi型非晶質半導体膜4の両端部は、それぞれ、第1導電型非晶質半導体膜3および第2導電型非晶質半導体膜5の双方と接している。これにより、第1導電型非晶質半導体膜3と第2導電型非晶質半導体膜5とは第2のi型非晶質半導体膜4によって分離されている。また、第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5との積層体は、隣り合う第1電極11と第2電極12との間において半導体基板1の裏面側に突出している。
半導体基板1の他方の主面である受光面には凹凸1aが形成されている。半導体基板1の受光面の凹凸1a上には非晶質半導体膜6が設けられている。また、非晶質半導体膜6上には反射防止膜7が設けられている。実施形態1において、非晶質半導体膜6としてはたとえばi型非晶質シリコン膜、またはi型非晶質シリコン膜とn型非晶質シリコン膜との積層体などを用いることができる。また、反射防止膜7としては、たとえば窒化シリコン膜などを用いることができる。
図2に、実施形態1のヘテロ接合型バックコンタクトセル10の裏面の模式的な平面図を示す。図2に示すように、ヘテロ接合型バックコンタクトセル10の半導体基板1の裏面には、帯状の第1電極11と、帯状の第2電極12とが、間隔を空けて、第1電極11および第2電極12のそれぞれの長手方向が同一の方向となるようにして、交互に配置されている。
実施形態1において、ヘテロ接合型バックコンタクトセル10の隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下となっており、好ましくは2mm以上3.5mm以下となっている。
ここで、本明細書において、隣り合う直近の同極性の電極同士の中心間距離Dは、同一の導電型の半導体膜に電気的に接続されている電極のうち隣り合う直近の2つの電極同士の中心間の距離を意味している。たとえば、本実施形態においては、隣り合う直近の第1電極11の幅方向の中心11a間の最短距離および隣り合う直近の第2電極12の幅方向の中心12a間の最短距離が隣り合う直近の同極性の電極同士の中心間距離Dに相当する。
<配線シート>
図3に、配線シート20の模式的な平面図を示す。配線シート20は、絶縁性基材21と、絶縁性基材21上の第1配線22と第2配線23とを備えている。第1配線22および第2配線23も、それぞれ帯状に形成されており、絶縁性基材21上で互いに間隔を空けて、これらの配線の長手方向が同一の方向となるようにして、交互に配置されている。また、複数の第1配線22の一端および複数の第2配線23の一端は、それぞれ、帯状の集電用配線24に電気的に接続されている。集電用配線24は、第1配線22および第2配線23の長手方向と直交する方向に長手方向を有するように、絶縁性基材21上に配置されている。集電用配線24は、複数の第1配線22または複数の第2配線23から電流を集電する機能を有している。
図3に、配線シート20の模式的な平面図を示す。配線シート20は、絶縁性基材21と、絶縁性基材21上の第1配線22と第2配線23とを備えている。第1配線22および第2配線23も、それぞれ帯状に形成されており、絶縁性基材21上で互いに間隔を空けて、これらの配線の長手方向が同一の方向となるようにして、交互に配置されている。また、複数の第1配線22の一端および複数の第2配線23の一端は、それぞれ、帯状の集電用配線24に電気的に接続されている。集電用配線24は、第1配線22および第2配線23の長手方向と直交する方向に長手方向を有するように、絶縁性基材21上に配置されている。集電用配線24は、複数の第1配線22または複数の第2配線23から電流を集電する機能を有している。
絶縁性基材21としては、絶縁性の基材を用いることができ、たとえば、ポリエステル、ポリエチレンナフタレートまたはポリイミドなどのフィルムを用いることができる。
第1配線22、第2配線23および集電用配線24としては、導電性材料を用いることができ、たとえば、銅などを用いることができる。なお、第1配線22、第2配線23および集電用配線24は、それぞれ、たとえば、絶縁性基材21の表面の全面に金属膜などの導電膜を形成した後に、その一部をエッチングなどにより除去してパターニングすることによって形成することができる。
ここで、本明細書において、隣り合う第1配線22と第2配線23との間の配線間隔W1は、隣り合う1対の第1配線22と第2配線23とにおいて、第1配線22の第2配線23側の側面22aと、第2配線23の第1配線22側の側面23aとの間の最短距離とされる。
<ヘテロ接合型バックコンタクトセルの製造方法>
以下、図4~図13の模式的断面図を参照して、ヘテロ接合型バックコンタクトセル10の製造方法の一例について説明する。まず、図4に示すように、受光面に凹凸1aが形成され、凹凸1a上に非晶質半導体膜6と反射防止膜7との積層体が設けられた半導体基板1を作製し、その半導体基板1の裏面の全面に第1のi型非晶質半導体膜2を形成する。第1のi型非晶質半導体膜2の形成方法は特に限定されないが、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いることができる。
以下、図4~図13の模式的断面図を参照して、ヘテロ接合型バックコンタクトセル10の製造方法の一例について説明する。まず、図4に示すように、受光面に凹凸1aが形成され、凹凸1a上に非晶質半導体膜6と反射防止膜7との積層体が設けられた半導体基板1を作製し、その半導体基板1の裏面の全面に第1のi型非晶質半導体膜2を形成する。第1のi型非晶質半導体膜2の形成方法は特に限定されないが、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いることができる。
半導体基板1としては、n型単結晶シリコン基板を好適に用いることができるがn型単結晶シリコン基板に限定されず、たとえば従来から公知のn型半導体基板を適宜用いることができる。
第1のi型非晶質半導体膜2としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型非晶質半導体膜を用いることもできる。
半導体基板1の受光面の凹凸1aは、たとえばテクスチャエッチングにより形成することができ、非晶質半導体膜6および反射防止膜7はそれぞれたとえばプラズマCVD法により形成することができる。
なお、本明細書において「i型」とは、完全な真性の状態だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm3未満、かつp型不純物濃度が1×1015個/cm3未満)であればn型またはp型の不純物が混入された状態のものも含む意味である。
また、本明細書において「非晶質シリコン」には、シリコン原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質シリコンだけでなく、水素化非晶質シリコンなどのシリコン原子の未結合手が水素で終端されたものも含まれるものとする。
次に、図5に示すように、第1のi型非晶質半導体膜2上に第1導電型非晶質半導体膜3を形成する。第1導電型非晶質半導体膜3の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
第1導電型非晶質半導体膜3としては、p型非晶質シリコン膜を好適に用いることができるがp型非晶質シリコン膜に限定されず、たとえば従来から公知のp型非晶質半導体膜を用いることもできる。
なお、第1導電型非晶質半導体膜3に含まれるp型不純物としては、たとえばボロンを用いることができる。また、本明細書において、「p型」とは、p型不純物濃度が1×1015個/cm3以上の状態を意味する。
次に、図6に示すように、第1導電型非晶質半導体膜3上に、第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3との積層体を厚さ方向にエッチングする箇所に開口部を有するフォトレジスト等のエッチングマスク31を形成する。
次に、図7に示すように、エッチングマスク31をマスクとして、第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3との積層体の一部を厚さ方向にエッチングする。これにより、半導体基板1の裏面の一部を露出させる。その後、図8に示すように、エッチングマスク31をすべて除去する。
次に、図9に示すように、半導体基板1および第1のi型非晶質半導体膜2と第1導電型非晶質半導体膜3との積層体を覆うようにして第2のi型非晶質半導体膜4を形成する。第2のi型非晶質半導体膜4の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
第2のi型非晶質半導体膜4としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型非晶質半導体膜を用いることもできる。
次に、図10に示すように、第2のi型非晶質半導体膜4上に第2導電型非晶質半導体膜5を形成する。第2導電型非晶質半導体膜5の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
第2導電型非晶質半導体膜5としては、n型非晶質シリコン膜を好適に用いることができるがn型非晶質シリコン膜に限定されず、たとえば従来から公知のn型非晶質半導体膜を用いることもできる。
なお、第2導電型非晶質半導体膜5を構成するn型非晶質シリコン膜に含まれるn型不純物としては、たとえばリンを用いることができる。また、本明細書において、「n型」とは、n型不純物濃度が1×1015個/cm3以上の状態を意味する。
次に、図11に示すように、半導体基板1の裏面上の第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5との積層体を残す部分にのみフォトレジスト等のエッチングマスク32を形成する。
次に、エッチングマスク32をマスクとして、第2のi型非晶質半導体膜4と第2導電型非晶質半導体膜5との積層体の一部を厚さ方向にウエットエッチングすることによって、図12に示すように、第1導電型非晶質半導体膜3の一部を露出させる。その後、エッチングマスク32を完全に除去する。
次に、図13に示すように、第1導電型非晶質半導体膜3に接するように第1電極11を形成し、第2導電型非晶質半導体膜5に接するように第2電極12を形成する。ここで、第1電極11および第2電極12は、隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下となるように、好ましくは2mm以上3.5mm以下となるように形成される。なお、第1電極11および第2電極12の形成方法は特に限定されないが、たとえば蒸着法などを用いることができる。以上により、ヘテロ接合型バックコンタクトセル10が完成する。
<光電変換装置の製造方法>
以下、図14の模式的断面図および図15の模式的平面図を参照して、実施形態1の光電変換装置の製造方法の一例について説明する。まず、第1電極11および第2電極12を備えたヘテロ接合型バックコンタクトセル10を上述のようにして作製する。
以下、図14の模式的断面図および図15の模式的平面図を参照して、実施形態1の光電変換装置の製造方法の一例について説明する。まず、第1電極11および第2電極12を備えたヘテロ接合型バックコンタクトセル10を上述のようにして作製する。
次に、絶縁性基材21の表面上に絶縁性接着剤(図示せず)を塗布した後に、図14に示すように、ヘテロ接合型バックコンタクトセル10と配線シート20とを重ね合わせる。このとき、ヘテロ接合型バックコンタクトセル10の第1電極11が配線シート20の第1配線22に直接接するとともに、ヘテロ接合型バックコンタクトセル10の第2電極12が配線シート20の第2配線23に直接接するように、ヘテロ接合型バックコンタクトセル10と配線シート20とが重ね合わせられる。これにより、第1電極11と第1配線22とが電気的に接続されるとともに、第2電極12と第2配線23とが電気的に接続される。また、ヘテロ接合型バックコンタクトセル10と配線シート20とは、絶縁性接着剤を硬化させることによって固定され、機械的に接続される。
図15に、実施形態1の光電変換装置を受光面側から見たときの模式的な平面図を示す。ここで、ヘテロ接合型バックコンタクトセル10は、配線シート20上に複数設置されているが、配線シート20上に設置されるヘテロ接合型バックコンタクトセル10の個数は特に限定されず、たとえば1個であってもよい。
<作用効果>
図1に示すように、実施形態1においては、ヘテロ接合型バックコンタクトセル10の隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下となっており、好ましくは2mm以上3.5mm以下となっている。これは、本発明者が、配線シート20にヘテロ接合型バックコンタクトセル10を電気的に接続して構成された光電変換装置の特性を向上することによって鋭意検討した結果、見出したものである。
図1に示すように、実施形態1においては、ヘテロ接合型バックコンタクトセル10の隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下となっており、好ましくは2mm以上3.5mm以下となっている。これは、本発明者が、配線シート20にヘテロ接合型バックコンタクトセル10を電気的に接続して構成された光電変換装置の特性を向上することによって鋭意検討した結果、見出したものである。
すなわち、図19に示される特許文献1の裏面電極型太陽電池セル100においては、n型またはp型のいずれかの導電型を有する基板101にn型不純物およびp型不純物をそれぞれ拡散してn型不純物拡散領域102およびp型不純物拡散領域103を形成することによってpn接合を形成していた。しかしながら、拡散されたn型不純物およびp型不純物によって電極とのコンタクト抵抗が非常に小さくなるため、幅広の電極を形成する必要がない。そのため、図19に示される特許文献1の裏面電極型太陽電池セル100においては、n型用銀電極111およびp型用銀電極112の表面にかかる電界強度の急激な増加を抑制して、イオンマイグレーションに起因する特性の低下を安定して抑制する観点から、n型用銀電極111の幅W3方向の端およびp型用銀電極112の幅W3方向の端が、それぞれ、n型用銅配線202の幅W4方向の端およびp型用銅配線203の幅W4方向の端からはみ出ないような電極構造としていた(特許文献1の段落[0066]参照)。
しかしながら、実施形態1におけるヘテロ接合型バックコンタクトセル10においては上述のように、第1電極11と第1導電型非晶質半導体膜3との間のコンタクト抵抗および第2電極12と第2導電型非晶質半導体膜5との間のコンタクト抵抗が高いため、第1導電型非晶質半導体膜3に対する第1電極11のコンタクト面積および第2導電型非晶質半導体膜5に対する第2電極12のコンタクト面積を図19に示される特許文献1の裏面電極型太陽電池セル100と比べて大きくすることが要求される。
ここで、第1導電型非晶質半導体膜3に対する第1電極11のコンタクト面積および第2導電型非晶質半導体膜5に対する第2電極12のコンタクト面積をそれぞれ大きくした場合には、特許文献1の裏面電極型太陽電池セル100と比べて半導体基板1の裏面に配置することができる電極の本数が減少するため、一般には、特性が低下すると考えられている。
しかしながら、本発明者が鋭意検討した結果、隣り合う直近の同極性の電極同士の中心間距離Dを3.5mm以下とした場合には、このような電極本数の減少に起因する特性の低下を抑えることができることを見出した。これは、ヘテロ接合型バックコンタクトセル10に光が入射することによって発生した少数キャリアの拡散長は、特許文献1の裏面電極型太陽電池セル100における少数キャリアの拡散長よりも長くなるため、収集効率が低くなる傾向にある半導体基板1と同極性の第2導電型非晶質半導体膜5の部分で発生した少数キャリアは、第1導電型非晶質半導体膜3に到達するための拡散長を十分に有しており、1本の電極でより多くの少数キャリアを拾うことができることによるものと考えられる。一方、隣り合う直近の同極性の電極同士の中心間距離Dが3.5mmよりも広い場合には、電極幅が広くなりすぎて、電極のコンタクト面積の単位面積当たりで拾うことができる少数キャリアが減少するため、特性の低下を抑制することができない。
たとえば、半導体基板1の厚さが70μm以上180μm以下である場合には、隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下であるヘテロ接合型バックコンタクトセル10においては、ヘテロ接合型バックコンタクトセル10特有の少数キャリアの長い拡散長により、隣り合う直近の同極性の電極同士の中心間距離Dを1mm未満とした場合と比べて短絡電流密度Jscおよび開放電圧Vocの損失を低減できることが確認できている。
また、本発明者が鋭意検討した結果、隣り合う直近の同極性の電極同士の中心間距離Dを1mm以上、好ましくは2mm以上とした場合には、配線シート20の隣り合う第1配線22と第2配線23との間隔を広げることができるため、配線シート20の配線がヘテロ接合型バックコンタクトセル10の異なる極性の電極と接触(第1配線22と第2電極12との接触、および第2配線23と第1電極11との接触)して短絡する可能性を著しく低減できることを見出した。
たとえば、ヘテロ接合型バックコンタクトセル10の隣り合う直近の同極性の電極同士の中心間距離Dを2mm以上とした場合には、当該ヘテロ接合型バックコンタクトセル10に第1配線22および第2配線23のそれぞれの幅が400μm程度であり、隣り合う第1配線22と第2配線23との間の配線間隔W1が600μm程度である配線シート20を用いて光電変換装置を作製することができる。この場合には、配線間隔W1の2倍以上の広さの隣り合う直近の同極性の電極同士の中心間距離Dを設けることができるため、配線シート20の配線がヘテロ接合型バックコンタクトセル10の異なる極性の電極と接触して短絡する可能性を著しく低減できると考えられる。
以上の理由により、実施形態1においては、ヘテロ接合型バックコンタクトセルを配線シートと電気的に接続することによって構成された光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上することが可能なヘテロ接合型バックコンタクトセル、光電変換装置、ヘテロ接合型バックコンタクトセルの製造方法および光電変換装置の製造方法を提供することができる。
なお、本実施形態においては、半導体基板1の裏面側の少なくとも一部の隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下であればよく、たとえば電極と配線との短絡の可能性が非常に低い部分に関しては、隣り合う直近の同極性の電極同士の中心間距離Dが上記の範囲よりも小さくなっていてもよい。
さらに、実施形態1においては、上記の効果以外にも、以下の第1~第3の優れた効果も得ることができる。
第1に、ヘテロ接合型バックコンタクトセル10の電極のコンタクト面積を大きくしてコンタクト抵抗を低減することができるため、ヘテロ接合型バックコンタクトセル10のフィルファクター(FF)を高くすることができる。これにより、ヘテロ接合型バックコンタクトセル10を配線シート20と電気的に接続することによって構成された実施形態1の光電変換装置の特性の低下を抑制することができる。
第2に、上述のような1mm以上3.5mm以下、好ましくは2mm以上3.5mm以下といった広い隣り合う直近の同極性の電極同士の中心間距離Dを取ることができるため、ヘテロ接合型バックコンタクトセル10の第1電極11および第2電極12の製造効率を向上することができる。これにより、ヘテロ接合型バックコンタクトセル10の製造歩留まりを向上することができる。
第3に、配線シート20の隣り合う第1配線22と第2配線23との間の配線間隔W1も広くすることができるため、配線シート20の第1配線22および第2配線23の製造効率を向上することができる。これにより、配線シート20の製造歩留まりを向上することができる。
[実施形態2]
図16に、実施形態2の光電変換装置の模式的な断面図を示す。実施形態2の光電変換装置は、第1電極11と第1配線22とが導電性接着材41を介して電気的に接続されているとともに、第2電極12と第2配線23とが導電性接着材41を介して電気的に接続されていることを特徴としている。
図16に、実施形態2の光電変換装置の模式的な断面図を示す。実施形態2の光電変換装置は、第1電極11と第1配線22とが導電性接着材41を介して電気的に接続されているとともに、第2電極12と第2配線23とが導電性接着材41を介して電気的に接続されていることを特徴としている。
導電性接着材41は、導電性を有しており、電極と配線とを接着できる材料を用いることができ、たとえば半田などを用いることができる。
なお、第1電極11と第1配線22との電気的接続の少なくとも1つを導電性接着材41を介した電気的接続とし、第1電極11と第1配線22との残りの電気的接続を直接接触による電気的接続としてもよい。また、第2電極12と第2配線23との電気的接続の少なくとも1つを導電性接着材41を介した電気的接続とし、第2電極12と第2配線23との残りの電気的接続を直接接触による電気的接続としてもよい。
実施形態2における上記以外の説明は実施形態1と同様であるため、その説明については繰り返さない。
[実施形態3]
図17(a)に実施形態3の光電変換装置の製造工程の一部を図解する模式的な断面図を示し、図17(b)に実施形態3の光電変換装置の模式的な断面図を示す。
図17(a)に実施形態3の光電変換装置の製造工程の一部を図解する模式的な断面図を示し、図17(b)に実施形態3の光電変換装置の模式的な断面図を示す。
実施形態3の光電変換装置は、第1電極11と第1配線22との接合および第2電極12と第2配線23との接合に上述の絶縁性接着剤および導電性接着材41を用いることなく、ヘテロ接合型バックコンタクトセル10と配線シート20との位置合わせを行った後、たとえば図17(a)に示すような真空ラミネートによって、ヘテロ接合型バックコンタクトセル10と配線シート20とを密着させて、第1電極11と第1配線22との電気的な接続および第2電極12と第2配線23との電気的な接続を行うことを特徴としている。これにより、実施形態1の光電変換装置と同様に、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下である実施形態3の光電変換装置が得られる。
実施形態3における上記以外の説明は実施形態1~2と同様であるため、その説明については繰り返さない。
[実施形態4]
図18に、実施形態4の光電変換装置の模式的な断面図を示す。実施形態3の光電変換装置は、第1電極11の幅W3が第2電極12の幅W4よりも広くなっており、第1電極11の幅W3と第2電極12の幅W4とが異なっていることを特徴としている。この場合にも、隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下、好ましくは2mm以上3.5mm以下となっている場合には、上記の効果を得ることができる。
図18に、実施形態4の光電変換装置の模式的な断面図を示す。実施形態3の光電変換装置は、第1電極11の幅W3が第2電極12の幅W4よりも広くなっており、第1電極11の幅W3と第2電極12の幅W4とが異なっていることを特徴としている。この場合にも、隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下、好ましくは2mm以上3.5mm以下となっている場合には、上記の効果を得ることができる。
なお、第2電極12の幅W4を第1電極11の幅W3よりも広くすることによって、第1電極11の幅W3と第2電極12の幅W4とを異なるものとしてもよい。この場合にも、隣り合う直近の同極性の電極同士の中心間距離Dが1mm以上3.5mm以下、好ましくは2mm以上3.5mm以下となっている場合には、上記の効果を得ることができる。
実施形態3における上記以外の説明は実施形態1~3と同様であるため、その説明については繰り返さない。
[付記]
(1)ここで開示された実施形態は、第1導電型または第2導電型の半導体基板と、半導体基板の一方の側に設けられた第1導電型非晶質半導体膜と第2導電型非晶質半導体膜と、第1導電型非晶質半導体膜上の第1電極と、第2導電型非晶質半導体膜上の第2電極とを備え、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下であるヘテロ接合型バックコンタクトセルである。ここで開示された実施形態のヘテロ接合型バックコンタクトセルは、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下であるため、ヘテロ接合型バックコンタクトセルを配線シートと電気的に接続することによって構成された光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(1)ここで開示された実施形態は、第1導電型または第2導電型の半導体基板と、半導体基板の一方の側に設けられた第1導電型非晶質半導体膜と第2導電型非晶質半導体膜と、第1導電型非晶質半導体膜上の第1電極と、第2導電型非晶質半導体膜上の第2電極とを備え、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下であるヘテロ接合型バックコンタクトセルである。ここで開示された実施形態のヘテロ接合型バックコンタクトセルは、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下であるため、ヘテロ接合型バックコンタクトセルを配線シートと電気的に接続することによって構成された光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(2)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいては、隣り合う直近の同極性の電極同士の中心間距離が2mm以上であることが好ましい。この場合には、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性をさらに向上させることが可能となる。
(3)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいては、第1電極および第2電極は、それぞれ、帯状であることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(4)ここで開示された実施形態のヘテロ接合型バックコンタクトセルは、半導体基板と第1導電型非晶質半導体膜との間の第1のi型非晶質半導体膜と、半導体基板と第2導電型非晶質半導体膜との間の第2のi型非晶質半導体膜とをさらに含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(5)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、第1のi型非晶質半導体膜は、i型非晶質シリコンを含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(6)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、第2のi型非晶質半導体膜は、i型非晶質シリコンを含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(7)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、半導体基板と第1のi型非晶質半導体膜とが接していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(8)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、半導体基板と第2のi型非晶質半導体膜とが接していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(9)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、第1のi型非晶質半導体膜と第1導電型非晶質半導体膜とが接していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(10)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、第2のi型非晶質半導体膜と第2導電型非晶質半導体膜とが接していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(11)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、第1導電型非晶質半導体膜と第2導電型非晶質半導体膜との間に第2のi型非晶質半導体膜の端部が位置していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(12)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、第2のi型非晶質半導体膜の端部が、第1導電型非晶質半導体膜および第2導電型非晶質半導体膜のそれぞれと接していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(13)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、半導体基板はn型結晶シリコンを含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(14)ここで開示された実施形態のヘテロ接合型バックコンタクトセルにおいて、半導体基板の他方の側に凹凸が設けられていることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(15)ここで開示された実施形態のヘテロ接合型バックコンタクトセルは、凹凸上の非晶質半導体膜をさらに含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(16)ここで開示された実施形態のヘテロ接合型バックコンタクトセルは、非晶質半導体膜上の反射防止膜をさらに含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(17)ここで開示された実施形態は、上記のヘテロ接合型バックコンタクトセルと、ヘテロ接合型バックコンタクトセルと電気的に接続されている配線シートと、を備え、配線シートは、絶縁性基材と、絶縁性基材上の第1配線と、第2配線とを備え、第1電極は第1配線に電気的に接続され、第2電極は第2配線に電気的に接続されている光電変換装置である。この場合にも、ヘテロ接合型バックコンタクトセルの隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下、好ましくは2mm以上となるため、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(18)ここで開示された実施形態の光電変換装置において、第1配線および第2配線は、それぞれ、帯状であることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(19)ここで開示された実施形態の光電変換装置において、第1電極の幅方向の両端部がそれぞれ、第1配線の幅方向の端部からはみ出していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(20)ここで開示された実施形態の光電変換装置において、第2電極の幅方向の両端部がそれぞれ、第2配線の幅方向の端部からはみ出していることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(21)ここで開示された実施形態の光電変換装置において、第1配線の全面が第1電極と電気的に接続されていることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(22)ここで開示された実施形態の光電変換装置において、第2配線の全面が第2電極と電気的に接続されていることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(23)ここで開示された実施形態の光電変換装置において、第1電極と第1配線との電気的な接続は第1電極と第1配線との直接接触、および第1電極と第1配線との間の導電性接着材の少なくとも一方により行われていることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(24)ここで開示された実施形態の光電変換装置において、第2電極と第2配線との電気的な接続は、第2電極と第2配線との直接接触、および第2電極と第2配線との間の導電性接着材の少なくとも一方により行われていることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(25)ここで開示された実施形態は、第1導電型または第2導電型の半導体基板の一方の側に第1導電型非晶質半導体膜を形成する工程と、第1導電型非晶質半導体膜の一部を厚さ方向に除去することによって半導体基板の一部を露出させる工程と、半導体基板および第1導電型非晶質半導体膜上に第2導電型非晶質半導体膜を形成する工程と、第1導電型非晶質半導体膜上に第1電極を形成する工程と、第2導電型非晶質半導体膜上に第2電極を形成する工程と、を含み、第1電極および第2電極は、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下となるように形成されるヘテロ接合型バックコンタクトセルの製造方法である。この場合にも、ヘテロ接合型バックコンタクトセルの隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下となるため、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(26)ここで開示された実施形態のヘテロ接合型バックコンタクトセルの製造方法においては、隣り合う直近の同極性の電極同士の中心間距離が2mm以上であることが好ましい。この場合には、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性をさらに向上させることが可能となる。
(27)ここで開示された実施形態のヘテロ接合型バックコンタクトセルの製造方法において、第1導電型非晶質半導体膜を形成する工程は、半導体基板の一方の側に第1のi型非晶質半導体膜を形成する工程と、第1のi型非晶質半導体膜上に第1導電型非晶質半導体膜を形成する工程とを含むことが好ましい。この場合には、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(28)ここで開示された実施形態のヘテロ接合型バックコンタクトセルの製造方法において、第2導電型非晶質半導体膜を形成する工程は、半導体基板の一方の側に第2のi型非晶質半導体膜を形成する工程と、第2のi型非晶質半導体膜上に第2導電型非晶質半導体膜を形成する工程とを含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(29)ここで開示された実施形態のヘテロ接合型バックコンタクトセルの製造方法において、第1のi型非晶質半導体膜と第1導電型非晶質半導体膜との第1の積層体の一部を除去することによって半導体基板の一部を露出させる工程と、半導体基板の露出面と第1の積層体を覆うように第2のi型非晶質半導体膜を形成する工程とを含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(30)ここで開示された実施形態のヘテロ接合型バックコンタクトセルの製造方法は、第2のi型非晶質半導体膜と第2導電型非晶質半導体膜との第2の積層体の一部を除去することによって第1導電型非晶質半導体膜の一部を露出させる工程をさらに含み、第1導電型非晶質半導体膜の露出面上に第1電極を形成することが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(31)ここで開示された実施形態のヘテロ接合型バックコンタクトセルの製造方法は、非晶質シリコン膜を形成する工程の前に、半導体基板の他方の側に凹凸を形成する工程と、凹凸上に非晶質半導体膜を形成する工程と、非晶質半導体膜上に反射防止膜を形成する工程とを含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(32)ここで開示された実施形態の光電変換装置の製造方法は、第1電極および第2電極を備えたヘテロ接合型バックコンタクトセルを作製する工程と、第1配線および第2配線を備えた配線シートを準備する工程と、ヘテロ接合型バックコンタクトセルの第1電極と配線シートの第1配線とを電気的に接続する工程と、ヘテロ接合型バックコンタクトセルの第2電極と配線シートの前記第2配線とを電気的に接続する工程とを含み、ヘテロ接合型バックコンタクトセルは、第1導電型または第2導電型の半導体基板と、半導体基板の一方の側に設けられた第1導電型非晶質半導体膜と第2導電型非晶質半導体膜とを備え、第1電極は第1導電型非晶質半導体膜上に設けられ、第2電極は第2導電型非晶質半導体膜上に設けられており、配線シートは、絶縁性基材を備え、第1配線および第2配線は、絶縁性基材上に設けられており、隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下である光電変換装置の製造方法である。この場合にも、ヘテロ接合型バックコンタクトセルの隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下となるため、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(33)ここで開示された実施形態の光電変換装置の製造方法においては、隣り合う直近の同極性の電極同士の中心間距離が2mm以上であることが好ましい。この場合には、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性をさらに向上させることが可能となる。
(34)ここで開示された実施形態の光電変換装置の製造方法において、ヘテロ接合型バックコンタクトセルを作製する工程は、上記のヘテロ接合型バックコンタクトセルの製造方法を含むことが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(35)ここで開示された実施形態の光電変換装置の製造方法において、第1電極と第1配線との電気的な接続は、第1電極と第1配線との直接接触、および第1電極と第1配線との間の導電性接着材による接着の少なくとも一方により行われることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
(36)ここで開示された実施形態の光電変換装置の製造方法において、第2電極と第2配線との電気的な接続は、第2電極と第2配線との直接接触、および第2電極と第2配線との間の導電性接着材による接着の少なくとも一方により行われることが好ましい。この場合にも、光電変換装置の特性の低下を抑制しつつ、光電変換装置の信頼性を向上させることが可能となる。
以上のように本発明の実施形態について説明を行なったが、上述の各実施形態の構成を適宜組み合わせることも当初から予定している。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
ここで開示された実施形態は、ヘテロ接合型バックコンタクトセルおよびその製造方法、ならびにヘテロ接合型バックコンタクトセルを配線シートで電気的に接続した光電変換装置およびその製造方法に好適に利用することができる。
1 半導体基板、2 第1のi型非晶質半導体膜、3 第1導電型非晶質半導体膜、4 第2のi型非晶質半導体膜、5 第2導電型非晶質半導体膜、6 非晶質半導体膜、7 反射防止膜、10 ヘテロ接合型バックコンタクトセル、11 第1電極、11a 中心、12 第2電極、12a 中心、20 配線シート、21 絶縁性基材、22 第1配線、22a 側面、23 第2配線、23a 側面、24 集電用配線、31,32 エッチングマスク、100 裏面電極型太陽電池セル、101 基板、102 n型不純物拡散領域、103 p型不純物拡散領域、111 n型用銀電極、112 p型用銀電極、200 配線シート、201 絶縁性基材、202 n型用銅配線、203 p型用銅配線、300 絶縁性樹脂。
Claims (5)
- 第1導電型または第2導電型の半導体基板と、
前記半導体基板の一方の側に設けられた、第1導電型非晶質半導体膜と、第2導電型非晶質半導体膜と、
前記第1導電型非晶質半導体膜上の第1電極と、
前記第2導電型非晶質半導体膜上の第2電極と、を備え、
隣り合う直近の同極性の電極同士の中心間距離が1mm以上3.5mm以下である、ヘテロ接合型バックコンタクトセル。 - 前記隣り合う直近の同極性の電極同士の中心間距離が2mm以上である、請求項1に記載のヘテロ接合型バックコンタクトセル。
- 請求項1または請求項2に記載のヘテロ接合型バックコンタクトセルと、
前記ヘテロ接合型バックコンタクトセルと電気的に接続されている配線シートと、を備え、
前記配線シートは、
絶縁性基材と、
前記絶縁性基材上の第1配線と、第2配線と、を備え、
前記第1電極は、前記第1配線に電気的に接続され、
前記第2電極は、前記第2配線に電気的に接続されている、光電変換装置。 - 前記第1配線および前記第2配線は、それぞれ、帯状である、請求項3に記載の光電変換装置。
- 前記第1電極の幅方向の両端部がそれぞれ、前記第1配線の幅方向の端部からはみ出しており、前記第2電極の幅方向の両端部がそれぞれ、前記第2配線の幅方向の端部からはみ出している、請求項3または請求項4に記載の光電変換装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191275A JP2016063129A (ja) | 2014-09-19 | 2014-09-19 | ヘテロ接合型バックコンタクトセルおよび光電変換装置 |
JP2014-191275 | 2014-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016042842A1 true WO2016042842A1 (ja) | 2016-03-24 |
Family
ID=55532887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064473 WO2016042842A1 (ja) | 2014-09-19 | 2015-05-20 | ヘテロ接合型バックコンタクトセルおよび光電変換装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016063129A (ja) |
WO (1) | WO2016042842A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110870080A (zh) * | 2017-07-11 | 2020-03-06 | 夏普株式会社 | 光电转换装置、具备其的太阳能电池串以及具备它们任意一者的太阳能电池组件 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102600449B1 (ko) * | 2016-12-22 | 2023-11-10 | 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 | 태양 전지 및 이의 제조 방법 |
WO2020202840A1 (ja) * | 2019-03-29 | 2020-10-08 | 株式会社カネカ | 太陽電池の製造方法および太陽電池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012090643A1 (ja) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | 太陽電池の製造方法及び太陽電池 |
JP2012138533A (ja) * | 2010-12-28 | 2012-07-19 | Sharp Corp | 太陽電池ストリング、および太陽電池モジュール |
-
2014
- 2014-09-19 JP JP2014191275A patent/JP2016063129A/ja active Pending
-
2015
- 2015-05-20 WO PCT/JP2015/064473 patent/WO2016042842A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012138533A (ja) * | 2010-12-28 | 2012-07-19 | Sharp Corp | 太陽電池ストリング、および太陽電池モジュール |
WO2012090643A1 (ja) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | 太陽電池の製造方法及び太陽電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110870080A (zh) * | 2017-07-11 | 2020-03-06 | 夏普株式会社 | 光电转换装置、具备其的太阳能电池串以及具备它们任意一者的太阳能电池组件 |
CN110870080B (zh) * | 2017-07-11 | 2022-10-28 | 夏普株式会社 | 光电转换装置、具备其的太阳能电池串以及具备它们任意一者的太阳能电池组件 |
Also Published As
Publication number | Publication date |
---|---|
JP2016063129A (ja) | 2016-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6328606B2 (ja) | 背面接触型太陽光発電モジュールの半導体ウエハのセル及びモジュール処理 | |
KR102175893B1 (ko) | 태양 전지 모듈의 제조 방법 | |
WO2011093329A1 (ja) | 太陽電池及びその製造方法 | |
JP2009527906A (ja) | 高電圧ソーラ・セルおよびソーラ・セル・モジュール | |
JP2008535216A (ja) | 改良された配線を有する拡張性のある光電池及びソーラーパネルの製造 | |
US9153713B2 (en) | Solar cell modules and methods of manufacturing the same | |
JP2020510321A (ja) | N型ibc太陽電池をスプライス接続する電池ストリング及びその製造方法、モジュール並びにシステム | |
JP2012129359A (ja) | 太陽電池モジュール及び太陽電池セル | |
US11515436B2 (en) | Photovoltaic device and photovoltaic unit | |
WO2016042842A1 (ja) | ヘテロ接合型バックコンタクトセルおよび光電変換装置 | |
JP6321099B2 (ja) | 太陽電池モジュール | |
JP6611786B2 (ja) | 光電変換素子および光電変換装置 | |
TWI631814B (zh) | 太陽光電模組 | |
WO2013161145A1 (ja) | 裏面接合型太陽電池及びその製造方法 | |
WO2016027530A1 (ja) | 光電変換装置 | |
WO2016051993A1 (ja) | 光電変換素子および光電変換素子の製造方法 | |
JP6762304B2 (ja) | 光電変換素子 | |
JP6748688B2 (ja) | 光電変換装置 | |
JP6476015B2 (ja) | 光電変換素子およびその製造方法 | |
US20180219116A1 (en) | Solar cell module including a plurality of solar cells connected and method of manufacturing a solar cell | |
JP3133269B2 (ja) | 太陽電池パネル | |
TWI626755B (zh) | 單面受光之太陽能電池及其製造方法與太陽能電池模組 | |
JP6198813B2 (ja) | 光電変換素子、光電変換モジュールおよび太陽光発電システム | |
WO2017150104A1 (ja) | 光電変換素子および光電変換モジュール | |
JP2012023140A (ja) | 太陽電池セル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841936 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15841936 Country of ref document: EP Kind code of ref document: A1 |