WO2016038998A1 - 生体ポリマ分析デバイス及び分析システム - Google Patents

生体ポリマ分析デバイス及び分析システム Download PDF

Info

Publication number
WO2016038998A1
WO2016038998A1 PCT/JP2015/069422 JP2015069422W WO2016038998A1 WO 2016038998 A1 WO2016038998 A1 WO 2016038998A1 JP 2015069422 W JP2015069422 W JP 2015069422W WO 2016038998 A1 WO2016038998 A1 WO 2016038998A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological polymer
dimensional structure
nanopore
thin film
solution
Prior art date
Application number
PCT/JP2015/069422
Other languages
English (en)
French (fr)
Inventor
佑介 後藤
孝信 芳賀
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to DE112015003450.1T priority Critical patent/DE112015003450B4/de
Priority to US15/506,090 priority patent/US11275074B2/en
Priority to GB1703320.0A priority patent/GB2549187B/en
Priority to CN201580045934.XA priority patent/CN106605141B/zh
Publication of WO2016038998A1 publication Critical patent/WO2016038998A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2523/00Reactions characterised by treatment of reaction samples
    • C12Q2523/30Characterised by physical treatment
    • C12Q2523/308Adsorption or desorption
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/155Particles of a defined size, e.g. nanoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/631Detection means characterised by use of a special device being a biochannel or pore

Definitions

  • the present invention relates to a biological polymer analysis method using pores embedded in a thin film, and particularly to a DNA or protein analysis method.
  • Nanopore When one molecule of biological polymer passes through a pore (hereinafter referred to as nanopore) with a diameter of about 0.9 nm to several nm embedded in a thin film with a thickness of several tens to several tens of nanometers, depending on the monomer arrangement pattern of the biological polymer, The electrical characteristics around the nanopore change in a pattern.
  • a method for analyzing a monomer array of a living polymer by using this has been actively studied. Nanopores are often used in a form in which a solution containing an electrolyte is arranged on both sides of a thin film.
  • a solution containing an electrolyte can be passed through the nanopore.
  • a pair of electrodes is formed in the nanopore, and the tunneling current flowing between the electrodes is used to vary the amount of tunneling current observed when the biological polymer passes through the nanopore depending on the monomer species
  • a system based on this principle is widely known.
  • Either method can directly read a living body polymer without requiring a chemical operation accompanied by fragmentation of the living body polymer as in the prior art.
  • the biological polymer is DNA
  • it is a next-generation DNA base sequence analysis system
  • the biological polymer is protein
  • it is an amino acid sequence analysis system, and each is expected to be a system that can decode a much longer sequence length than before. .
  • biopores using proteins with pores in the center embedded in lipid bilayer membranes
  • solid pores in which pores are processed in an insulating thin film formed by a semiconductor processing process.
  • the amount of change in the ionic current is measured using the pores (diameter: 1.2 nm, thickness: 0.6 nm) of the modified protein (Mycobacterium msmegmatis porin A (MspA), etc.) embedded in the lipid bilayer membrane as a biological polymer detector.
  • MspA Mycobacterium msmegmatis porin A
  • the pore thickness is larger than one monomer unit (adjacent distance of a nucleic acid that is a DNA monomer is 0.34 nm), information on a plurality of monomer molecules is mixed in the amount of change in ion current.
  • protein is used, so that the pore portion of the protein is denatured depending on the solution conditions and environmental conditions, and the device is deteriorated. There is a problem that the robustness of the device is low from the viewpoint of stability and lifetime.
  • solid pores can form thin films consisting of monolayers such as graphene and molybdenum disulfide. With these thicknesses, it is possible to ensure sufficient spatial resolution to read one monomer unit of monomer.
  • a method in which the biological polymer is electrophoresed using the potential difference generating an ionic current as it is as a driving force is most widely used.
  • the speed of DNA strand passing through the nanopore by electrophoresis is so high that only a signal value in which signals of a plurality of monomer molecules are mixed can be obtained.
  • the technology to slow down was necessary. Specifically, it is preferable to be able to delay to a passage speed of 100 ⁇ s / monomer unit or more, but at present, the speed is 0.01 to 1 ⁇ s / monomer unit, so at least a speed delay of 100 to 10,000 times is realized. There is a need to. Thus, if the passage speed can be slowed down, it is possible to acquire a signal of only one monomer molecule.
  • Nanopores can be obtained by increasing the viscosity of the solution by increasing the viscosity of the solution by adding high-concentration glycerol and increasing the frictional force in the direction opposite to the tensile force of the DNA strand during electrophoresis.
  • a method of slowing the passage speed has been attempted (Non-patent Document 1).
  • a method has been validated in which the lithium ion is added to the solution to reduce the apparent negative charge of the DNA strand, thereby reducing the tensile force during electrophoresis and delaying the nanopore passage speed (non- Patent Document 2).
  • Patent Document 1 discloses a method of installing an obstacle having a two-dimensional shape in a nanopore device composed of a two-dimensional channel.
  • Patent Document 1 discloses a structure in which nano-sized obstacle groups (such as cylinders) are regularly arranged on both sides of a thin film processed with nanopores.
  • nano-sized obstacle groups such as cylinders
  • a gel material composed of a polymer, a resin, an inorganic porous body, and beads is clearly shown. It is mentioned that the speed of passing through the nanopores is reduced because the biological polymer collides with an obstacle during electrophoresis to generate a frictional force in a direction that prevents migration.
  • Non-Patent Document 4 discloses a structure in which a group of resin-made nanowires randomly stacked on the upstream side of a nanopore is provided as another means for realizing an obstacle. It is mentioned that the passage speed of nanopores is reduced by utilizing frictional force caused by collision of biological polymer with nanowires during electrophoresis.
  • the conventional method has a problem that the delay effect is insufficient.
  • a case where double-stranded DNA is targeted as a biological polymer is disclosed. Stays delayed.
  • the additive since the additive also passes simultaneously when passing through the biological polymer, there is a problem that the monomer type signal value difference of the monomer per molecule unit becomes small and the detection of the monomer type becomes difficult.
  • a method of adding lithium ions is also disclosed, for example, in the case of targeting single-stranded DNA as a biological polymer, and the delay effect before and after the addition is about 10 times.
  • the nanopore passage speed of the biological polymer cannot be sufficiently delayed to a speed that allows the monomer array analysis, and development of another means has been desired.
  • the present invention has been made in view of the above problems, and its object is to greatly delay the nanopore passage speed of a biological polymer by introducing a new delay principle, and to analyze the monomer arrangement in the biological polymer. It is an object of the present invention to provide a biological polymer analysis system capable of stably performing the above.
  • a representative embodiment of the present invention has two tanks that can store a solution containing a biopolymer and an electrolyte, a pair of electrodes respectively disposed in the two tanks, and nanopores, and the two tanks via the nanopores.
  • the three-dimensional structure has a void, and the void from the nanopore to the three-dimensional structure.
  • the surface of the flow path has a functional group capable of adsorbing a biological polymer, and when a voltage is applied to a pair of electrodes, the capture length of the biological polymer is defined as the radius at least around the nanopore.
  • This is a biological polymer analysis device in which the three-dimensional structure does not re-disperse in the solution within the hemisphere range.
  • not re-dispersing is defined as that a part of a three-dimensional structure does not peel off due to solvation, Brownian motion, or electrophoresis when a voltage is applied under the condition where it is in contact with a solution. .
  • the presence of a functional group that adsorbs the biological polymer on the surface of the flow channel in the three-dimensional structure allows the biological polymer to flow when the biological polymer approaches the vicinity of the flow channel surface by electrophoresis or diffusion phenomenon. Adsorbs thermodynamically on the road surface. This state of adsorption occurs because the biological polymer is more stable in terms of free energy than the state in which the biological polymer is solvated or ionized and freely diffused in the solution. The adsorption force at this time acts as a force acting in the opposite direction to the tensile force of the biological polymer during electrophoresis.
  • the strength of this adsorption force can be arbitrarily controlled by adjusting the type of functional group modified on the channel surface and the solution conditions, and the rate at which the polymer polymer can pass through the nanopores can be analyzed by monomer arrangement analysis. The bandwidth can be adjusted.
  • the structure that provides the adsorption force does not re-disperse in the solution even when a voltage is applied.
  • a stable flow channel shape can be maintained, and a biological polymer analysis device with high robustness corresponding to various solution conditions and environmental conditions can be provided.
  • the schematic diagram which shows an example of a biological polymer analysis device The conceptual diagram of the biopolymer arrangement
  • the cross-sectional schematic diagram of the nanopore peripheral part which highlighted the flow path in a three-dimensional structure The cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure.
  • the cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure The cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure.
  • the cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure The cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure.
  • the cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure The cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure.
  • the cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure The cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure.
  • the cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure The cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure.
  • the cross-sectional schematic diagram which shows the nanopore peripheral part of another three-dimensional structure Schematic which shows an example of a biological polymer analysis system.
  • the cross-sectional schematic diagram of the thin film before nanopore opening The cross-sectional schematic diagram of the thin film before nanopore opening.
  • FIG. 1 is a schematic view showing an example of a biological polymer analysis device according to the present invention.
  • This device includes a thin film 104 having two tanks 101a and 101b that can store a solution 102 and a nanopore 106 (details are described in FIG. 5 and subsequent figures), a three-dimensional structure 103 placed on the thin film, , A pair of electrodes 105a and 105b.
  • the solution stored in the two tanks contains an electrolyte, and the biological polymer 109 may be contained in at least one of the tanks.
  • the thin film 104 is disposed between the two tanks 101 a and 101 b so that the two tanks 101 a and 101 b communicate with each other through the nanopore 106. As shown in FIG. 1, the two tanks are preferably provided with solution inlets 107a and 107b for introducing a solution.
  • the three-dimensional structure is provided with a void 108 (details are described in FIG. 7 and subsequent figures), and this void is a channel through which the solution can pass from the nanopore to the top of the three-dimensional structure.
  • a functional group 110 capable of adsorbing a biological polymer is provided on the surface of the flow path.
  • this three-dimensional structure has a rigid property that does not re-disperse into the solution in the range within the hemisphere centered on the nanopore when a voltage is applied. The radius of this hemisphere is the biopolymer capture length r defined below.
  • Biological polymers include single-stranded DNA, double-stranded DNA, RNA, oligonucleotides, etc. composed of nucleic acids as monomers, and polypeptides composed of amino acids as monomers. It is preferable to take the form of the linear polymer from which the higher order structure was eliminated at the time of measurement. In the following, a form in which single-stranded DNA is used as a biological polymer is shown, but the above-mentioned other biological polymers are also applicable.
  • the solvent of the solution is most preferably water that can stably dissolve the biological polymer.
  • the electrolytes contained in the above solvents include potassium ion, sodium ion, lithium ion, calcium ion, magnesium ion, fluoride ion, chloride ion, bromide ion, iodide ion, sulfate ion, carbonate ion, nitrate ion, and ferricyan.
  • Examples include ions and ferrocyan ions.
  • Examples of the material of the electrode include carbon, gold, platinum, silver and silver chloride, and any electrode that can be used for electrochemical measurement is not particularly limited.
  • the nanopore 106 may be about 0.9 to 10 nm in diameter, which is the minimum size through which single-stranded DNA can pass, and the thickness of the thin film may be about several tens to several tens of nm.
  • the material of the thin film may be any material that can be formed by semiconductor microfabrication technology, and typically may be silicon nitride, silicon oxide, hafnium oxide, molybdenum disulfide, graphene, or the like. Nanopores can be formed by electron beam irradiation or pulse voltage application. Such methods are disclosed in detail in the literature (M. Wanunu, Physics of Life Reviews, 2012, 9, 125.) and literature (I.IYanagi, Scientific Reports, 2014, 4, 5000.).
  • Examples of the functional group 110 capable of adsorbing a living body polymer include a silanol group in the case of targeting DNA, RNA, oligonucleotide, and the like.
  • Nucleic acids are widely known to adsorb silanol groups by the chaotropic effect, and typical examples using glass with silanol groups on the surface (B. Volgenstein, et al., Proc. Natl. Acad. Sci. USA, 1979, 76, 615.).
  • the aqueous solution contains a molecule that causes the chaotropic effect.
  • the molecules that cause chaotropic effects include thiocyanate ion (SCN ⁇ ), dihydrogen phosphate ion (H 2 PO 4 ⁇ ), hydrogen sulfate ion (HSO 4 ⁇ ), bicarbonate ion (HCO 3 ⁇ ), and iodide ion.
  • SCN ⁇ thiocyanate ion
  • dihydrogen phosphate ion H 2 PO 4 ⁇
  • hydrogen sulfate ion HSO 4 ⁇
  • bicarbonate ion HCO 3 ⁇
  • iodide ion I -
  • chloride ion (Cl -) chloride ion
  • NO 3 - nitrate ion
  • ammonium ions NH 4 +
  • Cs + cesium ion
  • K + potassium ion
  • guanidinium ions tetramethyl Ammonium ions are preferred.
  • the chaotropic effect is expressed more strongly under acidic conditions, and it is preferable that the solution conditions are adjusted to pH 1 or higher at which the chaotropic effect is sufficiently developed and pH 10 or lower at which the chaotropic effect starts to be developed. In addition, it is known that the chaotropic effect becomes stronger as the ionic strength increases. When chloride ions are taken as an example, the saturated chloride that the chaotropic effect is sufficiently developed is 10 mM or more at which the chaotropic effect begins to appear. It is preferable that the solution conditions are adjusted to an ionic strength (about 3.4 M) or less of the potassium solution. These solution conditions are described, for example, in the literature (P. E. Vandeventer, et al., J. Phys. Chem. B, 2012, 116 (19), 5661.).
  • Suitable examples of functional groups that can adsorb biological polymers include functional groups that ionize to cations. Since nucleic acids such as DNA and RNA are negatively charged in aqueous solution, they are known to adsorb with positively charged cationic molecules by electrostatic interaction. As the functional group charged to the cation, a primary amine group, secondary amine group, tertiary amine group, quaternary amine group, pyridine group, imino group, imidazole group, pyrazole group, triazole group and the like are preferable. Although there are various functional groups that ionize to cations, it is preferable that they maintain a stable form in an aqueous solution and have no chemical reactivity with biological polymers.
  • the pH of the solution is preferably smaller than the pKa of the functional group that ionizes to the cation so as to stably ionize to the cation.
  • the primary amine group has a pKa in the range of 9 to 11, and the typical primary amine ethylamine has a pKa of 10.5. Therefore, by adjusting the solution pH to 10.5 or lower, ethylamine is completely ionized into cations, and DNA and the like can be reliably adsorbed to the channel surface.
  • the functional group is provided on the surface of the flow path, when the biological polymer approaches the vicinity of the flow path surface by electrophoresis or diffusion as shown in FIG. Adsorbs dynamically. This state of adsorption occurs because the biological polymer is more stable in terms of free energy than the state in which the biological polymer is solvated or ionized and freely diffused in the solution.
  • the adsorption force at this time acts as a force acting in the opposite direction to the tensile force applied to the biological polymer during electrophoresis. This adsorption force reduces the tensile force on the living body polymer during electrophoresis, and the speed of passing through the nanopore can be delayed.
  • the strength of this adsorption force can be arbitrarily controlled by adjusting the type of functional group modified on the channel surface and the solution conditions, and the rate at which the polymer polymer can pass through the nanopores can be analyzed by monomer arrangement analysis. It can be easily adjusted to the bandwidth.
  • the tensile force on DNA due to the potential gradient generated around the nanopore is described in detail in the literature (U. F. Keyser, et al., Nature Physics, 2006, .2, 473.) and must be 0.24pN / mV It has been known.
  • the adsorption force to biological polymer for example, it was found that the adsorption force to silanol group of DNA is about 55pN according to the investigation made using atomic force microscope (F.FKuhner, Langmuir, 2006, 22 , 11180.). In addition, according to the same investigation, it was found in the literature (M. Erdmann, et al., Nature Nanotechnology, 2010, 5, ⁇ 154.) that the adsorption power of DNA to the cationic group (ionized primary amine group) is about 200pN. Are listed. Therefore, it is possible to realize the desired nanopore passage speed of the biological polymer by arbitrarily adjusting these tensile force and adsorption force.
  • the biological polymer capture length r is an effective distance at which the biological polymer can be transported by electrophoresis using a potential gradient generated around the nanopore (a hemisphere range of radius r) as shown in FIG. is there.
  • the biopolymer capture length is defined by Equation 1.
  • the biopolymer capture length is disclosed in detail in the literature (M. Wanunu, et al., Nature Nanotechnology, 2010, 5, 160.).
  • a tensile force toward the living body polymer by the electrophoresis is generated.
  • the flow path having a functional group capable of adsorbing the biological polymer exists within the range of the hemisphere.
  • the structure does not redisperse in the solution within the range of the hemisphere when a voltage is applied.
  • improvement of the capturing efficiency of the living body polymer can be achieved by limiting the area of the structure as described later. Is possible.
  • the minimum cross-sectional area of the flow channel needs to be greater than or equal to the molecular cross-sectional area of the biopolymer, and the maximum cross-sectional area of the flow channel needs to be less than or equal to the maximum cross-sectional area between the gaps so that at least the biological polymer can pass. It is described in the literature (K. Venta, et al., ACS Nano, 2013, 7 (5), 4629.) that the smallest nanopore diameter that can pass through single-stranded DNA is 0.9 nm. Thus, the molecular cross-sectional area in this case is 0.81 nm 2.
  • the maximum cross-sectional area of the flow path is larger than the cross-sectional area formed by the mean free path S (dimension is distance) of the biological polymer defined by Equation 2. Is preferably small.
  • D is the diffusion coefficient of biological polymer
  • t is the average residence time near the nanopore.
  • the literature shows that the diffusion coefficient is 118 ⁇ m 2 / s.
  • the average residence time in the vicinity of the nanopore is 700 ms.
  • the mean free path of single-stranded DNA in this case is 9 ⁇ m.
  • the maximum cross-sectional area of the flow path for adsorbing the functional group 110 once or more before the single-stranded DNA enters the nanopore is 81 ⁇ m 2 .
  • the cross-sectional area of the flow path in this case is preferably 0.81 nm 2 or more and 81 ⁇ m 2 or less.
  • an example of a suitable cross-sectional area range is given using a living body polymer as a single-stranded DNA.
  • the range of the cross-sectional area changes depending on the biological polymer, the ionic component of the solution, the viscosity, and the like, and the effects of the present invention can be sufficiently obtained in a range other than the above.
  • the upper limit of the cross-sectional area of the flow path is more preferably equal to or less than the area of a circle whose radius is the biopolymer capture length.
  • the upper limit of the cross-sectional area of the channel is set to a molecular cross-sectional area of DNA polymerase, DNA helicase, exosome (size of several nm to several tens of nm or less). An effect is obtained.
  • the above-mentioned protein or structure is attached to the DNA extracted from the actual specimen or mixed as a contaminant.
  • analysis is performed using nanopores smaller than these substance sizes, if they are attached to DNA, they may become clogged when passing through the nanopore and analysis may not be continued. Therefore, by restricting the maximum cross-sectional area of the flow path, it is possible to perform smooth analysis by filtering out these substances or passing only DNA to which these substances are not attached.
  • the same effect can be obtained by setting the upper limit of the cross-sectional area of the channel to be equal to or lower than the cross-sectional area of the higher order structure of DNA.
  • DNA for example, it is known that a sequence in which guanine is continuous forms a higher-order structure (tetramer, size: 2.6 nm to 10 nm). Therefore, by providing the above-mentioned restriction, it becomes possible to perform a smooth analysis by unwinding a DNA having a higher order structure in a straight chain or allowing only a monomeric DNA to pass through.
  • FIG. 6 is a schematic cross-sectional view in the vicinity of a nanopore showing another embodiment of the biological polymer analysis device according to the present invention.
  • FIG. 6 is characterized in that a plurality of nanopores are arranged in parallel.
  • FIG. 1 when a device is configured using only a single nanopore, it is only necessary to provide one set of two electrodes and one three-dimensional structure for each nanopore.
  • FIG. 6 when a plurality of nanopores are used in parallel as shown in FIG. 6, one three-dimensional structure 103 needs to be placed on a thin film 104 having nanopores for each nanopore 106. is there.
  • An electrode (typically a grounded electrode) 105a immersed in one solution side is used as a common electrode, and one independent electrode 105b is provided for each nanopore on the other solution side. It ’s fine.
  • the solution 102a on the common electrode side is a common solution for each nanopore 106, and the solution 102b on the opposite side to the common electrode needs to have one independent solution for each nanopore 106.
  • the partition which ensures the independence of each solution is an insulating material, for example, polydimethylsiloxane, silicon oxide, etc. are preferable. With such a configuration, each nanopore can perform independent biological polymer analysis without electrochemically interfering with each other, thereby improving the throughput of biological polymer analysis.
  • FIG. 7 shows a view of the nanopore peripheral portion as viewed from vertically above the device.
  • FIG. 8 is a schematic perspective view of the periphery of the nanopore cut along section A in FIG. 7, and
  • FIG. 9 is a schematic cross-sectional view of the periphery of the nanopore.
  • This embodiment is characterized in that a three-dimensional structure is formed by stacking a plurality of particles 111 on a thin film 104.
  • the hatched area is a cross-section portion of the molded particle cut along the cross section A
  • the annular area shown in gray is the post-molding particle located on the back side of the void. It is a part of.
  • the voids 108 between the particles form a flow path 112 through which a solution containing a biological polymer and an electrolyte passes to the nanopore.
  • the flow path 112 is highlighted with a bold line.
  • the voltage gradient is generated only in the range of the hemisphere 113 with the nanopore 106 as the center position and the biological polymer capture length r as the radius. For this reason, among the many voids existing in the present structure, only the void existing in the range of the hemisphere 113 and connected to the nanopore 106 can serve as the flow path.
  • the surface of the particle is modified with a functional group capable of adsorbing a biological polymer.
  • the plurality of molded particles have a non-spherical shape so as not to be electrophoresed and peeled off from the thin film surface upon voltage application and re-dispersed in the solution at least within the hemispherical range.
  • One of the advantages of this embodiment is that the probability that the biological polymer is adsorbed to the flow path surface can be improved. This is because a sufficiently large specific surface area can be provided by molding the three-dimensional structure with particles. The smaller the average diameter of the particles, the smaller the voids and the higher the probability of biopolymer adsorption. On the other hand, the smaller the gap, the lower the ion current obtained by increasing the resistance value when ions pass, and the signal value itself cannot be obtained. Therefore, the adsorption probability and the resistance value of the biological polymer are in a trade-off relationship.
  • the average diameter of the particles is preferably 10 nm or more and 1000 nm or less.
  • the particles may block the nanopore, for that purpose, the particles need to be in point contact with the nanopore, and such a probability is very low, so there is no problem in practical use. If there is a nanopore blocked by particles, the nanopore is not used for analysis.
  • Another advantage is that production using particles is easy.
  • a solution in which particles are dispersed onto a thin film and evaporating and removing only the solvent a three-dimensional structure molded from the particles can be produced.
  • dip coating, spin coating, electrophoresis coating, or the like can be used as a method for applying the solution.
  • dip coating is not only simple, but also preferred because the particles can be self-assembled and densely arranged on the surface of the thin film by the surface tension of the solvent.
  • Such a method is disclosed in, for example, literature (X. Ye, et al., Nano Today, 2011, 6, 608.).
  • a method of evaporating and removing the solvent after coating a method of evaporating by heating is preferable.
  • each particle can be deformed by appropriately selecting the material of the particle.
  • a method is disclosed, for example, in literature (A. Kosiorek, et al., Small, 2005, 1, 439.).
  • the particles Prior to deformation, the particles remain only in point contact and are unstable structures that undergo electrophoresis upon application of voltage, so this deformation processing must be performed.
  • the spherical particles are pressed against each other and deformed into a non-spherical shape as shown in FIG. 9 so that the particles come into surface contact. This has the effect of forming a stable structure that can withstand the tensile force applied to the particles during voltage application.
  • the shape of the particles at this time is preferably a polyhedron so that adjacent particles can come into strong contact with each other.
  • Such polyhedrons are obtained by thermocompression bonding and are described in, for example, literature (Z. Q. Sun, et al., Langmuir, 2005, 21 (20), 8987).
  • the material be deformable.
  • resins such as polystyrene and polylactic acid, ceramics such as silica and titanium oxide, metals such as gold and silver are preferable.
  • the particles have a high zeta potential value so that the particles can obtain a sufficient repulsive force.
  • the silica described above is a desirable material because the surface is covered with negatively charged silanol groups, and a zeta potential value sufficient for the particles to be dispersed independently in water can be realized.
  • the functional surface capable of adsorbing the living body polymer needs to be applied to the particle surface, but it may be applied to the particle surface before application to the thin film or may be applied by chemical reaction treatment after application.
  • Another advantage of using a three-dimensional structure formed of particles is that a mesh-like channel can be formed.
  • biological polymers especially single-stranded DNA
  • the effect of unwinding the single-stranded DNA into a linear form by adsorbing a plurality of locations in the molecule to the network flow path can be obtained. Therefore, it is possible to perform smooth biological polymer detection at the nanopore.
  • the volume occupation ratio of the particles in the three-dimensional structure is higher than the occupation ratio when the particles are in point contact with each other in a close packed structure.
  • the area occupancy of the figure projected from the top of the 3D structure onto the thin film is preferably larger than ⁇ / ⁇ 12 which is the theoretical value of point contact.
  • the area occupancy is preferably larger than ⁇ / 4 which is the theoretical value of point contact.
  • the minimum cross-sectional area of the flow path refers to the minimum cross-sectional area of the void forming the flow path connected to the nanopores in the void between the deformed particles within the range of the hemisphere. .
  • the maximum cross-sectional area of the flow path refers to the maximum cross-sectional area of the void forming the flow path connected to the nanopore in the void between the deformed particles within the range of the hemisphere.
  • the maximum cross-sectional area of voids refers to the maximum cross-sectional area in all voids between deformed particles in a three-dimensional structure. Therefore, outside the range of the hemisphere, it is possible that some of the particles are lost and the maximum cross-sectional area of the void is larger than the maximum cross-sectional area of the flow path. However, since such a part is an area that does not contribute to the analysis of biological polymers, there is no practical problem. This definition applies to Examples 2 to 6 and 9 described below.
  • FIG. 11 is a schematic cross-sectional view showing the nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • the embodiment shown in FIG. 11 is characterized in that the adjacent particles in FIG. 9 are integrated.
  • FIG. 9 shows an example of a three-dimensional structure in which particles are deformed, but the moldability can also be realized by integration of adjacent particles by chemical reaction or material lamination on the surface.
  • the particle material is a resin
  • the resin when the resin is plastically deformed and brought into contact by heating to a temperature higher than the glass transition temperature, the resin molecular chains can be entangled and integrated.
  • the resin polystyrene resin or the like is preferable.
  • the particle material is ceramics such as silica or titanium oxide, it can be realized by a chemical reaction such as a sintering reaction, and the particles can be firmly integrated.
  • Such a method for sintering silica particles is described, for example, in the literature (T. V. Le, et al., Langmuir, 2007, 23 (16), 8554.). They can also be integrated by introducing monomers into the voids between the particles and causing a polymerization reaction to laminate the resin. Monomers may be inorganic or organic. A similar structure can also be realized by initiating surface graft polymerization from the particle surface. As another method, there is a method of covering the particle surface by atomic layer deposition (atomic layer deposition). By integrating the particles, it is possible to realize a stable three-dimensional structure that is not redispersed and to realize a highly robust device.
  • atomic layer deposition atomic layer deposition
  • FIG. 12 is a schematic cross-sectional view showing the nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • FIG. 9 shows an example of a three-dimensional structure in which one layer of particles is laminated, but the embodiment shown in FIG. 12 shows an example of a three-dimensional structure in which particles are laminated in multiple layers. Since the specific surface area is increased by the multi-layer lamination, the above-mentioned biological polymer adsorption probability is improved, and a further delay effect is obtained. Further, since the length of the mesh-like flow path is further increased, the effect of unwinding the straight chain described above is further improved, and smoother detection can be realized.
  • the multilayer lamination method includes a method in which the particle concentration of the particle dispersion solution is adjusted, or the same treatment is performed many times on the layered three-dimensional structure adjusted in FIG. Such a method is described in, for example, literature (P. Jiang, et al., Chem. Mater., 1999, 11 (8), 2132.). Also in this laminated structure, a stable structure that is not redispersed can be realized by deforming the shape into a non-spherical shape as in Example 1 or Example 2 or by integrating the particles together.
  • FIG. 13 is a schematic cross-sectional view showing a nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • the embodiment shown in FIG. 13 shows an example in which a three-dimensional structure is formed using two types of particles having different sizes in FIG.
  • small particles are arranged in a self-aligned manner in the gaps between the large particles, and the specific surface area can be further increased to increase the adsorption probability of the biological polymer.
  • FIG. 14 is a schematic cross-sectional view showing a nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention. This embodiment is characterized in that a two-dimensional particle having a different size is used to form a three-dimensional structure having a different form from that in FIG.
  • FIG. 14 shows an example in which small particles are placed as a first layer on a thin film, and large particles are stacked as a second layer thereon.
  • Biological polymers with a short polymer length can pass through the second layer and arrive at the first layer because of the small hydrodynamic radius in the voids between the large particles in the second layer, but the biological polymer with a long polymer length. Since the polymer has a large hydrodynamic radius, a phenomenon occurs in which the polymer does not reach the first layer because it is adsorbed in the voids between the large particles in the second layer.
  • a structure in which the particle size is increased from the first layer to the top layer with a gradient is also effective. Also in this laminated structure, a stable structure that is not redispersed can be realized by deforming the shape into a non-spherical shape as in Example 1 or Example 2 or by integrating the particles together.
  • FIG. 15 is a schematic cross-sectional view showing the nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • the embodiment shown in FIG. 15 is characterized in that, for example, a wall 114 having a thickness larger than the thickness of the three-dimensional structure is provided around the three-dimensional structure shown in FIG.
  • the first point is that since the movable range of the three-dimensional structure can be limited by having walls around it, there is an effect of suppressing re-dispersion of the three-dimensional structure into the solution.
  • the second effect is that the analysis time can be shortened by improving the detection frequency of the living body polymer.
  • the three-dimensional structure can be accommodated within the range of the biopolymer capture length.
  • the biological polymer that interacts with the structure is simultaneously attracted to the nanopore by the potential gradient. Therefore, the frequency of the living body polymer that enters the nanopore can be improved.
  • it has the effect of detecting lower concentrations of biological polymers. The above effect can be obtained even if the height and width of the wall surface are larger than the biopolymer capture length.
  • a structure in which the area of the opening of the wall is smaller than the area of the thin film by providing the second thin film 115 as shown in FIG. 16 is also effective.
  • the movable range of a three-dimensional structure can be more effectively limited, and there is an effect that re-dispersion into a solution can be suppressed.
  • Such a structure is described in literature (I. Yanagi, Scientific Reports, 2014, 4, 5000.), and can be manufactured by the following method, for example.
  • a layer that can be etched with a hydrofluoric acid solution such as silicon oxide is disposed on the thin film 104 where the nanopores 106 are opened, and then a layer of a material that is difficult to etch with the solution (such as silicon nitride) is disposed.
  • a hole penetrating the two layers is formed by general dry etching. By stopping the process at this point, a structure having a wall as shown in FIG. 15 can be manufactured. Further, by performing wet etching using an etching solution such as hydrofluoric acid, an etchable layer is shaved on the hemisphere, and a device having a wall structure as shown in FIG. 16 can be provided. At this time, the particles are applied as the last step by the method shown in the first embodiment.
  • FIG. 17 is a schematic cross-sectional view showing a nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • This embodiment has a structure opposite to that shown in FIGS. 9 and 12, and is characterized in that an inverted opal structure in which particles are changed to void portions and void portions are changed to bulk body portions is used for the three-dimensional structure.
  • the structure of this embodiment is essentially the same structure as that shown in FIGS. 9 and 12, the same effect as that of FIGS. 9 and 12 can be realized by this structure.
  • the inverse opal structure is described in detail in the literature (J. H. Moon, et al., Chem. Rev., 2010, 110, 547.).
  • This structure is obtained by the following method. First, the particles are arranged in a regular structure by self-alignment, and then, without deforming or integrating the particles, the interparticle voids are filled with monomers (either organic or inorganic) to advance the polymerization reaction to form the bulk body 116. To do. Next, the particle part is dissolved and removed using a solvent that can dissolve only the particle part.
  • a solution containing a highly reactive surface treatment agent such as a silane coupling agent having a primary amine is immersed and washed with alcohol or the like.
  • a highly reactive surface treatment agent such as a silane coupling agent having a primary amine
  • the advantage of the inverse opal structure formed by using particles as a template in this way is that the resistance value can be lowered by further increasing the volume of the solution portion while realizing the same surface area as in the case of particle filling. . Therefore, since a higher ion current value can be secured, there is an effect of increasing the sensitivity of measurement.
  • the material used for forming the bulk body of this structure is preferably polystyrene or silica. In this structure, since the three-dimensional structure is integrated as a bulk body, a stable structure that does not re-disperse in the solution can be realized.
  • the minimum cross-sectional area of the flow path is the nanopore 106 among the particulate voids that serve as the template within the range of the hemisphere having the radius of the biological polymer capture length r represented by the above formula 1. It refers to the minimum cross-sectional area of the air gap that forms a connected flow path.
  • a cross-sectional area larger than the molecular cross-sectional area of the biological polymer can be ensured.
  • the maximum cross-sectional area of the flow path refers to the maximum cross-sectional area of the void that forms the flow path connected to the nanopore among the particulate voids that have become the mold within the range of the hemisphere.
  • the maximum cross-sectional area of the void refers to the maximum cross-sectional area of all the particle-shaped voids used as a mold.
  • FIG. 18 is a schematic cross-sectional view showing a nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • FIG. 18 shows an example in which a second thin film 117 having a void directly above the nanopore is placed on the first thin film 104 having the nanopore 106 as the simplest example of the three-dimensional structure.
  • This embodiment has an advantage that it is easy to control the cross-sectional area of the gap 108 and the thickness of the thin film 117, and it is easy to control the adsorption probability of the biological polymer.
  • the void 108 can open a void of a desired size by electron beam irradiation, and the nanopore 106 and the void are simultaneously formed in the first thin film 104 and the second thin film 117 in a state where the nanopore is not opened in the first thin film 104. 108 can also be opened.
  • the second thin film 117 can be formed by a semiconductor fine processing technique.
  • the material of such a thin film is a material that can be formed by a semiconductor processing technique, and a material having a low dielectric constant such as silicon dioxide is preferable so as to reduce the capacitance. By reducing the capacitance in this way, it is possible to reduce capacitance-dependent noise having frequency response when performing high-frequency measurement, and to perform biological polymer detection more stably.
  • a functional group is formed on the surface by chemical reaction treatment after forming a three-dimensional structure.
  • a method for treating the functional group as in Example 7, a method of immersing in a solution containing a silane coupling agent having a primary amine and washing with alcohol or the like can be mentioned.
  • a stable structure that is not redispersed in a solution can be realized by using silicon oxide or silicon nitride that does not dissolve in an aqueous solution as a material for semiconductor microfabrication technology.
  • the minimum cross-sectional area of the flow path is the minimum gap of the second thin film 117 having the gap 108 within the range of the hemisphere having the radius of the biological polymer capture length r represented by the above formula 1.
  • the maximum cross-sectional area of the flow path refers to the maximum cross-sectional area of the void 108 of the second thin film 117 having a void within the range of the hemisphere.
  • the cross-sectional area of the flow path and the cross-sectional area of the gap are completely the same.
  • FIG. 19 is a schematic cross-sectional view showing a nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention.
  • the three-dimensional structures are all placed on only one side of the thin film, but this embodiment is characterized in that they are placed on both sides. As a result, a further delay effect can be obtained.
  • FIG. 19 shows an example in which the three-dimensional structure shown in FIG. 12 is placed on both sides of the thin film 104.
  • the tensile force of the biological polymer 109 is set on either side. It is possible to reduce the force and realize further delay effect.
  • the same three-dimensional structure is placed on both sides of the thin film, but the three-dimensional structure may be any combination of the embodiments of FIGS.
  • a three-dimensional structure may be placed only on the outlet side. Also in this laminated structure, a stable structure that is not redispersed can be realized by deforming the shape into a non-spherical shape as in Example 1 or Example 2 or by integrating the particles together.
  • FIG. 20 is a schematic cross-sectional view showing a nanopore peripheral portion of another type of three-dimensional structure in the biological polymer analysis device of the present invention. This embodiment is characterized in that the thickness of the three-dimensional structure is smaller than the biopolymer capture length.
  • the embodiment of FIG. 9 is shown as an example.
  • the same effect as in Example 6 can be obtained. That is, the living body polymer 109 interacting with the three-dimensional structure is simultaneously attracted to the nanopore 106 by the potential gradient. Therefore, the frequency of the living body polymer that enters the nanopore can be improved. In addition to shortening the analysis time, it has the effect of detecting lower concentrations of biological polymers.
  • This embodiment can be applied to any of the structures described with reference to FIGS.
  • the thickness of the three-dimensional structure is determined by the particle diameter in the case of FIGS. 9 and 11, by the particle diameter and the number of layers in FIGS. 12 to 16 and 19, and by the particle size and the number of layers to be removed in FIG. In the case of FIG.
  • each can be controlled by the thickness of the thin film.
  • a stable structure that is not redispersed can be realized by deforming the shape into a non-spherical shape as in Example 1 or Example 2 or by integrating the particles together.
  • FIG. 21 is a schematic diagram showing an example of a biological polymer analysis system using the biological polymer analysis device according to the present invention.
  • This system typically uses the biological polymer analysis device 118 shown in FIG. 1, the ion current measurement device 119 that measures the ionic current flowing between a pair of electrodes of the biological polymer analysis device, and the output signals of the ion current measurement device 119.
  • Analog-digital output converter 120 for converting to a digital signal
  • data processor 121 for processing a signal supplied from the analog-digital output converter 120
  • data display output device 122 for displaying the processing result by the data processor 121
  • the device 123 is configured.
  • a current-voltage conversion type high-speed amplifier circuit is mounted on the ion current measuring device, and an arithmetic device, a temporary storage device, and a nonvolatile storage device are mounted on the data processing device.
  • the biological polymer analysis device unit is covered with a Faraday cage.
  • Example 12 It is also possible to open the nanopore after placing the three-dimensional structure on the insulating thin film in a state where the nanopore is not open.
  • a technique (I. Yanagi, Scientific Reports, 2014, 4, 5000.) describes a technique capable of opening nanopores having a desired diameter by continuously applying a pulsed voltage to an insulating thin film.
  • the three-dimensional structure of the present invention has voids connected to the thin film, and the void portion in contact with the thin film is the place having the lowest resistance value. For this reason, when the pulse voltage is continuously applied, the nanopore can be opened by concentrating the voltage in the gap in contact with the thin film.
  • the method of opening the nanopore of this embodiment is a three-dimensional structure having a void, and this void is an insulator on which a three-dimensional structure having a functional group capable of adsorbing a biological polymer is placed.
  • a process of immersing the front and back surfaces of the thin film in a solution containing an electrolyte, a process of immersing a pair of electrodes in a solution immersed in the front and back surfaces of the thin film, and applying a pulsed voltage to the pair of electrodes And opening the nanopore at a location where the thin film and the gap are in contact with each other.
  • FIG. 22 shows the case where the thin film 104 having no nanopores in FIG. 9 is used.
  • the voltage is concentrated at a location where the thin film and the molded particles are not in contact with each other, so that the nanopore is opened and a structure equivalent to that shown in FIG. 9 can be obtained.
  • the three-dimensional structure may become a shield and the electron beam may not reach the thin film. Therefore, it is preferable to dispose the three-dimensional structure after the opening process. If this step is used, it becomes possible to open the nanopore at an arbitrary timing regardless of before and after placing the three-dimensional structure.
  • nanopores can be opened at the locations indicated by arrows.
  • This process can be applied to any of the structures described in Examples 1 to 10 and FIGS. For the reasons described above, it is possible to supply a stable device in which the three-dimensional structure is not redispersed even when a voltage is applied, and the structure does not deteriorate before and after opening the nanopore.
  • Example 13 When forming a three-dimensional structure using particles, it is possible to realize a biological polymer analysis device that integrates both recovery of a target biological polymer from a specimen and speed delay.
  • FIG. 24 shows a conceptual flow of the protocol of this embodiment
  • FIG. 25 shows a schematic diagram of the protocol procedure.
  • a solution in which particles having functional groups adsorbed by the target biological polymer are dispersed is introduced into the sample solution in which the target biological polymer is dissolved (S11). After the introduction, it waits for a sufficient period of time so that the biological polymer is sufficiently adsorbed on the particle surface (S12). After a sufficient time has elapsed, only particles adsorbed by the target biological polymer are selectively recovered by using ultracentrifugation (S13). When magnetic particles are used, only the particles can be recovered by the magnetic field. After the collection, the three-dimensional structure shown in FIGS. 9 to 16 or FIGS. 19 and 20 formed from the particles to which the target biological polymer is adsorbed is placed on the thin film having nanopores (S14).
  • the device produced as described above is incorporated into the biological polymer analysis system shown in FIG. 21, and a voltage is applied to detect the biological polymer (S15).
  • a voltage is applied to detect the biological polymer (S15).
  • magnetic particles such as ferrite having paramagnetism as the particle material in order to facilitate particle recovery.
  • the analysis method of the present embodiment uses a plurality of particles having a functional group capable of adsorbing a target biological polymer on the surface, a step of adsorbing and recovering the target biological polymer from a specimen, and molding the particles on a thin film having nanopores.
  • the void in the three-dimensional structure forms a flow path for passing the electrolyte-containing solution from the nanopore to the top of the three-dimensional structure, and when a voltage is applied, the biological polymer capture length defined by Equation 1 at least around the nanopore. It does not redisperse in the solution within the range of a hemisphere with radius r.
  • the living body polymer can be arranged in the vicinity of the nanopore in advance, the detection frequency can be increased. Therefore, the analysis time can be shortened and a low concentration biopolymer can be detected.
  • the three-dimensional structure is not redispersed in the solution, and stable measurement can be performed.
  • the definitions regarding the cross-sectional areas of the flow paths and the gaps in the present embodiment are the same as those described in the first embodiment.
  • Example 14 Hereinafter, an example of biopolymer analysis using the biopolymer analysis system shown in FIG. 21 will be described.
  • the biological polymer analysis device a device having a three-dimensional structure shown in FIG. 15 was used.
  • the thin film a thin film made of silicon nitride having nanopores with a diameter of 2 nm was used.
  • the particles silica nanoparticles having a diameter of 100 nm and 50 nm with the surface covered with silanol groups and silica nanoparticles with a diameter of 50 nm having the surface covered with primary amine groups were used.
  • the three-dimensional structure was molded by applying the above particles by dip coating and then drying by heating.
  • an analytical device consisting only of a thin film made of silicon nitride with nanopores with a diameter of 2 nm on which no three-dimensional structure was placed.
  • a living body polymer artificially synthesized polyadenine (polyA) having a length of 5000 bases was used.
  • polyA polyadenine
  • an aqueous solution in which 1 M potassium chloride was dissolved was used. 1 V was applied as a potential difference for transporting the biological polymer.
  • FIG. 26 shows a typical example of biological polymer detection by the biological polymer analysis system of the above embodiment.
  • the typical passage speed of polyA was 0.01 ⁇ s / monomer unit.
  • silica nanoparticles with a diameter of 100 nm whose surface is covered with silanol groups are used, silica nanoparticles with a diameter of 0.46 ⁇ s / monomer and 50 nm in diameter are used. When used, it was 4.6 ⁇ s / monomer unit.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

電気泳動時における生体ポリマのナノポア通過速度を,モノマ配列解析が可能になる速度以下まで遅くする。生体ポリマと電解質を含んだ溶液を収納することが可能な2つの槽101a,101bと,一対の電極105a,105bと,ナノポアを有する薄膜104と,薄膜に載置された三次元構造体103を備え,三次元構造体は溶液を収納可能な空隙を有し,空隙は溶液がナノポアから三次元構造体の上部まで通過できる流路を形成しており,流路は生体ポリマが吸着する官能基を表面に有しており,少なくともナノポアを中心とし,電圧印加時における生体ポリマ捕捉長rを半径とした半球の範囲内において,三次元構造体が溶液に再分散しない生体ポリマ分析デバイス。

Description

生体ポリマ分析デバイス及び分析システム
 本発明は,薄膜に埋め込まれた細孔を用いた生体ポリマ分析方法,特にDNAやタンパク質の分析方法に関する。
 厚み数Å~数十nm程度の薄膜に埋め込まれた直径0.9nm~数nm程度の細孔(以下,ナノポアと呼ぶ)を生体ポリマ1分子が通過すると,生体ポリマのモノマ配列パターンに応じて,ナノポア周辺部の電気的特性がパターン状に変化する。これを利用して,生体ポリマのモノマ配列解析を行う方法が近年盛んに研究されている。ナノポアは電解質を含んだ溶液を薄膜両側に配置した形態でしばしば用いられる。この薄膜の表裏に電圧印加して電位差を発生させることによって,ナノポアに電解質を含んだ溶液を通過させることができる。電気的特性としてこの時発生するイオン電流に着目し,生体ポリマがナノポアを通過した時に観測されるイオン電流の変化量がモノマ種によって異なることを原理とした方式が最も有望視されている(図2)。イオン電流の他には,ナノポア部に1対の電極を形成し,その電極間を流れるトンネル電流を利用して,生体ポリマがナノポアを通過する際に観測されるトンネル電流量がモノマ種によって異なることを原理とした方式が広く知られている。いずれの方式も従来のように生体ポリマの断片化を伴う化学操作を必要とせずに,生体ポリマを直接読取することができる。生体ポリマがDNAの場合は次世代DNA塩基配列解析システムであり,生体ポリマがタンパク質の場合はアミノ酸配列解析システムであり,それぞれ従来よりも遥かに長い配列長を解読可能なシステムとして期待されている。
 ナノポアデバイスとしては,脂質二重膜に埋め込まれた中心に細孔を有するタンパク質を用いたバイオポアと,半導体加工プロセスにて形成した絶縁薄膜に細孔を加工したソリッドポアの2種類が存在する。バイオポアでは脂質二重膜に埋め込まれた改変タンパク質(Mycobacterium smegmatis porin A (MspA)等)の細孔(直径1.2nm,厚さ0.6nm)を生体ポリマ検出部としてイオン電流の変化量を計測する。しかしこの細孔厚みがモノマ1分子単位(DNAのモノマである核酸の隣接距離は0.34nm)よりも大きいためにイオン電流変化量にはモノマ複数分子の情報が混在してしまう。この空間分解能不足に加えて,タンパク質を利用するため,溶液条件や環境条件によりタンパク質の細孔部が変性してデバイスが劣化してしまう。安定性や寿命の観点からデバイスのロバスト性が低いという課題が存在する。一方,ソリッドポアではグラフェンや二硫化モリブデンのような単分子層からなる薄膜を形成できる。これらの厚みであればモノマ1分子単位を読取るのに十分な空間分解能を確保することができる。また,タンパク質と異なり,様々な溶液条件や環境条件において材料が安定であり,デバイスのロバスト性が高いという利点がある。加えて,半導体加工プロセスにてナノポア部を並列化可能であり,上記のような利点からバイオポアよりも優れたデバイスとして着目されている。
 生体ポリマであるDNA鎖をナノポアまで搬送する手段として,イオン電流を発生させている電位差をそのまま駆動力として生体ポリマを電気泳動させる方法が最も広く用いられている。しかし,図3に示したように,電気泳動によるDNA鎖のナノポア通過速度は非常に速いためにモノマ複数分子の信号が混在した信号値しか得られず,配列解析を実現するためには通過速度を遅くする技術が必要であった。具体的には100μs/モノマ1分子単位以上の通過速度まで遅延できることが好ましいが,現状では0.01~1μs/モノマ1分子単位の通過速度であるため,少なくとも100倍から10000倍程度の速度遅延を実現する必要がある。このように通過速度を遅くすることができればモノマ1分子のみの信号を取得できることが可能となる。
 この課題を解決すべく,様々な手法が考案されている。溶液の物性を調整する方法が多種検討されており,例えば,高濃度グリセロールを添加することにより溶液粘度を上昇させ,電気泳動時におけるDNA鎖の引張力と反対方向の摩擦力を増やすことでナノポア通過速度を遅くする方法が試みられている(非特許文献1)。また,溶液中にリチウムイオンを添加することにより,DNA鎖の見かけ上の負電荷を低減することで電気泳動時の引張力を小さくしてナノポア通過速度の遅延させる方法が検証されている(非特許文献2)。
 溶液の物性を調整する以外の方法としては,デバイス側に工夫をもたらす方法が検討されている。例えば,ナノポア自体を工夫する方法が検証されている。単純な方法としてナノポアの直径を小さくすることでDNA鎖がナノポアを通過する際の摩擦力を増大させ,ナノポア通過速度を遅くする方法が知られている(非特許文献3)。また,デバイスに新たな構造体を設ける方法が検討されている。特許文献1には二次元状流路で構成されるナノポアデバイスにおいて,二次元形状の障害物を設置する方法が開示されている。上記特許文献1では,ナノポアが加工された薄膜の両側に,規則的に距離を離して配置されたナノサイズの障害物群(円柱など)を設ける構造を開示している。他の障害物の例としては,ポリマや樹脂,無機系多孔体,ビーズから構成されるゲル材料が明示されている。電気泳動時に生体ポリマが障害物に衝突することで,泳動を妨げる向きの摩擦力が発生するため,ナノポア通過速度が低減することが言及されている。非特許文献4では,障害物の他の実現手段として,ナノポア上流側にランダムに多層積層させた樹脂材質のナノワイヤ群を設ける構造が開示されている。電気泳動時に生体ポリマがナノワイヤに衝突することによる摩擦力を利用してナノポア通過速度を低減することが言及されている。
特開2014-074599号公報
D. Fologea, et al. Nano Lett., 2005, 5(9), 1734. S. W. Kowalczyk, et al. Nano Lett., 2012, 12(2), 1038. R. Akahori, et al. Nanotechnology, 2014, 25, 275501. A. H. Squires, et al. J. A. C. S., 2013, 135(44), 16304.
 従来の方法では遅延効果が不十分であるという課題が存在する。
 上記のグリセロール等を添加して粘度に代表される溶液物性を調整する手法では,例えば生体ポリマとして二本鎖DNAを対象とした場合が開示されており,添加前後でたかだか通過時間は5倍に遅延する程度にとどまる。加えて,生体ポリマ通過時に添加物も同時に通過するため,モノマ1分子単位のモノマ種別信号値差が小さくなり,モノマ種検出が困難になるという課題もある。リチウムイオンを添加する方法も,例えば生体ポリマとして一本鎖DNAを対象とした場合が開示されており,添加前後での遅延効果は10倍程度である。
 従来の障害物を利用した生体ポリマのナノポア通過速度の遅延方法では,例えば生体ポリマとして二本鎖DNAを対象とした場合が開示されており,遅延効果が15倍程度にとどまる。そのため,障害物への生体ポリマ衝突を原理とした手法でも遅延効果が不十分であった。
 したがって,いずれの手法にしても,生体ポリマのナノポア通過速度をモノマ配列解析可能になる速度以下まで十分には遅延できておらず,別の手段の開発が望まれていた。
 本発明は,上記課題に鑑みて為されたものであり,その目的とするところは新たな遅延原理を導入することにより生体ポリマのナノポア通過速度を大幅に遅延化し,生体ポリマ中のモノマ配列解析を安定に行うことが可能な生体ポリマ分析システムを提供することにある。
 本発明の代表的な形態は,生体ポリマと電解質が含まれる溶液を収納できる2つの槽と,2つの槽にそれぞれ配置された一対の電極と,ナノポアを有し,ナノポアを介して2つの槽が連通するように2つの槽の間に配置された薄膜と,薄膜に載置された三次元構造体とを備え,三次元構造体は空隙を有し,空隙は溶液をナノポアから三次元構造体の上まで通す流路を形成し,流路の表面は生体ポリマを吸着できる官能基を有しており,一対の電極への電圧印加時に,少なくともナノポアを中心とし生体ポリマ捕捉長を半径とする半球の範囲内において,三次元構造体が溶液に再分散しない生体ポリマ分析デバイスである。
 本明細書では,再分散しないとは,溶液と接触している条件において,三次元構造体の一部が溶媒和,ブラウン運動,又は電圧印加時の電気泳動等により剥離しないこと,と定義する。
 本発明により,三次元構造体中の流路表面に生体ポリマを吸着する官能基が存在することにより,電気泳動又は拡散現象により生体ポリマが流路表面近傍まで接近した際に,生体ポリマが流路表面に熱力学的に吸着する。この吸着の状態は,生体ポリマが溶液内に溶媒和又は電離して自由拡散している状態よりも,自由エネルギー的に安定であるために起こる。この時の吸着力は電気泳動時の生体ポリマの引張力に対して反対方向に働く力として作用する。この吸着力の強弱は,流路表面に修飾した官能基の種類と溶液条件を調整することによって任意に制御することが可能であり,生体ポリマのナノポア通過速度をモノマ配列解析が可能になる速度帯域に調整することができる。
 また,吸着力を提供する構造体は電圧印加時においても溶液中に再分散しない。これによって安定な流路形状を維持することができ,様々な溶液条件及び環境条件下に対応したロバスト性の高い生体ポリマ分析デバイスを提供することが可能となる。
 上記以外の,課題,構成及び効果は,以下の実施形態の説明により明らかにされる。
生体ポリマ分析デバイスの一例を示す模式図。 イオン電流の変化量がモノマ種によって異なることを原理とする生体ポリマ配列解析方法の概念図。 生体ポリマのナノポア通過速度が速すぎることによる課題を示した概念図。 生体ポリマの吸着過程を表した模式図。 生体ポリマ捕捉長の説明図。 生体ポリマ分析デバイスの別の形態を示すナノポア近傍の断面模式図。 デバイス内の三次元構造体の俯瞰図。 デバイス内の三次元構造体を表したナノポア周辺部の斜視模式図。 デバイス内の三次元構造体を表したナノポア周辺部の断面模式図。 三次元構造体中の流路を強調表示したナノポア周辺部の断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 別の三次元構造体のナノポア周辺部を示す断面模式図。 生体ポリマ分析システムの一例を示す概略図。 ナノポア開口前の薄膜の断面模式図。 ナノポア開口前の薄膜の断面模式図。 検体回収と速度遅延を一体化させた分析プロトコルの一例を示す図。 検体回収と速度遅延を一体化させた分析プロトコルを表す模式図。 生体ポリマ検出の典型例を示す図。
 以下,図面を参照して本発明の実施の形態を説明する。
 図1は,本発明による生体ポリマ分析デバイスの一例を示す模式図である。
 本デバイスは,溶液102を収納することができる2つの槽101a,101bとナノポア106(詳細を図5以降に記載)を備えた薄膜104と,薄膜上に載置された三次元構造体103と,一対の電極105a,105bを有する。2つの槽に収納された溶液は電解質を含んでおり,少なくともどちらか一方の槽の溶液に生体ポリマ109が含まれていればよい。薄膜104は,ナノポア106を介して2つの槽101a,101bが連通するように2つの槽101a,101bの間に配置されている。図1に示したように2つの槽には溶液を導入するための溶液注入口107a,107bが備えられていることが好ましい。溶液注入口がなくても,液滴をデバイス表面に滴下し,開放状態で生体ポリマ測定を行うことも可能である。三次元構造体には空隙108(詳細を図7以降に記載)が備えられており,この空隙はナノポアから三次元構造体の上まで溶液を通すことができる流路となっている。図4に示すように,この流路表面には生体ポリマを吸着できる官能基110が備えられている。また,この三次元構造体は,電圧印加時に,ナノポアを中心とした半球内の範囲において,溶液中へ再分散しない剛直な性質を有している。この半球の半径は,下記で定義される生体ポリマ捕捉長rである。
[式1]
Figure JPOXMLDOC01-appb-I000004
   d:ナノポアの直径
   μ:生体ポリマの電気泳動の移動度
   L:薄膜の厚み
   D:生体ポリマの拡散係数
   ΔV:2つの電極間に生じた電圧差
 生体ポリマとしては,モノマとして核酸から構成された,一本鎖DNA,二本鎖DNA,RNA,オリゴヌクレオチドなどと,モノマとしてアミノ酸から構成されたポリペプチドなどが対象である。計測時には高次構造が解消された直鎖状高分子の形態をとっていることが好ましい。以下では,生体ポリマとして一本鎖DNAを用いた場合の形態を示すが,上記そのほかの生体ポリマでも適用可能である。溶液の溶媒としては,最も好ましくは生体ポリマを安定に溶解可能な水である。上記溶媒に含まれる電解質としては,カリウムイオン,ナトリウムイオン,リチウムイオン,カルシウムイオン,マグネシウムイオン,フッ化物イオン,塩化物イオン,臭化物イオン,ヨウ化物イオン,硫酸イオン,炭酸イオン,硝酸イオン,フェリシアンイオン,フェロシアンイオンなどが挙げられる。電極の材質としては,炭素,金,白金,銀塩化銀などが挙げられ,電気化学計測に使用できる電極であれば特に制限はない。
 ナノポア106としては一本鎖DNAが通過できる最小サイズである直径0.9nmから10nm程度であればよく,薄膜の厚みは数Åから数十nm程度であればよい。薄膜の材質は半導体微細加工技術で形成できる材質であればよく,典型的には窒化ケイ素,酸化ケイ素,酸化ハフニウム,二硫化モリブデン,グラフェンなどであればよい。ナノポアは,電子線照射やパルス電圧印加法により形成することが可能である。このような方法は文献(M. Wanunu, Physics of Life Reviews, 2012, 9, 125.)や文献(I. Yanagi, Scientific Reports, 2014, 4, 5000.)に詳しく開示されている。
 生体ポリマを吸着できる官能基110としては,例えばDNA,RNAやオリゴヌクレオチド等を対象とした場合,シラノール基が挙げられる。核酸がシラノール基に対して,カオトロピック効果にて吸着することは広く知られており,代表的にはシラノール基を表面に有するガラスを用いた例が文献(B. Volgenstein, et al., Proc. Natl. Acad. Sci. USA, 1979, 76, 615.)に詳しく開示されている。上記カオトロピック効果による吸着を誘導するためには,水溶液にカオトロピック効果をもたらす分子が含まれていればよい。カオトロピック効果をもたらす分子としては,チオシアン酸イオン(SCN-),リン酸二水素イオン(H2PO4 -),硫酸水素イオン(HSO4 -),炭酸水素イオン(HCO3 -),ヨウ化物イオン(I-),塩化物イオン(Cl-),硝酸イオン(NO3 -),アンモニウムイオン(NH4 +),セシウムイオン(Cs+),カリウムイオン(K+),グアニジウムイオン,テトラメチルアンモニウムイオンなどが好ましい。カオトロピック効果は酸性条件であるほど強く発現することが知られており,カオトロピック効果が十分に発現しているpH1以上,カオトロピック効果が発現し始めるpH10以下に溶液条件が調整されていることが好ましい。また,カオトロピック効果はイオン強度が増すほど強く発現することが知られており,塩化物イオンを例にとった場合,カオトロピック効果が発現し始める10mM以上,カオトロピック効果が十分に発現している飽和塩化カリウム溶液のイオン強度(約3.4M)以下に溶液条件が調整されていることが好ましい。これらの溶液条件は,例えば文献(P. E. Vandeventer, et al., J. Phys. Chem. B, 2012, 116(19), 5661.)に記載されている。
 生体ポリマを吸着できる官能基の他の例としては,カチオンに電離する官能基が挙げられる。DNAやRNA等の核酸は水溶液中で負に帯電しているため,正に帯電したカチオン分子と静電相互作用で吸着することが知られている。カチオンに帯電する官能基としては,1級アミン基,2級アミン基,3級アミン基,4級アミン基,ピリジン基,イミノ基,イミダゾール基,ピラゾール基,トリアゾール基などが好ましい。カチオンに電離する官能基は様々に存在するが,水溶液中で安定な形態を保ち,かつ生体ポリマとの化学反応性を有さないことが好ましい。カチオンに電離する官能基を利用する場合,カチオンへと安定に電離するように,カチオンに電離する官能基のpKaよりも溶液のpHが小さいことが好ましい。例えば,1級アミン基のpKaは9~11の範囲に存在し,代表的な1級アミンであるエチルアミンのpKaは10.5である。そのため,溶液pHを10.5以下に調整することでエチルアミンが完全にカチオンへと電離し,DNAなどを確実に流路表面へと吸着することが可能となる。
 上記流路表面に上記官能基が備えられていることにより,図4に示したように電気泳動又は拡散現象により生体ポリマが流路表面近傍まで接近した際に,生体ポリマが流路表面に熱力学的に吸着する。この吸着の状態は,生体ポリマが溶液内に溶媒和又は電離して自由拡散している状態よりも,自由エネルギー的に安定であるために起こる。この時の吸着力は電気泳動時の生体ポリマへの引張力に対して反対方向に働く力として作用する。この吸着力により電気泳動時の生体ポリマへの引張力が低減し,ナノポアを通過する速度を遅延することが可能となる。この吸着力の強弱は,流路表面に修飾した官能基の種類と溶液条件を調整することによって任意に制御することが可能であり,生体ポリマのナノポア通過速度をモノマ配列解析が可能になる速度帯域に容易に調整することができる。ナノポア周囲に発生した電位勾配によるDNAへの引張力は文献(U. F. Keyser, et al., Nature Physics, 2006, 2, 473.)に詳しく記載されており,0.24pN/mVであることが知られている。一方,生体ポリマへの吸着力は,例えば,原子間力顕微鏡を用いて為された調査によりDNAのシラノール基への吸着力は約55pNであることが文献(F. Kuhner, Langmuir, 2006, 22, 11180.)に記載されている。また,同様の調査によりDNAのカチオン基(電離した1級アミン基)への吸着力は約200pNであることが文献(M. Erdmann, et al., Nature Nanotechnology, 2010, 5, 154.)に記載されている。したがって,これらの引張力と吸着力を任意に調整することにより,所望の生体ポリマのナノポア通過速度を実現することが可能となる。
 生体ポリマ捕捉長rとは,図5に示したようにナノポア周囲(半径rの半球範囲)に発生した電位勾配を駆動力として,生体ポリマを電気泳動にて搬送することが可能な実効距離である。生体ポリマ捕捉長は式1で定義される。生体ポリマ捕捉長に関しては,文献(M. Wanunu, et al., Nature Nanotechnology, 2010, 5, 160.)に詳しく開示されている。ナノポア106を中心位置とし,この生体ポリマ捕捉長を半径とした半球近傍にまで生体ポリマ109が拡散過程で接近した時に,電気泳動による生体ポリマへのナノポアに向けた引張力が生じる。したがって,生体ポリマの通過速度を遅くするためには,上記半球の範囲内に,生体ポリマを吸着できる官能基を備えた上記流路が存在することが必須である。加えて,安定な生体ポリマ検出を実現するためには,電圧印加時において,上記半球の範囲内で上記構造体が溶液に再分散しない性質を備えていることが必要である。裏を返せば,上記半球の範囲外は生体ポリマの速度遅延に寄与しない領域であるため,後述するように構造体の領域を制限することにより生体ポリマの捕捉効率を高める等といった改善をすることが可能となる。
 少なくとも生体ポリマが通過できるように,上記流路の最小断面積は生体ポリマの分子断面積以上,上記流路の最大断面積は空隙間の最大断面積以下である必要がある。一本鎖DNAを通過できる最小のナノポア直径が0.9nmであることが文献(K. Venta, et al., ACS Nano, 2013, 7(5), 4629.)に記載されている。したがって,この場合の分子断面積は0.81nm2である。また,生体ポリマが効率的に流路表面に吸着できるためには,式2で定義される生体ポリマの平均自由工程S(次元は距離)で形成される断面積よりも流路の最大断面積が小さいことが好ましい。
[式2]
Figure JPOXMLDOC01-appb-I000005
ここで,Dは生体ポリマの拡散係数,tはナノポア近傍における平均滞在時間である。
 例えば,一本鎖DNA(30塩基のポリチミン)の場合,拡散係数は118μm2/sであることが文献(Q. Wang, et al., ACS Nano, 2011, 5(7), 5792.)に記載されており,ナノポア近傍における平均滞在時間は700msであることが文献(G. Ando, et al., ACS Nano, 2012, 6(11), 10090.)に記載されている。式2によれば,この場合の一本鎖DNAの平均自由工程は9μmである。したがって,一本鎖DNAがナノポア進入前に一度以上官能基110と吸着するための流路の最大断面積は81μm2である。以上より,この場合における流路の断面積は0.81nm2以上81μm2以下であることが好ましい。ここでは生体ポリマを一本鎖DNAとして,好適な断面積の範囲の例を挙げた。この断面積の範囲は生体ポリマや溶液のイオン成分,粘性等によって変化するものであり,上記以外の範囲でも本発明の効果は十分得られる。
 また,上記流路の断面積の上限は,より好ましくは生体ポリマ捕捉長を半径とした円の面積以下である。生体ポリマが吸着した流路の範囲を生体ポリマ捕捉長の範囲内に限定することにより,生体ポリマの検出頻度を向上し,解析時間の短縮かつ低濃度の生体ポリマ分析が可能となる。
 検出対象である生体ポリマをDNAとした場合,上記流路の断面積の上限を,DNAポリメラーゼ,DNAヘリカーゼ,エクソソーム(サイズ数nm以上数十nm以下)の分子断面積以下とすることで別の効果が得られる。実検体から抽出されたDNAには上記のタンパク質又は構造体が付着していたり,夾雑物として混入している可能性がある。これらの物質サイズよりも小さいナノポアを用いて分析を行った場合,これらがDNAに付着した状態だとナノポアでのDNA通過時に詰まってしまい,解析を継続できないことがある。そのため,上記流路の最大断面積を制限することにより,これらの物質をふるい落とす,又はこれらの物質が付着していないDNAのみを通過させることにより,円滑な分析を実行できる効果が得られる。
 また,上記流路の断面積の上限をDNAの高次構造の断面積以下に設定することで同様の効果が得られる。DNAの場合,例えばグアニンが連続する配列では高次構造(四量体,サイズ:2.6nm以上10nm以下)を形成することが知られている。そのため,上記制限を設けることで,高次構造を形成したDNAを直鎖にほどく,又は一量体のDNAのみを通過させることにより円滑な分析を実行することが可能となる。
 図6は,本発明による生体ポリマ分析デバイスの別の形態を示すナノポア近傍の断面模式図である。図6では複数のナノポアを並列化していることを特徴とする。図1で示したように,単独のナノポアのみを用いてデバイスを構成する場合は,1つのナノポアに対して,三次元構造体が1つ,2つの電極が1組備えられていればよい。一方,図6に示したように複数のナノポアを並列化してデバイスとして用いる場合は,各々のナノポア106に対して1つの三次元構造体103がナノポアを有する薄膜104に載置されている必要がある。一方の溶液側に浸漬された電極(典型的には接地されている電極)105aを共通電極として採用し,もう一方の溶液側には各々のナノポアに対して1つの独立した電極105bを設ければ良い。共通電極側の溶液102aは各々のナノポア106に対して共通の溶液であり,共通電極に対して反対側の溶液102bは,各々のナノポア106に対して1つの独立した溶液が備えられている必要がある。尚,各溶液の独立性を担保する仕切りは絶縁性の材質であることが好ましく,例えばポリジメチルシロキサンや酸化ケイ素等が好ましい。このような構成により,各ナノポアは電気化学的にお互いに干渉することなく,独立した生体ポリマ分析を実行でき,生体ポリマ分析のスループットを向上することが可能となる。
[実施例1]
 上記性質を備えた三次元構造体を実現する生体ポリマ分析デバイスの一形態として,図7にナノポア周辺部をデバイスに対して垂直上方から見た図を示す。また,図8は図7の断面Aにて切断したナノポア周辺の斜視模式図であり,図9はナノポア周辺の断面模式図である。
 本実施例は三次元構造体が複数の粒子111が薄膜104の上で一層積まれて成型されていることを特徴とする。ここで,図9において,斜線で示した領域は,断面Aで切断された成型された粒子の断面部であり,グレーで示した環状の領域は,空隙の奥側に位置する成型後の粒子の一部分である。この粒子間の空隙108が生体ポリマと電解質を含んだ溶液がナノポアまで通過する流路112を形成している。図10に流路112を太線にて強調表示した。ここで,電圧勾配はナノポア106を中心位置とし生体ポリマ捕捉長rを半径とした半球113の範囲にのみ発生する。そのため,本構造体に存在する多数の空隙の内,上記半球113の範囲に存在し,かつナノポア106まで連結している空隙のみが上記流路となりえる。上記粒子の表面は生体ポリマを吸着できる官能基で修飾されている。上記複数の成型後の粒子は,少なくとも上記半球の範囲内において,電圧印加時に電気泳動して薄膜表面から剥離して溶液中に再分散しないように,非球状の形状を取っている。この形態の利点の1つは,生体ポリマが上記流路表面へ吸着する確率を向上できることである。これは三次元構造体が粒子で成型されていることにより,十分大きい比表面積を提供することができるためである。粒子の平均直径を小さくすればするほど,空隙が小さくなって生体ポリマの吸着確率を向上させることが可能となる。一方で,空隙を小さくすればするほど,イオンが通過する際の抵抗値が上昇して得られるイオン電流が減少して信号値そのものが得られなくなってしまう。そのため,生体ポリマの吸着確率と抵抗値はトレードオフの関係にある。粒子の平均直径は好ましくは10nm以上1000nm以下である。尚,粒子がナノポアを塞いでしまうことが有り得るが,そのためには粒子がナノポアに対して点接触する必要があり,そのような確率は非常に低いために実用上は問題とならない。万が一粒子によって塞がれたナノポアがあった場合には,そのナノポアを分析には使わない。
 もう1つの利点は粒子を用いた製造が容易な点である。粒子が分散した溶液を薄膜上に塗布して溶媒のみを蒸発除去することで,粒子から成型される三次元構造体を製造することができる。溶液を塗布する方法は,ディップコーティングやスピンコーティング,電気泳動によるコーティングなどを用いることができる。特にディップコーティングは簡便であるだけでなく,溶媒の表面張力により粒子が薄膜表面へと自己組織化して密に配置することができることから好ましい方法である。このような方法は,例えば文献(X. Ye, et al., Nano Today, 2011, 6, 608.)に開示されている。塗布後に溶媒を蒸発除去する方法としては加熱蒸発させる方法が好ましい。この時,粒子の材質を適切に選択することにより各粒子を変形させることができる。このような方法は,例えば文献(A. Kosiorek, et al., Small, 2005, 1, 439.)に開示されている。変形前では粒子同士は点接触のみに留まっており,電圧印加により電気泳動してしまう不安定な構造体であるため,この変形処理を施す必要がある。この変形処理を経ることにより,球状であった粒子は粒子同士で押し合って図9に示したように非球状に変形することで粒子同士が面接触するようになる。これにより,電圧印加時の粒子への引張力にも耐えることができる安定な構造体を形成できるという効果がある。この時の粒子の形状は,隣接する粒子同士で強く接触しあえるように多面体となることが望ましい。このような多面体は加熱圧着することにより得られ,例えば文献(Z. Q. Sun, et al., Langmuir, 2005, 21(20), 8987.)に記載されている。
 上記三次元構造体を実現する粒子としては,成型性,溶液分散性の2点から選定する必要がある。成型性の観点からは変形し得る材質であることが望ましく,例えばポリスチレンやポリ乳酸などといった樹脂や,シリカや酸化チタンといったセラミックス,金や銀などといった金属が好ましい。溶液分散性の観点からは,粒子同士が十分な反発力を得られるように高いゼータ電位値を有していることが好ましい。特に前述したシリカは表面が負に帯電したシラノール基で覆われており,粒子が水中に独立分散するのに十分なゼータ電位値を実現できるため,望ましい材料である。
 粒子表面には生体ポリマが吸着できる官能基が施されている必要があるが,薄膜への塗布前から粒子表面に施されていても,塗布後に化学反応処理により施してもよい。
 粒子により成型された三次元構造体を用いる別の利点として,網目状の流路を形成できることが挙げられる。通常は生体ポリマ,特に一本鎖DNAは溶液中で直鎖状ではなく折りたたまれたガウス鎖状の形態を取っている。このような形状だと,ナノポア通過時には一本鎖DNAは薄膜部でひっかかりが生じてスムーズな検出が行えない可能性がある。本実施例によれば,一本鎖DNAが分子内の複数箇所が網目状流路へ吸着することにより直鎖状の形態へほどける効果が得られる。そのため,ナノポアでのスムーズな生体ポリマ検出を行うことが可能となる。
 生体ポリマの吸着効率を高めるためには,三次元構造体に粒子が占める体積占有率が,粒子同士が最密充填構造で点接触した場合の占有率よりも高い方が好ましい。粒子1層積層の場合,三次元構造体を真上から薄膜へと投影した図形の面積占有率で考えるとわかりやすい。特に,成型前の粒子が球状形状であり投影図形の各粒子中心が正三角形の格子を描いている場合,面積占有率は点接触の理論値であるπ/√12よりも大きいことが好ましい。また,成型前の粒子が球状形状であり,投影図形の各粒子中心が正四角形の格子を描いている場合,面積占有率は点接触の理論値であるπ/4よりも大きいことが好ましい。
 本実施例において,流路の最小断面積とは,上記半球の範囲内における,変形した粒子間の空隙の内のナノポアまで連結した流路を形成している空隙の最小断面積のことを指す。数nm以上の粒子径を有する粒子を用いることで,上述した生体ポリマの分子断面積以上の断面積を確保することが可能である。同様に流路の最大断面積とは,上記半球の範囲内における,変形した粒子間の空隙の内のナノポアまで連結した流路を形成している空隙の最大断面積のことを指す。また,空隙の最大断面積とは,三次元構造体中の変形した粒子間の全空隙中の最大断面積のことを指す。したがって,上記半球の範囲外において,粒子が一部欠損したりして空隙の最大断面積が流路の最大断面積よりも大きくなることが有り得る。しかし,このような箇所は生体ポリマの分析に寄与しない領域であるため,実用上は問題とならない。本定義は,下記で説明する実施例2~6,9においても同様である。
[実施例2]
 図11は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。図11に示した実施例は,図9の隣接する粒子同士を一体化させたことを特徴とする。
 図9には粒子が変形した三次元構造体の例を示したが,成型性は化学反応や表面への材料積層による隣接粒子同士の一体化によっても実現できる。例えば,粒子材質が樹脂の場合,ガラス転移温度以上にまで加熱することで樹脂が塑性変形して接触した際に樹脂の分子鎖同士が絡み合って一体化させることができる。樹脂としては,ポリスチレン樹脂などが好ましい。このような方法は文献(A. Kosiorek, et al., Small, 2005, 1, 439.)に記載されている。また,粒子材質がシリカや酸化チタンなどのセラミックスの場合,焼結反応といった化学反応によっても実現可能であり,粒子同士を強固に一体化させることができる。このようなシリカ粒子を焼結する方法は,例えば文献(T. V. Le, et al., Langmuir, 2007, 23(16), 8554.)に記載されている。粒子間の空隙にモノマを導入して重合反応をさせて樹脂を積層させることによっても一体化させることができる。モノマは無機であっても有機であってもよい。また,粒子表面から表面グラフト重合を開始することによっても同様の構造を実現できる。その他の方法として,原子層堆積法(atomic layer deposition)によって粒子表面を覆う方法がある。粒子同士を一体化させることにより,より再分散しない安定な三次元構造体を実現し,ロバスト性の高いデバイスを実現できる効果がある。
[実施例3]
 図12は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。図9には粒子が一層積層された三次元構造体の例を示したが,図12に示した実施例は粒子が多層積層された三次元構造体の例を示している。多層積層することにより,比表面積が積層分増大するため,上述した生体ポリマの吸着確率が向上し,更なる遅延効果が得られる。また,網目状流路の長さが更に増大するため,上述した直鎖にほどける効果が更に向上し,よりスムーズな検出が実現できる。
 多層積層する方法は,粒子分散溶液の粒子濃度を調整するか,又は図9で調整した一層積層された三次元構造体の上に同様の処理を多数回行う方法がある。このような方法は,例えば文献(P. Jiang, et al., Chem. Mater., 1999, 11(8), 2132.)に記載されている。この積層構造においても,実施例1又は実施例2と同様に形状を非球状に変形させるか,又は粒子同士を一体化させることによって,再分散しない安定な構造体を実現することができる。
[実施例4]
 図13は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。図13に示した実施例には,図12において異なるサイズを有した2種類の粒子を用いて三次元構造体を形成した例を示した。大小異なる2種類の粒子を用いることにより,小さい粒子が大きい粒子間の空隙に自己配列して配置されるようになり,比表面積を更に増大して生体ポリマの吸着確率を高めることができる。
 このような方法は,文献(K.W. Tan, et al., Langmuir, 2010, 26(10), 7093.)に記載されている。この構造体も上述したように粒子を変形させるか一体化させるかによって,溶液に再分散しない構造体を実現することができる。また,粒子同士の接触面積が増大するために,構造体がより再分散しにくく安定化する効果もある。ここでは2種類のサイズの粒子が多層積層された例を示したが,粒子のサイズは3種類以上でも構わない。
[実施例5]
 図14は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。本実施例は,異なるサイズを有した2種類の粒子を用いて,図13とは別形態の三次元構造体を形成したことを特徴とする。
 図14には,小さい粒子を薄膜に第一層として載置し,大きい粒子をその上の第二層として積層した例を示した。このように粒子を配列することにより,生体ポリマの遅延効果に加えて,ポリマ長によるフィルタリングが可能となる。短いポリマ長を有する生体ポリマは,第二層の大きい粒子間の空隙では自身の流体力学的半径が小さいために第二層を素通りして第一層に到着できるが,長いポリマ長を有する生体ポリマは,自身の流体力学的半径が大きいため,第二層の大きい粒子間の空隙にて吸着されて第一層まで到達しない現象が生じる。したがって,第一層と第二層の粒子のサイズを制御することにより,所望の範囲のポリマ長を有する生体ポリマのみを選択的に検出することが可能となる。尚,粒子の大きさを第一層から最上層まで勾配をつけて大きくしていく構造も効果的である。この積層構造においても,実施例1又は実施例2と同様に形状を非球状に変形させるか,又は粒子同士を一体化させることによって,再分散しない安定な構造体を実現することができる。
[実施例6]
 図15は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。図15に示した実施例は,例えば図12で示した三次元構造体の周囲に,三次元構造体の厚みよりも大きい厚みを有した壁114が備えられていることを特徴とする。
 三次元構造体の周囲に壁を配置することによる利点は2点ある。1点目は周囲に壁を有することで三次元構造体の可動域を制限できるため,三次元構造体の溶液への再分散を抑制する効果がある点である。2点目は生体ポリマの検出頻度向上により解析時間を短縮できる効果である。壁の高さ及び幅を,生体ポリマ捕捉長とほぼ同等又はそれ以下にすることで,三次元構造体を生体ポリマ捕捉長の範囲内に収めることができる。このような構成にすることで,構造体と相互作用する生体ポリマは同時に電位勾配によりナノポアに吸い寄せられる。したがって,ナノポアに進入する生体ポリマの頻度を向上させられる。解析時間短縮のほかに,より低濃度の生体ポリマを検出できる効果がある。壁面の高さや幅は生体ポリマ捕捉長よりも大きくても上記効果は得られる。
 また,図16に示したように第二の薄膜115を設けることで,壁の開口部の面積が薄膜の面積よりも小さくなっている構造も効果的である。このように溶液側へ向かって面積が小さくなっていく構造にすることで,より効果的に三次元構造体の可動域を制限でき,溶液への再分散を抑制できる効果がある。このような構造は,文献(I. Yanagi, Scientific Reports, 2014, 4, 5000.)に記載されており,例えば以下のような方法で製造できる。まず,酸化ケイ素等のフッ酸溶液等でエッチング可能な層をナノポア106が開口する薄膜104の上に設置し,次に上記溶液でエッチングされにくい材質(窒化ケイ素等)の層を設置する。次に一般的なドライエッチングにより上記2層を貫通した穴を形成する。この時点で工程を停止することで,図15に示したような壁を有する構造を製造可能である。更にフッ酸等のエッチング溶液を用いてウェットエッチングを行うことでエッチング可能な層が半球上に削れ,図16のような壁構造を有するデバイスを提供することが可能である。この時,粒子の塗布は実施例1に示した方法で最後の工程として行う。
[実施例7]
 図17は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。本実施例は,図9や図12とは逆の構造であり,粒子が空隙部,空隙部がバルク体部へと変更した逆オパール構造を三次元構造体に用いることを特徴とする。
 本実施例の構造は,本質的には図9及び図12と同等の構造であるため,本構造によっても,図9及び図12と同様の効果を実現することが可能である。逆オパール構造は文献(J. H. Moon, et al., Chem. Rev., 2010, 110, 547.)に詳しく記載されている。本構造は,次の方法によって得られる。まず粒子を自己配列化によって規則正しい構造に配置した後,粒子を変形又は一体化させずに粒子間空隙にモノマ(有機,無機どちらでもよい)を充填して重合反応を進めてバルク体116を形成する。次に,粒子部分のみを溶解可能な溶媒を用いて粒子部分を溶解除去する処理を行う。最後に構造体表面に官能基を処理するために,例えば1級アミンを有するシランカップリング剤などの反応性の強い表面処理剤を含む溶液を浸漬し,アルコール等で洗浄を行う。このように粒子を鋳型として用いることで形成された逆オパール構造の利点は粒子充填の場合と同等の表面積を実現しながら溶液部分の体積を更に大きくして抵抗値を下げることができる点にある。したがって,より高いイオン電流値を確保できるので,計測の高感度化の効果がある。本構造のバルク体形成に用いる材料としては,ポリスチレンやシリカなどが好ましい。本構造は,三次元構造体がバルク体として一体化しているため,溶液に対して再分散しない安定な構造体を実現することができる。
 本実施例において,流路の最小断面積とは,上記式1で表される生体ポリマ捕捉長rを半径とする半球の範囲内における,鋳型となった粒子状の空隙の内,ナノポア106まで連結した流路を形成している空隙の最小断面積のことを指す。実施例1の場合と同様に,数nm以上の粒子径を有する粒子を鋳型に用いることで,生体ポリマの分子断面積以上の断面積を確保することができる。同様に流路の最大断面積とは,上記半球の範囲内における,鋳型となった粒子状の空隙の内,ナノポアまで連結した流路を形成している空隙の最大断面積のことを指す。また,空隙の最大断面積とは,鋳型となった粒子状の全空隙中の内の最大断面積のことを指す。
[実施例8]
 図18は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。図18には三次元構造体の最も単純な例として,ナノポア106を有する第一の薄膜104の上に,ナノポアの真上に空隙を有する第二の薄膜117を載置する例を示した。
 本実施例は,空隙108の断面積と薄膜117の厚みを制御することが容易であり,生体ポリマの吸着確率を制御しやすいという利点がある。空隙108は電子線照射により所望のサイズの空隙を開口することができ,第一の薄膜104にナノポアが開口されていない状態で第一の薄膜104と第二の薄膜117に同時にナノポア106と空隙108を開口することもできる。この第二の薄膜117は,半導体微細加工技術で形成することが可能である。このような薄膜の材料は,半導体加工技術で形成できる材料であって,静電容量が低くなるように誘電率の低い材質,例えば二酸化ケイ素などが好ましい。このように静電容量を低減することで高周波計測を行った時に周波数応答性を有する静電容量依存のノイズを低減することができ,より安定に生体ポリマ検出を行うことができる。本実施例も実施例7と同様に,三次元構造体を形成した後に化学反応処理にて表面に官能基を形成する。官能基を処理する方法としては,実施例7と同様に,1級アミンを有するシランカップリング剤等を含む溶液に浸漬し,アルコール等で洗浄する方法が挙げられる。半導体微細加工技術用の材料として,水溶液に溶解しない酸化ケイ素や窒化ケイ素を用いて作製することで,溶液に再分散しない安定な構造体を実現することができる。
 本実施例において,流路の最小断面積とは,上記式1で表される生体ポリマ捕捉長rを半径とする半球の範囲内における,空隙108を有する第二の薄膜117の,空隙の最小断面積のことを指す。第二の薄膜の,空隙の直径を1nm以上とすることで,生体ポリマの分子断面積以上の断面積を確保することができる。同様に流路の最大断面積とは,上記半球の範囲内における空隙を有する第二の薄膜117の空隙108の最大断面積のことを指す。この実施例では流路の断面積と空隙の断面積は完全に一致している。
[実施例9]
 図19は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。これまでの実施例では三次元構造体は全て薄膜の片側のみに載置した例を示していたが,本実施例は両側に載置することを特徴とする。これにより,更なる遅延効果を得ることが可能である。図19には図12に示した三次元構造体を薄膜104の両側に載置した例を示した。
 ナノポア周囲の電位勾配は入口側と出口側の両方に発生しているため,ナノポア106の入口側と出口側の両方に三次元構造体を設置することにより,どちらの側でも生体ポリマ109の引張力を低減し,更なる遅延効果を実現することが可能となる。図19では薄膜の両側に同等の三次元構造体を載置したが,三次元構造体は図9~18の実施例のどの組み合わせやその変形例であっても構わない。また,出口側のみに三次元構造体を載置しても構わない。この積層構造においても,実施例1又は実施例2と同様に形状を非球状に変形させるか,又は粒子同士を一体化させることによって,再分散しない安定な構造体を実現することができる。
[実施例10]
 図20は,本発明の生体ポリマ分析デバイスにおける別形態の三次元構造体のナノポア周辺部を示す断面模式図である。本実施例は,三次元構造体の厚みが生体ポリマ捕捉長よりも小さいことを特徴とする。ここでは一例として,図9の実施例を示した。
 このように三次元構造体の厚みを制限することにより,実施例6と同様の効果が得られる。すなわち,三次元構造体と相互作用する生体ポリマ109は同時に電位勾配によりナノポア106に吸い寄せられる。したがって,ナノポアに進入する生体ポリマの頻度を向上できる。解析時間短縮のほかに,より低濃度の生体ポリマを検出できる効果がある。本実施例は,図9~図19で説明したいずれの構造にも適用できる。三次元構造体の厚みは,図9,11の場合は粒子径により,図12~16,19の場合は粒子径及び積層数により,図17の場合は除去対象の粒子径と積層数により,図18の場合は薄膜厚みにより,それぞれ制御可能である。この積層構造においても,実施例1又は実施例2と同様に形状を非球状に変形させるか,又は粒子同士を一体化させることによって,再分散しない安定な構造体を実現することができる。
 流路及び空隙の断面積に関する定義は実施例1にて説明した内容と同一である。
[実施例11]
 図21は,本発明による生体ポリマ分析デバイスを用いた生体ポリマ分析システムの一例を示す概略図である。本システムは典型的には図1で示した生体ポリマ分析デバイス118,生体ポリマ分析デバイスの一対の電極の間に流れるイオン電流を計測するイオン電流計測装置119,イオン電流計測装置119の出力信号をデジタル信号に変換するアナログデジタル出力変換装置120,アナログデジタル出力変換装置120から供給された信号を処理するデータ処理装置121,データ処理装置121による処理結果を表示するデータ表示出力装置122,入出力補助装置123から構成される。典型的にはイオン電流計測装置には電流電圧変換型の高速増幅回路が搭載され,データ処理装置には演算装置,一時記憶装置,不揮発性記憶装置が搭載されている。外部ノイズを低減するため,生体ポリマ分析デバイス部はファラデーケージで覆われていることが好ましい。
[実施例12]
 三次元構造体をナノポアが開口していない状態の絶縁薄膜の上に載置してからナノポアを開口することもできる。絶縁薄膜にパルス状の電圧を連続的に印加することにより所望の直径のナノポアを開口できる技術が文献(I. Yanagi, Scientific Reports, 2014, 4, 5000.)に記載されている。本発明の三次元構造体は薄膜まで接続された空隙を保有しており,この薄膜と接している空隙部が最も抵抗値が低い箇所となっている。そのため,上記パルス電圧を連続的に印加した際にこの薄膜と接した空隙部に電圧が集中することで,ナノポアを開口できる。
 本実施例のナノポアを開口する方法は,一例として,空隙を有する三次元構造体であって,この空隙は表面に生体ポリマを吸着できる官能基を有する三次元構造体が載置された絶縁体薄膜の表面及び裏面を,電解質を含んだ溶液に浸す工程,薄膜の表面が浸された溶液と裏面が浸された溶液に一対の電極を浸漬する工程,一対の電極にパルス状の電圧を印加する工程,を有し,薄膜と空隙が接する箇所にナノポアを開口するものである。
 具体例として,図22に,図9においてナノポアが開口していない薄膜104を用いた場合を示した。この構成では,薄膜と成型後の粒子が接していない箇所に電圧が集中することでナノポアが開口し,図9と同等の構造を得ることができる。従来の電子線照射による開口工程では上記三次元構造体が遮蔽物となって薄膜まで電子線が届かない場合があるため,開口工程後に三次元構造体を配置することが好ましい。本工程を用いれば三次元構造体の載置の前後にかかわらず,任意のタイミングでナノポアを開口することが可能となる。加えて,薄膜と接している空隙部を制御することによりナノポアを開口する場所を制御することも可能となる。例えば,図23に示したように,図15に例示した粒子から成型された三次元構造体と壁面を有するデバイスを用いると,粒子と接触せず,かつ壁面から離れた箇所に電圧が集中し,矢印で図示した場所にナノポアを開口することができる。本工程は,実施例1~10及び図9~図20で説明したいずれの構造にも適用できる。上記で説明した理由により,電圧印加時においても三次元構造体は再分散せず,ナノポア開口前後で構造体が劣化しない,安定なデバイスを供給することが可能となる。
 本実施例における流路及び空隙の断面積に関する定義は実施例1で説明した内容と同一である。
[実施例13]
 粒子を用いて三次元構造体を形成する場合には,検体からの標的生体ポリマ回収と,速度遅延の両方を一体化した生体ポリマ分析デバイスを実現することもできる。図24には本実施例のプロトコルの概念フローを,図25にはプロトコル手順の模式図を示した。
 まず,標的生体ポリマが溶解している検体溶液へ,標的生体ポリマが吸着する官能基を有する粒子が分散した溶液を導入する(S11)。導入後,粒子表面へ生体ポリマが十分に吸着するように十分時間経過するのを待つ(S12)。十分時間経過後,超遠心分離を利用することで標的生体ポリマが吸着した粒子のみを選択的に回収する(S13)。磁気粒子を用いた場合は,磁場により粒子のみを回収することが可能である。回収後,標的生体ポリマが吸着した粒子から成型された図9~16あるいは図19,20の三次元構造体をナノポアを有する薄膜の上に載置する(S14)。最後に図21に示した生体ポリマ分析システムに上記で作製したデバイスを組み込み,電圧を印加して生体ポリマの検出を行う(S15)。本工程では,粒子回収を円滑にするため,粒子材質に常磁性を帯びたフェライトなどの磁性粒子を用いることが好ましい。
 すなわち,本実施例の分析方法は,表面に標的生体ポリマが吸着できる官能基を有する複数の粒子を用いて,検体から標的生体ポリマを吸着回収する工程,ナノポアを有する薄膜上に前記粒子から成型された空隙を有する三次元構造体を載置する工程,ナノポアを有する薄膜を電解質を含む溶液に浸し,薄膜を挟んで配置された2つの電極間に電圧を印加する工程,標的生体ポリマがナノポアを通過する時のイオン電流の変化から標的生体ポリマを分析する工程,を有する。このとき,三次元構造体の空隙は電解質を含む溶液をナノポアから三次元構造体の上まで通す流路を形成し,電圧印加時に,少なくともナノポアを中心として式1で定義される生体ポリマ捕捉長rを半径とする半球の範囲内において,溶液に再分散しない。
 本実施例では,予め生体ポリマをナノポア近傍に配置できるため,検出頻度を上げることができる。したがって,解析時間短縮及び低濃度の生体ポリマを検出できる効果がある。尚,実施例1~6,9,10で説明した理由により,三次元構造体は溶液に再分散せず,安定な計測を行うことが可能となる。本実施例における流路及び空隙の断面積に関する定義は実施例1で説明した内容と同一である。
[実施例14]
 以下では,図21に示した生体ポリマ分析システムを用いた生体ポリマの分析例を示す。生体ポリマ分析デバイスとしては,図15に示した三次元構造体を有するデバイスを用いた。薄膜には,直径2nmのナノポアを有する窒化ケイ素から成る薄膜を用いた。粒子には表面がシラノール基で覆われた直径100nm,50nmのシリカナノ粒子と表面が1級アミン基で覆われた直径50nmのシリカナノ粒子を用いた。三次元構造体は上記粒子をディップコーティングにて塗布後,加熱乾燥することで成型した。また,対照実験として,三次元構造体が載置されていない直径2nmのナノポアを有する窒化ケイ素から成る薄膜だけから構成される分析デバイスも用意した。生体ポリマとしては人工的に合成された5000塩基長のポリアデニン(polyA)を用いた。溶液には1Mの塩化カリウムが溶解した水溶液を用いた。生体ポリマを搬送するための電位差としては1Vを印加した。
 図26に,上記実施例の生体ポリマ分析システムによる生体ポリマ検出の典型例を示した。三次元構造体が載置されていないデバイスでは,polyAの典型的な通過速度は0.01μs/モノマ1分子単位であった。一方,図15に示した三次元構造体を載置したデバイスでは,表面がシラノール基で覆われた直径100nmのシリカナノ粒子を用いた場合では0.46μs/モノマ1分子単位,直径50nmのシリカナノ粒子を用いた場合では4.6μs/モノマ1分子単位であった。また,表面が1級アミン基で覆われた直径50nmのシリカナノ粒子を用いた場合では230μs/モノマ1分子単位となった。したがって,本発明のデバイスを用いて最適な条件に調整することにより,三次元構造体を用いない場合に比べて100倍から10000倍の十分な速度遅延を実現できることが確認できた。
 本発明の生体ポリマ分析デバイスと薄膜に単分子層の材質(グラフェンなど)と,例えば文献(A. H. Laszlo, Nature Biotechnology, 2014, June 25)に開示された溶液条件・分析条件を組合わせることで,生体ポリマ,特に一本鎖DNAのナノポア通過速度を十分に遅くし,モノマ配列に依存した信号パターンを得ることができる。得られた信号パターンからモノマ種に依存した信号値差に基づいて解析を行うことで,生体ポリマ中のモノマ配列パターンを解析することができる。
 なお,本発明は上記した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,上記した実施例は本発明のより良い理解のために詳細に説明したものであり,必ずしも説明の全ての構成を備えるものに限定されるものではない。また,ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり,また,ある実施例の構成に他の実施例の構成を加えることが可能である。また,各実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。
101 槽
102 溶液
103 三次元構造体
104 薄膜
105 電極
106 ナノポア
107 溶液注入口
108 空隙
109 生体ポリマ
110 官能基
111 粒子
112 流路
114 壁
115 第二の薄膜
116 バルク体
117 空隙を有する第二の薄膜
118 生体ポリマ分析デバイス
119 イオン電流計測装置
120 アナログデジタル出力変換装置
121 データ処理装置
 

Claims (23)

  1.  生体ポリマと電解質が含まれる溶液を収納できる2つの槽と,
     前記2つの槽にそれぞれ配置された一対の電極と,
     ナノポアを有し,前記ナノポアを介して前記2つの槽が連通するように前記2つの槽の間に配置された薄膜と,
     前記薄膜に載置された三次元構造体とを備え,
     前記三次元構造体は空隙を有し,
     前記空隙は前記溶液を前記ナノポアから前記三次元構造体の上まで通す流路を形成し,前記流路の表面は前記生体ポリマを吸着できる官能基を有しており,
     前記一対の電極への電圧印加時に,少なくとも前記ナノポアを中心とし下式で定義される生体ポリマ捕捉長rを半径とする半球の範囲内において,前記三次元構造体が前記溶液に再分散しないことを特徴とする,生体ポリマ分析デバイス。
    Figure JPOXMLDOC01-appb-I000001
      d:ナノポアの直径
      μ:生体ポリマの電気泳動の移動度
      L:薄膜の厚み
      D:生体ポリマの拡散係数
      ΔV:2つの電極間に印加した電圧差
  2.  前記官能基はシラノール基であることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  3.  前記溶液はカオトロピック効果を有するチオシアン酸イオン(SCN-),リン酸二水素イオン(H2PO4 -),硫酸水素イオン(HSO4 -),炭酸水素イオン(HCO3 -),ヨウ化物イオン(I-),塩化物イオン(Cl-),硝酸イオン(NO3 -),アンモニウムイオン(NH4 +),セシウムイオン(Cs+),カリウムイオン(K+),グアニジウムイオン,又はテトラメチルアンモニウムイオンを含むことを特徴とする,請求項2に記載の生体ポリマ分析デバイス。
  4.  前記溶液のpHは1以上10以下であることを特徴とする,請求項2に記載の生体ポリマ分析デバイス。
  5.  前記溶液のイオン強度は10mM以上,飽和塩化カリウム溶液のイオン強度以下であることを特徴とする,請求項2に記載の生体ポリマ分析デバイス。
  6.  前記官能基はカチオンに電離する官能基であることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  7.  前記カチオンに電離する官能基は,1級アミン基,2級アミン基,3級アミン基,4級アミン基,ピリジン基,イミノ基,イミダゾール基,ピラゾール基,又はトリアゾール基であることを特徴とする,請求項6に記載の生体ポリマ分析デバイス。
  8.  前記溶液のpHは前記カチオンに電離する官能基のpKa以下であることを特徴とする,請求項6に記載の生体ポリマ分析デバイス。
  9.  前記流路の断面積は前記生体ポリマの分子断面積以上,前記空隙の最大断面積以下であることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  10.  前記流路の断面積は生体ポリマの分子断面積以上,下式に定義される生体ポリマの平均自由工程S以下であることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
    Figure JPOXMLDOC01-appb-I000002
      D:生体ポリマの拡散係数
      t:ナノポア近傍における平均滞在時間
  11.  前記三次元構造体は表面に前記生体ポリマを吸着できる官能基を有する複数の粒子から成型されていることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  12.  前記成型後の粒子は非球状であり,前記薄膜に載置された粒子第1層を真上から前記薄膜へと投影した図形において,前記成型後の粒子中心間が正三角形の格子を描いている場合の前記投影図形の面積占有率がπ/(12)1/2よりも大きい,あるいは前記成型後の粒子中心間が正四角形の格子を描いている場合の前記投影図形の面積占有率がπ/4よりも大きいことを特徴とする,請求項11に記載の生体ポリマ分析デバイス。
  13.  前記成型後の粒子は多面体であることを特徴とする請求項11に記載の生体ポリマ分析デバイス。
  14.  前記粒子の材質はセラミックス又は樹脂であることを特徴とする,請求項11に記載の生体ポリマ分析デバイス。
  15.  前記成型後の粒子は焼結反応又はガラス転移温度以下にまで加熱することにより隣接する粒子同士が一体化していることを特徴とする,請求項11に記載の生体ポリマ分析デバイス。
  16.  前記三次元構造体は異なるサイズを有する2種類以上の粒子から成型されていることを特徴とする,請求項11に記載の生体ポリマ分析デバイス。
  17.  前記三次元構造体は逆オパール構造体であることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  18.  前記三次元構造体は,周囲を前記三次元構造体の厚みよりも厚い壁で覆われていることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  19.  前記三次元構造体は前記薄膜の両側に載置されていることを特徴とする,請求項1に記載の生体ポリマ分析デバイス。
  20.  前記三次元構造体の厚みは,前記生体ポリマ捕捉長よりも小さいことを特徴とする請求項1に記載の生体ポリマ分析デバイス。
  21.  請求項1に記載の生体ポリマ分析デバイスと,
     前記生体ポリマ分析デバイスが備える前記一対の電極の間に流れるイオン電流を計測するイオン電流計測装置と,
     前記イオン電流計測装置の出力信号をデジタル信号に変換するアナログデジタル変換装置と,
     前記アナログデジタル変換装置から供給された信号を処理するデータ処理装置と,
    を有することを特徴とする生体ポリマ分析システム。
  22.  請求項1に記載の生体ポリマ分析デバイスの製造方法において,
     空隙を有する三次元構造体であって,前記空隙は表面に生体ポリマを吸着できる官能基を有する三次元構造体が載置された絶縁体薄膜の表面及び裏面を,電解質を含んだ溶液に浸す工程と,
     前記薄膜の表面が浸された溶液と裏面が浸された溶液に一対の電極を浸漬する工程と,
     前記一対の電極にパルス状の電圧を印加する工程と,を有し,
     前記薄膜と前記空隙が接する箇所にナノポアを開口することを特徴とする方法。
  23.  表面に標的生体ポリマが吸着できる官能基を有する複数の粒子を用いて,検体から前記標的生体ポリマを吸着回収する工程と,
     ナノポアを有する薄膜上に前記粒子から成型された空隙を有する三次元構造体を載置する工程と,
     前記ナノポアを有する薄膜を電解質を含む溶液に浸し,前記薄膜を挟んで配置された2つの電極間に電圧を印加する工程と,
     前記標的生体ポリマが前記ナノポアを通過する時のイオン電流の変化から前記標的生体ポリマを分析する工程と,を有し,
     前記空隙は前記電解質を含む溶液を前記ナノポアから前記三次元構造体の上まで通す流路を形成し,前記電圧印加時に,少なくとも前記ナノポアを中心として下式で定義される生体ポリマ捕捉長rを半径とする半球の範囲内において,前記溶液に再分散しないことを特徴とする分析方法。
    Figure JPOXMLDOC01-appb-I000003
      d:ナノポアの直径
      μ:標的生体ポリマの電気泳動の移動度
      L:薄膜の厚み
      D:標的生体ポリマの拡散係数
      ΔV:2つの電極間に印加した電圧差
     
PCT/JP2015/069422 2014-09-12 2015-07-06 生体ポリマ分析デバイス及び分析システム WO2016038998A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112015003450.1T DE112015003450B4 (de) 2014-09-12 2015-07-06 Vorrichtung und System für die Analyse von Biopolymeren
US15/506,090 US11275074B2 (en) 2014-09-12 2015-07-06 Biopolymer analysis device and analysis system
GB1703320.0A GB2549187B (en) 2014-09-12 2015-07-06 Biopolymer analysis device and analysis system
CN201580045934.XA CN106605141B (zh) 2014-09-12 2015-07-06 生物聚合物分析设备及分析系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186334A JP6259741B2 (ja) 2014-09-12 2014-09-12 生体ポリマ分析デバイス及び分析システム
JP2014-186334 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038998A1 true WO2016038998A1 (ja) 2016-03-17

Family

ID=55458760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069422 WO2016038998A1 (ja) 2014-09-12 2015-07-06 生体ポリマ分析デバイス及び分析システム

Country Status (6)

Country Link
US (1) US11275074B2 (ja)
JP (1) JP6259741B2 (ja)
CN (1) CN106605141B (ja)
DE (1) DE112015003450B4 (ja)
GB (1) GB2549187B (ja)
WO (1) WO2016038998A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016006855B4 (de) 2016-06-10 2023-09-28 Hitachi High-Tech Corporation Verfahren und Vorrichtung zum Analysieren von Biomolekülen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592402B2 (ja) 2016-06-03 2019-10-16 株式会社日立ハイテクノロジーズ 生体分子計測装置
JP6727052B2 (ja) * 2016-07-19 2020-07-22 株式会社日立製作所 生体分子分析用デバイス及び生体分子分析装置
CN109844135B (zh) 2016-10-20 2022-11-08 株式会社日立高新技术 生物分子的处理方法以及分析方法
JP2018155698A (ja) * 2017-03-21 2018-10-04 株式会社東芝 分析チップ
JP7058579B2 (ja) * 2018-09-19 2022-04-22 株式会社アドバンテスト ポアデバイスおよび微粒子測定システム
JP7253045B2 (ja) * 2019-04-24 2023-04-05 株式会社日立ハイテク 生体ポリマ分析装置及び生体ポリマ分析方法
EP3969887A4 (en) * 2019-05-28 2023-06-07 The University of Tokyo APPARATUS AND METHOD FOR ANALYSIS USING A POROUS DEVICE
JP2020153996A (ja) * 2020-05-29 2020-09-24 株式会社東芝 分析チップ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053284A1 (en) * 2007-05-08 2011-03-03 The Trustees Of Boston University Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof
JP2014074599A (ja) * 2012-10-03 2014-04-24 Hitachi High-Technologies Corp 分析装置及び分析方法
WO2015068673A1 (ja) * 2013-11-08 2015-05-14 株式会社日立ハイテクノロジーズ Dna搬送制御デバイスおよびその製造方法、ならびにdnaシーケンシング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5819309B2 (ja) * 2010-09-29 2015-11-24 株式会社日立ハイテクノロジーズ 生体ポリマーの光学的解析装置及び方法
US20120193235A1 (en) * 2011-01-28 2012-08-02 International Business Machines Corporation Dna motion control based on nanopore with organic coating forming transient bonding to dna
JPWO2012165400A1 (ja) * 2011-06-03 2015-02-23 株式会社日立ハイテクノロジーズ 生体ポリマーの光学的解析装置及び方法
KR101933619B1 (ko) 2011-12-26 2018-12-31 삼성전자주식회사 나노포어 소자 및 그 제조 방법, 나노포어 소자를 포함하는 핵산 검출 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110053284A1 (en) * 2007-05-08 2011-03-03 The Trustees Of Boston University Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof
JP2014074599A (ja) * 2012-10-03 2014-04-24 Hitachi High-Technologies Corp 分析装置及び分析方法
WO2015068673A1 (ja) * 2013-11-08 2015-05-14 株式会社日立ハイテクノロジーズ Dna搬送制御デバイスおよびその製造方法、ならびにdnaシーケンシング装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENI WANUNU ET AL.: "Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient", NATURE NANOTECHNOLOGY, vol. 5, 2010, pages 160 - 165, XP055134839, DOI: doi:10.1038/nnano.2009.379 *
PETER E.VANDEVENTER ET AL.: "Multiphasic DNA Adsorption to Silica Surfaces under Varying Buffer, pH, and Ionic Strength Conditions", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 116, 2012, pages 5661 - 5670 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016006855B4 (de) 2016-06-10 2023-09-28 Hitachi High-Tech Corporation Verfahren und Vorrichtung zum Analysieren von Biomolekülen

Also Published As

Publication number Publication date
US20180217123A1 (en) 2018-08-02
DE112015003450T5 (de) 2017-04-27
GB201703320D0 (en) 2017-04-12
CN106605141B (zh) 2019-05-21
DE112015003450B4 (de) 2024-05-02
US11275074B2 (en) 2022-03-15
JP2016057263A (ja) 2016-04-21
CN106605141A (zh) 2017-04-26
GB2549187A (en) 2017-10-11
JP6259741B2 (ja) 2018-01-10
GB2549187B (en) 2021-05-19

Similar Documents

Publication Publication Date Title
JP6259741B2 (ja) 生体ポリマ分析デバイス及び分析システム
Sexton et al. Developing synthetic conical nanopores for biosensing applications
US9290806B2 (en) Fabricating self-formed nanometer pore array at wafer scale for DNA sequencing
Ali et al. A pH-tunable nanofluidic diode with a broad range of rectifying properties
Venkatesan et al. Solid-state nanopore sensors for nucleic acid analysis
Sexton et al. An adsorption-based model for pulse duration in resistive-pulse protein sensing
US7777505B2 (en) Nanopore platforms for ion channel recordings and single molecule detection and analysis
Ziółkowski et al. Carboxylated graphene as a sensing material for electrochemical uranyl ion detection
Nguyen et al. Charge-selective transport of organic and protein analytes through synthetic nanochannels
JP2011520117A (ja) 流体から生体分子を分離する装置
US9658184B2 (en) Increasing the capture zone by nanostructure patterns
Bafna et al. Fabrication of low noise borosilicate glass nanopores for single molecule sensing
Krishnakumar et al. Mass transport through vertically aligned large diameter MWCNTs embedded in parylene
CN103820311B (zh) 用于单分子测序的纳米孔装置及其使用方法、制作方法
CN108474783A (zh) 用于分析生物聚合物的测定试剂及分析器件
Mahbub et al. Introduction to nanomaterials and nanomanufacturing for nanosensors
Coglitore et al. Metal alloy solid-state nanopores for single nanoparticle detection
Mir et al. Electrokinetic techniques applied to electrochemical DNA biosensors
Starosta Radiation use in producing track-etched membranes
Xi et al. Spatial conformation measurement of gold nanorods translocated through a solid-state nanopore
Baker et al. Nanotube-Based Membrane Systems
US20220283110A1 (en) Device, tunnel current measuring apparatus, nucleic acid sequence reading apparatus, tunnel current measuring method, and nucleic acid sequence reading method
Dylewska-Chaumeil et al. An Ion-Specific Effect on Polymer-Protein Interaction Enhances Resolution of Nanopore-Based Detection
CN117295822A (zh) 生物体分子分析方法、生物体分子分析试剂和生物体分子分析设备
Fernandes et al. In vitro studies of multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839940

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 112015003450

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15506090

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201703320

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150706

122 Ep: pct application non-entry in european phase

Ref document number: 15839940

Country of ref document: EP

Kind code of ref document: A1