WO2016038783A1 - 熱輸送システム - Google Patents

熱輸送システム Download PDF

Info

Publication number
WO2016038783A1
WO2016038783A1 PCT/JP2015/003902 JP2015003902W WO2016038783A1 WO 2016038783 A1 WO2016038783 A1 WO 2016038783A1 JP 2015003902 W JP2015003902 W JP 2015003902W WO 2016038783 A1 WO2016038783 A1 WO 2016038783A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conversion unit
medium
fuel cell
cooling water
Prior art date
Application number
PCT/JP2015/003902
Other languages
English (en)
French (fr)
Inventor
卓哉 布施
卓 金子
暢 川口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016038783A1 publication Critical patent/WO2016038783A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a heat transport system that performs heat transport using a liquid heat medium.
  • the cooling water (heat medium) used in the cooling water system needs to have non-freezing properties.
  • the technique which ensures antifreeze by using the liquid which added about 50% of ethylene glycol which is a freezing point depressant with respect to water as cooling water is disclosed (for example, refer patent document 1). .
  • fuel cells particularly, solid polymer electrolyte type fuel cells (PEFC)
  • PEFC solid polymer electrolyte type fuel cells
  • freezing point depressants such as ethylene glycol
  • thermal properties such as specific heat and thermal conductivity. Because it is bad, the ability to remove and transport heat is reduced. As a result, there is a risk that the size of the radiator, the heat medium piping, etc. will increase, or the power of the pump that causes the cooling water to flow will increase.
  • the present disclosure in a heat transport system in which heat removal from the energy conversion unit is mainly performed via a liquid heat medium, suppresses deterioration of the heat physical properties of the heat medium and increase in viscosity, while preventing the heat medium from being lost.
  • the purpose is to ensure sufficient freezing performance.
  • the heat transport system of the present disclosure includes a conversion unit and a heat dissipation unit.
  • the conversion unit is configured to convert the energy of the fuel supplied from the outside to generate heat and to remove the heat.
  • the heat radiating part releases heat out of the system.
  • Heat is removed from the conversion unit by transporting the heat generated in the conversion unit to the heat dissipation unit via the liquid heat medium.
  • the ratio of the amount of heat removed via the heat medium is the largest with respect to the amount of heat generated in the conversion unit.
  • the heat medium is composed of a solution having a solvent and at least one solute. At least one type of solute includes a molecule having a first site and a second site.
  • the first portion selectively approaches the solid-liquid interface of the solvent when the temperature of the heat medium becomes equal to or lower than a predetermined reference temperature.
  • the second part is connected to the first part and has a lyophobic property with respect to the solvent.
  • the ratio of the amount of heat removed through the heat medium is the largest with respect to the amount of heat generated in the conversion unit, so that removal of heat from the conversion unit is mainly liquid. It can be performed via a heat medium.
  • the heat medium when the temperature of the heat medium drops below the reference temperature, the heat medium is adsorbed by the first portion of the solute selectively approaching the solid-liquid interface of the solution.
  • the progress of freezing can be suppressed.
  • the solvent since the solvent is suppressed from approaching the solid-liquid interface by the second lyophobic site, the progress of freezing can be further suppressed.
  • the progress of freezing of the heat medium can be delayed even if the heat medium does not contain a freezing point depressant such as ethylene glycol. Further, since it is not necessary to maintain the supercooled state in order to lower the freezing point of the heat medium, the supercooled state of the heat medium is released by disturbance and freezing does not proceed.
  • a freezing point depressant such as ethylene glycol
  • the heat transport system according to the present disclosure is applied to a fuel cell system of a fuel cell vehicle that travels using the fuel cell as a driving source for travel. More specifically, the fuel cell system refers to a fuel cell cooling system.
  • the fuel cell system of this embodiment includes a fuel cell 1 that generates electric power by utilizing an electrochemical reaction between hydrogen and oxygen.
  • the fuel cell 1 supplies power to various electric loads 2 such as a secondary battery, a traveling motor, and an auxiliary machine.
  • the fuel cell 1 of the present embodiment employs a solid polymer electrolyte type fuel cell (PEFC).
  • PEFC solid polymer electrolyte type fuel cell
  • a plurality of battery cells 10 serving as basic units are stacked, and the battery cells 10 are electrically connected in series.
  • the battery cell 10 is simply referred to as the cell 10.
  • each cell 10 includes an electrolyte membrane 11 made of a proton-conductive ion exchange membrane (solid polymer) and a pair of electrodes 12 and 13 that sandwich both outer sides of the electrolyte membrane 11. It has a membrane electrode assembly that is configured, and a pair of separators that sandwich the membrane electrode assembly from both sides.
  • electrolyte membrane 11 made of a proton-conductive ion exchange membrane (solid polymer)
  • electrodes 12 and 13 that sandwich both outer sides of the electrolyte membrane 11. It has a membrane electrode assembly that is configured, and a pair of separators that sandwich the membrane electrode assembly from both sides.
  • One of the pair of electrodes 12 and 13 is configured as a hydrogen electrode 12 (anode) to which hydrogen as a fuel gas is supplied, and the other electrode is an air electrode to which air as an oxidant gas is supplied. 13 (cathode).
  • Each electrode 12 and 13 is composed of a catalyst layer and a gas diffusion layer.
  • Each of the pair of separators is provided with a hydrogen flow path 14 for supplying hydrogen to the hydrogen electrode 12 on the surface facing the hydrogen electrode 12, and supplying air to the air electrode 13 on the surface facing the air electrode 13.
  • An air flow path 15 is formed.
  • each cell 10 electrochemically reacts hydrogen and oxygen to output electric energy as shown below.
  • the generated water generated on the air electrode 13 side diffuses from the air electrode 13 side to the hydrogen electrode 12 side when flowing from the air flow upstream side to the downstream side. That is, as shown by arrows in FIG. 2, water circulates between the hydrogen electrode (anode) 12 and the air electrode (cathode) 13.
  • the fuel cell system is provided with a hydrogen supply pipe 20 and a hydrogen discharge pipe 21.
  • Hydrogen gas supplied to the hydrogen electrode 12 side of the fuel cell 1 passes through the hydrogen supply pipe 20.
  • Exhaust gas discharged from the hydrogen electrode 12 side of the fuel cell 1 passes through the hydrogen discharge pipe 21.
  • a hydrogen supply device 22 for supplying hydrogen gas to the hydrogen electrode 12 of the fuel cell 1 is provided at the most upstream portion of the hydrogen supply pipe 20.
  • a hydrogen tank filled with high-pressure hydrogen is used as the hydrogen supply device 22.
  • the hydrogen supply pipe 20 is provided with a hydrogen pressure regulating valve 23 on the downstream side of the hydrogen supply device 22.
  • the hydrogen pressure is adjusted to a desired hydrogen pressure by the hydrogen pressure regulating valve 23 and supplied to the fuel cell 1.
  • the hydrogen discharge pipe 21 is provided with a shut valve 24. By opening the shut valve 24 as necessary, a small amount of hydrogen, vapor (or water) and the air electrode 13 are passed through the electrolyte membrane 11 from the hydrogen electrode side of the fuel cell 1 through the hydrogen discharge pipe 21. Impurities such as nitrogen and oxygen mixed on the hydrogen electrode 12 side are discharged.
  • a pipe 25 is connected.
  • the hydrogen circulation pipe 25 is connected between the upstream side of the shut valve 24 of the hydrogen discharge pipe 21 and the downstream side of the hydrogen pressure regulating valve 23 of the hydrogen supply pipe 20.
  • the hydrogen circulation pipe 25 is provided with a circulation pump 26 for returning unreacted hydrogen or the like in the hydrogen discharge pipe 21 to the hydrogen supply pipe 20.
  • a circulation pump 26 for returning unreacted hydrogen or the like in the hydrogen discharge pipe 21 to the hydrogen supply pipe 20.
  • an unreacted hydrogen or the like in the hydrogen discharge pipe 21 may be returned to the hydrogen supply pipe 20 by using a variable flow rate type ejector.
  • the fuel cell system is provided with an air supply pipe 30 through which air supplied to the air electrode 13 of the fuel cell 1 passes, and an air discharge pipe 31 through which exhaust gas discharged from the air electrode 13 of the fuel cell 1 passes. It has been.
  • the air supply pipe 30 is provided with an air supply device 32 for compressing and discharging air.
  • a pressure feed pump is used as the air supply device 32.
  • the air discharge pipe 31 is provided with a back pressure adjustment valve 33 that adjusts the pressure of the air in the air flow path 15 so as to obtain a desired pressure.
  • the fuel cell 1 generates heat when the energy of the fuel (hydrogen) supplied from the outside is converted into electricity, that is, when power is generated. Therefore, the fuel cell 1 of the present embodiment corresponds to the conversion unit of the present disclosure.
  • the fuel cell system includes a cooling system 4 that cools the fuel cell 1 so that the operating temperature is a temperature suitable for an electrochemical reaction (for example, about 80 ° C.) in order to remove heat generated by the power generation of the fuel cell 1. Is provided. In other words, in the fuel cell 1, heat generated with power generation (energy conversion) is removed.
  • a cooling system 4 that cools the fuel cell 1 so that the operating temperature is a temperature suitable for an electrochemical reaction (for example, about 80 ° C.) in order to remove heat generated by the power generation of the fuel cell 1.
  • the cooling system 4 is provided with a cooling water pipe 40, a water pump 41, and a radiator 42.
  • the cooling water pipe 40 constitutes a cooling water flow path for circulating cooling water, which is a liquid heat medium, to the fuel cell 1.
  • the water pump 41 is a flow control unit that controls the flow of the cooling water in the cooling water flow path.
  • the radiator 42 is a heat radiating part that exchanges heat between the cooling water and the air blown from the blower fan 43 to release the heat of the cooling water to the outside of the system.
  • the heat generated in the fuel cell 1 by the cooling system 4 is discharged out of the system by the radiator 42 through the cooling water. That is, the cooling system 4 removes heat from the fuel cell 1 by transporting the heat generated in the fuel cell 1 to the radiator 42 via the cooling water.
  • the ratio of the amount of heat removed through the cooling water by the cooling system 4 to the heat amount generated by the power generation in the fuel cell 1 is the largest. In the present embodiment, almost all of the heat generated by the power generation in the fuel cell 1 except for the natural heat release is removed by the cooling system 4 through the cooling water.
  • the fuel cell system of the present embodiment is provided with a control device (ECU) 50 as a control unit that performs various controls.
  • the control device 50 controls the operation of various control devices constituting the fuel cell system based on various input signals.
  • the control device 50 is configured by a known microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and executes processing such as various calculations according to a control program stored in a storage unit such as a ROM.
  • required power signals and the like from various electric loads 2 are input to the input side of the control device 50.
  • a hydrogen pressure regulating valve 23, a shut valve 24, a circulation pump 26, an air supply device 32, a back pressure adjusting valve 33, a water pump 41, a blower fan 43, and the like are connected.
  • Output a control signal.
  • the control device 50 basically controls the supply amount of each reaction gas (hydrogen and air) supplied to the fuel cell 1 in accordance with the required power signal from the electric load 2.
  • the cooling water used in the cooling system 4 according to this embodiment is composed of a solution having a solvent and at least one kind of solute 60.
  • the solute 60 of the cooling water is composed of molecules including a head 61 as a first part and a tail 62 as a second part.
  • the head 61 is a part that is selectively close to the solid-liquid interface 70 of the solvent when the temperature of the cooling water is equal to or lower than a predetermined reference temperature.
  • the tail 62 is a lyophobic part connected to the head 61.
  • water is used as the solvent.
  • the head 61 of the solute 60 any one of a quaternary ammonium group, a sulfo group, an ester group, a carboxyl group, and a hydroxyl group is employed.
  • the tail 62 of the solute 60 a tail having a plurality of carbons as a main chain and 4 or less hydrophilic groups bonded to each carbon is employed.
  • the solute 60 of the present embodiment.
  • a compound in which the head 61 is a trimethylammonium group and the tail 62 is a linear hydrocarbon group having 16 or less carbon atoms is employed as the solute 60 of the present embodiment.
  • hexadecyltrimethylammonium bromide hereinafter also referred to as C 16 TAB is employed as the solute 60.
  • the solute 60 of the present embodiment includes polyoxyethylene (10) octylphenyl ether (Triton (registered trademark) X-100), polyoxyethylene (25) octyldodecyl ether (emulgen ( (Registered trademark) 2025G), polyoxyethylene sorbitan oleate (Tween (registered trademark) 80), stearic acid PEG-150, myristyl sulfobetaine, sodium cholate may be employed.
  • polyoxyethylene (10) octylphenyl ether Triton (registered trademark) X-100
  • polyoxyethylene (25) octyldodecyl ether emulgen ( (Registered trademark) 2025G)
  • polyoxyethylene sorbitan oleate Teween (registered trademark) 80)
  • stearic acid PEG-150 stearic acid PEG-150
  • myristyl sulfobetaine sodium
  • the ratio of the amount of heat removed through the cooling water is the largest with respect to the amount of heat generated in the fuel cell 1. That is, in the fuel cell system of the present embodiment, the heat from the fuel cell 1 is removed mainly through the cooling water.
  • the solute 60 of the cooling water is connected to the head 61 and the head 61 that are selectively close to the solid-liquid interface 70 of the water when the cooling water temperature is equal to or lower than the reference temperature. It is comprised by the molecule
  • FIG. According to this, when the temperature of the cooling water is lowered to a reference temperature or lower, the head 61 of the solute 60 is adsorbed in close proximity to the solid-liquid interface 70 of the water. The head 61 adsorbed on the solid-liquid interface 70 of water inhibits the growth of water ice nuclei (solidification nuclei), so that the progress of freezing can be suppressed. Furthermore, since the hydrophobic tail 62 prevents water from approaching the solid-liquid interface 70, the progress of freezing can be further suppressed.
  • the cooling water does not contain a freezing point depressant (ethylene glycol)
  • ethylene glycol ethylene glycol
  • the progress of freezing of the cooling water can be delayed, that is, the freezing point of the cooling water can be lowered. For this reason, it is possible to suppress deterioration in the thermal properties of the cooling water and increase in viscosity.
  • the solute 60 of the cooling water according to the present embodiment does not promote supercooling and inhibits the growth of ice nuclei as described above. For this reason, the supercooled state of the cooling water is released due to disturbance, and freezing does not proceed.
  • the cooling water is suppressed while suppressing the deterioration of the thermal properties of the cooling water and the increase in viscosity. It is possible to ensure sufficient antifreeze performance. Thereby, it is possible to suppress an increase in the size of the radiator 42 and an increase in the load of the water pump 41.
  • the thermal properties of the cooling water deteriorate. It is particularly effective to suppress the increase in viscosity.
  • the tail 62 moves with the head 61 as a base point. At this time, tails 62 of adjacent solute molecules do not contact each other. Therefore, if the length of the tail 62 of the solute molecule is too long, the radius is also increased, and the distance d between adjacent solute molecules is increased, which makes it difficult to inhibit the growth of ice nuclei. Thereby, the progress inhibitory effect of freezing of cooling water will fall.
  • the tail 62 of the solute molecule is a linear hydrocarbon group having 16 or less carbon atoms
  • the tail 62 can be prevented from becoming too long. For this reason, since the distance d between adjacent solute molecules can be shortened, it becomes easy to inhibit the growth of ice nuclei, and the progress of freezing of cooling water can be reliably suppressed.
  • the second embodiment is different from the first embodiment in that a heat storage unit is provided in the cooling system.
  • the cooling system 4 of the present embodiment includes a heat storage unit 81 that stores heat generated by power generation in the fuel cell 1 via cooling water.
  • the cooling water pipe 40 of the cooling system 4 is connected to a heat storage pipe 80 that forms a cooling water flow path for circulating the cooling water through the heat storage unit 81.
  • the heat storage pipe 80 is connected between the discharge side of the water pump 41 and the inlet side of the radiator 42 in the cooling water pipe 40.
  • Three-way valves 82 and 83 are arranged at the connection between the heat storage pipe 80 and the cooling water pipe 40.
  • the three-way valves 82 and 83 are cooling water flow switching units that switch between a state in which the cooling water flows through the heat storage unit 81 and a state in which the cooling water does not flow.
  • the operation of the three-way valves 82 and 83 is controlled by the control device 50.
  • the control device 50 When the required output from the various electric loads 2 to the fuel cell 1 is in a high load state, that is, when the load of the fuel cell 1 is larger than a predetermined first reference load, the control device 50 Then, a heat storage mode in which heat generated by power generation is stored in the heat storage unit 81 is executed.
  • the control device 50 switches the three-way valves 82 and 83 so that the cooling water flows through the heat storage unit 81.
  • the heat generated by the fuel cell 1 along with the power generation is stored in the heat storage unit 81 through the cooling water.
  • the control device 50 stores heat when the required output from the various electric loads 2 to the fuel cell 1 is in a low load state, that is, when the load of the fuel cell 1 is smaller than a predetermined second reference load.
  • the heat release mode is performed in which the heat stored in the part 81 is released to the cooling water that is a heat transfer target.
  • the control device 50 switches the three-way valves 82 and 83 so that the cooling water flows through the heat storage unit 81. Thereby, the heat stored in the heat storage unit 81 is released from the radiator 42 to the outside of the system through the cooling water.
  • the second reference load is set smaller than the first reference load.
  • control device 50 switches the three-way valves 82 and 83 when the fuel cell 1 is in a steady operation state, that is, when the load of the fuel cell 1 is not less than the second reference load and not more than the first reference load.
  • the cooling water does not flow through the heat storage unit 81.
  • the three-way valves 82 and 83 correspond to the mode switching unit of the present disclosure.
  • the cooling system 4 is provided with a heat storage unit 81 that stores heat generated by power generation in the fuel cell 1, and the heat storage mode is executed when the fuel cell 1 is in a high load state.
  • a cooling system 4 is configured. Thereby, when the fuel cell 1 is in a high load state, the heat generated in the fuel cell 1 due to the power generation can be stored in the heat storage unit 81, so that the radiator 42 can be prevented from being enlarged.
  • the third embodiment is different from the second embodiment in that a vehicle air conditioner is mounted on a fuel cell vehicle (vehicle).
  • the refrigeration cycle (heat pump cycle) 9 constituting the vehicle air conditioner functions to cool the air blown into the vehicle interior, which is the air conditioning target space.
  • the refrigeration cycle 9 includes a compressor 91, a refrigerant radiator 92, an expansion valve 93, and an evaporator 94. These components are connected in a ring shape by a pipe 90 to form a refrigerant circulation path.
  • the compressor 91 is arranged in the vehicle bonnet, sucks the refrigerant in the refrigeration cycle 9, compresses it, and discharges it.
  • the compressor 91 of this embodiment is configured as an electric compressor that drives a fixed displacement type compression mechanism with a fixed soot discharge capacity by an electric motor.
  • the operation (rotation speed) of the electric motor is controlled by a control signal output from the control device 50.
  • the refrigerant discharge capability of a compression mechanism is changed because the control apparatus 50 controls the rotation speed of an electric motor.
  • the refrigerant radiator 92 is a heat exchanger that exchanges heat between the high-pressure refrigerant discharged from the compressor 91 and the cooling water, and releases the heat of the high-pressure refrigerant to the cooling water.
  • the refrigerant radiator 92 of this embodiment is disposed between the outlet side of the fuel cell 1 and the suction side of the water pump 41. And the refrigerant radiator 92 of this embodiment heat-exchanges the high voltage
  • the expansion valve 93 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the refrigerant radiator 92.
  • the evaporator 94 evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 93 and the air blown into the passenger compartment. That is, the evaporator 94 is a heat exchanger that cools the air.
  • the gas-phase refrigerant evaporated in the evaporator 94 is sucked into the compressor 91 and compressed.
  • the control device 50 executes the heat storage mode when the compressor 91 is operating. Specifically, when the compressor 91 is operating, the three-way valves 82 and 83 are switched so that the cooling water flows through the heat storage unit 81. As a result, the heat generated by the fuel cell 1 during power generation and the heat of the high-pressure refrigerant released to the cooling water by the refrigerant radiator 92 are stored in the heat storage unit 81 via the cooling water.
  • the control device 50 also determines when the operation of the compressor 91 is stopped and the required outputs from the various electric loads 2 to the fuel cell 1 are in a low load state, that is, the load of the fuel cell 1 is predetermined. When it is smaller than the third reference load, the heat dissipation mode is executed. Specifically, when the operation of the compressor 91 is stopped and the load of the fuel cell 1 is smaller than the third reference load, the control device 50 switches the three-way valves 82 and 83 so that the cooling water is stored in the heat storage unit. 81 is made to flow. Thereby, the heat stored in the heat storage unit 81 is released from the radiator 42 to the outside of the system via the cooling water.
  • the third reference load is set smaller than the first reference load.
  • the cooling system 4 has the refrigerant
  • the cooling system 4 when the compressor 91 is operated, that is, when the vehicle air conditioner is operated, the amount of heat that the cooling water has is increased compared to the steady state. For this reason, in order to radiate the heat which cooling water has with radiator 42 at the time of operation of compressor 91, it is necessary to enlarge radiator 42.
  • the cooling system 4 is provided with a heat storage unit 81 that stores heat generated by the fuel cell 1 during power generation, and the cooling system 4 is configured to execute the heat storage mode when the compressor 91 is operated. It is composed. Thereby, at the time of the operation of the compressor 91, the heat stored in the high-pressure refrigerant released to the cooling water by the refrigerant radiator 92 can be stored in the heat storage unit 81, and thus the enlargement of the radiator 42 can be suppressed.
  • radiator 42 is employed as the heat radiating unit.
  • a heater core that heats the conditioned air by performing heat exchange between the cooling water and the conditioned air may be employed as the heat radiating unit.
  • the heat transfer target is not limited thereto.
  • air that is blown into the vehicle interior may be adopted as a heat transfer target, and the heat stored in the heat storage unit 81 may be used for heating the vehicle interior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

 熱輸送システムは、変換部(1)と放熱部(42)を備える。変換部は、外部から供給される燃料のエネルギを変換して熱を発生させるとともに、熱が除去されるように構成されている。放熱部は、熱を系外へ放出する。変換部で発生した熱を、液体状の熱媒体を介して放熱部へ輸送することで、変換部(1)から熱が除去される。変換部では、変換部で発生した熱の熱量に対して、熱媒体を介して除去される熱量の割合が最も大きくなる。熱媒体は、溶媒と少なくとも1種類の溶質(60)とを有する溶液により構成されている。少なくとも1種類の溶質は、第1部位(61)と第2部位(62)とを備える分子を含んでいる。第1部位は、熱媒体の温度が予め定めた基準温度以下になった場合に、溶媒の固液界面(70)に選択的に近接する。第2部位は、第1部位に接続されるとともに、溶媒に対して疎溶媒性を有する。

Description

熱輸送システム 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年9月12日に出願された日本特許出願2014-186144号を基にしている。
 本開示は、液状熱媒体を用いて熱輸送を行う熱輸送システムに関するものである。
 車両等のエネルギ変換システムにおいては、例えば燃料のエネルギを動力や電気に変換する際に、不可避的に熱が発生する。エネルギ変換器における変換効率の低下やオーバーヒートを抑制するために、エネルギ変換により発生した熱を積極的に除去する必要がある。一般的に、このようなシステムでは、エネルギ変換の際に発生した熱を輸送して、その熱を放熱器から系外へ放熱する。
 ところで、エネルギ変換器の冷却手法としては、その排熱温度に応じて種々の方策がとられている。例えば、エネルギ変換部として、燃料を燃焼させるエンジン(内燃機関)を用いる場合、シリンダ内が高温となるため、排気系および冷却水系の双方を介して熱を除去している。
 ここで、冷却水系に用いられる冷却水(熱媒体)は、不凍性を有している必要がある。これに対し、凝固点降下剤であるエチレングリコールを水に対して5割程度加えた液体を冷却水として用いることにより、不凍性を確保する手法が開示されている(例えば、特許文献1参照)。
特開2014-020280号公報
 近年、エネルギ変換器として燃料電池(特に、固体高分子電解質型の燃料電池(PEFC))が注目されている。燃料電池では、エネルギ変換により電気を生成する際に燃料の酸化反応が行われている。
 このような燃料電池を搭載した燃料電池システムでは、冷却水系のみを介して熱を除去する場合が多い。このため、燃料電池システムが車両に搭載される場合、膨大な熱量が冷却水系に放出されることになる。
 ところで、上記特許文献1に記載の冷却水のように、凝固点降下現象を用いて冷却水の不凍性能を確保する場合、エチレングリコール等の凝固点降下剤は比熱や熱伝導率等の熱物性が悪いため、熱を除去および輸送する性能が低下する。その結果、放熱器や熱媒体配管等の体格が大きくなったり、冷却水を流動させるポンプの動力が大きくなったりするおそれがある。
 特に、冷却水系に膨大な熱量が放出される燃料電池システムの冷却水として、上記特許文献1に記載の冷却水を用いると、放熱器のさらなる大型化や、ポンプの負荷の増大が避けられない。
 本開示は上記点に鑑みて、エネルギ変換部からの熱の除去が主として液状熱媒体を介して行われる熱輸送システムにおいて、熱媒体の熱物性悪化および粘度増大を抑制しつつ、熱媒体の不凍性能を充分に確保することを目的とする。
 本開示の熱輸送システムは、変換部と放熱部を備える。変換部は、外部から供給される燃料のエネルギを変換して熱を発生させるとともに、熱が除去されるように構成されている。放熱部は、熱を系外へ放出する。変換部で発生した熱を、液体状の熱媒体を介して放熱部へ輸送することで、変換部から熱が除去される。変換部では、変換部で発生した熱の熱量に対して、熱媒体を介して除去される熱量の割合が最も大きくなる。熱媒体は、溶媒と少なくとも1種類の溶質とを有する溶液により構成されている。少なくとも1種類の溶質は、第1部位と第2部位とを備える分子を含んでいる。第1部位は、熱媒体の温度が予め定めた基準温度以下になった場合に、溶媒の固液界面に選択的に近接する。第2部位は、第1部位に接続されるとともに、溶媒に対して疎溶媒性を有する。
 これによれば、変換部において、当該変換部で発生した熱の熱量に対して、熱媒体を介して除去される熱量の割合が最も大きくなることで、変換部からの熱の除去を主として液状熱媒体を介して行うことができる。
 また、熱媒体は、熱媒体の温度が低下して基準温度以下になった場合に、溶質の第1部位が溶液の固液界面に選択的に近接して吸着する。これにより、溶媒の固液界面に吸着した第1部位により、溶媒の凝固核の成長が阻害されるため、凍結の進行を抑制できる。さらに、疎溶媒性の第2部位により、溶媒が固液界面に近づくことが抑制されるので、凍結の進行をより抑制できる。
 このため、熱媒体にエチレングリコール等の凝固点降下剤を含有させなくても、熱媒体の凍結の進行を遅らせることができる。また、熱媒体の凝固点を低下させるために過冷却状態を維持する必要はないので、外乱により熱媒体の過冷却状態が解除されて凍結が進行することはない。
 したがって、変換部からの熱の除去が主として液状熱媒体を介して行われる熱輸送システムにおいて、熱媒体の熱物性悪化および粘度増大を抑制しつつ、熱媒体の不凍性能を充分に確保することが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態における燃料電池システムを示す全体構成図である。 第1実施形態におけるセルの概略構成図である。 第1実施形態における燃料電池システムの電気制御部を示すブロック図である。 第1実施形態における冷却水の構成を説明するための説明図である。 第2実施形態における燃料電池システムを示す全体構成図である。 第3実施形態における燃料電池システムを示す全体構成図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した形態と同様とする。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 第1実施形態について図1~図4に基づいて説明する。本実施形態では、本開示に係る熱輸送システムを、燃料電池を走行用駆動源として走行する燃料電池自動車の燃料電池システムに適用している。燃料電池システムとは、より詳細には、燃料電池の冷却システムをいう。
 図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池1を備えている。燃料電池1は、二次電池、走行用モータ、補機等の各種電気負荷2に電力を供給する。
 本実施形態の燃料電池1は、固体高分子電解質型の燃料電池(PEFC)を採用している。PEFCでは、基本単位となる電池セル10が複数積層され、各電池セル10が電気的に直列に接続されている。以下、電池セル10を単にセル10と称する。
 ここで、図2に示すように、各セル10は、プロトン伝導性のイオン交換膜(固体高分子)からなる電解質膜11および電解質膜11の外側両面を狭持する一対の電極12、13で構成される膜電極接合体と、これを両側から挟み込む一対のセパレータとを有している。
 一対の電極12、13のうち、一方の電極は、燃料ガスとしての水素が供給される水素極12(アノード)として構成され、他方の電極は、酸化剤ガスとしての空気が供給される空気極13(カソード)として構成されている。なお、各電極12、13は、触媒層およびガス拡散層にて構成されている。
 また、一対のセパレータそれぞれには、水素極12と対向する面に水素極12に水素を供給するための水素流路14が形成され、空気極13と対向する面に空気極13に空気を供給するための空気流路15が形成されている。
 燃料電池1に水素および空気といった反応ガスが供給されると、各セル10では、以下に示すように、水素と酸素とを電気化学反応して、電気エネルギを出力する。
 (水素極側) H2→2H++2e-
 (空気極側) 2H++1/2O2+2e-→H2
 この際、水素極12では、内部に供給された水素が触媒層における触媒反応によって、電子(e-)とプロトン(H+)とに電離される。プロトン(H+)は、水(随伴水)を随伴して空気極13側に移動する。
 一方、空気極13では、水素極12側から移動してきたプロトン(H+)、外部から流通してきた電子、および空気中の酸素(O2)が反応して、水(生成水)が生成される。
空気極13側で生成された生成水は、空気流れ上流側から下流側へと流れる際に、空気極13側から水素極12側へと拡散する。つまり、図2に矢印で示すように、水素極(アノード)12および空気極(カソード)13の間を水が循環する。
 図1に戻り、燃料電池システムには、水素供給配管20および水素排出配管21が設けられている。水素供給配管20を、燃料電池1の水素極12側に供給される水素ガスが通過する。水素排出配管21を、燃料電池1の水素極12側から排出される排ガスが通過する。
 水素供給配管20の最上流部には、燃料電池1の水素極12に水素ガスを供給するための水素供給装置22が設けられている。本実施形態では、水素供給装置22として、高圧の水素が充填された水素タンクを用いている。
 水素供給配管20には、水素供給装置22の下流側に水素調圧弁23が設けられている。燃料電池1に水素を供給する際には、水素調圧弁23によって所望の水素圧力にして燃料電池1に供給する。
 水素排出配管21には、シャット弁24が設けられている。必要に応じてシャット弁24を開くことで、燃料電池1の水素極側から水素排出配管21を介して、微量の水素、蒸気(あるいは水)および空気極13側から電解質膜11を通過して水素極12側に混入した窒素、酸素などの不純物が排出される。
 本実施形態の水素排出配管21には、シャット弁24の上流側に、水素排出配管21を通過する未反応水素(未反応燃料ガス)や水分等を燃料電池1に再循環させるための水素循環配管25が接続されている。具体的には、水素循環配管25は、水素排出配管21のシャット弁24の上流側と、水素供給配管20の水素調圧弁23の下流側との間に接続されている。
 水素循環配管25には、水素排出配管21中の未反応水素等を水素供給配管20に戻すための循環ポンプ26が設けられている。なお、循環ポンプ26に代えて、流量可変式のエジェクタを利用して、水素排出配管21中の未反応水素等を水素供給配管20に戻してもよい。
 また、燃料電池システムには、燃料電池1の空気極13に供給される空気が通過する空気供給配管30、および燃料電池1の空気極13から排出される排ガスが通過する空気排出配管31が設けられている。
 空気供給配管30には、空気を圧縮して吐出するための空気供給装置32が設けられている。本実施形態では、空気供給装置32として圧送ポンプを用いている。また、空気排出配管31には、所望の圧力になるよう空気流路15内の空気の圧力を調整する背圧調整弁33が設けられている。
 ところで、燃料電池1は、外部から供給される燃料(水素)のエネルギを電気に変換する、すなわち発電する際に、熱を発生する。したがって、本実施形態の燃料電池1は、本開示の変換部に相当している。
 燃料電池システムには、燃料電池1の発電に伴い発生する熱を除去するため、燃料電池1を冷却して作動温度が電気化学反応に適した温度(例えば80℃程度)とする冷却システム4が設けられている。換言すると、燃料電池1では、発電(エネルギ変換)に伴い発生する熱が除去される。
 冷却システム4には、冷却水配管40、ウォータポンプ41、ラジエータ42が設けられている。冷却水配管40は、液体状の熱媒体である冷却水を燃料電池1に循環させる冷却水流路を構成している。ウォータポンプ41は、冷却水流路における冷却水の流動を制御する流動制御部である。ラジエータ42は、冷却水と送風ファン43から送風された空気とを熱交換させて、冷却水の有する熱を系外へ放出する放熱部である。
 この冷却システム4により、燃料電池1で発生した熱は、冷却水を介してラジエータ42で系外に排出される。すなわち、冷却システム4は、燃料電池1で発生した熱を冷却水を介してラジエータ42へ輸送することで、燃料電池1から熱を除去している。
 燃料電池システムでは、燃料電池1で発電に伴い発生した熱の熱量に対して、冷却システム4により冷却水を介して除去される熱量の割合が最も大きくなる。本実施形態では、燃料電池1で発電に伴い発生した熱の熱量のうち、自然放熱分を除いたほぼ全ての熱量が、冷却システム4により冷却水を介して除去される。
 図3に示すように、本実施形態の燃料電池システムには、各種制御を行う制御部としての制御装置(ECU)50が設けられている。制御装置50は、各種入力信号に基づいて、燃料電池システムを構成する各種制御機器の作動を制御する。制御装置50は、CPU、ROM、RAM、I/O等を備えた周知のマイクロコンピュータによって構成され、ROM等の記憶部に記憶された制御プログラムに従って各種演算等の処理を実行する。
 具体的には、制御装置50の入力側には、各種電気負荷2からの要求電力信号等が入力される。一方、制御装置50の出力側には、水素調圧弁23、シャット弁24、循環ポンプ26、空気供給装置32、背圧調整弁33、ウォータポンプ41、送風ファン43等が接続され、各種制御機器に制御信号を出力する。なお、制御装置50は、基本的に、電気負荷2からの要求電力信号に応じて、燃料電池1に供給する各反応ガス(水素および空気)の供給量を制御している。
 次に、本実施形態に係る冷却システム4で用いられる冷却水について説明する。本実施形態の冷却水は、溶媒と少なくとも1種類の溶質60とを有する溶液により構成されている。
 図4に示すように、冷却水の溶質60は、第1部位であるヘッド61と、第2部位であるテール62とを備える分子により構成されている。ヘッド61は、冷却水の温度が予め定めた基準温度以下になった場合に、溶媒の固液界面70に選択的に近接する部位である。テール62は、ヘッド61に接続される、疎溶媒性の部位である。
 本実施形態では、溶媒として水が採用されている。また、溶質60のヘッド61として、第4級アンモニウム基、スルホ基、エステル基、カルボキシル基およびヒドロキル基のうちのいずれかが採用されている。また、溶質60のテール62として、複数の炭素を主鎖とするとともに、各炭素と結合される親水基が4個以下であるものが採用されている。
 具体的には、本実施形態の溶質60として、ヘッド61がトリメチルアンモニウム基であるとともに、テール62が炭素数16以下の直鎖状炭化水素基である化合物を採用している。具体的には、溶質60として、臭化ヘキサデシルトリメチルアンモニウム(以下、C16TABともいう)を採用している。
 なお、本実施形態の溶質60としては、C16TABの他に、ポリオキシエチレン(10)オクチルフェニルエーテル(Triton(登録商標)X-100)、ポリオキシエチレン(25)オクチルドデシルエーテル(エマルゲン(登録商標)2025G)、オレイン酸ポリオキシエチレンソルビタン(Tween(登録商標)80)、ステアリン酸PEG-150、ミリスチルスルホベタイン、コール酸ナトリウムを採用することができる。
 以上説明したように、本実施形態の燃料電池システムでは、燃料電池1で発生した熱の熱量に対して、冷却水を介して除去される熱量の割合が最も大きくなる。すなわち、本実施形態の燃料電池システムでは、燃料電池1からの熱の除去を主として冷却水を介して行っている。
 そして、本実施形態では、冷却水の溶質60を、冷却水温度が基準温度以下になった場合に、水の固液界面70に選択的に近接するヘッド61と、ヘッド61に接続される、疎水性のテール62とを備える分子により構成している。これによれば、冷却水の温度が低下して基準温度以下になった場合に、溶質60のヘッド61が水の固液界面70に選択的に近接して吸着する。そして、水の固液界面70に吸着したヘッド61により、水の氷核(凝固核)の成長が阻害されるため、凍結の進行を抑制できる。さらに、疎水性のテール62により、水が固液界面70に近づくことが抑制されるので、凍結の進行をより抑制できる。
 したがって、冷却水に凝固点降下剤(エチレングリコール)を含有させなくても、冷却水の凍結の進行を遅らせる、すなわち冷却水の凝固点を低下させることができる。このため、冷却水の熱物性悪化および粘度増加を抑制できる。
 また、本実施形態では、冷却水の凝固点を低下させるために、過冷却状態を維持する必要はない。すなわち、本実施形態の冷却水の溶質60は、過冷却を促進させるものではなく、上述したように、氷核の成長を阻害する。このため、外乱により冷却水の過冷却状態が解除されて凍結が進行することはない。
 以上のように、本実施形態によれば、燃料電池1からの熱の除去が主として冷却水を介して行われる燃料電池システムにおいて、冷却水の熱物性悪化および粘度増大を抑制しつつ、冷却水の不凍性能を充分に確保することが可能となる。これにより、ラジエータ42の大型化およびウォータポンプ41の負荷の増大を抑制することが可能となる。
 特に、本実施形態のように、変換部である燃料電池1で発生した熱の熱量に対して、冷却水を介して除去される熱量の割合が最も大きくなるシステムにおいて、冷却水の熱物性悪化および粘度増大を抑制することは特に効果的である。
 ところで、図4に示すように、本実施形態の冷却水において、溶質60のヘッド61が水の固液界面70に吸着した際に、テール62はヘッド61を基点として運動する。このとき、隣り合う溶質分子のテール62同士は接触しない。したがって、溶質分子のテール62の長さが長すぎると動径も大きくなり、隣り合う溶質分子同士の距離dが長くなるので、氷核の成長を阻害し難くなる。これにより、冷却水の凍結の進行抑制効果が低下してしまう。
 これに対し、上述したように、溶質分子のテール62を、炭素数16以下の直鎖状炭化水素基とすることで、テール62の長さが長くなりすぎることを抑制できる。このため、隣り合う溶質分子同士の距離dを短くすることができるので、氷核の成長を阻害し易くなり、冷却水の凍結の進行を確実に抑制することができる。
 (第2実施形態)
 次に、第2実施形態について図5に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、冷却システムに蓄熱部を設けた点が異なる。
 図5に示すように、本実施形態の冷却システム4は、燃料電池1で発電に伴い発生した熱を、冷却水を介して蓄える蓄熱部81を有している。冷却システム4の冷却水配管40には、蓄熱部81に冷却水を循環させる冷却水流路を形成する蓄熱用配管80が接続されている。
 具体的には、蓄熱用配管80は、冷却水配管40におけるウォータポンプ41の吐出側とラジエータ42の入口側との間に接続されている。蓄熱用配管80と冷却水配管40との接続部には、三方弁82、83が配置されている。三方弁82、83は、冷却水が蓄熱部81を流れる状態と流れない状態とを切り替える冷却水流れ切替部である。三方弁82、83の作動は、制御装置50によって制御される。
 次に、上記構成における本実施形態の冷却システム4の作動を説明する。
 制御装置50は、燃料電池1に対する各種電気負荷2からの要求出力が高負荷状態となっている場合、すなわち燃料電池1の負荷が予め定めた第1基準負荷よりも大きい場合に、燃料電池1で発電に伴い発生した熱を蓄熱部81にて蓄える蓄熱モードを実行する。
 具体的には、制御装置50は、燃料電池1の負荷が第1基準負荷よりも大きい場合に、三方弁82、83を切り替えて冷却水が蓄熱部81を流れる状態にする。これにより、燃料電池1で発電に伴い発生した熱は、冷却水を介して蓄熱部81に蓄熱される。
 また、制御装置50は、燃料電池1に対する各種電気負荷2からの要求出力が低負荷状態となっている場合、すなわち燃料電池1の負荷が予め定めた第2基準負荷よりも小さい場合に、蓄熱部81に蓄えられた熱を伝熱対象である冷却水に放出する放熱モードを実行する。
 具体的には、制御装置50は、燃料電池1の負荷が第2基準負荷よりも小さい場合に、三方弁82、83を切り替えて冷却水が蓄熱部81を流れる状態にする。これにより、蓄熱部81に蓄えられた熱は、冷却水を介してラジエータ42から系外へ放出される。なお、第2基準負荷は、第1基準負荷よりも小さく設定されている。
 また、制御装置50は、燃料電池1が定常運転状態である際、すなわち燃料電池1の負荷が第2基準負荷以上、第1基準負荷以下になっている場合に、三方弁82、83を切り替えて冷却水が蓄熱部81を流れない状態にする。これにより、燃料電池1が定常運転状態である際には、蓄熱部81での蓄熱および蓄熱部81からの放熱は行われない。
 このように、三方弁82、83の動作を制御することにより、蓄熱モードおよび放熱モードを切り替えることができる。したがって、本実施形態の三方弁82、83が、本開示のモード切替部に相当している。
 ところで、燃料電池1が高負荷状態のとき、燃料電池1で発電に伴い発生する熱量は定常時よりも増大する。このため、高負荷状態のときに発生した熱量をラジエータ42で放熱するためには、ラジエータ42を大型化する必要がある。
 これに対し、本実施形態では、冷却システム4に、燃料電池1で発電に伴い発生した熱を蓄える蓄熱部81を設けるとともに、燃料電池1が高負荷状態のときに蓄熱モードを実行するように冷却システム4を構成している。これにより、燃料電池1が高負荷状態の場合、燃料電池1で発電に伴い発生した熱を蓄熱部81にて蓄えることができるので、ラジエータ42の大型化を抑制できる。
 (第3実施形態)
 次に、第3実施形態について図6に基づいて説明する。本第3実施形態は、上記第2実施形態と比較して、燃料電池自動車(車両)に車両用空調装置を搭載した点が異なる。
 車両用空調装置を構成する冷凍サイクル(ヒートポンプサイクル)9は、空調対象空間である車室内へ送風される空気を冷却する機能を果たす。冷凍サイクル9は、圧縮機91、冷媒放熱器92、膨張弁93、および蒸発器94を有している。これら構成部品は、配管90によって環状に接続され、冷媒循環路を構成する。
 圧縮機91は、車両ボンネット内に配置されており、冷凍サイクル9において冷媒を吸入し、圧縮して吐出する。本実施形態の圧縮機91は、 吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機として構成されている。この電動モータは、制御装置50から出力される制御信号によって、その作動(回転数)が制御される。そして、制御装置50が電動モータの回転数を制御することによって、圧縮機構の冷媒吐出能力が変更される。
 冷媒放熱器92は、圧縮機91から吐出した高圧冷媒と冷却水とを熱交換させて、高圧冷媒の有する熱を冷却水に放出させる熱交換器である。本実施形態の冷媒放熱器92は、燃料電池1の出口側とウォータポンプ41の吸入側との間に配置されている。そして、本実施形態の冷媒放熱器92は、圧縮機91から吐出された高圧冷媒と燃料電池1から流出した冷却水とを熱交換させて、高圧冷媒を凝縮させる。
 膨張弁93は、冷媒放熱器92から流出した液相冷媒を減圧膨張させる減圧手段である。蒸発器94は、膨張弁93で減圧膨張された低圧冷媒と車室内へ送風される空気とを熱交換させることによって低圧冷媒を蒸発させる。蒸発器94はすなわち、当該空気を冷却する熱交換器である。蒸発器94で蒸発した気相冷媒は、圧縮機91に吸入されて圧縮される。
 次に、上記構成における本実施形態の冷却システム4の作動を説明する。
 制御装置50は、圧縮機91が作動している場合に、蓄熱モードを実行する。具体的には、圧縮機91が作動している場合に、三方弁82、83を切り替えて冷却水が蓄熱部81を流れる状態にする。これにより、燃料電池1で発電に伴い発生した熱、および、冷媒放熱器92にて冷却水に対して放出された高圧冷媒の有する熱が、冷却水を介して蓄熱部81に蓄熱される。
 また、制御装置50は、圧縮機91の作動が停止し、かつ、燃料電池1に対する各種電気負荷2からの要求出力が低負荷状態となっている場合、すなわち燃料電池1の負荷が予め定めた第3基準負荷よりも小さい場合に、放熱モードを実行する。具体的には、制御装置50は、圧縮機91の作動が停止し、かつ、燃料電池1の負荷が第3基準負荷よりも小さい場合に、三方弁82、83を切り替えて冷却水が蓄熱部81を流れる状態にする。これにより、蓄熱部81に蓄えられた熱を、冷却水を介してラジエータ42から系外へ放出させる。なお、第3基準負荷は、第1基準負荷よりも小さく設定されている。
 ところで、本実施形態のように、冷却システム4は、冷凍サイクル9の高圧冷媒の有する熱を冷却水に放出させる冷媒放熱器92を有する。冷却システム4では、圧縮機91の作動時、すなわち車両用空調装置の作動時、冷却水の有する熱量が定常時よりも増大する。このため、圧縮機91の作動時に、冷却水の有する熱をラジエータ42で放熱するためには、ラジエータ42を大型化する必要がある。
 これに対し、本実施形態では、冷却システム4に、燃料電池1で発電に伴い発生した熱を蓄える蓄熱部81を設けるとともに、圧縮機91の作動時に蓄熱モードを実行するように冷却システム4を構成している。これにより、圧縮機91の作動時に、冷媒放熱器92で冷却水に放出された高圧冷媒の有する熱を蓄熱部81にて蓄えることができるので、ラジエータ42の大型化を抑制できる。
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、例えば以下のように種々変形可能である。
 (1)上記実施形態では、変換部として燃料電池1を採用した例について説明した。しかしながら、例えば、変換部として、バッテリ、インバータ等を採用してもよい。
 (2)上記実施形態では、放熱部としてラジエータ42を採用した例について説明した。しかしながら、例えば、放熱部として、冷却水と空調空気との間で熱交換を行うことにより空調空気を加熱するヒータコアを採用してもよい。
 (3)上記第2、第3実施形態では、放熱モード時に蓄熱部81から熱が放出される伝熱対象として、冷却水を採用した例について説明したが、伝熱対象はこれに限定されない。例えば、伝熱対象として、車室内へ送風される空気を採用し、蓄熱部81に蓄えられた熱を車室内の暖房に利用してもよい。

 

Claims (7)

  1.  外部から供給される燃料のエネルギを変換して熱を発生させるとともに、前記熱が除去されるように構成された変換部(1)と、
     熱を系外へ放出する放熱部(42)と、を備え、
     前記変換部(1)で発生した熱を、液体状の熱媒体を介して前記放熱部(42)へ輸送することで、前記変換部(1)から前記熱が除去される熱輸送システムであって、
     前記変換部(1)では、当該変換部(1)で発生した熱の熱量に対して、前記熱媒体を介して除去される熱量の割合が最も大きくなり、
     前記熱媒体は、溶媒と少なくとも1種類の溶質(60)とを有する溶液により構成されており、
     前記少なくとも1種類の溶質(60)は、
      前記熱媒体の温度が予め定めた基準温度以下になった場合に、前記溶媒の固液界面(70)に選択的に近接する第1部位(61)と、
      前記第1部位(61)に接続されるとともに、前記溶媒に対して疎溶媒性を有する第2部位(62)とを備える分子を含んでいる熱輸送システム。
  2.  前記熱媒体が流通する熱媒体流路(40)に設けられるとともに、熱を蓄える蓄熱部(81)と、
     前記熱媒体の有する熱を前記蓄熱部(81)に蓄熱する蓄熱モードと、前記蓄熱部(81)に蓄えられた熱を伝熱対象に放出する放熱モードとを切り替えるモード切替部(82、83)とをさらに備える請求項1に記載の熱輸送システム。
  3.  前記モード切替部(82、83)は、前記変換部(1)の負荷が予め定めた第1基準負荷よりも大きい場合に、前記蓄熱モードに切り替えて、前記変換部(1)で発生した熱を前記熱媒体を介して前記蓄熱部(81)に蓄熱させる請求項2に記載の熱輸送システム。
  4.  前記モード切替部(82、83)は、前記変換部(1)の負荷が予め定めた第2基準負荷よりも小さい場合に、前記放熱モードに切り替えて、前記蓄熱部(81)に蓄えられた熱を前記熱媒体を介して前記放熱部(42)から系外へ放出させる請求項2または3に記載の熱輸送システム。
  5.  冷媒を圧縮して吐出する圧縮機(91)と、前記圧縮機(91)から吐出された高圧冷媒を放熱させる冷媒放熱器(92)とを有するヒートポンプサイクル(9)をさらに備え、
     前記冷媒放熱器(92)は、前記高圧冷媒と前記熱媒体とを熱交換させて、前記高圧冷媒の有する熱を前記熱媒体に放出させる請求項2ないし4のいずれか1つに記載の熱輸送システム。
  6.  前記モード切替部(82、83)は、前記圧縮機(91)が作動している場合に、前記蓄熱モードに切り替えて、前記冷媒放熱器(92)にて前記熱媒体に対して放出された前記高圧冷媒の有する熱を、当該熱媒体を介して前記蓄熱部(81)に蓄熱させる請求項5に記載の熱輸送システム
  7.  前記モード切替部(82、83)は、前記変換部(1)の負荷が予め定めた第3基準負荷よりも小さく、かつ、前記圧縮機(91)が停止している場合に、前記放熱モードに切り替えて、前記蓄熱部(81)に蓄えられた熱を前記熱媒体を介して前記放熱部(42)から系外へ放出させる請求項5または6に記載の熱輸送システム。

     
PCT/JP2015/003902 2014-09-12 2015-08-03 熱輸送システム WO2016038783A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186144 2014-09-12
JP2014186144A JP6303941B2 (ja) 2014-09-12 2014-09-12 熱輸送システム

Publications (1)

Publication Number Publication Date
WO2016038783A1 true WO2016038783A1 (ja) 2016-03-17

Family

ID=55458559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003902 WO2016038783A1 (ja) 2014-09-12 2015-08-03 熱輸送システム

Country Status (2)

Country Link
JP (1) JP6303941B2 (ja)
WO (1) WO2016038783A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3583647B1 (en) * 2017-02-18 2023-03-22 cellcentric GmbH & Co. KG Method for detecting and lessening fuel starvation in fuel cell systems
DE102017208270A1 (de) * 2017-05-17 2018-11-22 Robert Bosch Gmbh Förderaggregat

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194817A (ja) * 1996-01-11 1997-07-29 Hitachi Ltd 熱媒体と熱媒体循環システム
JP2001001750A (ja) * 1999-06-18 2001-01-09 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2002081792A (ja) * 2000-09-07 2002-03-22 Matsushita Electric Ind Co Ltd 燃料電池ヒートポンプシステム
JP2009047352A (ja) * 2007-08-20 2009-03-05 Calsonic Kansei Corp 蓄熱器
JP2010127282A (ja) * 2008-11-26 2010-06-10 Scania Cv Ab (Publ) 車両の冷却システム内の冷却液の追加冷却のための方法及びシステム
JP2010133291A (ja) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd 内燃機関の冷却装置
JP2013032456A (ja) * 2011-08-03 2013-02-14 Hokkaido Univ 過冷却促進剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194817A (ja) * 1996-01-11 1997-07-29 Hitachi Ltd 熱媒体と熱媒体循環システム
JP2001001750A (ja) * 1999-06-18 2001-01-09 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP2002081792A (ja) * 2000-09-07 2002-03-22 Matsushita Electric Ind Co Ltd 燃料電池ヒートポンプシステム
JP2009047352A (ja) * 2007-08-20 2009-03-05 Calsonic Kansei Corp 蓄熱器
JP2010127282A (ja) * 2008-11-26 2010-06-10 Scania Cv Ab (Publ) 車両の冷却システム内の冷却液の追加冷却のための方法及びシステム
JP2010133291A (ja) * 2008-12-03 2010-06-17 Nissan Motor Co Ltd 内燃機関の冷却装置
JP2013032456A (ja) * 2011-08-03 2013-02-14 Hokkaido Univ 過冷却促進剤

Also Published As

Publication number Publication date
JP6303941B2 (ja) 2018-04-04
JP2016057035A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
CN109383227B (zh) 用于燃料电池车辆的回路系统
US20150053491A1 (en) Thermal management system for fuel cell, fuel cell system and vehicle equipped with fuel cell system
JP2015211036A (ja) 電解セルまたは燃料電池用のバイポーラプレート
US20140356748A1 (en) Waste heat recovery system
JP6649471B2 (ja) 燃料電池のための冷却システムおよび燃料電池システム
US20220281285A1 (en) Integrated thermal management circuit for vehicle
US20080152976A1 (en) Fuel cell system
WO2016038783A1 (ja) 熱輸送システム
JP2008103174A (ja) 燃料電池システム
JP2008140611A (ja) 車両用燃料電池システムの温度制御装置
US11450872B2 (en) Fuel cell system for vehicle
JP2010272462A (ja) 燃料電池システム
JP2001339808A (ja) 燃料電池自動車の冷却装置
JP5138889B2 (ja) 燃料電池システム
KR102496802B1 (ko) 연료전지용 공기 냉각장치
JP4939053B2 (ja) 燃料電池システム
CN114079062B (zh) 一种燃料电池系统集成水热散热系统
JP2010192141A (ja) 冷媒回路システム
JP2010182518A (ja) 燃料電池システム
JP2005259440A (ja) 燃料電池システム
KR20220085886A (ko) 연료전지 차량용 열관리 시스템
JP2002110205A (ja) 燃料電池用冷却装置
JP4698965B2 (ja) 燃料電池システム
JP6816515B2 (ja) 冷却装置
JP4939052B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840078

Country of ref document: EP

Kind code of ref document: A1