WO2016037426A1 - 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂 - Google Patents

一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂 Download PDF

Info

Publication number
WO2016037426A1
WO2016037426A1 PCT/CN2014/092856 CN2014092856W WO2016037426A1 WO 2016037426 A1 WO2016037426 A1 WO 2016037426A1 CN 2014092856 W CN2014092856 W CN 2014092856W WO 2016037426 A1 WO2016037426 A1 WO 2016037426A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare
inert metal
solution
acid
copper
Prior art date
Application number
PCT/CN2014/092856
Other languages
English (en)
French (fr)
Inventor
王鹏程
赵新
符永高
韩文生
刘阳
胡嘉琦
顾宇昕
Original Assignee
中国电器科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410454635.9A external-priority patent/CN104263939A/zh
Priority claimed from CN201410454587.3A external-priority patent/CN104263938A/zh
Application filed by 中国电器科学研究院有限公司 filed Critical 中国电器科学研究院有限公司
Priority to KR1020177000613A priority Critical patent/KR101849622B1/ko
Publication of WO2016037426A1 publication Critical patent/WO2016037426A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to a method and a reagent for recovering rare/inert metals, in particular to a method and a reagent for recovering rare/inert metals from a bottom plating copper/nickel material.
  • rare/inert metals in the industry exist on electroplated process parts, such as gold and silver jewelry, components, printed circuit boards, and luggage zippers.
  • electronic waste such as printed circuit boards and components is growing at an annual rate of 18%, making it the fastest growing waste in the world.
  • e-waste can extract about 800 grams of gold from 1 ton of waste circuit board, and can extract about 5000 grams of other precious metals, 200-300 kilograms of copper, etc., which are recycled copper and precious metals.
  • One of the important sources, the recovery of metals, especially precious metals is the main driving force for its resourceization, and it is also the direction of relevant workers for a long time now and in the future.
  • the rare/inert metal is recovered from the rare/inert metal plating parts by using an oxidizing agent and a complexing agent to dissolve the rare/inert metal, and the obtained solution is subjected to reduction or adsorption steps to obtain a rare one.
  • Expensive/inert metal If necessary, the raw materials should be wet-processed to remove copper, nickel, iron and other base metals before extracting the rare/inert metals, so as not to affect the subsequent extraction of rare/inert metals from the solution. Since the rare/inert metal itself is not easily involved in the reaction, the requirements for the reagents and reaction conditions used in the dissolution-reduction process are severe.
  • One of the objects of the present invention is to provide a method for recovering a rare/inert metal from an underlying electroplated copper/nickel material, which is directed to the oxidative complexation of the underlayer by a dephosphorization/inert metal solution for the structural characteristics of the plating of the electroplated material.
  • Copper/nickel and other base metals directly obtain rare/inert metal foil, and the recovery rate can be as high as 98% or more.
  • the treatment process is simple and the reaction conditions are mild.
  • a method for recovering a rare/inert metal from an underlying electroplated copper/nickel material comprising the steps of:
  • Pretreatment The underlying electroplated copper/nickel material is washed and dried to remove dust or/and oil. There will be some dust or/and oil on the surface of the recovered copper/nickel material. If it is not treated, it will affect the subsequent extraction of rare/inert metals and the recycling of the filtrate.
  • the plating material after removing the rare/inert metal is taken out, and the copper/nickel solution containing the rare/inert metal foil is filtered to obtain a filter residue containing a rare/inert metal foil and copper. And / or nickel ion filtrate, the filter residue is washed and dried to obtain a rare/inert metal foil.
  • the mass concentration of the inorganic acid in the denitrified noble/inert metal solution is 20% to 50%, the mass concentration of the oxidant is 10% to 30%, and the mass concentration of the additive No. 1 is 1. % to 5%.
  • the inorganic acid is a dilute acid.
  • the dilute acid is one or a mixture of dilute hydrochloric acid and dilute sulfuric acid, and the main function is to adjust the pH and provide an anion.
  • the oxidizing agent is potassium permanganate, iron sulfate, ferric chloride, hydrogen peroxide, manganese dioxide, etc., and the main function is to oxidize zero-valent copper/nickel plating.
  • the No. 1 additive is an organic acid.
  • the organic acid includes one or two or a mixture of two or more of tartaric acid, citric acid, lactic acid, and malic acid, and is mainly used for a complex circuit. Copper ions or/and nickel ions formed by oxidation of the oxidant in the plate.
  • the denitrification/inert metal solution further includes a No. 2 additive which mainly serves as a catalyst, and the mass concentration of the No. 2 additive in the solution is from 1% to 5%.
  • the No. 2 additive is glycolic acid and/or gluconic acid, which is mainly used to catalyze the entire reaction process and accelerate the reaction.
  • the rate can be shortened by 1/4 to 1/3 of the reaction time of the step (3).
  • the waste electroplating material is firstly immersed in the denitified noble/inert metal solution for 1 to 4 hours, and then stirred for 10 to 30 minutes.
  • the invention also includes the step (5) of smelting: the rare/inert metal foil is placed in a smelting furnace and smelted into ingots in a conventional fused noble/inert metal process.
  • the invention further comprises the step (6) filtrate treatment: the filtrate can be recycled as a denitrification/inert metal solution, and after the cycle is repeated, the caustic is added to the solution to neutralize the solution and precipitate copper, nickel, iron, etc.
  • the metal ions are filtered, and the filtered waste liquid is discharged to the standard, and the filter residue is collected for subsequent centralized treatment.
  • the invention further comprises the step (7) of washing and drying the electroplated material after removing the noble/inert metal for subsequent extraction of the base metal such as copper, nickel or iron.
  • the dust and oil stain adhered to the surface of the waste electroplating material are first removed by a cleaning agent, then rinsed with water, and finally dried to complete the pretreatment.
  • Another object of the present invention is to provide an agent for recovering a rare/inert metal from an underlying electroplated copper/nickel material.
  • the reagent is a solution of a depleted noble/inert metal, and the components thereof include a mineral acid, an additive No. 1 mainly for complexation, an oxidizing agent and water, and the mass concentrations of the inorganic acid, the additive No. 1 and the oxidizing agent are respectively: inorganic
  • the acid is 20% to 50%
  • the oxidant is 10% to 30%
  • the first additive is 1% to 5%.
  • the inorganic acid is a dilute acid.
  • the dilute acid is a mixture of one or both of dilute hydrochloric acid and dilute sulfuric acid.
  • the oxidizing agent is potassium permanganate, iron sulfate, iron chloride, hydrogen peroxide, or manganese dioxide.
  • the No. 1 additive is one or a mixture of two or more of tartaric acid, citric acid, lactic acid, and malic acid.
  • the denitrification/inert metal solution further includes a No. 2 additive which mainly serves as a catalyst, and the mass concentration of the No. 2 additive in the solution is from 1% to 5%.
  • the No. 2 additive is glycolic acid and/or gluconic acid.
  • the noble/inert metal of the present invention is gold, silver, platinum or palladium.
  • the present invention has the following beneficial effects:
  • the present invention obtains a rare/inert metal foil by dissolving a copper/nickel plating layer, compared with the conventional method,
  • the high recovery rate of rare/inert metals also saves cumbersome steps such as leaching of base metals, oxidizing rare/inert metals, reducing rare/inert metals, and greatly simplifying the process.
  • the process is simple, easy to operate, suitable for industrial production, and has significant economic, environmental and social benefits.
  • the inorganic acid in the denitrated noble/inert metal solution provided by the present invention uses a dilute acid to adjust the pH of the solution to less than 2 to facilitate the complexation reaction.
  • the zero-valent copper/nickel ion of the oxidized copper oxide/nickel coating forms copper/nickel ions, and the additive No. 1 which is mainly used for complexation is complexed with the formed copper ion/nickel ion to promote the dissolution of copper or nickel.
  • the rare/inert metal plated on the copper plating layer or the nickel plating layer does not react with the reagent, but still exists in a simple form. After the copper and nickel are dissolved, the rare/inert metal foil peels off, and the solid-liquid separation can be completed.
  • a catalyst is added to the denitrated noble/inert metal solution of the present invention to accelerate the entire reaction and accelerate the reaction rate.
  • the denitrified noble/inert metal solution of the invention can be recycled, the utilization rate of the reagent is improved, no pollution product is generated during use, and the environment-friendly reagent is reduced, the amount of waste liquid is reduced, and environmental pollution is reduced. , has certain economic and environmental protection.
  • Figure 1 is a process flow diagram of an embodiment of the present invention.
  • the inorganic acid is a dilute acid system, such as one or a mixture of dilute hydrochloric acid, dilute sulfuric acid, etc.
  • the main function is to adjust the pH and provide an anion
  • the oxidant is potassium permanganate, iron sulfate, chlorination Iron, hydrogen peroxide, or manganese dioxide
  • the main function is to oxidize zero-valent copper/nickel coating.
  • the additive No. 1 for the main synergy is an organic acid system, which mainly includes one or two or a mixture of two or more of tartaric acid, citric acid, lactic acid and malic acid, and the main function is to oxidize the oxidizing agent in the complex circuit board. Copper ions or/and nickel ions formed.
  • the main additive for catalysis is glycolic acid and/or gluconic acid. The main function is to catalyze the entire reaction process and accelerate the reaction rate.
  • the gold removal solution is filtered to obtain gold-containing slag and copper-containing filtrate, the filter residue is washed, dried at high temperature, and smelted into gold ingot, and the recovery rate of gold reaches 98%.
  • the copper-containing filtrate can be used as a de-goldening liquid for recycling. After the solution is cycled multiple times, caustic is added to the solution to neutralize the solution and precipitate copper, nickel, iron and other ions, which are filtered, and the filtered waste liquid reaches the standard discharge. Collecting filter residue for subsequent centralized treatment.
  • the mass concentration of sulfuric acid is 20%
  • the mass concentration of malic acid is 5%
  • the mass concentration of potassium permanganate is 13%
  • the temperature is heated to 55 ° C, and the waste circuit board is allowed to stand in the gold removal solution for 4 hours.
  • the mixture is stirred for 25 minutes to complete the gold removal; the circuit board is taken out, washed, dried, and collected for refining other metals; the gold removal solution is filtered to obtain a gold foil-containing filter residue and a copper-containing filtrate, and the filter residue is washed and dried at a high temperature. , smelting into gold ingot, the recovery rate of gold is more than 98%; the copper-containing filtrate can be used as a gold-removing solution, after the solution is circulated several times, caustic is added to the solution to neutralize the solution and precipitate copper and iron plasma. The filter is filtered, the filtered waste liquid is discharged to the standard, and the filter residue is collected to facilitate subsequent centralized treatment.
  • the gold removal is completed; the circuit board is taken out, washed, dried, and collected for refining other metals; the gold removal solution is filtered to obtain a gold foil-containing filter residue and a copper-containing filtrate, and the filter residue is washed, dried at a high temperature, and smelted into a gold ingot.
  • the recovery rate of gold is over 98%; the copper-containing filtrate can be used as a gold removal solution.
  • caustic is added to the solution to neutralize the solution and precipitate copper and iron ions, which are filtered and filtered. After the waste liquid reaches the standard discharge, the filter residue is collected to facilitate subsequent centralized treatment.
  • the set is used for refining other metals; the degumming solution is filtered to obtain the slag-containing slag and the nickel-containing filtrate, and the filter residue is washed, dried at a high temperature, and smelted into a bismuth ingot, and the recovery rate of the ruthenium is over 98%; the nickel-containing filtrate It can be used as a depurinating liquid for recycling. After the solution is circulated several times, caustic is added to the solution to neutralize the solution and precipitate nickel ions, which are filtered, and the filtered waste liquid is discharged to the standard, and the filter residue is collected to facilitate subsequent centralized treatment.
  • the mass concentration of sulfuric acid is 20%
  • the mass concentration of citric acid is 3%
  • the mass concentration of potassium permanganate is 15%
  • the temperature is heated to 60 ° C, and the silver-plated jewelry is allowed to stand in the desilver solution for 4 hours.
  • the silver removal is completed; the silver-plated jewelry with the silver layer removed is taken out, washed, dried, and collected for refining other metals; the desilver solution is filtered to obtain a silver-containing foil filter residue and a nickel-containing filtrate.
  • the filter residue is washed, dried at a high temperature, and smelted into a silver ingot, and the recovery rate of silver is over 98%; the nickel-containing filtrate can be recycled as a desilver solution, and after the solution is repeatedly lapsed, caustic is added to the solution to neutralize the solution.
  • the nickel plasma is precipitated, filtered, and the filtered waste liquid is discharged to the standard, and the filter residue is collected to facilitate subsequent centralized treatment.
  • the mass concentration of sulfuric acid is 30%, the mass concentration of lactic acid is 1%, the mass concentration of gluconic acid is 5%, the mass concentration of ferric chloride is 20%, and the temperature is heated to 70 ° C, and the waste circuit board is placed at
  • the gold solution is allowed to stand for 2 hours, then stirred for 10 minutes to complete the gold removal; the circuit board is taken out, washed, dried, and collected for refining other metals; the gold removal solution is filtered to obtain the gold-containing filter residue and copper.
  • the filtrate, the filter residue is washed, dried at a high temperature, and smelted into Gold ingot, gold recovery rate of more than 98%; copper-containing filtrate can be used as a gold-removing liquid cycle, after the solution cycle multiple failures, add caustic to the solution to neutralize the solution and precipitate copper, nickel, iron and other ions, will After filtering, the filtered waste liquid is discharged to the standard, and the filter residue is collected for subsequent centralized treatment.
  • Citric acid, glycolic acid and manganese dioxide are disposed in a deplating solution, wherein the mass concentration of hydrochloric acid is 35%, the mass concentration of citric acid is 3%, the mass concentration of glycolic acid is 1%, and the mass concentration of manganese dioxide is 30%; the temperature is heated to 60 ° C, the waste titanium-based platinized anode is placed in the deplating solution for 1 h, then stirred for 10 min to complete the deplating; the titanium-based platinized anode is taken out, washed, dried, and collected.
  • the deplating solution Used for refining other metals; filtering the deplating solution to obtain platinum-containing filter residue and nickel-containing filtrate, washing the filter residue, drying at high temperature, and melting into platinum ingot, the recovery rate of platinum is over 98%; the nickel-containing filtrate can be used as The platinum-plating solution is recycled, and after the solution is repeatedly lapsed, caustic is added to the solution to neutralize the solution and precipitate nickel ions, which are filtered, and the filtered waste liquid is discharged to the standard, and the filter residue is collected for subsequent collection. deal with.
  • the temperature is heated to 50 ° C, the waste palladium-plated silver jewelry is soaked in the de-palladium solution for 1.7 h, and then stirred for 10 min to complete the de-palladium; the waste palladium-plated silver jewelry is taken out, washed, dried, collected, used for Refining other metals; filtering the dephosphorization solution to obtain a palladium-containing filter residue And the nickel-containing filtrate, the filter residue is washed, dried at a high temperature, and smelted into a palladium ingot, and the recovery rate of palladium is over 98%; the nickel-containing filtrate can be used as a de-palladium solution, and after the solution is repeatedly failed, the caustic is added to the solution.
  • the alkali is used to neutralize the solution and precipitate nickel plasma, which is filtered, and the filtered waste liquid is discharged to the standard, and the filter residue is collected for subsequent centralized treatment.
  • the silver jewelry is soaked in the silver removal solution for 3 hours, and then stirred for 15 minutes to complete the desilvering; the silver-plated jewelry is taken out, washed, dried, and collected for refining other metals; the desilver solution is filtered to obtain a silver-containing foil.
  • the filter residue and the nickel-containing filtrate the filter residue is washed, dried at high temperature, and smelted into a silver ingot, and the recovery rate of silver reaches 98% or more; the nickel-containing filtrate can be used as a desilvering liquid for recycling, and after the solution is repeatedly lapsed, the solution is added to the solution.
  • the caustic alkali neutralizes the solution and precipitates the nickel plasma, filters it, and the filtered waste liquid is discharged to the standard, and the filter residue is collected for subsequent centralized treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,包括以下步骤:(1)预处理;(2)配置脱稀贵/惰性金属溶液:在无机酸水溶液中添加主要起络合作用的1号添加剂和氧化剂,配置成脱稀贵/惰性金属溶液,并将脱稀贵/惰性金属溶液加热至50~70℃;(3)氧化络合铜/镍镀层:把烘干后的电镀材料浸泡在脱稀贵/惰性金属溶液中,静置浸泡,使稀贵/惰性金属箔彻底地从电镀材料基体表面脱除;(4)过滤、干燥后得到稀贵/惰性金属箔。还提供了一种从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂。该方法及试剂对稀贵/惰性金属的回收率可高达98%以上。

Description

一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂 技术领域
本发明涉及稀贵/惰性金属的回收方法及试剂,尤其涉及一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂。
背景技术
目前,工业上大量的稀贵/惰性金属存在于电镀的工艺件上,如金银饰品、元器件、印刷电路板、箱包拉链等。随着电子行业迅猛的发展,印刷电路板、元器件等电子废弃物正以每年18%的速度增长,成为世界上增长最快的垃圾。电子废弃物作为城市高品质稀贵/惰性金属矿山,如1吨废电路板可提取约800克黄金,另外还能提取其他贵金属约5000克,铜200~300千克等,是再生铜和贵金属的重要来源之一,回收其中的金属尤其是贵金属是其资源化的主要推动力,也是目前及未来很长一段时间相关工作者努力的方向。
随着人民生活水平的提高,人民对生活中的必需品和装饰品的要求也越来越高,高端箱包、高档服饰等除了在主体材质上的要求更高以外,对其配件,如拉链、锁扣等也提出了很高的要求,稀贵/惰性金属在其中应用的比例也越来越大,随之而来,稀贵/惰性金属配件在其生产过程中产生的边角料及淘汰的物品中的配件也随之越来越多,从中回收稀贵/惰性金属以其经济优势也越来越成为相关企业的关注重点。
现有工艺中从稀贵/惰性金属的镀件中回收稀贵/惰性金属的都是采用氧化剂和络合剂来溶解稀贵/惰性金属,将所得的溶液经过还原或吸附等步骤,得到稀贵/惰性金属单质。必要时,在提取稀贵/惰性金属前还需对原材料采用湿法除去铜、镍、铁等贱金属,以免其对后续从溶液中提取稀贵/惰性金属产生影响。因稀贵/惰性金属本身的不易参与反应的属性,所以,对溶解-还原过程中用到的试剂及反应条件的要求都较为苛刻。而且此工艺流程繁杂,在反应过程中难免会引入污染环境的离子,加大了后续废液的处理难度。因此,目前急需简单的、易于工业化生产的、环境友好的从电镀材料中回收稀贵/惰性金属的方法和试剂。
发明内容
本发明的目的之一在于提供一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,该方法针对电镀材料镀层的结构特点,采用脱稀贵/惰性金属溶液氧化络合底层的铜/镍等贱金属,直接获得稀贵/惰性金属箔,回收率可高达98%以上,处理过程简单,反应条件温和。
本发明的目的通过以下技术方案来实现:一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,包括以下步骤:
(1)预处理:对底层电镀铜/镍材料进行洗涤和烘干处理,以去除灰尘或/和油污。回收到的底层电镀铜/镍材料表面会存在一定的灰尘或/和油污,如不加以处理,会影响后续的稀贵/惰性金属的提取效果及滤液的循环使用。
(2)配置脱稀贵/惰性金属溶液:在无机酸水溶液中添加氧化剂和主要起络合作用的1号添加剂,配置成脱稀贵/惰性金属溶液,并将脱稀贵/惰性金属溶液加热至50~70℃。
(3)氧化络合铜/镍镀层:把烘干后的电镀材料浸泡在脱稀贵/惰性金属溶液中,静置浸泡,使稀贵/惰性金属镀层下的铜/镍镀层发生氧化络合,溶解,而附着在铜/镍镀层上的稀贵/惰性金属以稀贵/惰性金属箔的形式脱下,然后搅拌,使稀贵/惰性金属箔彻底地从电镀材料基体表面脱除。
(4)过滤、干燥滤渣:取出脱稀贵/惰性金属后的电镀材料,将飘有稀贵/惰性金属箔的含铜/镍溶液过滤,得到含稀贵/惰性金属箔的滤渣和含铜和/或镍离子的滤液,滤渣经洗涤、干燥后得到稀贵/惰性金属箔。
本发明所述步骤(2)中所述脱稀贵/惰性金属溶液中无机酸的质量浓度为20%~50%,氧化剂的质量浓度为10%~30%,1号添加剂的质量浓度为1%~5%。
所述无机酸为稀酸。作为本发明的一个实施例,所述稀酸为稀盐酸和稀硫酸等其中的一种或几种混合物,主要作用是调节ph值和提供阴离子。所述的氧化剂为高锰酸钾、硫酸铁、氯化铁、过氧化氢、二氧化锰等,主要作用是氧化零价铜/镍镀层。所述1号添加剂为有机酸,作为本发明的一个实施例,所述有机酸包括酒石酸、柠檬酸、乳酸、苹果酸中的一种或两种及两种以上混合物,主要用于络合电路板中经氧化剂氧化形成的铜离子或/和镍离子。
所述脱稀贵/惰性金属溶液中还包括主要起催化作用的2号添加剂,该2号添加剂在溶液中的质量浓度为1%~5%。
所述2号添加剂为羟基乙酸和/或葡萄糖酸,主要用于催化整个反应进程,加快反应 速率,可以将步骤(3)的反应时间缩短1/4~1/3。
本发明所述步骤(3)中,先将废旧电镀材料在脱稀贵/惰性金属溶液中静置浸泡1~4h,然后搅拌10~30min。
本发明还包括步骤(5)熔炼:以常规的熔稀贵/惰性金属工艺将稀贵/惰性金属箔放入熔炼炉中熔炼成锭。
本发明还包括步骤(6)滤液处理:滤液可作为脱稀贵/惰性金属溶液循环使用,当循环多次溶液失效后,向溶液中添加苛性碱来中和溶液并沉淀铜、镍、铁等贱金属离子,过滤,过滤后的废液达标排放,滤渣收集,用于后续集中处理。
本发明还包括步骤(7)将脱稀贵/惰性金属后的电镀材料经洗涤、烘干后,用于后续提炼其中的铜、镍、铁等贱金属。
本发明所述步骤(1)中先用清洗剂将废旧电镀材料表面粘有的灰尘、油污除去,然后用清水冲洗,最后烘干,完成预处理。
本发明的目的之二在于提供一种从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂。该试剂为脱稀贵/惰性金属的溶液,其组分包括无机酸、主要起络合作用的1号添加剂、氧化剂和水,所述无机酸、1号添加剂和氧化剂的质量浓度分别为:无机酸20%~50%,氧化剂10%~30%,1号添加剂1%~5%。
所述无机酸为稀酸。作为本发明的一个实施例,所述稀酸为稀盐酸和稀硫酸中的一种或两种的混合。
所述的氧化剂为高锰酸钾、硫酸铁、氯化铁、过氧化氢、或二氧化锰。
所述的1号添加剂为酒石酸、柠檬酸、乳酸、和苹果酸中的一种或两种及两种以上混合物。
所述脱稀贵/惰性金属溶液中还包括主要起催化作用的2号添加剂,该2号添加剂在溶液中的质量浓度为1%~5%。
所述2号添加剂为羟基乙酸和/或葡萄糖酸。
本发明所述稀贵/惰性金属为金、银、铂或钯。
与现有技术相比,本发明具有以下有益效果:
(1)本发明以溶解铜/镍镀层的方式来获得稀贵/惰性金属箔,与常规的方法相比,不 仅稀贵/惰性金属的回收率高,还节省了浸出贱金属、氧化稀贵/惰性金属、还原稀贵/惰性金属等繁琐的步骤,大大简化了工艺流程。工艺简单,操作方便,适宜工业化生产,具有显著的经济、环境和社会效益。
(2)本发明提供的脱稀贵/惰性金属溶液中无机酸采用稀酸,将溶液pH值调节至小于2,以利于络合反应进行。氧化剂氧化铜/镍镀层的零价铜/镍形成铜/镍离子,并采用主要起络合作用的1号添加剂与形成的铜离子/镍离子络合,促进铜或镍溶解。而镀于铜镀层或镍镀层上面的稀贵/惰性金属则不与试剂反应,仍以单质形式存在,铜和镍被溶解后,稀贵/惰性金属箔片脱落,固液分离后即可完成稀贵/惰性金属的回收。与常规的方法相比,不仅稀贵/惰性金属的回收率高,达到98%以上,而且整个回收过程无需采用溶解稀贵/惰性金属苛刻的试剂要求和反应条件,从而大大降低了反应难度。
(3)本发明的脱稀贵/惰性金属溶液中添加催化剂,以催化整个反应加速进行,加快反应速率。
(4)本发明的脱稀贵/惰性金属溶液可循环使用,提高了试剂的利用率,在使用过程中不产生污染产物,属环境友好型试剂,减少了废液的量,降低了环境污染,具有一定的经济性和环保性。
附图说明
图1为本发明实施例的工艺流程图。
具体实施方式
以下实施例中,无机酸为稀酸体系,如稀盐酸、稀硫酸等其中的一种或几种混合物,主要作用是调节ph值和提供阴离子;氧化剂为高锰酸钾、硫酸铁、氯化铁、过氧化氢、或二氧化锰,主要作用是氧化零价铜/镍镀层。主要起络合作用的1号添加剂为有机酸体系,其中主要包括酒石酸、柠檬酸、乳酸、苹果酸中的一种或两种及两种以上混合物,主要作用是络合电路板中经氧化剂氧化形成的铜离子或/和镍离子。主要起催化作用的2号添加剂为羟基乙酸和/或葡萄糖酸,主要作用是催化整个反应进程,加快反应速率。
实施例1
用清洗剂将废旧电路板表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧电路板;在稀硫酸水溶液中添加乳酸和氯化铁,配置脱金溶液,其中,硫酸的质量浓度为30%、乳酸的质量浓度为1%、氯化铁的质量浓度为20%;温度加热至70℃,将废旧电路板在脱金溶液中静置浸泡3h,然后搅拌20min,完成脱金;取出电路板, 将其洗涤、烘干、收集,用于提炼其他金属;将脱金溶液过滤,得到含金箔的滤渣和含铜滤液,对滤渣进行洗涤、高温干燥、熔炼成金锭,金的回收率达到98%以上;含铜滤液可作为脱金液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀铜、镍、铁等离子,将其过滤,过滤后的废液达标排放,收集滤渣,便于后续集中处理。
实施例2
用清洗剂将废旧电路板表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧电路板;在稀硫酸水溶液中添加苹果酸和高锰酸钾,配置脱金溶液,其中,硫酸的质量浓度为20%、苹果酸的质量浓度为5%、高锰酸钾的质量浓度为13%;温度加热至55℃,将废旧电路板在脱金溶液中静置浸泡4h,然后搅拌25min,完成脱金;取出电路板,将其洗涤、烘干、收集,用于提炼其他金属;将脱金溶液过滤,得到含金箔的滤渣和含铜滤液,对滤渣进行洗涤、高温干燥、熔炼成金锭,金的回收率达到98%以上;含铜滤液可作为脱金液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀铜、铁等离子,将其过滤,过滤后的废液达标排放,收集滤渣,便于后续集中处理。
实施例3
用清洗剂将废旧电路板表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧电路板;在稀盐酸水溶液中添加柠檬酸和硫酸铁,配置脱金溶液,其中,盐酸的质量浓度为25%、柠檬酸的质量浓度为4%、硫酸铁的质量浓度为23%;温度加热至65℃,将废旧电路板在脱金溶液中静置浸泡1h,然后搅拌30min,完成脱金;取出电路板,将其洗涤、烘干、收集,用于提炼其他金属;将脱金溶液过滤,得到含金箔的滤渣和含铜滤液,对滤渣进行洗涤、高温干燥、熔炼成金锭,金的回收率达到98%以上;含铜滤液可作为脱金液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀铜、铁等离子,将其过滤,过滤后的废液达标排放,收集滤渣,便于后续集中处理。
实施例4
用清洗剂将先镀镍后镀铑的废旧镀铑银饰品表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧镀铑银饰品;在稀硫酸水溶液中添加酒石酸和二氧化锰,配置脱铑溶液,其中,硫酸的质量浓度为50%、酒石酸的质量浓度为2%、二氧化锰的质量浓度为15%;温度加热至70℃,将废旧镀铑银饰品在脱铑溶液中静置浸泡2h,然后搅拌25min,完成脱铑;取出已去除镍层和铑层的镀铑银饰品,将其洗涤、烘干、收 集,用于提炼其他金属;将脱铑溶液过滤,得到含铑箔的滤渣和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成铑锭,铑的回收率达到98%以上;含镍滤液可作为脱铑液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍离子,将其过滤,过滤后的废液达标排放,收集滤渣,便于后续集中处理。
实施例5
用清洗剂将先镀镍后镀钯的废旧镀钯银饰品表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧镀钯银饰品;在稀盐酸水溶液中添加苹果酸和过氧化氢,配置脱钯溶液,其中,盐酸的质量浓度为40%、苹果酸的质量浓度为3%、过氧化氢的质量浓度为10%;温度加热至50℃,将废旧镀钯银饰品在脱钯溶液中静置浸泡2.5h,然后搅拌20min,完成脱钯;取出已去除镍层和钯层的镀钯银饰品,将其洗涤、烘干、收集,用于提炼其他金属;将脱钯溶液过滤,得到含钯箔的滤渣和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成钯锭,钯的回收率达到98%以上;含镍滤液可作为脱钯液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍等离子,将其过滤,过滤后的废液达标排放,收集滤渣,便于后续集中处理。
实施例6
用清洗剂将镀银首饰表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的镀银首饰;在稀硫酸水溶液中添加柠檬酸和高锰酸钾,配置脱银溶液,其中,硫酸的质量浓度为20%、柠檬酸的质量浓度为3%、高锰酸钾的质量浓度为15%;温度加热至60℃,将镀银首饰在脱银溶液中静置浸泡4h,然后搅拌20min,完成脱银;取出已去除银层的镀银首饰,将其洗涤、烘干、收集,用于提炼其他金属;将脱银溶液过滤,得到含银箔的滤渣和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成银锭,银的回收率达到98%以上;含镍滤液可作为脱银液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍等离子,将其过滤,过滤后的废液达标排放,收集滤渣,便于后续集中处理。
实施例7
用清洗剂先将废旧电路板表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧电路板;在稀硫酸水溶液中添加乳酸、葡萄糖酸和氯化铁,配置脱金溶液,其中,硫酸的质量浓度为30%、乳酸的质量浓度为1%、葡萄糖酸的质量浓度为5%、氯化铁的质量浓度为20%;温度加热至70℃,将废旧电路板在脱金溶液中静置浸泡2h,然后搅拌10min,完成脱金;取出电路板,将其洗涤、烘干、收集,用于提炼其他金属;将脱金溶液过滤,得到含金箔的滤渣和含铜滤液,对滤渣进行洗涤、高温干燥、熔炼成 金锭,金的回收率达到98%以上;含铜滤液可作为脱金液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀铜、镍、铁等离子,将其过滤,过滤后的废液达标排放,收集滤渣,用于后续集中处理。
实施例8
用清洗剂将先镀镍后镀铂的废旧钛基镀铂阳极表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧钛基镀铂阳极;在稀盐酸水溶液中添加柠檬酸、羟基乙酸和二氧化锰,配置脱铂溶液,其中,盐酸的质量浓度为35%、柠檬酸的质量浓度为3%、羟基乙酸的质量浓度为1%、二氧化锰的质量浓度为30%;温度加热至60℃,将废旧钛基镀铂阳极在脱铂溶液中静置浸泡1h,然后搅拌10min,完成脱铂;取出钛基镀铂阳极,将其洗涤、烘干、收集,用于提炼其他金属;将脱铂溶液过滤,得到含铂箔的滤渣和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成铂锭,铂的回收率达到98%以上;含镍滤液可作为脱铂液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍离子,将其过滤,过滤后的废液达标排放,收集滤渣,用于后续集中处理。
实施例9
用清洗剂将先镀镍后镀铑的废旧镀铑银饰品表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧镀铑银饰品;在稀硫酸水溶液中添加酒石酸、葡萄糖酸和二氧化锰,配置脱铑溶液,其中,硫酸的质量浓度为50%、酒石酸的质量浓度为2%、葡萄糖酸的质量浓度为3%、二氧化锰的质量浓度为15%;温度加热至70℃,将废旧镀铑银饰品在脱铑溶液中静置浸泡1.4h,然后搅拌10min,完成脱铑;取出镀铑银饰品,将其洗涤、烘干、收集,用于提炼其他金属;将脱铑溶液过滤,得到含铑箔的滤渣和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成铑锭,铑的回收率达到98%以上;含镍滤液可作为脱铑液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍离子,将其过滤,过滤后的废液达标排放,收集滤渣,用于后续集中处理。
实施例10
用清洗剂将先镀镍后镀钯的废旧镀钯银饰品表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的废旧镀钯银饰品;在稀盐酸水溶液中添加苹果酸、羟基乙酸和过氧化氢,配置脱钯溶液,其中,盐酸的质量浓度为40%、苹果酸的质量浓度为3%、羟基乙酸的质量浓度为2%、过氧化氢的质量浓度为10%;温度加热至50℃,将废旧镀钯银饰品在脱钯溶液中静置浸泡1.7h,然后搅拌10min,完成脱钯;取出废旧镀钯银饰品,将其洗涤、烘干、收集,用于提炼其他金属;将脱钯溶液过滤,得到含钯箔的滤渣 和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成钯锭,钯的回收率达到98%以上;含镍滤液可作为脱钯液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍等离子,将其过滤,过滤后的废液达标排放,收集滤渣,用于后续集中处理。
实施例11
用清洗剂将镀银首饰表面粘有的灰尘、油污除去,然后用清水冲洗、烘干,得到干净的镀银首饰;在稀硫酸水溶液中添加柠檬酸、葡萄糖酸和高锰酸钾,配置脱银溶液,其中,硫酸的质量浓度为20%、柠檬酸的质量浓度为3%、葡萄糖酸的质量浓度为4%、高锰酸钾的质量浓度为15%;温度加热至60℃,将镀银首饰在脱银溶液中静置浸泡3h,然后搅拌15min,完成脱银;取出镀银首饰,将其洗涤、烘干、收集,用于提炼其他金属;将脱银溶液过滤,得到含银箔的滤渣和含镍滤液,对滤渣进行洗涤、高温干燥、熔炼成银锭,银的回收率达到98%以上;含镍滤液可作为脱银液循环使用,溶液循环多次失效后,向溶液中添加苛性碱来中和溶液并沉淀镍等离子,将其过滤,过滤后的废液达标排放,收集滤渣,用于后续集中处理。
本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。本发明的上述实施方案都只能认为是对本发明的说明而不是限制,因此凡是依据本发明的实质技术对以上实施例所作的任何细微修改、等同变化与修饰,均属于本发明技术方案的范围内。

Claims (15)

  1. 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,包括以下步骤:
    (1)预处理:对底层电镀铜/镍材料进行洗涤和烘干处理;
    (2)配置脱稀贵/惰性金属溶液:在无机酸水溶液中添加氧化剂和主要起络合作用的1号添加剂,配置成脱稀贵/惰性金属溶液,并将脱稀贵/惰性金属溶液加热至50~70℃;
    (3)氧化络合铜/镍镀层:把烘干后的电镀材料浸泡在脱稀贵/惰性金属溶液中,静置浸泡,使稀贵/惰性金属镀层下的铜/镍镀层发生氧化络合,溶解,而附着在铜/镍镀层上的稀贵/惰性金属以稀贵/惰性金属箔的形式脱下,然后搅拌,使稀贵/惰性金属箔彻底地从电镀材料基体表面脱除;
    (4)过滤、干燥滤渣:取出脱稀贵/惰性金属后的电镀材料,将飘有稀贵/惰性金属箔的含铜/镍溶液过滤,得到含稀贵/惰性金属箔的滤渣和含铜和/或镍离子的滤液,滤渣经洗涤、干燥后得到稀贵/惰性金属箔。
  2. 根据权利要求1所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述步骤(2)中脱稀贵/惰性金属溶液中无机酸的质量浓度为20%~50%,氧化剂的质量浓度为10%~30%,1号添加剂的质量浓度为1%~5%。
  3. 根据权利要求2所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述步骤(2)的无机酸为稀酸,所述稀酸为稀盐酸和稀硫酸中的一种或两种的混合;所述氧化剂为高锰酸钾、硫酸铁、氯化铁、过氧化氢、或二氧化锰;所述1号添加剂为酒石酸、柠檬酸、乳酸、和苹果酸中的一种或两种及两种以上混合物。
  4. 根据权利要求1或2或3所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述脱稀贵/惰性金属溶液中还包括主要起催化作用的2号添加剂,该2号添加剂在溶液中的质量浓度为1%~5%。
  5. 根据权利要求4所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述2号添加剂为羟基乙酸和/或葡萄糖酸。
  6. 根据权利要求4所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述步骤(2)中,先将废旧电镀材料在脱稀贵/惰性金属溶液中静置浸泡1~4h,然后搅拌10~30min。
  7. 根据权利要求6所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,还包括步骤(5)熔炼:以常规的熔稀贵/惰性金属工艺将稀贵/惰性金属箔放入熔炼炉中熔炼成锭。
  8. 根据权利要求7所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,还包括步骤(6)滤液处理:滤液作为脱稀贵/惰性金属溶液循环使用,当循环多次溶液失效后,向溶液中添加苛性碱中和溶液并沉淀贱金属离子,过滤,所得废液达标排放,滤渣收集,用于后续集中处理。
  9. 根据权利要求8所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,还包括步骤(7)将脱稀贵/惰性金属后的电镀材料经洗涤、烘干后,用于后续提炼贱金属。
  10. 根据权利要求1所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述步骤(1)中先用清洗剂将废旧电镀材料表面粘有的灰尘、油污除去,然后用清水冲洗,最后烘干,即完成预处理。
  11. 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂,其特征在于,其组分包括无机酸、主要起络合作用的1号添加剂、氧化剂和水,所述无机酸、氧化剂和1号添加剂的质量浓度分别为:无机酸20%~50%,氧化剂10%~30%,1号添加剂1%~5%。
  12. 根据权利要求11所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂,其特征在于,所述无机酸为稀酸,所述稀酸为稀盐酸和稀硫酸中的一种或两种的混合;所述的氧化剂为高锰酸钾、硫酸铁、氯化铁、过氧化氢、或二氧化锰;所述1号添加剂为酒石酸、柠檬酸、乳酸、和苹果酸中的一种或两种及两种以上混合物。
  13. 根据权利要求11或12所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂,其特征在于,所述脱稀贵/惰性金属溶液中还包括主要起催化作用的2号添加剂,该2号添加剂在溶液中的质量浓度为1%~5%。
  14. 根据权利要求13所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的方法,其特征在于,所述2号添加剂为羟基乙酸和/或葡萄糖酸。
  15. 根据权利要求11所述的从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂,其特征在于,所述稀贵/惰性金属为金、银、铂或钯。
PCT/CN2014/092856 2014-09-09 2014-12-03 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂 WO2016037426A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020177000613A KR101849622B1 (ko) 2014-09-09 2014-12-03 기저층 구리/니켈 전기 도금 재료로부터 희귀/불활성 금속을 회수하는 방법 및 시약

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410454635.9A CN104263939A (zh) 2014-09-09 2014-09-09 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法
CN201410454635.9 2014-09-09
CN201410454587.3 2014-09-09
CN201410454587.3A CN104263938A (zh) 2014-09-09 2014-09-09 从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂

Publications (1)

Publication Number Publication Date
WO2016037426A1 true WO2016037426A1 (zh) 2016-03-17

Family

ID=55458304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092856 WO2016037426A1 (zh) 2014-09-09 2014-12-03 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂

Country Status (2)

Country Link
KR (1) KR101849622B1 (zh)
WO (1) WO2016037426A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101921575B1 (ko) 2017-02-03 2018-11-26 주식회사 만도 자동차 조향장치의 랙바 지지장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010009430A (ko) * 1999-07-09 2001-02-05 이형도 질소 및 규소화합물을 기초로한 인쇄회로기판용 화성피막조성물
CN103249849A (zh) * 2010-08-20 2013-08-14 高级技术材料公司 从电子垃圾回收贵金属和贱金属的可持续方法
CN103814432A (zh) * 2011-08-18 2014-05-21 易安爱富科技有限公司 增大蚀刻液蚀刻用量的铜/钼合金膜的蚀刻方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510186C (zh) * 2005-05-27 2009-07-08 佛山市顺德区汉达精密电子科技有限公司 一种退镀液
CN102585706B (zh) * 2012-01-09 2013-11-20 清华大学 酸性化学机械抛光组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010009430A (ko) * 1999-07-09 2001-02-05 이형도 질소 및 규소화합물을 기초로한 인쇄회로기판용 화성피막조성물
CN103249849A (zh) * 2010-08-20 2013-08-14 高级技术材料公司 从电子垃圾回收贵金属和贱金属的可持续方法
CN103814432A (zh) * 2011-08-18 2014-05-21 易安爱富科技有限公司 增大蚀刻液蚀刻用量的铜/钼合金膜的蚀刻方法

Also Published As

Publication number Publication date
KR101849622B1 (ko) 2018-04-18
KR20170015501A (ko) 2017-02-08

Similar Documents

Publication Publication Date Title
KR101570780B1 (ko) 폐 인쇄회로기판을 재생하는 무 연소 및 비 시안화물 방법
CN102277497A (zh) 一种从废旧电路板中回收金、钯、铂、银的方法
CN102459660A (zh) 从阴极相关金精选矿中提取金
CN101974689A (zh) 一种处理含铜物料的方法
CN111041207A (zh) 一种电化学浸金剂及从废旧镀金线路板中回收金的方法
CN104263939A (zh) 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法
CN103614556A (zh) 一种废旧手机线路板的处理及回收贵重金属的方法
CN111606308A (zh) 一种铜阳极泥分铜渣高效分离回收碲的方法
CN103451432B (zh) 一种从含贵金属废催化剂中提取铅和贵金属的方法
CN111455189B (zh) 一种从锡铜渣中浸出铜的方法
WO2016037426A1 (zh) 一种从底层电镀铜/镍材料中回收稀贵/惰性金属的方法及试剂
CN104263938A (zh) 从底层电镀铜/镍材料中回收稀贵/惰性金属的试剂
JP2016520716A (ja) 金属含有スクラップから金属を濃縮する方法
JP2013181181A (ja) 金の回収方法
CN116716484B (zh) 一种从铂精炼除钯渣中回收钯和丁二酮肟的方法
CN103451431B (zh) 一种从含贵金属废催化剂中提取砷和贵金属的方法
CN101358287A (zh) 一种难熔合质金中金、银及铂族金属的分离方法
JP4403259B2 (ja) 白金族元素の回収方法
CN111500872A (zh) 低浓度含钯废液的回收处理方法
RU2644719C2 (ru) Способ переработки отходов электронной и электротехнической промышленности
JPS6293319A (ja) Sn被覆材からのSnの選択的回収法
JP2007016259A (ja) ヨウ素イオンを循環使用する金剥離液による金の回収方法システム
JP2003105456A (ja) 銀の製造方法
JP2010163340A (ja) Sn回収方法及びSn回収装置並びに酸化Sn粉末の製造方法
CN112126791A (zh) 一种从金属废料中回收再生高纯铜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020177000613

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901506

Country of ref document: EP

Kind code of ref document: A1