WO2016036202A1 - 코폴리카보네이트 및 이를 포함하는 조성물 - Google Patents

코폴리카보네이트 및 이를 포함하는 조성물 Download PDF

Info

Publication number
WO2016036202A1
WO2016036202A1 PCT/KR2015/009369 KR2015009369W WO2016036202A1 WO 2016036202 A1 WO2016036202 A1 WO 2016036202A1 KR 2015009369 W KR2015009369 W KR 2015009369W WO 2016036202 A1 WO2016036202 A1 WO 2016036202A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
bis
copolycarbonate
repeating unit
hydroxyphenyl
Prior art date
Application number
PCT/KR2015/009369
Other languages
English (en)
French (fr)
Inventor
반형민
홍무호
박정준
전병규
황영영
김민정
고운
이기재
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150125111A external-priority patent/KR101687683B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL15838004T priority Critical patent/PL3045487T3/pl
Priority to CN201580002901.7A priority patent/CN105980445B/zh
Priority to US14/914,153 priority patent/US9732186B2/en
Priority to EP15838004.8A priority patent/EP3045487B1/en
Priority to JP2016541578A priority patent/JP6615098B2/ja
Publication of WO2016036202A1 publication Critical patent/WO2016036202A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a copolycarbonate and a composition comprising the same, and more particularly, to a copolycarbonate and a composition containing the same, which is economically manufactured, and has improved phase silver layer strength, low temperature impact strength and fluidity.
  • Polycarbonate resins are prepared by condensation polymerization of aromatic di- like bisphenol A and carbonate precursors such as phosgene, and have excellent lamella strength, numerical stability, heat resistance and transparency, and exterior materials for automobiles, automobile parts, building materials, and optical parts. It is applied to a wide range of fields. In order to apply such polycarbonate resins in recent years, many studies have been attempted to obtain desired physical properties by copolymerizing two or more different types of aromatic dialkyl compounds to introduce units having different structures into the main chain of polycarbonate. .
  • the present invention is to provide a copolycarbonate with improved phase silver layer strength, low silver impact strength and fluidity properties.
  • the present invention is to provide a polycarbonate composition comprising the copolycarbonate and polycarbonate.
  • the present invention also provides an article comprising the copolycarbonate or polycarbonate composition.
  • Copolycarbonates having a weight average molecular weight of 1,000 to 100, 000 g / irol are provided.
  • Ri to R 4 are independently hydrogen, d- 10 alkyl or halogen, Z is an unsubstituted alkylene group, a d- or 10 substituted with phenyl or C 3, respectively - 10 cycloalkylene, 0, S, SO, S0 2 Or CO,
  • Ra is independently d- 10 alkylene
  • 3 ⁇ 4 are each independently hydrogen or ( 13 alkyl,
  • n is an integer from 1 to 40
  • Each R b is independently d-) alkylene
  • 3 ⁇ 4 are each independently hydrogen or d- 13 alkyl
  • Copolycarbonate according to the present invention includes a polycarbonate structure formed of a repeating unit represented by the formula (1).
  • the polycarbonate is excellent in overall mechanical properties, but phase impact strength, low temperature impact strength and fluidity properties are inferior, in order to improve this it is necessary to introduce a structure other than the polycarbonate structure.
  • the polysiloxane formed by the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) has a structure co-condensed to polycarbonate, This significantly improves the room temperature impact strength, low temperature laminar strength and fluidity properties compared to the conventional polycarbonate.
  • the repeating unit represented by Formula 2 and the repeating unit represented by Formula 3 are different from each other in the number of repeating units (n and m) of the silicon oxide in each formula.
  • the repeating unit represented by Formula (2) and the repeating unit represented by the formula (3) compared to the case of including only one of the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3), when it contains all the room temperature impact strength, low temperature impact strength and It was confirmed that the degree of improvement in the fluidity properties was significantly increased, which is attributable to the result of the complementary action of the properties improvement by each repeating unit.
  • Repeat unit represented by Formula 1
  • the repeating unit represented by Formula 1 is formed by reacting an aromatic di compound and a carbonate precursor.
  • Z is straight or branched chain dw alkylene unsubstituted or substituted with phenyl, more preferably methylene, ethane-1,1-diyl, propane-2, 2-diyl, butane-2 ⁇ 2-diyl, 1-phenylethane-1,1_diyl, or diphenylmethylene.
  • Z is cyclonucleic acid # 1,1-diyl, 0, S, SO, S0 2 , or CO.
  • the repeating unit represented by Formula 1 is bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) ) Sulfoxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) ketone, 1,1-bis (4-hydroxyphenyl) ethane, bisphenol A, 2, 2-bis (4-hydroxy) Oxyphenyl) butane, 1,1- Bis (4-hydroxyphenyl) cyclonucleic acid, 2, 2-bis (4-hydroxy—3, 5-dibromophenyl) propane, 2, 2-bis (4-hydroxy-3, 5-dichlorophenyl Propane, 2, 2-bis (4-hydroxy-3-bromophenyl) propane, 2, 2-bis (4-hydroxy-3-chlorophenyl) propane, 2, 2-bis (4-hydroxy 3-Methylphenyl) propane, 2, 2-bis (4-hydroxy-3, 5-dimethylphenyl) propane, 2, 2-
  • Examples of the carbonate precursors include dimethyl carbonate, diethyl carbonate dibutyl carbonate, dicyclonuclear carbonate, diphenyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, di-m-cresyl carbonate, dinaphthyl carbonate, and bis.
  • At least one selected from the group consisting of (diphenyl) carbonate, phosgene, triphosgene, diphosgene, bromophosgene, and bishaloformate can be used.
  • triphosgene or phosgene can be used.
  • the repeating unit represented by the formula (2) and the repeating unit represented by the formula (3) are formed by reacting a siloxane compound and a carbonate precursor, respectively.
  • Ra is preferably each independently C 2 - 4 alkylene and is, most preferably, propane-1,3-diyl eu-10 alkylene, more preferably C 2.
  • 3 ⁇ 4 is preferably each independently d- 6 alkyl, more preferably each independently d- 3 alkyl, most preferably methyl.
  • Rb are preferably each independently C 2 - 4 alkylene and is, most preferably, propane-1,3-diyl-10 alkylene, more preferably C 2.
  • 3 ⁇ 4 is preferably each independently d-6 alkyl, more preferably each independently d- 3 alkyl, most preferably methyl.
  • Ra and Rb are the same as each other.
  • Rs and 3 ⁇ 4 are identical to each other.
  • Chemical Formula 2 is represented by the following Chemical Formula 2-1:
  • Chemical Formula 3 is represented by the following Chemical Formula 3-1: [Formula 3-1]
  • n is 10 or more, 15 or more, 20 or more, or 25 or more, and an integer of 35 or less.
  • m is 45 or more, 50 or more, or 55 or more, 100 or less, 95 or less, 90 or less, 85 or less, 80 or less, 75 or less, 70 or less, or an integer of 65 or less.
  • the repeating unit represented by Formula 2 and the repeating unit represented by Formula 3 are each derived from a siloxane compound represented by Formula 2-2 and a siloxane compound represented by Formula 3-2.
  • Ra, R 5 and n are as defined above,
  • Rb, R 6 and m are as defined above.
  • the term “derived from the siloxane compound” means that the hydroxyl group and the carbonate precursor of each of the siloxane compounds react with each other to form a repeating unit represented by Formula 2 and a repeating unit represented by Formula 3 do.
  • R 5 and definition of n are as previously defined, R a 'is C 2 - 10 alkenyl, and Al, [banung formula 2]
  • R 6 and m is as defined above and is Rb 'C 2 -io alkenyl.
  • the reactions of the reactions 1 and 2 are preferably carried out under a metal catalyst.
  • Pt catalyst is preferably used.
  • As the Pt catalyst an ashby catalyst, a Karlstedt catalyst, a moreaux catalyst, a spier catalyst, a PtCl 2 (C0D),
  • At least one selected from the group consisting of PtCl 2 (benzonitrile) 2 , and 3 ⁇ 4PtBr 6 can be used.
  • the metal catalyst is 0.001 parts by weight, 0.005 parts by weight, or 0.01 parts by weight or more, 1 part by weight, 0.1 parts by weight, or 0.05 parts by weight or less based on 100 parts by weight of the compound represented by Formula 7 or 8 above.
  • the reaction temperature is preferably 80 to 100 ° C.
  • the reaction time is preferably 1 hour to 5 hours.
  • the compound represented by Formula 7 or 8 may be prepared by reacting organodisiloxane and organocyclosiloxane under an acid catalyst, and n and m may be controlled by adjusting the content of the reaction compound.
  • the reaction temperature is preferably 50 to 70 ° C.
  • the reaction time is preferably 1 hour to 6 hours.
  • the organodisiloxane one or more selected from the group consisting of tetramethyldisiloxane, tetraphenyldisiloxane, nuxamethyldisiloxane and nuxaphenyldisiloxane can be used.
  • an organocyclotetrasiloxane may be used as an example, and examples thereof include octamethylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, and the like.
  • the organodisiloxane may be used in an amount of 0.01 parts by weight or more, or 2 parts by weight or more, 10 parts by weight or less, or 8 parts by weight or less, based on 100 parts by weight of the organocyclosiloxane.
  • the acid catalyst at least one selected from the group consisting of 3 ⁇ 4SO 4 , HC10 4 , A1C1 3) SbCl 5 , SnCl 4, and acidic clay may be used.
  • the acid catalyst is 0.1 part by weight or more, 0.5 parts by weight or more, or 1 part by weight or more, 10 parts by weight or less, 5 parts by weight or less, or 3 parts by weight or less based on 100 parts by weight of organocyclosiloxane. Can be used.
  • the weight ratio of the repeating unit and the repeating unit represented by Formula 3 is 99: 1 to 1:99, more preferably 80:20 to 20:80.
  • the weight ratio of the repeating unit corresponds to the weight ratio of the siloxane compound, for example, the siloxane compound represented by Formula 2-2 and the siloxane compound represented by Formula 3-2.
  • the copolycarbonate according to the present invention includes a repeating unit represented by Chemical Formulas 1 to 3, preferably a random copolymer. Also preferably, the copolycarbonate according to the present invention has a weight average molecular weight of 15,000 to 35,000 g / ⁇ . More preferably, the weight average molecular weight is at least 20,000 g / mol, at least 21,000 g / mol, at least 22,000 g / mol, at least 23,000 g / mol, at least 24,000 g / mol, at least 25,000 g / mol, at 26,000 g / mol Or more, 27,000 g / mol or more, or 28,000 g / mol or more. Further, the weight average molecular weight is 34,000 g / mol or less, 33,000 g / mol or less, or 32,000 g / mol or less. In addition, the weight of the repeating unit represented by Formula 1 and the formula
  • the weight ratio of the total weight of the repeating unit represented by 2 and the repeating unit represented by Formula 3 is preferably 1: 0.04-0.07.
  • Copolycarbonate according to the present invention is prepared by a manufacturing method comprising the step of polymerizing a composition comprising an aromatic diol compound, a compound represented by the formula (2-2), a compound represented by the formula (3-2) and a carbonate precursor described above can do.
  • the total amount of the compound represented by Formula 2-2 and the compound represented by Formula 3-2 in the composition is 0.1 wt% or more, 0.5 wt% or more, or 1 wt% or more with respect to 100 wt% of the composition.
  • the aromatic di compound, 40 wt% or more, 50 wt% or more, or 55 wt% or more, 80 wt% or less, 70 wt% or less, or 65 wt% or less with respect to 100 wt% of the composition. have.
  • the carbonate precursor, 10 to 100% by weight of the composition At least 20% by weight, at least 20% by weight, or at least 30% by weight, at most 60% by weight, at most 50% by weight, or at most 40% by weight.
  • the polymerization method for example, an interfacial polymerization method may be used.
  • the polymerization reaction is possible at atmospheric pressure and low temperature, and the molecular weight is easily controlled.
  • the interfacial polymerization is preferably carried out in the presence of an acid binder and an organic solvent.
  • the interfacial polymerization may include a step of introducing a coupling agent after prepolymerization (pre-polymer i zat ion), and then polymerizing again, in which case, a high molecular weight copolycarbonate may be obtained.
  • the materials used for the interfacial polymerization are not particularly limited as long as they are materials that can be used for the polymerization of polycarbonate, and the amount of the materials used may be adjusted as necessary.
  • the acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or pyridine and the amine compound may be used.
  • the organic solvent is not particularly limited as long as it is a solvent usually used for polymerization of polycarbonate. For example, halogenated hydrocarbons such as methylene chloride and chlorobenzene may be used.
  • the interfacial polymerization is a reaction such as triethylamine, tetra-n-butylammonium bromide, tertiary amine compound such as tetra-n-butylphosphonium bromide, quaternary ammonium compound, quaternary phosphonium compound, etc. Accelerators may additionally be used.
  • the reaction temperature of the interfacial polymerization is preferably 0 to 4 (rc, and the reaction time is preferably 10 minutes to 5 hours.
  • the pH is preferably maintained at 9 or more or 11 or more.
  • the interfacial polymerization may be performed by further including a molecular weight regulator.
  • the molecular weight regulator may be added before the start of polymerization, during the start of polymerization, or after the start of polymerization.
  • Mono-alkylphenols may be used as the molecular weight modifier.
  • the mono-alkylphenols include, for example, p-tert-butylphenol, P-cumylphenol, decylphenol, dodecylphenol, tetradecylphenol, nucledecylphenol, and octadecyl. It is at least one selected from the group consisting of phenol, eicosylphenol, docosylphenol and triacontylphenol, preferably p-tert-butylphenol, in which case the molecular weight control effect is large.
  • the molecular weight modifier may be, for example, 0.01 parts by weight or more, 0, 1 parts by weight or more, or 1 part by weight or more, 10 parts by weight or less, 6 parts by weight or less, or 5 parts by weight or less based on 100 parts by weight of aromatic diol compound.
  • the desired molecular weight can be obtained within this range.
  • the present invention also provides a polycarbonate composition, comprising the copolycarbonate and polycarbonate.
  • a polycarbonate composition comprising the copolycarbonate and polycarbonate.
  • the copolycarbonate may be used alone, the physical properties of the copolycarbonate can be controlled by using a polycarbonate together if necessary.
  • the polycarbonate includes a repeating unit represented by Formula 4 below:
  • R'i to R'4 are each independently hydrogen, d- 10 alkyl or halogen, Z 'is unsubstituted or substituted with phenyl ( 10 alkylene, Cs-io cycloalkylene, 0, S, SO, S0 2 or CO.
  • the repeating unit represented by Chemical Formula 4 is formed by reacting an aromatic diol compound and a carbonate precursor, and the aromatic diol compound and carbonate precursor which can be used are described above in the repeating unit represented by Chemical Formula 1.
  • R 4 and Z 'of Formula 4 are the same as Ri to 4 and 2 of Formula 1, respectively, and preferably, the repeating unit represented by Formula 4 is , Is represented by the following formula (4-1).
  • the increase ratio of copolycarbonate and polycarbonate is preferably 99: 1 to 1:99, more preferably 90:10 to 50:50, and most preferably 80:20 to 60: 40.
  • the present invention also provides an article comprising the copolycarbonate or the polycarbonate composition.
  • the article is an injection molded article.
  • the article may be, for example, an antioxidant, a heat stabilizer, a light stabilizer, a plasticizer, an antistatic agent, a nucleating agent, a flame retardant, a lubricant, an impact enhancer, a fluorescent brightener, an ultraviolet absorber, a pigment and a dye. It may further comprise one or more selected from the group consisting of.
  • the mixture is extruded by an extruder to produce a pellet, and the pellet is dried It may include the step of injection into an injection molding machine.
  • the copolycarbonate in which a specific siloxane compound is introduced into the polycarbonate main chain according to the present invention has an effect of improving phase silver impact strength, low temperature impact strength and fluidity properties.
  • Example 3 Prepared in the same manner as in Example 1, except that 55.2 g of polyorganosiloxane (20 wt of polyorganosiloxane (AP-30) of Preparation Example 1 and 80% of polyorganosiloxane (AP-60) of Preparation Example 2) Mixture) to prepare coplicarbonate and specimens thereof, respectively.
  • polyorganosiloxane (20 wt of polyorganosiloxane (AP-30) of Preparation Example 1 and 80% of polyorganosiloxane (AP-60) of Preparation Example 2 Mixture
  • MI Flowability
  • Phase silver layer strength and low temperature layer strength (J / m): measured at 23 ° C and -30 ° C according to ASTM D256 (l / 8 inch, Notched Izod), respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 코폴리카보네이트 및 이를 포함하는 조성물에 관한 것으로, 본 발명에 따른 코폴리카보네이트는 특정 실록산 화합물을 폴리카보네이트 주쇄에 도입한 구조를 가져, 상온충격강도, 저온충격강도 및 유동성 물성이 개선될 수 있다는 특징이 있다.

Description

【명세서】
【발명의 명칭】
코폴리카보네이트 및 이를 포함하는 조성물
【관련 출원 (들)과와상호 인용】
본 출원은 2014년 9월 5일자 한국 특허 출원 제 10-2014-0118991호,
2015년 7월 31일자 한국 특허 출원 제 10— 2015-0109123호 및 2015년 9월 3일자 한국 특허 출원 제 10-2015-0125111호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
Γ기술분야】
본 발명은 코폴리카보네이트 및 이를 포함하는 조성물에 관한 것으로, 보다 상세하게는 경제적으로 제조되고, 상은층격강도, 저온충격강도 및 유동성이 향상된 코폴리카보네이트 및 이를 포함하는 조성물에 관한 것이다. 【배경기술】
폴리카보네이트 수지는 비스페놀 A와 같은 방향족 디을과 포스겐과 같은 카보네이트 전구체가 축중합하여 제조되고, 우수한 층격강도, 수치안정성, 내열성 및 투명성 등을 가지며, 전기전자 제품의 외장재, 자동차 부품, 건축 소재, 광학 부품 등 광범위한 분야에 적용된다. 이러한 폴리카보네이트 수지는 최근 보다 다양한 분야에 적용하기 위해 2종 이상의 서로 다른 구조의 방향족 디을 화합물을 공중합하여 구조가 다른 단위체를 폴리카보네이트의 주쇄에 도입하여 원하는 물성을 얻고자 하는 연구가 많이 시도되고 있다. 특별히 폴리카보네이트의 주쇄에 폴리실록산 구조를 도입시키는 연구도 진행되고는 있으나, 대부분의 기술들이 생산 단가가 높고, 내화학성이나 층격강도, 특히 저온충격강도가 증가하면 반대로 유동성 등이 저하되는 단점이 있다. 발명자들은, 상기의 단점을 극복하여 상은충격강도, 저온층격강도 및 유동성 물성이 개선된 코폴리카보네이트를 예의 연구한 결과, 후술할 바와 같이 특정 실록산 화합물을 폴리카보네이트 주쇄에 도입한 코폴리카보네이트가 상기를 만족함을 확인하여 본 발명을 완성하였다.
【발명의 내용】
[해결하려는 과제]
본 발명은 상은층격강도, 저은충격강도 및 유동성 물성이 개선된 코폴리카보네이트를 제공하기 위한 것이다.
또한, 본 발명은 상기 코폴리카보네이트 및 폴리카보네이트를 포함하는 폴리카보네이트 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기 코폴리카보네이트, 또는 폴리카보네이트 조성물을 포함하는 물품을 제공하기 위한 것이다.
【과제의 해결 수단】 - 상기 과제를 해결하기 위하여, 본 발명은
하기 화학식 1로 표시되는 반복단위,
하기 화학식 2로 표시되는 반복단위 , 및
하기 화학식 3으로 표시되는 반복단위를 포함하는,
중량평균분자량 1 , 000 내지 100 , 000 g/irol의 코폴리카보네이트를 제공한다: .
Figure imgf000003_0001
상기 화학식 1에서,
Ri 내지 R4는 각각 독립적으로 수소, d-10 알킬 또는 할로겐이고, Z는 비치환되거나 또는 페닐로 치환된 d— 10 알킬렌, C3-10 사이클로알킬렌, 0, S , SO, S02 또는 CO이고,
[화학식 2]
Figure imgf000004_0001
상기 화학식 2에서,
Ra는 각각 독립적으로 d— 10 알킬렌이고,
¾는 각각 독립적으로 수소 또는 ( 13 알킬이고,
n은 1 내지 40의 정수이고,
[화학식 3]
Figure imgf000004_0002
상기 화학식 3에서,
Rb는 각각 독립적으로 d- ) 알킬렌이고,
¾는 각각 독립적으로 수소 또는 d-13 알킬이고,
m은 41 내지 150의 정수이다. 본 발명에 따른 코폴리카보네이트는, 상기 화학식 1로 표시되는 반복단위로 형성되는 폴리카보네이트 구조를 포함한다. 일반적으로, 폴리카보네이트는 전반적인 기계적 물성이 우수하지만, 상은충격강도, 저온충격강도 및 유동성 물성이 떨어지기 때문에, 이를 개선하기 위하여 폴리카보네이트 구조 이외의 다른 구조가 도입될 필요가 있다. 이에 본 발명에서는, 상기 화학식 1로 표시되는 반복단위 외에, 상기 화학식 2로 표시되는 반복단위 및 상기 화학식 3으로 표시되는 반복단위가 형성하는 폴리실록산이 폴리카보네이트에 공증합된 구조를 가지고 있으며, 이를 통하여 종래의 폴리카보네이트에 비하여 상온충격강도, 저온층격강도 및 유동성 물성을 크게 개선한다는 특징이 있다. 특히, 상기 화학식 2로 표시되는 반복단위와 상기 화학식 3으로 표시되는 반복단위는 각 화학식 내의 실리콘 옥사이드의 반복단위 수 (n 및 m)가 서로 상이하다. 후술할 비교예 및 실시예에 따르면, 상기 화학식 2로 표시되는 반복단위와 상기 화학식 3으로 표시되는 반복단위 중 어느 하나만을 포함하는 경우에 비하여, 이를 모두 포함하는 경우 상온충격강도, 저온충격강도 및 유동성 물성의 개선 정도가 현저히 증가함을 확인할 수 있었으며, 이는 각각의 반복단위에 의하여 물성 개선 정도가 상호 보완적으로 작용한 결과에 기인한다. 이하, 본 발명을 보다 상세히 설명한다. 화학식 1로표시되는반복단위
상기 화학식 1로 표시되는 반복단위는 방향족 디을 화합물 및 카보네이트 전구체가 반웅하여 형성된다. 상기 화학식 1에서, 바람직하게는, 내지 는 각각 독립적으로 수소, 메틸, 클로로, 또는 브로모이다. 또한 바람직하게는, Z는 비치환되거나 또는 페닐로 치환된 직쇄 또는 분지쇄의 d-w 알킬렌이며, 보다 바람직하게는 메틸렌, 에탄 -1,1-디일, 프로판 -2 , 2-디일, 부탄 -2ᅳ 2- 디일, 1-페닐에탄 -1,1_디일, 또는 디페닐메틸렌이다. 또한 바람직하게는, Z는 사이클로핵산ᅳ1,1-디일, 0, S , SO, S02 , 또는 CO이다. 바람직하게는, 상기 화학식 1로 표시되는 반복단위는 비스 (4- 히드록시페닐)메탄, 비스 (4—히드록시페닐)에테르, 비스 (4- 히드록시페닐)설폰, 비스 (4-히드록시페닐)설폭사이드, 비스 (4- 히드록시페닐)설파이드, 비스 (4-히드록시페닐)케톤, 1,1-비스 (4- 히드록시페닐)에탄, 비스페놀 A , 2, 2-비스 (4-히드록시페닐)부탄, 1,1- 비스 (4-히드록시페닐)시클로핵산 , 2, 2-비스 (4-히드록시—3 , 5- 디브로모페닐)프로판, 2 , 2-비스 (4-히드록시 -3, 5-디클로로페닐)프로판, 2 , 2- 비스 (4-히드록시 -3-브로모페닐)프로판, 2, 2-비스 (4-히드록시 -3- 클로로페닐)프로판, 2 , 2-비스 (4-히드록시 -3-메틸페닐)프로판, 2 , 2-비스 (4- 히드록시 -3, 5-디메틸페닐)프로판, 1, 1-비스 (4-히드록시페닐) -1-페닐에탄, 비스 (4-히드록시페닐)디페닐메탄, 및 3,0 -비스[3- ( 0 - 히드록시페닐)프로필]폴리디메틸실록산으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방향족 디올 화합물로부터 유래할 수 있다. 상기 '방향족 디올 화합물로부터 유래한다1의 의미는, 방향족 디올 회:합물의 하이드록시기와 카보네이트 전구체가 반응하여 상기 화학식 1로 표시되는 반복단위를 형성하는 것을 의미한다. 예컨대, 방향족 디올 화합물인 비스페놀 A와 카보네이트 전구체인 트리포스겐이 중합된 경우, 상기 화학식 1로 표시되는 반복단위는 하기 화학식 1-1로 표시된다:
Figure imgf000006_0001
상기 카보네이트 전구체로는, 디메틸 카보네이트, 디에틸 카보네이트 디부틸 카보네이트, 디시클로핵실 카보네이트, 디페닐 카보네이트, 디토릴 카보네이트, 비스 (클로로페닐) 카보네이트, 디 -m-크레실 카보네이트, 디나프틸 카보네이트, 비스 (디페닐) 카보네이트, 포스겐, 트리포스겐, 디포스겐, 브로모포스겐 및 비스할로포르메이트로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 바람직하게는, 트리포스겐 또는 포스겐을 사용할 수 있다. 화학식 2로표시되는 반복단위 및 화학식 3으로표시되는 반복단위 상기 화학식 2로 표시되는 반복단위 및 화학식 3으로 표시되는 반복단위는, 각각 실록산 화합물 및 카보네이트 전구체가 반웅하여 형성된다. 상기 화학식 2에서, Ra는 바람직하게는 각각 독립적으로 C2-10 알킬렌이고, 보다 바람직하게는 C2-4 알킬렌이고, 가장 바람직하게는 프로판 -1,3ᅳ디일이다. 또한, ¾는 바람직하게는 각각 독립적으로 d-6 알킬이고, 보다 바람직하게는 각각 독립적으로 d-3 알킬이고, 가장 바람직하게는 메틸이다. 상기 화학식 3에서, Rb는 바람직하게는 각각 독립적으로 C2-10 알킬렌이고, 보다 바람직하게는 C2-4 알킬렌이고, 가장 바람직하게는 프로판 -1 , 3-디일이다. 또한, ¾는 바람직하게는 각각 독립적으로 d-6 알킬이고, 보다 바람직하게는 각각 독립적으로 d-3 알킬이고, 가장 바람직하게는 메틸이다. 또한 바람직하게는, Ra 및 Rb가 서로 동일하다. 또한 바람직하게는, Rs 및 ¾가 서로 동일하다. 또한 바람직하게는, 상기 화학식 2는 하기 화학식 2-1로 표시된다:
-1]
Figure imgf000007_0001
또한 바람직하게는, 상기 화학식 3은 하기 화학식 3-1로 표시된다: [화학식 3-1]
Figure imgf000008_0001
또한 바람직하게는, 상기 화학식 1에서 n은 10 이상, 15 이상, 20 이상, 또는 25 이상이고, 35 이하의 정수이다. 또한 바람직하게는, 상기 화학식 2에서 m은 45 이상, 50 이상, 또는 55 이상이고, 100 이하, 95 이하 90 이하, 85 이하, 80 이하, 75 이하, 70 이하, 또는 65 이하의 정수이다. 바람직하게는, 상기 화학식 2로 표시되는 반복단위 및 화학식 3으로 표시되는 반복단위는, 각각 하기 화학식 2-2로 표시되는 실록산 화합물 및 하기 화학식 3-2로 표시되는 실록산 화합물로부터 유래한다.
[화학식 2-2]
Figure imgf000008_0002
상기 화학식 2-2에서,
Ra , R5 및 n의 정의는 앞서 정의한 바와 같고,
3-2]
Figure imgf000008_0003
상기 화학식 3— 2에서,
Rb , R6 및 m의 정의는 앞서 정의한 바와 같다. 상기 '실록산 화합물로부터 유래한다'의 의미는, 상기 각각의 실톡산 화합물의 하이드록시기와 카보네이트 전구체가 반웅하여 상기 각각의 화학식 2로 표시되는 반복 단위 및 화학식 3으로 표시되는 반복 단위를 형성하는 것을 의미한다. 또한, 상기 화학식 2 및 3으로 표시되는 반복 단위의 형성에 사용할 수 있는 카보네이트 전구체는, 앞서 설명한 화학식
1의 반복 단위의 형성에 사용할 수 있는 카보네이트 전구체에서 설명한 바와 같다. 상기 화학식 2-2로 표시되는 실록산 화합물 및 상기 화학식 3-2로 표시되는 실록산 화합물의 제조 방법은 각각 하기 반웅식 1 및 2와 같다.
[반웅식 1]
Figure imgf000009_0001
Figure imgf000009_0002
2-2 상기 반웅식 1에서,
R5n의 정의는 앞서 정의한 바와 같고, Ra '는 C2-10 알케닐이고, [반웅식 2]
Figure imgf000010_0001
Figure imgf000010_0002
상기 반웅식 2에서,
R6m의 정의는 앞서 정의한 바와 같고, Rb ' C2-io 알케닐이다. 상기 반웅식 1 및 반웅식 2의 반웅은, 금속 촉매 하에 수행하는 것이 바람직하다. 상기 금속 촉매로는 Pt 촉매를 사용하는 것이 바람직하며, Pt 촉매로 애쉬바이 (Ashby)촉매, 칼스테드 (Karstedt )촉매, 라모레오 ( moreaux)촉매, 스파이어 (Speier )촉매 , PtCl2(C0D) ,
PtCl2(벤조니트릴 )2, 및 ¾PtBr6로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 상기 금속 촉매는 상기 화학식 7 또는 8로 표시되는 화합물 100 증량부를 기준으로 0.001 중량부 이상, 0.005 중량부 이상, 또는 0.01 중량부 이상이고, 1 증량부 이하, 0.1 중량부 이하, 또는 0.05 중량부 이하로 사용할 수 있다. 또한, 상기 반웅 온도는 80 내지 100°C가 바람직하다. 또한, 상기 반웅 시간은 1시간 내지 5시간이 바람직하다. 또한, 상기 화학식 7 또는 8로 표시되는 화합물은 오르가노디실록산과 오르가노시클로실록산을 산 촉매 하에서 반웅시켜 제조할 수 있으며, 상기 반웅 물질의 함량을 조절하여 n 및 m을 조절할 수 있다. 상기 반웅 온도는 50 내지 70°C가 바람직하다. 또한, 상기 반웅 시간은 1시간 내지 6시간이 바람직하다. 상기 오르가노디실록산으로, 테트라메틸디실록산, 테트라페닐디실록산, 핵사메틸디실록산 및 핵사페닐디실록산으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 또한, 상기 오르가노시클로실록산은 일례로 오르가노시클로테트라실록산을 사용할 수 있으며, 이의 일례로 옥타메틸시클로테트라실록산 및 옥타페닐시클로테트라실록산 등을 들 수 있다. 상기 오르가노디실록산은, 상기 오르가노시클로실톡산 100 중량부를 기준으로 0. 1 중량부 이상, 또는 2 중량부 이상이고, 10 중량부 이하, 또는 8 중량부 이하로 사용할 수 있다. 상기 산 촉매로는 ¾S04 , HC104, A1C13 ) SbCl5 , SnCl4 및 산성 백토로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 또한, 상기 산 촉매는 오르가노시클로실록산 100 중량부를 기준으로 0. 1 중량부 이상, 0.5 중량부 이상, 또는 1 증량부 이상이고, 10 중량부 이하, 5 중량부 이하, 또는 3 중량부 이하로 사용할 수 있다. 특히, 상기 화학식 2로 표시되는 반복 단위와 상기 화학식 3으로 표시되는 반복 단위의 함량을 조절하여, 코폴리카보네이트의 저온충격강도와 유동성을 동시에 개선할 수 있으며, 바람직하게는 상기 화학식 2로 표시되는 반복 단위와 상기 화학식 3으로 표시되는 반복 단위 중량비는 99 : 1 내지 1 : 99, 보다 바람직하게는 80 : 20 내지 20 : 80이다. 상기 반복 단위의 중량비는 실톡산 화합물, 예컨대 상기 화학식 2-2로 표시되는 실록산 화합물 및 상기 화학식 3-2로 표시되는 실록산 화합물의 중량비에 대응된다. 코폴리카보네이트
본 발명에 따른 코폴리카보네이트는, 상기 화학식 1 내지 3으로 표시되는 반복단위를 포함하며, 바람직하게는 랜덤 공중합체이다. 또한 바람직하게는, 본 발명에 따른 코폴리카보네이트는 중량 평균 분자량이 15,000 내지 35,000 g/ηωΐ이다. 보다 바람직하게는, 상기 중량 평균 분자량은 20,000 g/mol 이상, 21,000 g/mol 이상, 22,000 g/mol 이상, 23,000 g/mol 이상, 24,000 g/mol 이상, 25,000 g/mol 이상, 26,000 g/mol 이상, 27,000 g/mol 이상, 또는 28,000 g/mol 이상이다. 또한, 상기 중량 평균 분자량은 34,000 g/mol 이하, 33,000 g/mol 이하, 또는 32,000 g/mol 이하이다. 또한, 상기 화학식 1로 표시되는 반복단위의 중량과, 상기 화학식
2로 표시되는 반복단위 및 상기 화학식 3으로 표시되는 반복단위의 총 중량의 중량비 (화학식 1: (화학식 2 + 화학식 3))는 1:0.04-0.07이 바람직하다. 본 발명에 따른 코폴리카보네이트는, 앞서 설명한 방향족 디올 화합물, 화학식 2-2로 표시되는 화합물, 화학식 3-2로 표시되는 화합물 및 카보네이트 전구체를 포함하는 조성물을 중합하는 단계를 포함하는 제조방법으로 제조할 수 있다. 상기 중합시, 상기 조성물 내 상기 화학식 2-2로 표시되는 화합물 및 화학식 3-2로 표시되는 화합물의 총량은, 상기 조성물 100 중량 %에 대해 0.1 중량 % 이상, 0.5 증량 % 이상, 1 중량 % 이상, 또는 1.5 중량 % 이상이고, 20 중량 이하, 10 중량 % 이하, 7 중량 % 이하, 5 중량 % 이하, 또는 4 증량 ¾> 이하가 바람직하다. 또한, 상기 방향족 디을 화합물은, 상기 조성물 100 중량 %에 대해 40 중량 % 이상, 50 중량 % 이상, 또는 55 중량 % 이상이고, 80 중량 % 이하, 70 중량 % 이하, 또는 65 중량 % 이하로 사용할 수 있다. 또한, 상기 카보네이트 전구체는, 상기 조성물 100 중량 %에 대해 10 중량 % 이상, 20 중량 ¾> 이상, 또는 30 중량 %이고, 60 중량 % 이하, 50 중량 % 이하, 또는 40 중량 % 이하로 사용할 수 있다. 또한, 상기 중합 방법으로는, 일례로 계면중합 방법을 사용할 수 있으며, 이 경우 상압과 낮은 온도에서 중합 반응이 가능하며 분자량 조절이 용이한 효과가 있다. 상기 계면중합은 산결합제 및 유기용매의 존재 하에 수행하는 것이 바람직하다. 또한, 상기 계면중합은 일례로 선중합 (pre-polymer i zat ion) 후 커플링제를 투입한 다음, 다시 중합시키는 단계를 포함할 수 있고, 이 경우 고분자량의 코폴리카보네이트를 얻을 수 있다. 상기 계면중합에 사용되는 물질들은 폴리카보네이트의 중합에 사용될 수 있는 물질이면 특별히 제한되지 않으며, 그 사용량도 필요에 따라 조절할 수 있다. 상기 산결합제로는 일례로 수산화나트륨, 수산화칼륨 등의 알칼리금속 수산화물 또는 피리딘 등와 아민 화합물을 사용할 수 있다. 상기 유기 용매로는 통상 폴리카보네이트의 중합에 사용되는 용매이면 특별히 제한되지 않으며, 일례로 메틸렌클로라이드, 클로로벤젠 등의 할로겐화 탄화수소를 사용할 수 잇다. 또한, 상기 계면중합은 반웅 촉진을 위해 트리에틸아민, 테트라 -n- 부틸암모늄브로마이드, 테트라 -n-부틸포스포늄브로마이드 등의 3차 아민 화합물, 4차 암모늄 화합물, 4차 포스포늄 화합물 등과 같은 반웅 촉진제를 추가로 사용할 수 있다. 상기 계면중합의 반웅 온도는 0 내지 4(rc인 것이 바람직하며, 반응 시간은 10분 내지 5시간이 바람직하다. 또한, 계면중합 반응 중, pH는 9이상 또는 11이상으로 유지하는 것이 바람직하다. 또한, 상기 계면중합은 분자량 조절제를 더 포함하여 수행할 수 있다. 상기 분자량 조절제는 중합개시 전, 증합개시 중 또는 중합개시 후에 투입할 수 있다. 상기 분자량 조절제로 모노 -알킬페놀을 사용할 수 있으몌 상기 모노 -알킬페놀은 일례로 pᅳ tert-부틸페놀, P-쿠밀페놀, 데실페놀, 도데실페놀, 테트라데실페놀, 핵사데실페놀, 옥타데실페놀, 에이코실페놀, 도코실페놀 및 트리아콘틸페놀로 이루어진 군으로부터 선택된 1종 이상이고, 바람직하게는 p-tert-부틸페놀이며, 이 경우 분자량 조절 효과가 크다. 상기 분자량 조절제는 일례로 방향족 디을 화합물 100 중량부를 기준으로 0.01 중량부 이상, 0 , 1 증량부 이상, 또는 1 중량부 이상이고, 10 중량부 이하, 6 증량부 이하, 또는 5 중량부 이하로 포함되고, 이 범위 내에서 원하는 분자량을 얻을 수 있다. 폴리카보네이트조성물
또한, 본 발명은 상기 코폴리카보네이트 및 폴리카보네이트를 포함하는, 폴리카보네이트 조성물을 제공한다. 상기 코폴리카보네이트를 단독으로도 사용할 수 있으나, 필요에 따라 폴리카보네이트를 함께 사용함으로써 코폴리카보네이트의 물성을 조절할 수 있다. 바람직하게는, 상기 폴리카보네이트」 하기 화학식 4로 표시되 반복단위를 포함한다:
[화학식 4]
Figure imgf000014_0001
상기 화학식 4에서, R'i 내지 R'4는 각각 독립적으로 수소, d-10 알킬 또는 할로겐이고, Z'는 비치환되거나 또는 페닐로 치환된 ( 10 알킬렌, Cs-io 사이클로알킬렌, 0, S, SO, S02 또는 CO이다. 상기 화학식 4로 표시되는 반복단위는, 방향족 디올 화합물 및 카보네이트 전구체가 반응하여 형성된다. 상기 사용할 수 있는 방향족 디을 화합물 및 카보네이트 전구체는, 앞서 화학식 1로 표시되는 반복단위에서 설명한 바와 동일하다. 바람직하게는, 상기 화학식 4의 내지 R'4 및 Z'는, 각각 앞서 설명한 화학식 1의 Ri 내지 4 및 2와 동일하다. 또한 바람직하게는, 상기 화학식 4로 표시되는 반복단위는, 하기 화학식 4-1로 표시된다.
Figure imgf000015_0001
상기 폴리카보네이트 조성물에서, 코폴리카보네이트 및 폴리카보네이트의 증량비는 99:1 내지 1:99인 것이 바람직하며, 보다 바람직하게는 90:10 내지 50:50, 가장 바람직하게는 80: 20 내지 60:40이다. 또한, 본 발명은 상기 코폴리카보네이트, 또는 상기 폴리카보네이트 조성물을 포함하는 물품을 제공한다. 바람직하게는, 상기 물품은 사출 성형품이다. 또한, 상기 물품은 일례로 산화방지제, 열안정제, 광안정화제, 가소제, 대전방지제, 핵제, 난연제, 활제, 충격보강제, 형광증백제, 자외선흡수제, 안료 및 염료로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다. 상기 물품의 제조 방법은, 본 발명에 따른 코폴리카보네이트와 산화방자제 등과 같은 첨가제를 믹서를 이용하여 흔합한 후, 상기 흔합물을 압출기로 압출성형하여 펠릿으로 제조하고, 상기 펠릿을 건조시킨 다음 사출성형기로 사출하는 단계를 포함할 수 있다.
【발명의 효과】
상기에서 살펴본 바와 같이, 본 발명에 따라 특정 실록산 화합물을 폴리카보네이트 주쇄에 도입한 코폴리카보네이트는 상은충격강도, 저온충격강도 및 유동성 물성이 개선된다는 효과가 있다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. . 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. : 폴리오르가노실록산 (AP-30)의 제조
Figure imgf000016_0001
옥타메틸시클로테트라실록산 42.5 g( 142.8 隱 οθ , 테트라메틸디실록산 2.26 g( 16.8 隱 ol )을 혼합한 후, 이 혼합물을 산성백토 (DC-A3)를 옥타메틸시클로테트라실록산 100 중량부 대비 1 중량부와 함께 3L 플라스크 ( f lask)에 넣고 60°C로 4시간 동안 반웅시켰다. 반웅 종료 후 이를 에틸아세테이트로 희석하고 셀라이트 (cel i te)를 사용하여 빠르게 필터링하였다. 이렇게 수득된 미변성 폴리오르가노실록산의 반복단위 (n)는 ¾ NMR로 확인한 결과 30이었다. 상기 수득된 말단 미변성 폴리오르가노실록산에 2-알릴페놀 9.57 g(71.3 mmol) 및 칼스테드 백금 촉매 (Karstedt ' s platinum catalyst) 0.01 g(50 ppm)을 투입하여 90°C에서 3시간 동안 반웅시켰다. 반웅 종료 후 미반응 폴리오르가노실록산은 120°C, 1 torr의 조건으로 이베이퍼레이션하여 제거하였다. 이렇게 수득한 말단 변성 폴리오르가노실록산은 연황색 오일이며, 반복단위 (n)는 30이었고, 더 이상의 정제는 필요하지 않았으며, 화학식 1로 표시되는 폴리오르가노실록산의 제조는 ¾ NMR을 통해 확인하였고, 이를 AP-30으로 명명하였다. 제조예 2: 폴리오르가노실록산 (AP-60)의 제조
Figure imgf000017_0001
옥타메틸시클로테트라실록산 57.5 g(193.2 匪 ol), 테트라메틸디실록산 2.26 g(16.8 隱 ol)을 혼합한 후, 이 혼합물을 산성백토 (DC— A3)를 옥타메틸시클로테트라실록산 100 중량부 대비 1 중량부와 함께 3L 플라스크 (flask)에 넣고 60°C로 4시간 동안 반웅시켰다. 반옹 종료 후 이를 에틸아세테이트로 희석하고 샐라이트 (celite)를 사용하여 빠르게 필터링하였다. 이렇게 수득된 미변성 폴리오르가노실록산의 반복단위 (n)는 ¾ NMR로 확인한 결과 60이었다. 상기 수득된 말단 미변성 폴리오르가노실록산에 2-알릴페놀 7.07 g(60.6 mmol) 및 칼스테드 백금 촉매 (Karstedt 1 s platinum catalyst) 0.01 g(50 ppm)을 투입하여 90°C에서 3시간 동안 반웅시켰다. 반웅 종료 후 ¾미반웅 폴리오르가노실특산은 120 °C , 1 torr의 조건으로 이베이퍼레이션하여 제거하였다. 이렇게 수득한 말단 변성 폴리오르가노실록산은 연황색 오일이며, 반복단위 (n)는 60이었고, 더 이상의 정제는 필요하지 않았으며, 화학식 1로 표시되는 폴리오르가노실록산의 제조는 ¾ NMR을 통해 확인하였고, 이를 AP-60으로 명명하였다. 제조예 3: 폴리카보네이트 제조
20L 글라스 (Glass) 반웅기에 비스페놀 A(BPA) 978.4 g, NaOH 32% 수용액 1,620 g, 증류수 7,500 g을 넣고 질소 분위기에서 BPA가 완전히 녹은 것을 확인한 후, 메틸렌클로라이드 3,670 g 및 p-tert-부틸페놀 18.3 g을 투입하여 흔합하였다. 여기에 트리포스겐 542.5 g을 녹인 메틸렌클로라이드 3,850 g을 1시간 동안 적가하였다. 이때, NaOH 수용액을 pH 12로 유지하였다. 적가 완료 후 15분간 숙성하였고, 트리에틸아민 195.7 g을 메틸렌클로라이드에 녹여 투입하였다. 10분 후, 1N 염산 수용액으로 pH를 3으로 맞춘 후, 증류수로 3회 수세하고 나서, 메틸렌클로라이드 상을 분리한 다음, 메탄을에 침전시켜 분말상의 폴리카보네이트 수지를 수득하였다. PC 스텐다드 (Standard)를 이용한 GPC로 분자량을 측정하여 중량평균분자량이 27,500 g/mol인 것을 확인하였다. 실시예 1
단계 1) 코폴리카보네이트의 제조
20L 글라스 (Glass) 반웅기에 비스페놀 A(BPA) 978.4 g, NaOH 32% 수용액 1,620 g, 증류수 7,500 g을 넣고 질소 ,분위기에서 BPA가 완전히 녹은 것을 확인한 후, 메틸렌클로라이드 3,670 g, p-tert—부틸페놀 18.3 g, 앞서 제조한 폴리오르가노실록산 55.2 g (제조예 1의 폴리오르가노실록산 (AP-30) 80 wt% 및 제조예 2의 폴리오르가노실록산 (AP- 60) 20 %의 혼합물)을 투입하여 혼합하였다. 여기에 트리포스겐 542.5 g을 녹인 메틸렌클로라이드 3,850 g을 1시간 동안 적가하였다. 이때, NaOH 수용액을 pH 12로 유지하였다. 적가 완료 후 15분간 숙성하였고, 트리에틸아민 195.7 g을 메틸렌클로라이드에 녹여 투입하였다. 10분 후, 1N 염산 수용액으로 pH를 3으로 맞춘 후, 증류수로 3회 수세하고 나서, 메틸렌클로라이드 상을 분리한 다음, 메탄올에 침전시켜 분말상의 코폴리카보네이트를 수득하였다. 수득한 코폴리카보네이트는 PC 스텐다드 (Standard)를 이용한 GPC로 분자량을 측정하여 중량평균분자량이 29 , 500 g/irol인 것을 확인하였다. 단계 2) 사출시편의 제조
상기 단계 1에서 제조한 코폴리카보네이트에 트리스 (2,4-디 -tert- 부틸페닐)포스파이트 0.050 중량부, 옥타데실 -3-(3,5-디ᅳ tert-부틸 -4- 히드록시페닐)프로피오네이트를 0.010 중량부, 펜타에리스리를테트라스테아레이트를 0.030 중량부 첨가하여, 벤트 부착 Φ 30匪 이축압출기를 사용하여, 펠릿화한 후, JSW (주) N-20C 사출성형기를 사용하여 실린더 온도 300°C , 금형 온도 90°C에서 시편을 성형하였다. 실시예 2
상기 실시예 1과 동일한 방법으로 제조하되, 폴리오르가노실록산 55.2 g (제조예 1의 폴리오르가노실록산 (AP-30) 20 wt 및 제조예 2의 폴리오르가노실록산 (AP-60) 80 %의 흔합물)을 사용하여, 코플리카보네이트 및 이의 시편을 각각 제조하였다. 실시예 3
상기 실시예 1의 단계 1에서 제조한 코폴리카보네이트 80 중량 %와 상기 제조예 3의 폴리카보네이트 20 중량 %를 상기 실시예 1의 단계 2의 코폴리카보네이트 대신 사용하여, 이의 조성물 및 이의 시편을 제조하였다. 비교예 1
상기 실시예 1과 동일한 방법으로 제조하되, 폴리오르가노실록산 55.2 g (제조예 1의 폴리오르가노실록산 (AP-30) 100 «)을 사용하여, 코폴리카보네이트 및 이의 시편을 각각 제조하였다. 비교예 2
상기 실시예 1과 동일한 방법으로 제조하되, 폴리오르가노실록산 55.2 g (제조예 1의 플리오르가노실록산 (AP-60) 100 \ %)을 사용하여, 코폴리카보네이트 및 이의 사출시편을 각각 제조하였다. 비교예 3
상기 제조예 3의 폴리카보네이트를, 상기 실시예 1의 단계 2의 코폴리카보네이트 대신 사용하여, 이의 성형 시편을 제조하였다. 실험예: 물성 평가 ' 상기 실시예에서 제조된 코폴리카보네이트 및 비교예에서 제조된 폴리카보네이트 시편의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1에 나타내었다.
* 중량평균분자량 (g/mol): Agilent 1200 series를 이용, PC standard로 검량하여 측정하였다.
* 유동성 (MI): ASTM D1238(300°C, 1.2 kg 조건)에 의거하여 측정하였다.
* 상은층격강도 및 저온층격강도 (J/m): ASTM D256(l/8 inch, Notched Izod)에 의거하여 23°C와 -30°C에서 각각 측정하였다.
* 반복단위 : Varian 500丽 z을 이용하여 -NMR로 측정하였다.
* 투명도 (Haze): ASTM D1003에 의거하여 3 mm 두께의 시편으로 측정하였다.
【표 1】
Figure imgf000020_0001

Claims

【특허청구범위】
【청구항 1】
하기 화학식 1로 표시되는 반복단위 ,
하기 화학식 2로 표시되는 반복단위, 및
하기 화학식 3으로 표시되는 반복단위를 포함하는,
중량평균분자량 1 , 000 내지 100 , 000 g/mol의 코폴리카보네이트:
Figure imgf000021_0001
상기 화학식 1에서,
Ri 내지 R4는 각각 독립적으로 수소, 알킬 또는 할로겐이고, Z는 비치환되거나 또는 페닐로 치환된 ( 10 알킬렌, C3-10( I클로알킬렌, 0, S , SO, S02 또는 CO이고,
[화학식 2]
Figure imgf000021_0002
상기 화학식 2에서,
Ra는 각각 독립적으로 알킬렌이고,
R5는 각각 독립적으로 수소 또는 알킬이고
n은 1 내지 40의 정수이고, .
[화학식 3]
Figure imgf000022_0001
상기 화학식 3에서,
Rb는 각각 독립적으로 d-10 알킬렌이고,
¾는 각각 독립적으로 수소 또는 d-13 알킬이고,
m은 41 내지 150의 정수이다.
【청구항 2】
제 1항에 있어서,
상기 화학식 1로 표시되는 반복 단위는, 비스 (4-히드록시페닐)메탄, 비스 (4-히드록시페닐)에테르, 비스 (4-히드록시페닐)설폰, 비스 (4- 히드록시페닐)설폭사이드, 비스 (4-히드록시페닐)설파이드, 비스 (4- 히드록시페닐)케톤, .1,1-비스 (4-히드록시페닐)에탄, 비스페놀 A, 2,2- 비스 (4-히드록시페닐)부탄, 1,1-비스 (4-히드록시페닐)시클로핵산, 2,2- 비스 (4-히드록시 -3, 5-디브로모페닐 )프로판 , 2 , 2-비스 (4-히드록시 -3 , 5- 디클로로페닐)프로판, 2,2-비스 (4-히드록시 -3ᅳ브로모페닐)프로판, 2,2- 비스 (4-히드록시 -3-클로로페닐)프로판, 2, 2-비스 (4-히드록시 -3- 메틸페닐)프로판, 2,2-비스 (4-히드록시 -3,5-디메틸페닐)프로판, 1,1- 비스 (4-히드록시페닐 )-1-페닐에탄, 비스 (4-히드특시페닐)디페닐메탄, 및 a, ω-비스 [3- (으히드록시페닐)프로필]폴리디메틸실록산으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방향족 디을 화합물로부터 유래한 것을 특징으로 하는,
코폴리카보네이트.
【청구항 3]
제 1항에 있어서,
상기 화학식 1로 표시되는 반복단위는 하기 화학식 L-1로 표시되 O 2016/036202
것을 특징으로 하는,
코폴리카보네이트:
Figure imgf000023_0001
【청구항 4]
제 1항에 있어서,
¾ '는 각각 독립적으로 d-6 알킬인 것을 특징으로 하는 코폴리카보네이트.
【청구항 5】
제 1항에 있어서,
¾는 각각 독립적으로 알킬인 것을 특징으로 하는 코폴리카보네이트.
【청구항 6】
제 1항에 있어서,
¾ 및 ¾가 서로 동일한 것을 특징으로 하는, 코폴리카보네이트.
【청구항 7】
제 1항에 있어서,
n은 10 내지 35의 정수인 것을 특징으로 하는, 코폴리카보네이트.
【청구항 8]
제 1항에 있어서 m은 45 내지 100의 정수 인 것을 특징으로 하는,
코폴리카보네이트.
【청구항 9】
제 1항에 있어서,
상기 화학식 2로 표시되는 반복단위는 하기 화학식 2-1로 표시되는 것을 특징으로 하는,
코폴리카보네이트:
-1]
Figure imgf000024_0001
【청구항 10】
거 U항에 있어서,
상기 화학식 3으로 표시되는 반복단위는 하기 화학식 3-1로 표시되는 것을 특징으로 하는,
코폴리카보네이트:
-1]
Figure imgf000024_0002
【청구항 11】
제 1항에 있어서, 상기 코폴리카보네이트는 중량 평균 분자량이 15ᅳ 000 내지 35,000 g/n l인 것을 특징으로 하는,
코폴리카보네이트.
【청구항 12】
제 1항 내지 제 11항 중 어느 한 항의 코폴리카보네이트, 및 폴리카보네이트를 포함하는, 폴리카보네이트 조성물.
【청구항 13】
제 12항에 있어서,
. 상기 폴리카보네이트는 하기 화학식 4로 표시되는 반복단위를 포함하는 것을 특징으로 하는,
폴리카보네이트 조성물:
Figure imgf000025_0001
상기 화학식 1에서,
R1 ! 내지 R'4는 각각 독립적으로 수소, d-10 알킬 또는 할로겐이고, Z1는 비치환되거나 또는 페닐로 치환된 10 알킬렌, ᅳ10 사이클로알킬렌, 0, S, SO, S02 또는 CO이다.
【청구항 14】
제 12항에 있어서,
상기 코폴리카보네이트 및 폴리카보네이트의 중량비는 99:1 내지 1:99인 것을 특징으로 하는,
폴리카보네이트 조성물.
PCT/KR2015/009369 2014-09-05 2015-09-04 코폴리카보네이트 및 이를 포함하는 조성물 WO2016036202A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL15838004T PL3045487T3 (pl) 2014-09-05 2015-09-04 Kompozycja obejmująca kopoliwęglan
CN201580002901.7A CN105980445B (zh) 2014-09-05 2015-09-04 共聚碳酸酯以及含有该共聚碳酸酯的组合物
US14/914,153 US9732186B2 (en) 2014-09-05 2015-09-04 Copolycarbonate and composition comprising the same
EP15838004.8A EP3045487B1 (en) 2014-09-05 2015-09-04 Composition comprising a copolycarbonate
JP2016541578A JP6615098B2 (ja) 2014-09-05 2015-09-04 コポリカーボネートおよびこれを含む組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140118991 2014-09-05
KR10-2014-0118991 2014-09-05
KR10-2015-0109123 2015-07-31
KR20150109123 2015-07-31
KR10-2015-0125111 2015-09-03
KR1020150125111A KR101687683B1 (ko) 2014-09-05 2015-09-03 코폴리카보네이트 및 이를 포함하는 조성물

Publications (1)

Publication Number Publication Date
WO2016036202A1 true WO2016036202A1 (ko) 2016-03-10

Family

ID=55440146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009369 WO2016036202A1 (ko) 2014-09-05 2015-09-04 코폴리카보네이트 및 이를 포함하는 조성물

Country Status (1)

Country Link
WO (1) WO2016036202A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050968A (ko) * 2009-07-29 2012-05-21 테이진 카세이 가부시키가이샤 폴리카보네이트-폴리디오르가노실록산 공중합체
KR20130047332A (ko) * 2011-10-31 2013-05-08 주식회사 삼양사 저온 내충격성이 향상된 폴리카보네이트 수지 조성물 및 그 제조방법
KR20130047612A (ko) * 2011-10-31 2013-05-08 주식회사 삼양사 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
KR20130090358A (ko) * 2012-02-03 2013-08-13 주식회사 엘지화학 신규한 폴리오르가노실록산, 이를 포함하는 폴리카보네이트 수지 조성물 및 개질 폴리카보네이트 수지
WO2014058033A1 (ja) * 2012-10-12 2014-04-17 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体の連続的な製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050968A (ko) * 2009-07-29 2012-05-21 테이진 카세이 가부시키가이샤 폴리카보네이트-폴리디오르가노실록산 공중합체
KR20130047332A (ko) * 2011-10-31 2013-05-08 주식회사 삼양사 저온 내충격성이 향상된 폴리카보네이트 수지 조성물 및 그 제조방법
KR20130047612A (ko) * 2011-10-31 2013-05-08 주식회사 삼양사 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
KR20130090358A (ko) * 2012-02-03 2013-08-13 주식회사 엘지화학 신규한 폴리오르가노실록산, 이를 포함하는 폴리카보네이트 수지 조성물 및 개질 폴리카보네이트 수지
WO2014058033A1 (ja) * 2012-10-12 2014-04-17 出光興産株式会社 ポリカーボネート-ポリオルガノシロキサン共重合体の連続的な製造方法

Similar Documents

Publication Publication Date Title
EP3159367B1 (en) Copolycarbonate resin composition and article comprising same
JP6554470B2 (ja) コポリカーボネートおよびこれを含む組成物
EP3067379B1 (en) Copolycarbonate and composition containing same
EP3050908B1 (en) Copolycarbonate and composition comprising same
WO2016089028A1 (ko) 폴리카보네이트 수지 조성물
JP6847979B2 (ja) コポリカーボネートおよびこれを含む樹脂組成物
WO2016089135A2 (ko) 코폴리카보네이트 수지 조성물 및 이를 포함하는 물품
WO2016089024A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2017078470A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2016036202A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2016089118A2 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2016089171A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2016089172A1 (ko) 폴리카보네이트 조성물 및 이를 포함하는 물품
WO2016036203A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2016089136A1 (ko) 코폴리카보네이트 수지 조성물
WO2016089025A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물
WO2016089027A1 (ko) 코폴리카보네이트 및 이를 포함하는 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14914153

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015838004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838004

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE