WO2016035996A1 - 실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물 - Google Patents

실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물 Download PDF

Info

Publication number
WO2016035996A1
WO2016035996A1 PCT/KR2015/007310 KR2015007310W WO2016035996A1 WO 2016035996 A1 WO2016035996 A1 WO 2016035996A1 KR 2015007310 W KR2015007310 W KR 2015007310W WO 2016035996 A1 WO2016035996 A1 WO 2016035996A1
Authority
WO
WIPO (PCT)
Prior art keywords
doxorubicin
pharmaceutical composition
cilostazol
active ingredient
heart failure
Prior art date
Application number
PCT/KR2015/007310
Other languages
English (en)
French (fr)
Inventor
노구섭
고진신
박용휘
황진용
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2016035996A1 publication Critical patent/WO2016035996A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47042-Quinolinones, e.g. carbostyril

Definitions

  • the present invention includes cilostazol as an active ingredient, and relates to a pharmaceutical composition for preventing heart failure or dilated cardiomyopathy specifically caused by doxorubicin.
  • the anthracyclines family of doxorubicin which is used in the treatment of a wide range of cancers, including hematologic malignancies, soft tissue sarcomas, is administered primarily by intravenous injection and is free of binding to or intercalating DNA in cancer cells. It is an anticancer agent that kills cancer cells by making bases and inhibiting the replication of cancer cells.
  • Doxorubicin has low permeability to cell membranes because of its complex chemical structure and low solubility in physiological fluids. Therefore, it should be administered in excess of the dose necessary for the treatment of the target cancer. High doses are very disadvantageous because doxorubicin that has not penetrated into the cell membrane causes side effects by binding to plasma proteins or nonspecific interactions in the bloodstream. The most serious side effects of doxorubicin are fatal heart damage and are known to cause side effects such as nausea, vomiting, cardiac arrhythmia and appendicitis.
  • cilostazol is represented as 6- [4- (1-cyclohexyl-1H-tetrazol-5-yl) butoxy] -3,4-dihydroxy-2- (1H) -quinoline Is a potent selective phosphodiesterase type III (PDE III) inhibitor.
  • Cilostazol functions as a platelet aggregation inhibitor and vasodilator and is mainly used to treat peripheral arterial disease and intermittent claudication.
  • Korean Patent No. 1074430 discloses a doxorubicin formulation for anticancer use, but the improvement of physical properties is still insignificant.
  • the active ingredient is cilostazol as an adjuvant to suppress or reduce heart failure or dilated cardiomyopathy caused by side effects caused by anticancer drugs.
  • Pharmaceutical compositions comprising as never disclosed.
  • phosphodiesterase type III for the manufacture of a medicament for the treatment of patients suffering from organ dyslic dysfunction (Korean Patent Publication No. 2011-0089851) for the use of cilostazol )
  • Cisplatin effect sensitizer disclosed as an inhibitor or Ca 2+ -sensitizing agent, and disclosed in Japanese Patent Laid-Open No. 2009-242378, which uses a phosphodiesterase IIIB (PDE3B) inhibitor as an active ingredient.
  • PDE3B phosphodiesterase IIIB
  • the present invention has been made by the above-mentioned demands, and includes cilostazol as an active ingredient, and provides a pharmaceutical composition for preventing heart failure or dilated cardiomyopathy specifically caused by doxorubicin.
  • the present invention completed the present invention by confirming the effect of co-administration of cilostazol to reduce the degree of heart failure and expression of inflammation-related proteins.
  • the present invention comprises a cilostazol as an active ingredient, and provides a pharmaceutical composition for the prevention of heart failure or dilated cardiomyopathy specifically caused by doxorubicin.
  • the present invention comprises a doxorubicin and cilostazol (cilostazol) as an active ingredient, anti-cancer pharmaceutical composition characterized in that to prevent the side effects of heart failure or dilated cardiomyopathy specifically induced by doxorubicin (doxorubicin) To provide.
  • the present invention includes cilostazol as an active ingredient, and relates to a pharmaceutical composition for preventing heart failure or dilated cardiomyopathy specifically induced by doxorubicin.
  • Co-administration with cilostazol has the effect of reducing heart failure or dilated cardiomyopathy, a serious side effect caused by doxorubicin alone. That is, the pharmaceutical composition of the present invention improves the safety of doxorubicin by alleviating side effects caused by doxorubicin while maintaining the anticancer effect of doxorubicin.
  • 1 is a graph showing the weight change of the weight and heart of the mouse to which the pharmaceutical composition of the present invention was administered.
  • Figure 2 is a graph showing the change in the diastolic left ventricular diameter and ventricular contracture rate of each treatment group measured by echocardiography.
  • FIG. 3 is a diagram showing the histological changes of heart muscle.
  • Figure 4 shows the BNP measurement results showing the degree of heart failure of the heart.
  • FIG. 5 is a view showing the results of the inflammatory response of cardiomyocytes.
  • FIG. 6 is a diagram showing the effect of inhibiting the migration in the nucleus of NF-kB p65 protein by cilostazol (cilostazol).
  • Figure 7 shows the results of measuring the concentration of COX-2 protein, the final product of the NF-kB signaling pathway.
  • the present invention includes cilostazol as an active ingredient, and provides a pharmaceutical composition for preventing heart failure or dilated cardiomyopathy specifically caused by doxorubicin.
  • the cilostazol reduces the expression of TLR4 (toll-like receptor 4) protein increased by doxorubicin, and NF- ⁇ B p65 (nuclear factor-kappaB p65) protein is translocated from the cytoplasm to the nucleus by doxorubicin. There is a characteristic which inhibits being.
  • one or more carriers selected from pharmaceutically acceptable saline solution, sterile water, Ringer's solution, buffered saline solution, dextrose solution, maltodextrin solution glycerol and ethanol may be further included.
  • at least one auxiliary agent selected from pharmaceutically acceptable antioxidants, buffers, bacteriostatic agents, diluents, dispersants, surfactants, binders and lubricants may be further included.
  • compositions of the present invention can be formulated in suitable formulations using known techniques, the dosage of which is the body weight, age, sex, state of health, diet, time of administration, method, excretion rate and disease of the patient.
  • the range varies depending on the severity and the like, and can be easily determined by those skilled in the art.
  • the pharmaceutical composition is preferably administered orally, but is not limited thereto.
  • the present invention comprises a doxorubicin and cilostazol (cilostazol) as an active ingredient, anti-cancer pharmaceutical composition characterized in that to prevent the side effects of heart failure or dilated cardiomyopathy specifically induced by doxorubicin (doxorubicin) To provide.
  • the active ingredients of the doxorubicin and cilostazol may further comprise at least one carrier selected from pharmaceutically acceptable saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution glycerol and ethanol, the In addition to the active ingredients of doxorubicin and cilostazol, it may further comprise one or more adjuvants selected from pharmaceutically acceptable antioxidants, buffers, bacteriostatic agents, diluents, dispersants, surfactants, binders and lubricants.
  • mice Four-week-old male ICR mice were purchased from Coretech (Pyeongtaek, Korea) and managed and bred at the Gyeongsang National University animal facility. All animal experiments were approved by the Research Institute Committee of Gyeongsang National University, and experimental animal management was conducted according to the National Institutes of Health guide. Mice were administered day / night at 12-hour cycles and were fed standard feed and water up to one week before the experimental procedure to allow the mice to adapt to the new environment and weighed every two weeks.
  • mice were intraperitoneally administered saline or CMC for 6 weeks prescribing doxorubicin and cilostazol.
  • mice treated with doxorubicin alone were inoculated with doxorubicin (Adriamycin, Ildong Pharmaceutical, Korea) three times per week for two weeks at an amount of 15 mg / kg, followed by physiological saline or from week three to six weeks.
  • CMC was administered intraperitoneally.
  • doxorubicin (Adriamycin, Ildong Pharmaceutical, Korea) was intraperitoneally injected three times a week at an amount of 15 mg / kg.
  • the sol was administered for 6 weeks in combination with intraperitoneal administration of doxorubicin (50 mg / kg, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan) for 5 days per week (repeated for 5 days and not for 2 days).
  • doxorubicin and cilostazol were administered in the first two weeks, and cilostazol was administered only from 3 to 6 weeks.
  • mice treated only with cilostazol received only cilostazol for 6 weeks for 5 days per week (5 days, repeated not two days).
  • the cilostazol was used in combination with 0.5% carboxymethylcelluose sodium salt (CMC) dissolved in 0.9% physiological saline.
  • CMC carboxymethylcelluose sodium salt
  • VIVID Q VIVID Q system
  • LVEDD final diastolic
  • LVESD final systolic
  • the left ventricular LV shortening of the mouse was calculated using the following equation (1).
  • PBS phosphate buffered saline
  • Heart tissue was paraffin embedded and sectioned at 5 ⁇ m intervals. Cardiac tissue sections were hematoxylin and eosin (H & E) staining. The sections were visualized on a BX51 optical microscope (Olympus, Tokyo, Japan) and digital images were acquired.
  • BNP brain natriuretic peptide
  • Ice-cold lysis buffer (10 mM HEPES-KOH [pH 7.9], 1.5 mM MgCl 2 , 10 mM KCl, 1 ⁇ g / ml aprotinin, 3 ⁇ g / ml pepstatin, 0.5 ⁇ g) / Ml Lupeptin, 0.2mM PMSF, 0.5mM DTT) and then crushed tissues.
  • lysis buffer 15 mM HEPES (pH 7.9), 0.25 M sucrose, 60 mM KCl, 10 mM NaCl, 1 mM ethylene glycol tetra Acetic acid (ethylene glycol tetraacetic acid), 1 mM phenylmethylsulfonyl fluoride, and 2 mM NaF].
  • the cells were analyzed using TLR4, NF-kB, COX-2 protein specific antibodies.
  • the band size was quantified by ⁇ -tubulin and visualized using chemiluminescent substrates (Pierce, Rockford, IL, USA). Band density was analyzed using a Multi-Gauge V3.0 image analysis program (Fujifilm Tokyo, Japan).
  • Time or group i.e., CTL, Doxo, Doxo + Cilo , Cilo
  • differences ANOVA according to; Student's (ANOVA one-way analysis of variance) - Newman - the kulseu black (Student-Newman-Keuls test) post Statistical analysis was performed using the hoc analysis or Student's t-test comparing only two groups.
  • Example 1 Analysis of the weight change of the mouse and the weight of the heart
  • the heart size of the Dox group was smaller than that of the CTL group, and the heart was filled with pleural effusion.
  • the heart weight was measured, there was a marked decrease in the Doxo group, but the heart weight was preserved in the Doxo + Cilo group (C).
  • Echocardiography was performed to analyze the changes in the diastolic left ventricular diameter and ventricular contracture rate of the four groups. As shown in FIG. 2, it was observed that ventricular dilatation (B) and ventricular contraction rate (C) were decreased in the Doxo group, but ventricular dilation was not observed in the Doxo + Cilo group, and the decrease in ventricular contraction rate was also reduced. I could confirm it.
  • H & E staining was performed to analyze the histological changes of the heart muscle tissues of the four groups. From the results shown in FIG. 3, it was confirmed that muscle tissue defects and phobias progressed in the myocardial muscles of the Doxo group, and the degree of myocardial damage in the experimental group administered with doxorubicin and cilostazol in combination was determined. It was confirmed that less than the degree of muscle damage.
  • BNP measurements were performed to determine the effect of the pharmaceutical compositions of the present invention on heart failure specifically caused by doxorubicin.
  • the BNP was significantly increased in the Doxo group compared to the CTL group, and the BNP elevation was reduced in the Doxo + Cilo group due to the administration of Cilo. It was confirmed that there is an effect to alleviate or reduce.
  • the expression level of TLR4 protein related to the inflammatory response was analyzed by Western blot technique.
  • NF-kB p65 protein in the Doxo group was confirmed that the amount of protein in the nucleus than the cytoplasm (A), the expression of NF-kB p65 protein in the Doxo + Cilo group is higher than the nucleus It was found that cilostazol inhibited the migration of NF-kB p65 protein from the cytoplasm to the nucleus (B). On the other hand, the results of the experimental group administered only cilostazol showed that cilostazol inhibits the expression of NF-kB p65 protein in the nucleus (C).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 실로스타졸(cilostazol)을 유효성분으로 포함하며, 독소루비신(doxorubicin)에 의해 특이적으로 유도되는 심부전 또는 확장성 심근병증의 예방용 약학 조성물에 관한 것이다. 본 발명의 약학 조성물은 독소루비신(doxorubicin) 항암제의 효과는 그대로 유지하면서, 상기 독소루비신(doxorubicin)만 처방했을 때의 부작용을 감소시키는 보조제로서의 실로스타졸을 유효성분으로 포함함으로써 상기 독소루비신(doxorubicin)의 안정성이 증진되어 항암치료의 효과를 향상시킬 수 있는 것이다.

Description

실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물
본 발명은 실로스타졸을 유효성분으로 포함하며, 독소루비신에 의해 특이적으로 발생하는 심부전 또는 확장성 심근병증의 예방용 약학 조성물에 관한 것이다.
통상적으로, 혈액종양, 악성종양, 연조직 육종을 포함한 광범위한 범위의 암치료에 사용되는 안트라사이클린(anthracyclines) 계열의 독소루비신은 주로 정맥 내 주사로 투여되며, 암세포의 DNA에 결합하거나 DNA 사이에 끼어 들어가서 없는 염기를 만들어, 암 세포의 복제를 억제하여 암세포를 죽이는 항암제이다.
독소루비신은 화학적 구조가 복잡하고, 생리학적 유체에 대한 용해도가 낮은 편이기 때문에 세포막에 대한 투과성이 낮다. 따라서, 타겟 암의 치료에 필요한 용량보다 과량 투여해야 한다. 세포막으로 투과되지 못한 독소루비신은 혈장 단백질과 결합하거나 혈류에서 비특이적으로 상호작용하여 부작용을 일으키기 때문에 높은 투여량은 매우 불리할 수밖에 없다. 독소루비신의 가장 심각한 부작용은 치명적인 심장 손상이며, 구역질, 구토, 심장 부정맥, 맹장염 등의 부작용이 나타나는 것으로 알려져 있다.
한편, 실로스타졸(cilostazol)은 6-[4-(1-사이클로헥실-1H-테트라졸-5-일)부톡시]-3,4-디히드록-2-(1H)-퀴놀린으로 표시되는 강력한 선택적인 포스포디에스터라아제 타입 Ⅲ(PDE Ⅲ) 억제제이다. 실로스타졸은 혈소판 응집 억제제 및 혈관확장제로서 기능을 하며, 말초 동맥 질환 및 간헐성 파행 환자를 치료하는데 주로 사용되고 있다.
상기 독소루비신을 항암제로 사용할 때 발생하는 부작용의 문제점을 해소하기 위하여, 제형을 개선하는 방법으로 독소루비신의 물성을 개질함으로써 부작용 문제를 해소하고자 노력하였다. 일례로, 한국등록특허 제1074430호에 항암 용도를 위한 독소루비신 제형이 개시되어 있으나, 물성의 개선은 여전히 미미한 실정이다.
또한, 안트라사이클린(anthracyclines) 계열의 항암제인 독소루비신의 항암 효과는 그대로 유지하면서, 항암제 처방에 의한 부작용으로 발생하는 심부전 또는 확장성 심근병을 억제 또는 감소시키는 보조제로서의 실로스타졸(cilostazol)을 유효성분으로 포함하는 약학조성물은 개시된 바 없다.
한편, 실로스타졸의 용도에 대하여 한국공개특허 제2011-0089851호에 장기 기능장애(diastolic dysfunction)를 앓고 있는 환자 치료용 약제(medicament)를 제조하기 위한, 포스포디에스테라제 타입 Ⅲ(PDE Ⅲ) 억제제 또는 Ca2+-감작제(sensitizing agent)로서 개시되어 있고, 일본공개특허 제2009-242378호에 포스포디에스테라제 ⅢB(PDE3B) 저해제를 유효성분으로 하는 시스플라틴 효과 증감제에 관한 것이 개시되어 있지만, 독소루비신과 병용 처방하여 독소루비신의 부작용을 완화하는 효과에 대해서는 개시된 없다.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 실로스타졸을 유효성분으로 포함하며, 독소루비신에 의해 특이적으로 발생하는 심부전 또는 확장성 심근병증의 예방용 약학 조성물을 제공하는 것이다. 본 발명은 실로스타졸을 병용투여하여 심부전의 정도 및 염증 관련 단백질의 발현이 경감되는 효과를 확인함으로써, 본 발명을 완성하였다.
상기 목적을 달성하기 위하여, 본 발명은 실로스타졸을 유효성분으로 포함하며, 독소루비신에 의해 특이적으로 발생하는 심부전 또는 확장성 심근병증의 예방용 약학 조성물을 제공한다.
또한, 본 발명은 독소루비신 및 실로스타졸(cilostazol)을 유효성분으로 포함하며, 독소루비신(doxorubicin)에 의해 특이적으로 유도되는 심부전 또는 확장성 심근병증의 부작용을 예방하는 것을 특징으로 하는 항암용 약학 조성물을 제공한다.
본 발명은 실로스타졸을 유효성분으로 포함하며, 독소루비신에 의해 특이적으로 유발되는 심부전 또는 확장성 심근병증의 예방용 약학 조성물에 관한 것이다.
실로스타졸과 함께 병용투여함으로써 독소루비신만 투여했을 때 유발되는 심각한 부작용인 심부전 또는 확장성 심근병증을 감소시키는 효과가 있는 것이다. 즉, 본 발명의 약학 조성물은 독소루비신의 항암효과 효과는 그대로 유지하면서, 독소루비신에 의한 부작용을 완화시킴으로써, 독소루비신의 안전성을 향상시킨 것이다.
도 1은 본 발명의 약학 조성물을 투여한 마우스의 체중 및 심장의 무게 변화를 나타낸 그래프이다.
도 2는 심장 초음파로 측정한 각 치료 군의 확장기 좌심실 내경 및 심실 구축률 변화를 나타낸 그래프이다.
도 3은 심장근육의 조직학적 변화를 나타낸 도면이다.
도 4는 심장의 심부전의 정도를 나타내는 BNP 측정결과를 나타낸 것이다.
도 5는 심근 세포의 염증반응 결과를 나타낸 도면이다.
도 6은 실로스타졸(cilostazol)에 의한 NF-kB p65 단백질의 핵 내 이동이 억제되는 효과를 나타낸 도면이다.
도 7은 NF-kB 신호전달경로의 최종 생산물인 COX-2 단백질의 농도를 측정한 결과를 나타낸 도면이다.
본 발명은 실로스타졸을 유효성분으로 포함하며, 독소루비신에 의해 특이적으로 발생하는 심부전 또는 확장성 심근병증의 예방용 약학 조성물을 제공한다.
상기 실로스타졸은 독소루비신에 의해 증가된 TLR4(toll-like receptor 4) 단백질의 발현량을 감소시키며, 독소루비신에 의해 NF-κB p65(nuclear factor-kappaB p65) 단백질이 세포질에서 핵으로 이동(translocation) 되는 것을 저해하는 특징이 있다.
상기 실로스타졸(cilostazol) 이외에 약학적으로 허용 가능한 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액 글리세롤 및 에탄올 중에서 선택된 1종 이상의 담체를 더 포함할 수 있다. 또한, 상기 실로스타졸(cilostazol) 이외에 약학적으로 허용 가능한 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제 중에서 선택된 1종 이상의 보조제를 더 포함하는 것이 가능하다.
임상 투여를 위해 본 발명의 약학적 조성물은 공지의 기술을 이용하여 적합한 제형으로 제제화할 수 있고, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하며, 본 기술분야의 통상의 전문가가 용이하게 결정할 수 있다.
상기 약학 조성물은 경구투여 하는 것이 바람직하지만 이에 한정하지 않는다.
또한, 본 발명은 독소루비신 및 실로스타졸(cilostazol)을 유효성분으로 포함하며, 독소루비신(doxorubicin)에 의해 특이적으로 유도되는 심부전 또는 확장성 심근병증의 부작용을 예방하는 것을 특징으로 하는 항암용 약학 조성물을 제공한다.
상기 독소루비신 및 실로스타졸의 유효성분 이외에 약학적으로 허용가능한 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액 글리세롤 및 에탄올 중에서 선택된 1종 이상의 담체를 더 포함할 수 있으며, 상기 독소루비신 및 실로스타졸의 유효성분 이외에 약학적으로 허용가능한 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제 중에서 선택된 1종 이상의 보조제를 더 포함할 수 있다.
이하, 실시예를 이용하여 본 발명을 더욱 상세하게 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다.
재료 및 방법
동물
4주령 수컷 ICR 마우스를 코아텍 사(평택, 한국)로부터 구입하여 경상대학교 동물시설에서 관리 및 사육하였다. 모든 동물실험은 경상대학교의 연구기관 위원회의 승인을 받았으며, 실험동물 관리는 국립보건원 가이드에 따라 수행하였다. 마우스는 낮/밤을 12시간 주기로 관리하였으며, 마우스가 새로운 환경에 적응할 수 있도록 실험적 과정을 수행하기 1주일 전까지는 표준 급이 및 물을 공급하였고, 2주마다 체중을 측정하였다.
약물투여
마우스를 4 그룹으로 무작위 분류하였다. 대조군(CTL, n=10), 독소루비신만 처리한 실험군(Doxo, n=14), 실로스타졸과 독소루비신을 함께 처리한 실험군(Doxo+Clio, n=12), 실로스타졸(Cilo)만 처리한 실험군(Cilo, n=9)로 분류하여 약물을 투여하였다.
상기 대조군 마우스에는 독소루비신 및 실로스타졸을 처방하는 6주 동안 생리식염수 또는 CMC를 복강 내 투여하였다.
상기 독소루비신만 처리한 마우스 실험군은 15mg/kg의 양으로 독소루비신(아드리아마이신, 일동제약, 한국)을 일주일 간격으로 2주 동안 3번 복강 내 주사하였고, 이후 3주차부터 6주 될 때까지 생리식염수 또는 CMC를 복강 내 투여하였다.
실로스타졸과 독소루비신을 함께 처리한 마우스 실험군(Doxo+Clio, n=12)에는 15mg/kg의 양으로 독소루비신(아드리아마이신, 일동제약, 한국)을 일주일 간격으로 3번 복강 내 주사하였고, 실로스타졸은 (50㎎/㎏, 오츠카 제약 (주), 도쿠시마, 일본) 독소루비신 복강 내 투여와 병용하여, 주당 5일 동안(5일 동안 투여하고, 이틀 동안 투여하지 않기를 반복함) 6주간 투여하였다. 즉, 첫 2주간은 독소루비신과 실로스타졸을 병용 투여하였고, 3주차부터 6주까지는 실로스타졸만 투여하였다.
실로스타졸(Cilo)만 처리한 마우스 실험군(Cilo, n=9)에는 주당 5일 동안(5일 동안 투여하고, 이틀 동안 투여하지 않기를 반복함) 6주간 실로스타졸만 투여하였다. 상기 실로스타졸은 0.9% 생리 식염수에 용해된 0.5%의 카르복실메틸셀룰로오스 나트륨염(carboxylmethylcelluose sodium salt; CMC)와 혼합하여 사용하였다.
심장 평가(Cardiac Assessment)
2차원 및 M 모드 심 초음파는 VIVID Q 시스템 (GE 헬스, WAUWATOSA WI)과 12 MHz의 선형 배열 변환기를 사용하여 평가하였다. 최종 이완기(LVEDD)에서와 최종 수축기(LVESD)에서 좌심실 내부 치수는 M-모드 방식으로 측정하였다.
하기 식(1)을 이용하여 마우스의 좌심실(LV) 부분 단축을 계산하였다.
[(LVEDD - LVESD)/LVEDD]×100 식(1)
조직 수집 및 시료 준비
조직 분석을 위해 마우스 (그룹당 n = 4)은 졸레틸(zoletil)로 마취한 후, 인산 완충 식염수 0.1 ㎖ (PBS)에 용해시킨 4% 파라포름알데히드로 헤파린 염(hepariized saline)으로 심장에 관류하였다.
여섯 시간 동안 고정한 후, 심장 조직을 파라핀 포매(paraffin embedding) 하고 5μm 간격으로 절단(section)하였다. 심장 조직 섹션은 헤마톡실린 및 에오신 (H & E) 염색을 하였다. 상기 섹션은 BX51 광학 현미경 (올림푸스, 도쿄, 일본)에서 시각화하고, 디지털 이미지를 획득하였다.
혈청 BNP 농도의 측정
BNP(brain natriuretic peptide)의 혈청 농도는 정량적으로 제조업체의 지침에 따라 BNP 마우스 효소 면역 분석법 (ELISA) 키트를 사용하여 측정하였다.
세포질과 핵 분획
세포질과 핵 분획을 위해, 심장을 신속하게 적출하고, 빙냉(ice-cold) PBS에 보관하였다. 빙냉(ice-cold) 용해 완충액(10mM의 HEPES-KOH [pH7.9], 1.5mM MgCl2, 10mM KCl, 1㎍/㎖ 아프로티닌(aprotinin), 3㎍/㎖ 펩스타틴(pepstatin), 0.5㎍/㎖ 류펩틴(leupeptin), 0.2mM PMSF, 0.5mM DTT)으로 잘게 부순 후에 조직파쇄 하였다.
웨스턴 블랏 분석
상기 그룹당 5 내지 7마리의 마우스에서 단백질을 추출하기 위하여 동결심장조직을 용해(lysis) 완충용액[15mM HEPES (pH 7.9), 0.25M 수크로스(sucrose), 60mM KCl, 10mM NaCl, 1mM 에틸렌글리콜 테트라아세트산(ethylene glycol tetraacetic acid), 1mM 페닐메틸술폰닐 플루오라이드(phenylmethylsulfonyl fluoride), 및 2mM NaF]으로 파쇄하였다.TLR4, NF-kB, COX-2 단백질 특이 항체를 이용하여 분석하였다. 밴드의 크기는 α-튜불린(tubulin)으로 정량화하였고, 화학발광 기질(Pierce, Rockford, IL, USA)을 이용하여 가시화하였다. Multi-Gauge V3.0 이미지 분석 프로그램(후지필름 도쿄, 일본)을 이용하여 밴드 밀도를 분석하였다.
통계 분석
시간 또는 실험군 (즉, CTL, Doxo, Doxo + Cilo, Cilo)에 따른 차이는 일원분산분석(ANOVA; one-way analysis of variance)의 스튜던트-뉴만-쿨스 검정(Student-Newman-Keuls test)의 post-hoc 분석 또는 오직 두 그룹간을 비교하는 Student's t-test로 통계분석을 실시하였다.
분석 값은 평균±평균의 표준 오차(SEM)로 표현하였으며, P 값이 0.05 미만일 때(P < 0.05), 통계적으로 유의한 것으로 간주하였다.
실시예 1. 마우스의 체중 및 심장의 무게 변화 분석
본 발명의 약학 조성물을 투여한 마우스의 체중 및 심장의 무게 변화를 측정하였다. 도 1에 나타낸 바와 같이, 각 실험군에서 0(초기), 2, 4 및 6주에 마우스의 몸무게를 측정하였다(A). 6주 후, 실험군 간의 체중 및 심장의 무게변화를 살펴보면, 대조군(CTL)과 실로스타졸(Cilo)만 투여한 실험군에서는 지속적인 몸무게의 증가가 관찰되었으나, 독소루비신(Doxo)만 투여한 실험군에서는 의미 있는 몸무게 감소가 관찰되었고, 독소루비신과 실로스타졸을 병용 투여한 실험군(Doxo+Cilo)에서는 몸무게의 감소가 둔화되는 것이 관찰되었다(B).
또한, 6주 후, 마우스의 심장을 열었을 때, Dox군의 심장크기가 CTL군에 비해 심장의 크기가 작은 것을 관찰되었고, 심장에 흉수(pleural effusion)가 차 있는 것이 관찰되었다. 심장 무게를 측정하였을 때, Doxo군에서 뚜렷한 감소가 있었으나, Doxo+Cilo군에서는 심장 무게가 보존되는 것을 확인하였다(C).
실시예 2. 확장기 좌심실 내경 및 심실 구축률 변화 분석
상기한 4 그룹의 실험군에 대하여 확장기 좌심실 내경 및 심실 구축률의 변화를 분석하기 위하여 심장초음파 측정을 실시하였다. 결과는 도 2에 개시한 바와 같이, Doxo군에서는 심실의 확장(B) 및 심실 수축률(C) 저하된 것이 관찰되었으나 Doxo+Cilo군에서는 심실 확장이 관찰되지 않았고, 심실 수축률의 저하도 경감되는 것을 확인할 수 있었다.
실시예 3. 심장근육의 조직학적 변화 분석
상기한 4 그룹의 실험군의 심장근육 조직의 조직학적 변화를 분석하기 위하여 H&E 염색을 실시하였다. 도 3에 나타낸 결과로부터, Doxo군의 심근육에서 근육조직의 결손 및 공포화가 진행됨을 확인할 수 있었고, 독소루비신과 실로스타졸(Cilostazol) 병용 투여하였던 실험군에서의 심근육 손상 정도가 상기 Doxo군의 심근육 손상 정도보다 적게 되었음을 확인하였다.
실시예 4. 심장의 심부전의 정도를 나타내는 BNP 측정
본 발명의 약학 조성물이 독소루비신에 의해 특이적으로 야기되는 심부전에 미치는 영향을 확인하기 위하여 BNP 측정을 실시하였다.
결과는 도 4에 개시한 바와 같이, CTL군과 비교하여 Doxo군에서 BNP가 현저히 상승 되었고, Doxo+Cilo군에서는 BNP 상승이 Cilo 투여로 인해 경감되는 결과를 보여 본 발명의 약학 조성물이 심부전의 진행을 완화 또는 경감시키는 효과가 있음을 확인하였다.
실시예 5. 심근세포의 염증반응 평가
1) TLR 단백질 발현량 분석
본 발명의 약학 조성물이 독소루비신에 의해 발생되는 염증반응에 미치는 영향을 확인하기 위하여 염증반응에 관련된 TLR4 단백질의 발현량을 웨스턴 블랏 기법으로 분석하였다.
도 5에 개시한 바와 같이, Doxo군에서의 TLR4 단백질 발현량이 CTL군에 비해 현저히 증가됨을 확인할 수 있었으며, Doxo+Cilo군에서는 상대적으로 TLR4 단백질의 발현량 증가되지 않았고, 대조군과 비슷한 수준의 발현정도를 보였다(B).
2) 실로스타졸에 의한 NF-kB p65의 핵 내 이동 억제
본 발명의 약학 조성물이 독소루비신에 의해 NF-kB p65이 세포질에서 핵으로 이동하는 것을 억제하는 것을 확인하기 위하여 웨스턴 블랏을 실시하였다.
도 6에 개시한 바와 같이, Doxo군에서 NF-kB p65 단백질이 세포질보다 핵 내의 단백질 양이 높음을 확인하였고(A), Doxo+Cilo군에서는 NF-kB p65 단백질의 발현량이 핵보다 세포질이 높다는 것을 확인함으로써 실로스타졸이 NF-kB p65 단백질이 세포질에서 핵으로 이동하는 것이 억제되었음을 알수 있었다(B). 한편, cilostazol만 투여한 실험군의 결과로부터, 실로스타졸이 핵내의 NF-kB p65 단백질 발현을 억제시킨다는 것을 알 수 있었다(C).
3) NF-kB 신호전달경로의 최종생성물인 COX-2의 농도 측정
NF-kB 신호전달경로의 최종생성물인 COX-2 단백질의 발현량의 변화를 확인하기 위하여 웨스턴 블랏 분석을 실시하였다.
도 7에 개시한 바와 같이, Doxo군에서는 CTL군보다 COX-2 단백질의 발현량이 현저하게 증가하였음을 확인할 수 있었고, Doxo+Cilo군에서는 COX-2 단백질의 발현량이 증가하지 않고 유지되고 있음을 확인할 있었다. 따라서, 독소루비신에 의해 유발되는 염증반응이 병용 투여된 실로스타졸에 의해 조절됨을 확인할 수 있었다(B).

Claims (9)

  1. 실로스타졸(cilostazol)을 유효성분으로 포함하며, 독소루비신(doxorubicin)에 의해 특이적으로 유도되는 심부전 또는 확장성 심근병증의 예방용 약학 조성물.
  2. 제1항에 있어서, 상기 실로스타졸은 독소루비신에 의해 증가된 TLR4(toll-like receptor 4) 단백질의 발현을 감소시키는 것을 특징으로 하는 약학 조성물.
  3. 제1항에 있어서, 상기 실로스타졸은 독소루비신에 의해 NF-κB p65(nuclear factor-kappaB p65) 단백질이 세포질에서 핵으로 이동(translocation) 되는 것을 저해하는 것을 특징으로 하는 약학 조성물.
  4. 제1항에 있어서, 상기 실로스타졸 이외에 약학적으로 허용 가능한 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액 글리세롤 및 에탄올 중에서 선택된 1종 이상의 담체를 더 포함하는 것을 특징으로 하는 약학 조성물.
  5. 제1항에 있어서, 상기 실로스타졸 이외에 약학적으로 허용 가능한 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제 중에서 선택된 1종 이상의 보조제를 더 포함하는 것을 특징으로 하는 약학 조성물.
  6. 제1항에 있어서, 상기 약학 조성물은 경구 투여용인 것을 특징으로 하는 약학 조성물.
  7. 독소루비신 및 실로스타졸(cilostazol)을 유효성분으로 포함하며, 독소루비신(doxorubicin)에 의해 특이적으로 유도되는 심부전 또는 확장성 심근병증의 부작용을 예방하는 것을 특징으로 하는 항암용 약학 조성물.
  8. 제7항에 있어서, 상기 유효성분 이외에 약학적으로 허용가능한 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액 글리세롤 및 에탄올 중에서 선택된 1종 이상의 담체를 더 포함하는 것을 특징으로 하는 항암용 약학 조성물.
  9. 제7항에 있어서, 상기 유효성분 이외에 약학적으로 허용 가능한 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제 중에서 선택된 1종 이상의 보조제를 더 포함하는 것을 특징으로 하는 항암용 약학 조성물.
PCT/KR2015/007310 2014-09-04 2015-07-14 실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물 WO2016035996A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0117899 2014-09-04
KR1020140117899A KR101648740B1 (ko) 2014-09-04 2014-09-04 실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물

Publications (1)

Publication Number Publication Date
WO2016035996A1 true WO2016035996A1 (ko) 2016-03-10

Family

ID=55440018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007310 WO2016035996A1 (ko) 2014-09-04 2015-07-14 실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물

Country Status (2)

Country Link
KR (1) KR101648740B1 (ko)
WO (1) WO2016035996A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102616360B1 (ko) 2021-11-09 2023-12-27 재단법인 아산사회복지재단 염증성 근육병증 진단용 바이오마커 조성물

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005995A (ko) * 2001-06-13 2004-01-16 가부시키가이샤 오츠까 세이야꾸 고죠 주사용 실로스타졸 수성 제제
KR20140101391A (ko) * 2011-12-09 2014-08-19 욱크하르트 리미티드 심혈관 질환의 치료 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040005995A (ko) * 2001-06-13 2004-01-16 가부시키가이샤 오츠까 세이야꾸 고죠 주사용 실로스타졸 수성 제제
KR20140101391A (ko) * 2011-12-09 2014-08-19 욱크하르트 리미티드 심혈관 질환의 치료 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. P. METTLER ET AL.: "Adriamycin-induced Cardiotoxicity (Cardiomyopathy and Congestive Heart Failure) in Rats", CANCER RESEARCH, vol. 37, 1977, pages 2705 - 2713 *
KANLOP ET AL.: "Effect of cilosatzol in the heart", JOURNAL OF CARDIOVASCU LAR MEDICINE, vol. 12, no. 2, 2011, pages 88 - 95 *
WON SUN PARK ET AL.: "Cilostazol protects mice against endotoxin shock and attenuates LPS-induced cytokine expression in RAW 264.7 macrophages via MAPK inhibition and NF- kappaB inactivation: Not involved in cAMP mechanisms", INTERNATIONAL IMMUNOPHARMACOLOGY, vol. 10, 2010, pages 1077 - 1085 *

Also Published As

Publication number Publication date
KR101648740B1 (ko) 2016-08-17
KR20160028835A (ko) 2016-03-14

Similar Documents

Publication Publication Date Title
EP3066101B1 (en) Combination therapy for cancer using bromodomain and extra-terminal (bet) protein inhibitors
RU2567044C2 (ru) Ингибиторы 1 киназы контрольной точки клеточного цикла для усиления днк-повреждающих агентов
JP2002145777A (ja) アラキドン酸誘発皮膚疾患治療剤
EP1951233B1 (en) Pirfenidone/toll-like receptor (tlr) agonist compositions and methods for using them to stimulate production of granulocyte colonizing stimulating factor (g-csf)
KR20200098536A (ko) Dux4 발현과 관련된 질병의 치료를 위한 화합물
WO2022062223A1 (zh) 金诺芬在制备用于治疗去势抵抗性前列腺癌药物中的应用
US20130273178A1 (en) Methods and compositions for promoting activity of anti-cancer therapies
KR102084758B1 (ko) 섬유화증 예방 또는 개선용 조성물
WO2021118324A1 (ko) 암의 예방 또는 치료용 약학 조성물
Liu et al. Rapamycin liposomes combined with 5-fluorouracil inhibits angiogenesis and tumor growth of APC (Min/+) mice and AOM/DSS-induced colorectal cancer mice
US9931355B2 (en) Combination of compounds derived from gallic acid for the treatment of cancer
WO2016195355A1 (ko) 필버톤의 신규한 용도
WO2011008052A2 (ko) 콜포신 다로페이트를 포함하는 골 질환의 예방 또는 치료용 조성물
WO2016035996A1 (ko) 실로스타졸을 유효성분으로 포함하는 독소루비신에 의한 심부전 또는 확장성 심근병증의 예방용 약학 조성물
CN108478554B (zh) 异硫氰酸烯丙酯在制备治疗功能性垂体腺瘤的药物中的用途
JP4672257B2 (ja) エポチロンを含む組成物およびカルチノイド症候群の治療のためのそれらの使用
KR20210095652A (ko) 스테로이드에 대한 내성을 극복하기 위한 글루타르이미드 유도체
AU2020255063B2 (en) Combined use of A-nor-5α androstane compound drug and anticancer drug
KR102176602B1 (ko) 칼슘 신호를 경유하는 엑소좀 분비 조절 기술을 이용한 항암제 병용투여용 약학적 조성물
CN114177299A (zh) 包含ezh2抑制剂和scd1抑制剂的抗肿瘤药物组合物及其用途
JPH1017478A (ja) 潰瘍性大腸炎の予防又は治療剤
WO2019208968A1 (ko) 근육 질환 예방 및 치료용 조성물
WO2024136627A1 (ko) 나트륨 포도당 운반체-2 저해제 및 안지오텐신 ⅱ 수용체 차단제를 함유하는 비알코올성 지방간 질환 예방 또는 치료용 약학적 조성물
WO2017082709A1 (ko) 용혈성 요독 증후군의 치료 방법
KR20120012157A (ko) 실로스타졸 또는 이의 약리학적 허용가능한 염을 유효성분으로 함유하는 패혈증 또는 패혈증성 쇼크 치료 및 예방용 약학조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838314

Country of ref document: EP

Kind code of ref document: A1