WO2017082709A1 - 용혈성 요독 증후군의 치료 방법 - Google Patents

용혈성 요독 증후군의 치료 방법 Download PDF

Info

Publication number
WO2017082709A1
WO2017082709A1 PCT/KR2016/013078 KR2016013078W WO2017082709A1 WO 2017082709 A1 WO2017082709 A1 WO 2017082709A1 KR 2016013078 W KR2016013078 W KR 2016013078W WO 2017082709 A1 WO2017082709 A1 WO 2017082709A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
plag
palmitoyl
hus
Prior art date
Application number
PCT/KR2016/013078
Other languages
English (en)
French (fr)
Inventor
손기영
Original Assignee
주식회사 엔지켐생명과학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔지켐생명과학 filed Critical 주식회사 엔지켐생명과학
Priority to US15/775,811 priority Critical patent/US10653657B2/en
Publication of WO2017082709A1 publication Critical patent/WO2017082709A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • A61K31/231Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having one or two double bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4816Wall or shell material
    • A61K9/4825Proteins, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/15Oximes (>C=N—O—); Hydrazines (>N—N<); Hydrazones (>N—N=) ; Imines (C—N=C)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/739Lipopolysaccharides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to methods of treating, inhibiting or alleviating hemolytic uremic syndrome (HUS) comprising the administration of a monoacetyl-diacyl-glycerol compound and compositions useful therein.
  • HUS hemolytic uremic syndrome
  • Hemolytic uremic syndrome includes hemolytic anemia (anemia caused by the destruction of red blood cells), acute renal failure (urem convinced), and hypoplatelet count (thrombocytopenia). It occurs mainly in children. Almost all of these diseases are, for example, the Shigatoxigenic group (STEC) of Escherichia coli , including the bacterial S. dysenteriae and serotypes O157: H7, O104: H4, and other enterohemorrhagic (enterohemorrhagic) E. coli (EHEC) and (rarely) some Campylobacter strains, which are food-derived or water-borne pathogenic bacteria that produce shiga or shiga-like toxins.
  • Shigatoxigenic group SEEC
  • EHEC enterohemorrhagic
  • Campylobacter strains which are food-derived or water-borne pathogenic bacteria that produce shiga or shiga-like toxins.
  • HUS Shiga- or Shiga-like toxins
  • E. coli O157: H7 E. coli O157: H7.
  • Atypical HUS (aHUS) represents 5-10% for HUS cases and is caused by genetic defects, leading to chronic, uncontrolled complement activation.
  • HUS is the most common cause of acquired acute renal failure in childhood. It is a medical emergency and involves a mortality rate of 5-10%. Shiga toxins and Shiga-like toxins can directly kill cells by disrupting protein synthesis. Vascular endothelial cells are particularly vulnerable, and the destruction of these cells causes lesions in the endothelial wall and basal layer separation of the endothelial membrane, activating a coagulation cascade. They also produce a complex chain reaction of blood cell damage. The toxin binds to the globotriaosylceramide (Gb3) receptor on the surface of the glomerular endothelium, which induces the release of cytokines and chemokines involved in platelet activation and inhibits ADAMTS13.
  • Gb3 globotriaosylceramide
  • thrombotic microangiopathy TMA
  • Shiga toxins also interfere with complement regulation by activating the alternate complement pathway and binding to complement factor H, an inhibitor of the complement cascade.
  • Complement-mediated platelet, leukocyte and endothelial cell activation results in systemic hemolysis, which is inflammation and thrombosis.
  • Deer Antler is an Unhorned Deer ( Cornu cervi ) is a dried oriental horn, traditionally widely used oriental medicine.
  • Deer Antler has various medical effects, such as growth and development promoting effects, promoting hematopoietic function, and treating nervous breakdown, as described in the Korean Medical Book Agreement published for the first time in 1613. It has been well received for improving the function.
  • antler is known to have a variety of medical effects, such as stretching strength and endurance, improving myocardial exercise, restoring fatigue, and boosting the immune system. The active ingredients of antler and their efficacy are being studied.
  • Deer antler including, for example, rac-1-palmitoyl-2-linoleoyl-3-acetylglycerol (PLAG) obtained from chloroform extract of antler. Certain components of have been reported to have growth promoting activity of hematopoietic stem cells and megakaryocytes (WO 99/26640). In addition, monoacetyldiacylglycerol derivatives, which are active ingredients of antler, are known to be effective in the treatment of cancers such as autoimmune diseases, sepsis, biliary tract cancer, kidney cancer or malignant melanoma (WO 2005/112912).
  • cancers such as autoimmune diseases, sepsis, biliary tract cancer, kidney cancer or malignant melanoma
  • the present invention is directed to monoacetyldiacylglycerol of formula (1) described herein, in particular PLAG of formula (2), decreases complement activity and, as shown in HUS, for complement-mediated depletion of platelets and red blood cells. Useful for protection and effective in treating HUS.
  • R 1 and R 2 are each independently a fatty acid group having 14 to 22 carbon atoms, for example:
  • the invention treats (eg, inhibits, reduces, controls, alleviates, or reverses hemolytic uremic syndrome (HUS), the method comprising administering to a patient in need thereof an effective amount of a compound of Formula 1, such as PLAG.
  • HUS hemolytic uremic syndrome
  • the present invention provides a pharmaceutical composition comprising a functional health food comprising the compound of formula 1 for the treatment or improvement of HUS.
  • the present invention provides a pharmaceutical composition comprising a compound of formula 1 and a composition of formula 1 for use in the preparation of a medicament for use in the method as described above and for use in the method described above.
  • the invention is substantially free of other triglycerides, and from 250 to 1000 mg, such as 0.1 to 3 mg, such as 1 mg of a pharmaceutically acceptable tocopherol compound, such as ⁇ -tocopherol compound as an antioxidant.
  • a new pharmaceutical unit dosage formulation in the form of soft gelatin capsules for oral administration, comprising 500 mg of the PLAG drug component, eg, a daily dose of 500 mg to 4,000 mg once or twice a day do.
  • FIG 1 shows an assay for STAT1 and STAT6 transcriptional activity in PLAG-treated HepG2 cells.
  • 3A confirms that PLAG did not affect proliferation and killing of cells by WST-1 analysis in HepG2 cell lines.
  • 3B shows that expression of C3 is dose dependently reduced by administration of PLAG.
  • 3C shows that similar results are obtained by administration of S6I.
  • 5 shows the complement 3 activity effect of the three chemotherapeutic agents in the mouse model and the blockade of this effect by PLAG.
  • composition of the present invention for the treatment of thrombocytopenia and / or leukopenia comprises a glycerol derivative having one acetyl group and two acyl groups of formula (1).
  • R1 and R2 are each independently a fatty acid group having 14 to 22 carbon atoms.
  • the glycerol derivative of Formula 1 is also referred to as monoacetyldiacylglycerol (MDAG).
  • Fatty acid group refers to an acyl moiety resulting from the formation of ester bonds by reaction of fatty acids and alcohols.
  • R 1 and R 2 include palmitoyl, oleoyl, linoleoyl, linolenoyl, stearoyl, stearoyl, myristoyl ), Arachidonoyl and the like.
  • R 1 and R 2 are oleooil / palmitoyl, palmitoyl / oleoyl, palmitoyl / linoleyl oil, palmitoyl / linolenic oil, palmitoyl / arachidonoyl, palmi Soil / Stearoyl, Palmitoyl / Palmitoyl, Oleoyl / Stearoyl, Linoleoyl / Palmitoyl, Linoleoyl / Stearoyl, Stearoin / Linooleyl, Stearoyl / Oleoyl, Miri Stole / linoleyl oil, myristoyl / oleoyl and the like.
  • the monoacetyldiacylglycerol derivatives of Formula 1 may be (R) -type, (S) -type or racemic mixtures, and may also include stereoisomers thereof.
  • the R1 and / or R2 substituent is an unsaturated fatty acid group, the double bond may be in cis form.
  • monoacetyldiacylglycerol is a compound represented by the following formula (2):
  • the compound of Formula 2 is 1-palmitoyl-2-linoleyl-3-acetylglycerol, and may be referred to herein as "PLAG".
  • R 1 and R 2 of the compound of Formula 2 are each independently palmitoyl and linoleoyl. 2-carbon in the glycerol moiety is asymmetric.
  • PLAG is generally provided as a racemic compound and the R- and S-enantiomers appear to have the same activity.
  • Monoacetyldiacylglycerol compounds can be isolated and extracted from natural antler or can be prepared by known organic synthesis methods. More specifically, the antler is extracted with hexane, and then the residue is extracted with chloroform and the chloroform is removed to provide a chloroform extract. The volume of solvent for this extraction is sufficient to cover the antler. Generally, approximately 4-5 liters of hexane and / or chloroform are used per kg of antler, but are not limited thereto. The extract obtained by this method is then fractionated and purified using a series of silica gel column chromatography and TLC methods to obtain the monoacetyldiacylglycerol compound of the present invention. The solvent for the extract is selected from, but is not limited to, chloroform / methanol, hexane / ethylacetate / acetic acid.
  • PLAG can be synthesized by hydroxyl group acylation of glycerin with palmitoyl and linoleoyl group acetyl.
  • the final product is similar to the natural component identified and separated from the antler. Both are racemic compounds.
  • treatment or “treating” is treated to, for example, inhibit or ameliorate HUS symptoms to include preventing, decreasing, ameliorating or eliminating the condition.
  • Symptoms of HUS include thrombocytopenia, microangiolytic hemolysis (including the presence of anemia and / or schizophrenic red blood cells), one or more of the following: neurological symptoms (eg, confusion, cramping of the brain, seizures) , fatigue); Neurological disorders (eg, elevated creatinine; reduced estimated glomerular filtration rate; abnormal urinalysis such as proteinuria, hematuria, peeuria; hypertension; edema); And gastrointestinal (GI) symptoms (eg, diarrhea, nausea / vomiting, abdominal pain, gastroenteritis). As the disease progresses, it can lead to organ failure, such as kidney, heart, pancreas, liver, brain dysfunction, and eventually coma and death.
  • neurological symptoms eg, confusion, cramping of the brain, seizures
  • Neurological disorders eg, elevated creatinine; reduced estimated glomerular filtration rate; abnormal urinalysis such as proteinuria, hematuria, peeuria; hypertension; edema
  • Monoacetyldiacylglycerol compounds promote hematopoietic stem (HSC) differentiation in the normal bone marrow precursor (CMP), a precursor of megakaryocytes that differentiate into platelets.
  • HSC hematopoietic stem
  • CMP normal bone marrow precursor
  • the monoacetyldiacylglycerol compounds lower complement activation.
  • the compound inhibits C3 by inhibiting the activity of STAT6, which can be upregulated or activated by chemotherapy.
  • STAT6 inhibitors block STAT6 signaling in cells by IL-4, which in turn inhibits the expression of C3.
  • the selective reduction of complement activity using the monoacetyldiacylglycerol compound of formula 1, in particular PLAG contributes to the effect on HUS by reducing the complement-mediated destruction of platelets and erythrocytes.
  • a pharmaceutical composition of the present invention comprising monoacetyldiacylglycerol consists of monoacetyldiacylglycerol of formula (I) alone or in a substantial amount, or as an active ingredient (monoacetyldiacylglycerol of formula 1) and usually pharmaceutical And acceptable carriers, excipients or diluents.
  • the amount of monoacetyldiacylglycerol in the pharmaceutical composition may be wide without particular limitation, and specifically, 0.0001 to 100% by weight, such as 0.001 to 50% by weight, 0.01 to 20% by weight, 50 to 50, based on the total amount of the composition. 95 weight percent or 95-99 weight percent.
  • compositions may be formed in the form of solids, liquids, gels or suspensions for oral or parenteral administration, and include, for example, capsules, emulsions, suspensions, such as tablets, pills, powders, granules, hard or soft gelatin capsules, Syrups, emulsions, sterile aqueous solutions, non-aqueous solvents, lyophilizers, suppositories, and the like.
  • conventional excipients or diluents such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants can be used.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and solid preparations include one or more active ingredients and at least one such as starch, calcium carbonate, sucrose, lactose, gelatin, and the like. It can be prepared by mixing excipients. In addition to excipients, lubricants such as magnesium stearate, talc can be used.
  • Liquid preparations for oral administration include emulsions, suspensions, syrups, and the like, and may include conventional diluents such as water, liquid paramins, or various excipients such as wetting agents, sweeteners, fragrances, and preservatives.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, lyophilizers and suppositories, and the like, and solvents for such solutions may include propylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate Can be.
  • Base materials for suppositories may include witepsol, macrogol, tween 61, cacao butter, laurin and glycerol gelatin.
  • the monoacetyldiacylglycerol compound may be administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount is used to refer to an amount for achieving a sufficiently favorable result for medical treatment.
  • pharmaceutically effective amount may be determined according to the type of subject, age, sex, severity and type of disease, drug activity, sensitivity to the drug, time of administration, route of administration, rate of excretion, and the like.
  • Preferred amounts of the composition of the present invention may vary depending on the condition and weight of the patient, the severity of the disease, the form of the drug preparation, the route of administration and the duration of treatment. Suitable amounts for daily administration can be determined by the physician and are generally about 0.05 to 200 mg / kg. Inferred from in vivo experiments of animals and ex vivo experiments of cells, a suitable total dosage per day was determined to be 0.1 to 100 mg / kg based on adult males. For example, a total amount of 50 mg / kg may be administered once a day or divided into two, three or four times a day.
  • the present invention is divided into 500 mg in the morning and 500 mg in the evening so that the daily dosage is 500 mg to 4,000 mg, for example 1000 mg / day once or twice a day.
  • the unit dosage form in the form of soft gelatin capsules for oral administration, from 0.1 to 3 mg, such as 1 mg of a pharmaceutically acceptable tocopherol compound, such as an antioxidant, other triglycerides, together with ⁇ -tocophenol,
  • a pharmaceutical composition for preventing or treating mucositis comprising 250 to 1000 mg, such as 250 mg or 500 mg of PLAG.
  • the present invention thus provides, in one aspect, a treatment (eg, inhibition of hemolytic uremic syndrome (HUS) comprising administering to a patient in need thereof an effective amount of a compound of Formula 1 (eg, an amount capable of inhibiting complement)
  • a treatment eg, inhibition of hemolytic uremic syndrome (HUS) comprising administering to a patient in need thereof an effective amount of a compound of Formula 1 (eg, an amount capable of inhibiting complement)
  • HUS hemolytic uremic syndrome
  • R 1 and R 2 are each independently a fatty acid group having 14 to 22 carbon atoms, such as PLAG;
  • R 1 and R 2 are each independently selected from the group comprising palmitoyl, oleoyl, linoleoyl, linolenic oil, stearoyl, myristoyl and arachidonoyl.
  • R 1 and R 2 are oleoil / palmitoyl, palmitoyl / oleoil, palmitoyl / linoleyl oil, palmitoyl / linolenic oil, palmitoyl / arachidonoyl, palmitoyl / stearo Sun, palmitoyl / palmitoyl, oleoyl / stearoyl, linoleyl / palmitoyl, linoleyl / stearoyl, stearoyl / linoleyl, stearoyl / oleoyl, myristoyl / linol Method 1 or 1.1, selected from the group comprising leoyl, myristoyl / oleoyl.
  • the compound of formula 2 is administered in a pharmaceutical composition that is substantially free of other monoacetyldiacylglycerols, such as at least 95%, eg, at least 99%, of the total monoacetyldiacylglycerol in the formulation of Formula 2 Preceding method.
  • the compound of formula (2) is administered in a pharmaceutical composition that is substantially free of other monoacetyldiacylglycerol compounds.
  • the compound of formula (2) is administered in a pharmaceutical composition that is substantially free of other tridsleyide.
  • the compound of formula 1 is prepared by chemical synthesis.
  • the compound of formula 1, such as PLAG is a compound of formula 1 in combination or in conjunction with a pharmaceutically acceptable diluent or carrier, e.g., a diluent or carrier comprising an edible oil such as vegetable oil, e.g. olives. Will be administered in the form of a pharmaceutical composition that is a soft gelatin capsule comprising a, the preceding method.
  • a pharmaceutically acceptable diluent or carrier e.g., a diluent or carrier comprising an edible oil such as vegetable oil, e.g. olives.
  • a pharmaceutical composition that is a soft gelatin capsule comprising a, the preceding method.
  • the compound of formula 1 is administered in the form of a pharmaceutical composition comprising 0.0001 to 100% by weight, for example 50 to 95% or 95 to 99% by weight of the composition.
  • the composition is propyl gallate (PG, E310), tertiary butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA, E320) and butylated hydroxytoluene (BHT) , E321), for example, synthetic antioxidants such as a-tocopherol, as well as pharmaceutically acceptable antioxidants such as ascorbic acid (AA, E300) and tocopherols, E306).
  • PG propyl gallate
  • TBHQ tertiary butylhydroquinone
  • BHA butylated hydroxyanisole
  • BHT butylated hydroxytoluene
  • Compounds of formula (I) are soft, comprising approximately 50 mg of a pharmaceutically acceptable diluent or carrier, such as 250 mg of a compound of formula (2) in combination with or in connection with an edible oil, such as vegetable oil, such as olive oil.
  • a pharmaceutically acceptable diluent or carrier such as 250 mg of a compound of formula (2) in combination with or in connection with an edible oil, such as vegetable oil, such as olive oil.
  • an edible oil such as vegetable oil, such as olive oil.
  • the prior method which is administered in the form of gelatin capsules.
  • the compound of formula (I) is administered in the form of a dietary supplement by adding or mixing to a suitable food for human consumption.
  • the total daily dose of the compound of formula 1 is 250 mg to 2000 mg / day, for example 500 mg to 1500 mg / day, such as 500 mg / day, 1000 mg / day or 1500 mg / day. .
  • the compound of formula 1 is a method of administering twice a day, such as a dose of 500 mg in the morning and evening.
  • a compound of Formula 1 is administered at least two weeks or more, such as over at least one month.
  • the pharmaceutical composition is a preparation of a solid, liquid, gel or suspension for oral or parenteral administration.
  • the compound of formula 1 is a compound of formula 2 wherein the total daily oral dose of 500 mg to 4,000 mg is administered once or twice a day.
  • the compound of formula 1 is a compound of formula 2 (PLAG) administered in the form of soft gelatin capsules for transdermal administration comprising 500 mg PLAG drug substance and 1 mg a-tocopherol as antioxidant, 500 mg to 4,000 mg The preceding method, wherein the total daily dose of is administered once or twice a day.
  • PLAG compound of formula 2
  • HUS may be a bacterium that produces a Shiga or Shiga-like toxin, such as a bacterial dysentery; Shigatoxin Escherichia coli (STEC), such as serotypes O157: H7, O104: H4, or other enterocoliform E. coli (EHEC); And the preceding method is caused by a bacterium selected from the toxin campylobacter species.
  • Shiga or Shiga-like toxin such as a bacterial dysentery
  • Shigatoxin Escherichia coli such as serotypes O157: H7, O104: H4, or other enterocoliform E. coli (EHEC)
  • EHEC enterocoliform E. coli
  • prior methods thrombocytopenia, microangiolytic hemolysis (including the presence of anemia and / or schizophrenia), and one or more of the following: neurological symptoms (eg, confusion, Cramps, seizures, fatigue in the brain); Neurological disorders (eg, elevated creatinine; reduced estimated glomerular filtration rate; abnormal urinalysis such as proteinuria, hematuria, peeuria; hypertension; edema); And gastrointestinal (GI
  • the patient has a hemoglobin level lower than 8 g / dL.
  • the patient has a platelet count of 150,000 or less, or is reduced from baseline of at least 25%.
  • the present invention further provides compounds of Formula 1, for example, for use in the treatment (eg, inhibition, reduction, control, alleviation or reversal) of hemolytic uremic syndrome (HUS), for example for use in any of method 1 or below.
  • HUS hemolytic uremic syndrome
  • PLAG or a pharmaceutical composition, such as the pharmaceutical composition described herein comprising an effective amount of a compound of Formula 1, such as PLAG).
  • the present invention further provides the use of a compound of formula 1, such as PLAG, in the manufacture of a medicament for the treatment (eg, inhibition, reduction, control, alleviation or reversal) of hemolytic uremic syndrome (HUS), in any of the following of method 1.
  • a compound of formula 1 such as PLAG
  • HUS hemolytic uremic syndrome
  • the activity of PLAG to modulate complement activity is achieved by inhibiting the production of C3.
  • the production of C3 depends on the activity of STAT6. Therefore, it was hypothesized that PLAG inhibits the activity of STAT6 and thereby inhibits the production of C3 that is positively feedback or activated by chemotherapy.
  • dephosphorylation of STAT6 is wherein in the melt U937, A549 and Jurkat cells treated with PLAG concentration of 0.01 to 10 ⁇ g / ml - was investigated by using the phosphorylated STAT6. Phosphorylation of STAT6 was induced by treatment of IL-4 at 10 ng / ml. Dephosphorylation of STAT1 was investigated in U937 cell lysates treated with PLAG (0.01-10 ⁇ g / ml). Phosphorylation of STAT1 was induced with 10 ng of IFN- ⁇ treatment.
  • STAT 6 STAT6 inhibitor (S6I) that the degradation of Complement 3 of HepG2 cells (human liver cell line) is regulated by STAT6. As confirmed by the luciferase activity study, when HepG2 cells were treated with PLAG, the transcriptional activity of STAT6 gradually decreased with the amount of PLAG. In addition, PLAG was found to have selective efficacy in STAT1 and above STAT6. 1 shows a graph showing STAT1 and STAT6 transcriptional activity in PLAG treated HepG2 cells. NC indicates unstimulated suppressor cells.
  • genetically transformed HepG2 (human hepatocyte cell line) was treated with 10 ng of IFN- ⁇ and added stepwise to see the effect of diluted PLAG on gene expression in stimulated cells (Fig. 0.01 ⁇ g / ml, 0.1 ⁇ g / ml, 1 ⁇ g / ml and 10 ⁇ g / ml).
  • transgenic HepG2 cells were treated with 10 ng of IL-4, and once again diluted PLAG was added stepwise to see the effect on gene expression in the stimulated cells (shown in the figure).
  • PLAG had no effect on STAT1 expression in this assay, but had a significant dose dependent effect on STAT6 expression.
  • HMC-1 human mast cells, American Type Culture Collection, ATCC, Rockville, MD
  • FCS fetal calf serum
  • L-glutamate L-glutamate
  • penicillin 100 ⁇ g IMDM
  • streptomycin Streptomycin, Life Technologies.
  • the cultured HMC-1 cells (1 ⁇ 10 6 cells / ml) were pretreated with PLAG at 0.1 and 1 ⁇ g / mL concentrations, and then IL-4 (5ng) and / or TNF- ⁇ to induce cell activity. (10ng).
  • RT-PCR Reverse Transcriptase Polymerase Chain Reaction
  • the RT-PCR was performed as follows: Total RNA was isolated by standard protocol and cDNA was synthesized using AccuScript High Fidelity 1st Strand cDNA Synthesis Kit (Stratagene). The RT-PCR reaction of the second step is carried out using oligo-dT primers and reverse transcript gythm primer pairs and Taq polymerase (Takara, Shiga, Japan). The synthesized cDNA (1 ⁇ l) was used for 20 ⁇ l PCR reaction with 0.5 U ExTaq DNA polymerase, 1 buffer and 1 mM dNTP mixture (Takara) and primer pairs.
  • PCR amplification is performed using the GeneAmp PCR system 2700 (Applied Biosystems, Foster city, Calif., USA) under the following conditions; With 25 to 40 cycles, 5 minutes at 94 ° C., 45 seconds at 94 ° C., 45 seconds at 56 ° C. and 1 minute at 72 ° C. and the final extension reaction are carried out at 72 ° C. for 7 minutes.
  • the PCR primers used for dDNA amplification were designed with the Primer 3 program and purchased from Bioneer (Daejeon, Korea).
  • the product of the PCR was isolated using 1.5% agarose gel, stained with ethidium bromide (EtBr) and gel Doc 2000 UV trans-illuminator (Bio-Rad Laboratories, Hercules, CA, USA) Visualization and experimental data are analyzed using Quantity One software (Bio-Rad Laboratories). Western blots were similar to cells treated with IL-4 and TNF- ⁇ and then treated with S6I (activator of signal transducer and transcription 6 (STAT6), AS1517499, Axon Medchem, Netherlands). Treatment of HMC-1 cells with, IL-4 and TNF- ⁇ results in expression of C3, which shows that it is inhibited by PLAG on a concentration dependent basis. STAT6 inhibitors block STAT6 signal transduction in cells by IL-4, and as a result inhibit the expression of C3. These data suggest that PLAG can work in a similar way to STAT6 inhibitors.
  • HepG2 American Type Culture Collection, ATCC, Rockville, MD
  • liver cell lines were cultured and maintained in 37 ° C. and 5% CO 2 wet atmosphere in DMEM medium.
  • HepG2 cells known to produce complement in culture when treated with PLAG, effectively reduce the activity of the complement, as confirmed by RT-PCR of mRNA.
  • RT-PCR HepG2 cells / ml of 5 x 10 5 may be distributed in the 12 plate (well plates), a C3 was induced for 12 h in a 10% FCS. PLAG is then added and incubated for 2 hours.
  • RT-PCR indicates that PLAG inhibits C3 expression slightly at 1 ⁇ g / ml and completely at 10 ⁇ g / ml, similar to the results obtained with S6I at 10 and 100 ⁇ g / ml.
  • the cultured HepG2 cell line was treated with PLAG (1-100 ⁇ g / ml), then treated with IL-4 and TNF- ⁇ , reacted for 1 hour, incubated at 37 ° C. for 18 hours, and the supernatant was separated. .
  • Quantification of C3 amount in cell culture medium (supernatant) in HepG2 cells is performed by ELISA using commercially available monoclonal antibodies (mAb, R & D Systems) and protocols of preparation; The results are shown in FIG. C3 is naturally expressed under in vitro culture conditions using the addition of 10% FCS to HepG2 cells cultured for 12 hours.
  • the cells were treated with different doses, 1-100 ⁇ g / ml PLAG (Panel A, Panel B) or 10 and 100 ⁇ g / ml S6I (Panel C) and reacted with IL-4 and TNF-? For 1 hour. Next, it was incubated for 18 hours at 37 °C. Cell viability was confirmed using the WST-1 assay (Panel A). This analysis shows that cell viability was measured by the formation of fluorescent substance, formazan from tetrazolium salt (WST-1) by intracellular mitochondrial deoxygenase. 3A confirms that PLAG does not affect cell proliferation and death. 3B shows that expression of C3 is dose-dependently reduced due to the administration of PLAG, and FIG. 3C shows that similar results are obtained by administration of S6I.
  • CFUs analysis was performed in heavily irradiated mice. Microscopic examination of mouse spleens treated with 50 mg / kg / d ip or po doses of PLAG shows a marked increase in the number of spleen nodules and the number of primitive progenitor cells and megakaryocytes in all treated animals.
  • PLAG In vivo efficacy study in mice : The effect of PLAG for the treatment of thrombocytopenia induced by chemotherapy (CIN) was evaluated in animal models.
  • Anti-cancer drugs (Gemcitabine 50 mg / kg, Cyclosphosphamide 100 mg /, or Tamoxifen 50 mg / kg) were taken daily for three weeks; PLAG was also administered 50 mg / kg daily for three weeks.
  • Platelet count data depicts that PLAG in FIG. 4 provides similar platelet protective effects against gemcitabine 50 mg / kg, cyclophosphamide 100 mg /, or tamoxifen 50 mg / kg.
  • Leukopenia and thrombocytopenia of these and other chemotherapeutic agents are thought to be at least in part due to certain complement-mediated toxins. This is shown in FIG. All of these therapeutic agents significantly activate Complement 3, which activation is largely blocked by PLAG.
  • mice are treated with compounds that are expected to cause platelet count reduction, specifically phenylhydrazine, tamoxifen or lipopolysaccharide.
  • mice are injected with 100 mg / kg phenylhydrazine (PHZ), i.p, which induces anemia and reduction of platelets.
  • 5 mg / kg of PLAG was administered orally to mice and blood samples were obtained after 3 and 13 days.
  • normal mice not treated with phenylhydrazine were prepared in the normal group, and mice treated with olive oil instead of PHZ and PLAG were prepared as controls.
  • Blood samples from mice were treated with 0.5 ml of EDTA (Minicollect tube, Greiner bio-one, Austria), and the platelet concentration was the platelet concentration per mL (k: 1,000). Mindray, Shenzhen, China). The results are shown in Table 1.
  • tamoxifen an anticancer drug injected with an amount of 100 mg / kg that induces platelet reduction
  • LPS lipid polysaccharide
  • an infection inducer injected with an amount of 1 mg / kg.
  • Platelet concentrations were measured 15 hours after PLAG treatment.
  • olive oil and PBS were used independently of PLAG as a control, respectively, for tamoxifen and lipopolysaccharide experiments. The results are shown in Tables 2 and 3.
  • the normal platelet concentration is 400-1600 k / ⁇ l and may vary depending on circumstances. Tables 1-3 show that if thrombocytopenia is artificially induced by the administration of these compounds, the platelet concentration in the blood is reduced and the platelet concentration is restored upon administration of PLAG to these patients.
  • Exemplary soft gelatin capsules for use in the methods described herein comprising (i) PLAG and (ii) a-tocopherol were prepared to have the following composition.
  • composition of PLAG Soft Gel Capsules ingredient function unit PLAG Active ingredient 500.0 mg ⁇ -tocopherol Antioxidant 1.0 mg
  • Soft capsule shell composition ingredient function gelatin Capsule shell Concentrated Glycerin Plasticizer Methyl para-oxybenzoate antiseptic Propyl Para-oxybenzoate antiseptic Ethyl vanillin Flavor Titanium dioxide coloring agent Tar Color, MFDS notified Blue No. One coloring agent Tar Color, MFDS notified Red No. 40 coloring agent Tar Color, MFDS notified Yellow No. 203 coloring agent Purified water medium

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 이를 필요로 하는 환자에게 모노아세틸디아실글리세롤 화합물을 투여하는 것을 포함하는 용혈성 요독 증후군(HUS)의 치료, 억제 또는 완화 방법 및 이에 유용한 조성물을 제공한다.

Description

용혈성 요독 증후군의 치료 방법
본 발명은 모노아세틸-디아실-글리세롤 화합물의 투여를 포함하는 용혈성 요독 증후군(HUS; Hemolytic uremic syndrome)의 치료, 억제 또는 완화 방법 및 이에 유용한 조성물에 관한 것이다.
용혈성 요독 증후군(HUS;Hemolytic uremic syndrome)은 용혈성 빈혈증(적혈구의 파괴로 야기되는 빈혈증), 급성 신부전증(요독증) 및 저혈소판 수(혈소판 감소증)를 포함한다. 그것은 주로 어린이들에게 발생한다. 거의 대부분 이 질병은, 예를 들면, 박테리아(bacteria) S. dysenteriae 그리고 혈청형 O157:H7, O104:H4를 포함하는 Escherichia coli의 쉬가 독소성 그룹(shigatoxigenic group) (STEC), 그리고 다른 장출혈성(enterohemorrhagic) E. coli (EHEC) 및 (드물지만) 몇몇 캠필로박터 스트레인(Campylobacter strains)의, 쉬가(shiga) 또는 쉬가유사(shiga-like) 독소를 생성하는 식품 유래의 또는 수인성의 병원성 박테리아에 의해 야기된다. 쉬가 또는 쉬가유사 독소의 가장 일반적인 원천은 E. coli O157:H7이다. HUS 사례의 거의 5%는 전통적인 엽성 폐렴을 야기하는 물질인, Streptococcus pneumoniae에 의한 감염에 기인하는 것으로 보인다. 비정형적 HUS(aHUS)는 HUS 사례의 경우 5 내지 10 %를 나타내고, 만성(chronic), 통제되지 않는 보체(complement) 활성화를 초래하는, 유전적 결함에 의해 야기된다.
HUS는 아동기에 있어서 후천성 급성신부전의 가장 일반적인 원인이다. 그것은 의학적 응급 상황이며, 5 내지 10%의 사망률을 수반한다. 쉬가 독소 및 쉬가유사 독소들은 단백질 합성을 방해함으로써 세포를 직접적으로 죽일 수 있다. 특히 혈관 내피 세포들이 취약하고, 이러한 세포들의 파괴는 내피 벽에서의 병변 및 내피 막의 기저층 분리를 야기하여, 응고 연쇄반응(cascade)을 활성화한다. 그것들은 또한 혈액 세포 손상의 복합 연쇄반응을 발생시킨다. 상기 독소는 사구 내피(glomerular endothelium)의 표면에 있는 글로보트라이아오실 세라마이드(globotriaosylceramide, Gb3) 수용체에 결합하는데, 이는 혈소판 활성화에 관련된 사이토킨(cytokines) 및 케모카인(chemokines)의 방출을 유도하고 ADAMTS13을 억제할 뿐만 아니라, 세포 사멸(apoptosis)에 이르게 하고, 내피 세포에 백혈구의 결합하는 시그널 연쇄반응을 개시시켜서, 미세혈전(microthrombus) 형성을 야기한다. 혈소판의 덩어리는 미세혈관의 내피에 부착되어, 적혈구를 파괴하고(microangiopathic hemolysis) 및 절편화된 적혈구(schistocytes)의 특징의 파편을 생성한다. 결과적으로, 빈혈은 적혈구의 파괴로 인한 것이고, 혈소판 감소증(thromobocytopenia)은 혈소판의 파괴로 인한 것이며, 조직, 특히 신장의 손상은 혈류 흐름 장애로 인한 것이다. 이 과정은 혈전성 미세혈관병증(thrombotic microangiopathy, TMA)로 알려졌다. 마지막으로, 또한 쉬가 독소는, 교대적 보체 경로(alternative complement pathway)를 활성화하고, 보체 연쇄반응의 억제제인, 보체 인자 H에 결합함으로써, 보체 조절을 방해한다.
비정형적 HUS에서, 보체의 억제되지 않는 활성화는 유사한 최종 결과로 이어진다: 보체-매개 혈소판, 백혈구 및 내피 세포 활성화는, 염증 및 혈전증(thrombosis)인 전신성 용혈을 초래한다.
현재, HUS의 치료법은 없다. 일반적으로 치료는 필요한 경우 투석(dialysis)과 함께, 지지적이다(supportive). 박테리아를 죽이는 항생제(Antibiotics)는 독소의 추가 생성 및 방출을 자극함으로써 상태를 더욱 악화시킬 수 있다. 혈소판 투입(Platelet transfusion)은 단순히 미소혈전(microthrombi)의 발생률을 증가시켜서, TMA를 더욱 악화시킨다.
HUS의 치료 및 관리에 새로운 접근법이 요구된다.
녹용은 각화되지 않은 사슴(Cornu cervi)의 뿔을 건조하여 제조한 것으로, 전통적으로 광범위하게 사용되고 있는 동양의 약재이다. 녹용은, 1613년에 처음으로 공개된 한국 의학 서적인 동의보감에 설명되어 있는 바와 같이, 생장 및 발달 촉진 효과, 조혈 기능 촉진, 신경 쇠약 치료와 같은 각종 의학적 효과를 가지며, 심부전증에 유익하고, 오장육부 기능을 개선한다고 호평을 받아왔다. 게다가, 녹용은 힘 및 지구력의 신장, 심근 운동 개선, 피로 회복, 면역 체계의 증대와 같은 다양한 의학적 효과를 가지는 것으로 알려졌다. 녹용의 유효 성분 및 그 효능들은 연구되고 있다. 예를 들면, 녹용의 클로로폼 추출물로부터 얻어진 rac-1-팔미토일-2-리놀레오일-3-아세틸글리세롤 (rac-1-palmitoyl-2-linoleoyl-3-acetylglycerol, PLAG)을 포함하는, 녹용의 소정 성분은 조혈모 세포 및 거핵 세포의 생장촉진 활성을 가진다고 보고되었다(WO 99/26640). 또한, 녹용의 활성 성분인 모노아세틸디아실글리세롤 유도체는 자가 면역 질환, 패혈증, 담도암, 신장암 또는 악성 흑색종 등의 암의 치료에 효과적이라고 알려져 있다(WO 2005/112912). 백혈구 감소증(leukopenia) 및/또는 혈소판 감소증(thrombocytopenia)의 치료를 위해 소정의 모노아세틸디아실글리세롤 유도체의 사용은 예컨대, 그 내용이 참조로서 본 건에 포함되는 국제 특허 PCT/US2015/031204 내에 설명되어 있다.
본 발명은, 여기 설명된 화학식 1의 모노아세틸디아실글리세롤, 특히 화학식 2의 PLAG가 보체(complement) 활성을 저하시키고, HUS에서 보여지는 바와 같이 혈소판 및 적혈구의 보체-매개 방혈(depletion)에 대한 보호에 유용하며, HUS 치료에 효과적임을 보여준다.
[화학식 1]
Figure PCTKR2016013078-appb-I000001
여기서, R1 및 R2는 예를 들면, 각각 독립적으로 탄소수 14 내지 22의 지방산기고, 예를 들면:
[화학식 2(PLAG)]
Figure PCTKR2016013078-appb-I000002
몇몇 실시예에서, 본 발명은 화학식 1의 화합물, 예컨대 PLAG의 유효량을 이를 필요로 하는 환자에게 투여하는 것을 포함하는, 용혈성 요독 증후군(HUS)을 치료(예컨대, 억제, 감소, 제어, 완화 또는 역전)하기 위한 방법을 제공한다.
상기 외에도, 본 발명은 HUS의 치료 또는 개선을 위해, 화학식 1의 화합물을 포함하는 기능 건강 식품을 포함하는 약학 조성물을 제공한다.
본 발명은 상술한 바와 같은 방법에 사용되고, 전술한 방법에 사용되는 약제의 제조에 사용하기 위한, 화학식 1의 화합물 및 화학식 1의 조성물을 포함하는 약학 조성물을 제공한다.
일 실시예에서, 본 발명은 실질적으로 다른 트리글리세이드가 없으며, 0.1 내지 3 mg, 예컨대 1mg의 약학적으로 허용 가능한 토코페롤 화합물, 예컨대, 산화방지제로서 α-토코페롤 화합물과 함께, 250 내지 1000 mg, 예컨대, 500 mg의 PLAG 약 성분을 포함하며, 예컨대, 500 mg 내지 4,000 mg의 일일 복용량을 하루에 한 번 또는 두 번 투여하는, 경구 투여를 위한 연질 젤라틴 캡슐 형태의, 새로운 약학적 단위 투여 제제를 제공한다.
또한, 본 발명의 적용 분야는 후술하는 상세한 설명 및 실시예로부터 명백해 질 것이다. 본 발명의 바람직한 실시예를 나타내는 상세한 설명 및 구체적인 실시예는 단지 예시의 목적을 의도하는 것이고, 발명의 범위를 제한하는 것으로 의도되지 않았음이 이해되어야 할 것이다.
도 1은 PLAG-처리된 HepG2 세포에서의 STAT1 및 STAT6 전사 활성에 대한 분석을 나타낸다.
도 2는 HMC-1 세포에서의 PLAG에 의한 보체 3 억제를 나타낸다.
도 3A는 PLAG가 HepG2 세포주에서의 WST-1 분석으로 세포의 증식 및 사멸에 영향을 미치지 않았음을 확인한다. 도 3B는 C3의 발현이 PLAG의 투여에 의해 투여량에 의존적으로 감소됨을 나타낸다. 도 3C는 유사한 결과가 S6I의 투여에 의해 얻어짐을 나타낸다.
도 4는 마우스 모델에서 세 가지 화학 치료제에 대한 PLAG의 혈소판 보호 효과를 나타낸다.
도 5는 마우스 모델에서 세 가지 화학 치료제의 보체 3 활성 효과 및 PLAG에 의한 이러한 효과의 차단을 나타낸다.
도 6은 보체 3에서 PLAG의 활성에 대한 임상 시험의 결과를 보여준다.
혈소판 감소증 및/또는 백혈구 감소증 치료를 위한 본 발명의 조성물은 하기 화학식 1의 하나의 아세틸기 및 두 개의 아실기를 가지는 글리세롤 유도체를 포함한다.
[화학식 1]
Figure PCTKR2016013078-appb-I000003
여기서, R1 및 R2는 각각 독립적으로 탄소수 14 내지 22의 지방산기이다.
본 발명에서, 화학식 1의 글리세롤 유도체는 모노아세틸디아실글리세롤(MDAG)라고도 한다. 지방산기는 지방산 및 알코올의 반응에 의해 에스테르 결합이 형성된 결과인 아실 부분을 말한다. 따라서, R1 및 R2의 비제한적인 예로는 팔미토일(palmitoyl), 올레오일(oleoyl), 리놀레오일(linoleoyl), 리놀렌오일(linolenoyl), 스테아로일(stearoyl), 미리스토일(myristoyl), 아라키도노일(arachidonoyl) 등을 포함한다. R1 및 R2의 바람직한 조합들(R1/R2)은 올레오일/팔미토일, 팔미토일/올레오일, 팔미토일/리놀레오일, 팔미토일/리놀렌오일, 팔미토일/아라키도노일, 팔미토일/스테아로일, 팔미토일/팔미토일, 올레오일/스테아로일, 리놀레오일/팔미토일, 리놀레오일/스테아로일, 스테아로인/리놀레오일, 스테아로일/올레오일, 미리스토일/리놀레오일, 미리스토일/올레오일 등을 포함한다. 광학 활성에서, 화학식 1의 모노아세틸디아실글리세롤 유도체는 (R)-형, (S)-형 또는 라세미 혼합물일 수 있고, 이들의 입체 이성질체들도 포함할 수 있다. R1 및/또는 R2 치환기는 불포화 지방산기인 경우, 이중 결합은 시스(cis) 형태일 수 있다.
일 실시예로서, 모노아세틸디아실글리세롤은 하기 화학식 2로 표시되는 화합물이다:
[화학식 2]
Figure PCTKR2016013078-appb-I000004
상기 화학식 2의 화합물은 1-팔미토일-2-리놀레일-3-아세틸글리세롤이고, 본 명세서에서 "PLAG"로 명명할 수 있다. 화학식 2의 상기 화합물의 R1 및 R2는 각각 독립적으로 팔미토일 및 리놀레오일이다. 글리세롤 부분에서 2-탄소는 비대칭이다. PLAG는 일반적으로 라세미 화합물로서 제공되고, R- 및 S-거울성 이성질체들은 동일한 활성을 가지도록 나타난다.
모노아세틸디아실글리세롤 화합물은 자연 녹용으로부터 분리 및 추출될수 있으며 또는 공지의 유기 합성 방법으로 제조될 수 있다. 더욱 상세하게는, 녹용은 헥산으로 추출되고, 이후 클로로폼으로 그 잔사를 추출하고, 클로로폼을 제거하여, 클로로폼 추출물을 제공한다. 이 추출을 위한 용매의 부피는 녹용이 잠길 정도면 충분하다. 일반적으로, 녹용 1kg 당 헥산 및/또는 클로로폼이 대략 4 내지 5 리터 사용되나, 이에 제한되지는 않는다. 이 방법으로 얻어진 추출물은 본 발명의 모노아세틸디아실글리세롤 화합물을 얻기 위하여, 계속해서 일련의 실리카겔 컬럼 크로마토그래피 및 TLC 방법을 이용하여 분별 및 정제된다. 추출물을 위한 용매는 클로로포름/메탄올, 헥산/에틸아세테이트/아세트산 중에 선택되나, 이에 제한되지는 않는다.
모노아세틸디아실글리세롤 화합물의 제조를 위한 화학적 합성 방법은 예를 들면, WO 2013/043009 및 US 20150266803호에 개시되었으며, 그 내용들은 참조로서 여기에 포함된다. 예를 들면, PLAG는 팔미토일 및 리놀레오일기 군인 아세틸을 가지는 글리세린의 히드록시기 아실화에 의해 합성될 수 있다. 최종 생성물은 녹용으로부터 식별 및 분리된 자연적인 성분과 유사하다. 둘 모두 라세미 화합물이다.
본 발명에서, 용어 "치료" 또는 "치료하는 것"은 치료되어, 예를 들면, HUS 증상이 억제 또는 개선되어 상태의 예방, 저하, 개선 또는 제거를 포함한다.
HUS의 증상은 혈소판 감소증, 미소혈관증 용혈(빈혈 및/또는 분열 적혈구의 존재를 포함하는), 다음의 것 중 하나 또는 그 이상을 포함한다: 신경학적 증상(예컨대, 혼란, 뇌의 경련, 발작, 피로); 신경 장애(예컨대, 상승된 크레아티닌; 추정된 사구체 여과율의 감소; 비정상의 소변검사, 예컨대, 단백뇨, 혈뇨, 핍뇨; 고혈압; 부종); 및 위장(GI) 증상(예컨대, 설사, 구역/구토, 복통, 위장염). 병이 진행됨에 따라, 장기부전, 예컨대, 신장, 심장, 췌장, 간, 뇌 기능 장애로 이어질 수 있고, 결국 혼수 및 사망할 수 있다.
모노아세틸디아실글리세롤 화합물, 특히 PLAG는 혈소판으로 분화되는 거핵세포의 전구체인 일반 골수 전구체(CMP)에 조혈모 세포(HSC) 분화를 촉진시킨다.
콜로니 형성을 증가시키고 호중구 및 거핵세포와 같은 골수 세포에 대한 HSCs의 분화를 활성화시키는 것 외에도, 상기 모노아세틸디아실글리세롤 화합물, 특히 PLAG는 보체 활성화를 저하시킨다. 어떠한 이론에 한정되지 않고, 화학요법으로 발현 상향 조절 또는 활성화될 수 있는 STAT6의 활성을 억제시킴으로서, 상기 화합물이 C3을 억제하는 것으로 생각된다. STAT6 억제제는IL-4에 의해 세포 내에서의 STAT6 신호 전달을 차단하고, 이것이 결국 C3의 발현을 억제한다. 따라서, 화학식 1의 모노아세틸디아실글리세롤 화합물, 특히 PLAG를 사용하는 보체 활성의 선택적 감소는, 혈소판 및 적혈구의 보체-매개 파괴를 줄임으로써, HUS에 대한 효과에 기여한다.
모노아세틸디아실글리세롤을 포함하는 본 발명의 약학 조성물은 단독의 또는 상당한 양의 순수한 화학식 1의 모노아세틸디아실글리세롤로 이루어지거나, 또는 유효성분(화학식 1의 모노아세틸디아실글리세롤) 및 통상적으로 약학적 허용 가능한 담체, 부형제 또는 희석제를 포함할 수 있다. 약학 조성물 내의 모노아세틸디아실글리세롤의 양은 특별한 제한 없이 광범위할 수 있고, 구체적으로는, 조성물 총 양에 있어서, 0.0001 내지 100 중량%, 예컨대, 0.001 내지 50 중량%, 0.01 내지 20 중량%, 50 내지 95 중량% 또는 95 내지 99 중량%이다. 약학 조성물은 경구 또는 비경구 투여를 위한 고체, 액체, 젤 또는 현탁액의 형태로 형성될 수 있고, 예를 들면, 정제, 환제, 분말, 과립, 경질 또는 연질 젤라틴 캡슐과 같은 캡슐, 에멀젼, 현탁액, 시럽, 유제, 멸균된 수용액, 비수성 용제, 동결 건조제, 좌제 등이다. 조성물의 제제화에 있어서, 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제와 같은 통상적인 부형제 또는 희석제가 사용될 수 있다. 경구 투여를 위한 고형 제제는 정제, 환제, 분말, 과립, 캡슐 등을 포함하고, 고형 제제는 하나 또는 그 이상의 유효성분과 전분, 탄산칼슘, 수크로오스(sucrose), 락토오스(lactose), 젤라틴 등과 같은 적어도 하나의 부형제를 혼합하여 제조될 수 있다. 부형제 이외에도, 스테아린산 마그네슘, 탈크(talc)와 같은 윤활제가 사용될 수 있다. 경구 투여를 위한 액상 제제는 에멀젼, 현택액, 시럽 등을 포함하고, 물, 액체 파라민과 같은 통상적인 희석제 또는 습윤제, 감미제, 방향제 및 보존제와 같은 다양한 부형제를 포함할 수 있다. 비경구 투여를 위한 제제는 멸균된 수용액, 비수성 용제, 동결 건조제 및 좌제 등을 포함하고, 이러한 용액을 위한 용매는 프로필렌 글리콜, 올리브 오일 같은 식물성 기름, 에틸 올레이트와 같은 주사 가능한 에스테르를 포함할 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골(macrogol), 트윈 61, 카카오지(tween 61), 라우린지(Laurin) 및 글리세로젤라틴을 포함할 수 있다.
모노아세틸디아실글리세롤 화합물은 약학적으로 유효량이 투여될 수 있다. 상기 용어 "약학적으로 유효량"은 의학적 치료에 충분히 바람직한 결과를 달성하기 위한 양을 지칭하는데 사용된다. 상기 용어 "약학적으로 유효량"은 개체 종류, 나이, 성별, 질병의 심각도 및 종류, 약의 활성, 약에 대한 민감도, 투여 시간, 투여 경로, 배설율 등에 따라 결정될 수 있다.
본 발명의 조성물의 바람직한 양은 환자의 상태 및 몸무게, 질병의 심각도, 약물의 제제 형태, 투여 경로 및 치료 기간에 따라 다양할 수 있다. 1일에 투여하기 적합한 양은 의사에 의해 결정될 수 있고, 일반적으로는 약 0.05 내지 200 mg/kg이다. 동물의 생체내 실험들 및 세포의 생체외 실험들로부터 추론해보면, 하루에 적합한 총 투여량은 성인 남자 기준 0.1 내지 100 mg/kg으로 결정되었다. 예를 들면, 50 mg/kg의 총 양이 하루에 한 번 투여되거나, 하루에 두 번, 세 번 또는 네 번으로 복용량을 나누어 투여될 수 있다.
예를 들면, 일 실시예에서, 본 발명은, 아침에 500 mg, 저녁에 500 mg으로 분할 복용하여 일일 복용량이 500 mg 내지 4,000 mg, 예를 들면 1000 mg/day으로 하루에 한 번 또는 두 번 투여하도록, 경구 투여용 연질 젤라틴 캡슐 형태의, 단위 복용 형태로서, 0.1 내지 3 mg, 예컨대 1 mg의 약학적으로 허용 가능한 토코페롤 화합물, 예컨대, 산화방지제로서, α-토코페놀과 함께, 다른 트리글리세리드가 없이, 250 내지 1000 mg, 예컨대 250mg 또는 500 mg의 PLAG를 포함하는 점막염을 예방 또는 치료하기 위한 약학 조성물을 제공한다.
본 발명은 따라서, 한 측면에서 화학식 1의 화합물의 유효량(예컨대, 보체를 억제할 수 있는 양)을 이를 필요로 하는 환자에게 투여하는 것을 포함하는 용혈성 요독 증후군(HUS)을 치료(예컨대, 억제, 감소, 제어, 완화 또는 역전)하기 위한 방법(방법 1)을 제공한다:
Figure PCTKR2016013078-appb-I000005
여기서, R1 및 R2는 각각 독립적으로 탄소수 14 내지 22의 지방산기, 예컨대 PLAG이다;
예를 들면,
1.1. R1 및 R2는 각각 독립적으로 팔미토일, 올레오일, 리놀레오일, 리놀렌오일, 스테아로일, 미리스토일 및 아라키도노일을 포함하는 군으로부터 선택되는, 방법 1
1.2. R1 및 R2(R1/R2)는 올레오일/팔미토일, 팔미토일/올레오일, 팔미토일/리놀레오일, 팔미토일/리놀렌오일, 팔미토일/아라키도노일, 팔미토일/스테아로일, 팔미토일/팔미토일, 올레오일/스테아로일, 리놀레오일/팔미토일, 리놀레오일/스테아로일, 스테아로일/리놀레오일, 스테아로일/올레오일, 미리스토일/리놀레오일, 미리스토일/올레오일을 포함하는 군으로부터 선택되는, 방법 1 또는 1.1.
1.3. 화학식 1의 화합물이 화학식 2의 화합물인 것인, 선행 방법;
[화학식 2]
Figure PCTKR2016013078-appb-I000006
1.4. 화학식 2의 화합물은 실질적으로 다른 모노아세틸디아실글리세롤이 없는, 예컨대, 화학식 2의 제제 내에서 총 모노아세틸디아실글리세롤 중 적어도 95 %, 예를 들면, 적어도 99%인 약학 조성물로 투여되는 것인 선행 방법.
1.5. 화학식 2의 화합물은 다른 모노아세틸디아실글리세롤 화합물이 실질적으로 없는 약학 조성물로 투여되는 것인, 선행 방법.
1.6. 화학식 2의 화합물은 다른 트리들리세리드가 실질적으로 없는 약학 조성물로 투여되는 것인, 선행 방법.
1.7. 화학식 1의 화합물이 자연 녹용으로부터 분리 및 추출되는 것인, 하는 선행 방법.
1.8. 화학식 1의 화합물은 화학 합성으로 제조되는 것인, 선행 방법.
1.9.화학식 1의 화합물은 경구 투여를 위한 약학 조성물의 형태로 투여되는 것인, 선행 방법.
1.10. 화학식 1의 화합물, 예컨대 PLAG는 약학적으로 허용 가능한 희석제 또는 담체, 예를 들면, 식용유, 예컨대, 식물성 유지, 예를 들면, 올리브류를 포함하는 희석제 또는 담체와 조합 또는 연계하여, 화학식 1의 화합물을 포함하는 연질 젤라틴 캡슐인 약학 조성물의 형태로 투여되는 것인, 선행 방법.
1.11. 화학식 1의 화합물은 0.0001 내지 100 중량%, 예를 들면, 조성물의 중량으로 50 내지 95 % 또는 95 내지 99 %를 포함하는 약학 조성물의 형태로 투여되는 것인, 선행 방법.
1.12. 상기 조성물은, 갈산 프로필(propyl gallate, PG, E310), 삼차부틸하이드로퀴논 tertiary butylhydroquinone, TBHQ), 부틸 히드록시아니솔(butylated hydroxyanisole, BHA, E320) 및 부틸레이티드 하이드록시톨루엔(butylated hydroxytoluene, BHT, E321), 예를 들면, a-토코페롤(a-tocopherol)과 같은 합성 산화방지제 뿐만 아니라, 약학적으로 허용 가능한 산화방지제, 예를 들면 아스코르브산(ascorbic acid, AA, E300) 및 토코페롤(tocopherols, E306)로부터 선택되는 것을 포함하는 것인, 선행 방법.
1.13. 화학식 1의 화합물은, 거의 50mg의 약학적으로 허용 가능한 희석제 또는 담체, 예를 들면, 식용유, 예컨대, 식물성 유지, 예컨대, 올리브유와 조합하여 또는 이에 연계하여, 화학식 2의 화합물 250 mg을 포함하는 연질 젤라틴 캡슐의 형태로 투여되는 것인, 선행 방법.
1.14. 화학식 1의 화합물은 사람의 소비를 위한 적합한 식품에 첨가 또는 혼합하여 건강 기능 식품의 형태로 투여되는 것인, 선행 방법.
1.15. 화학식 1의 화합물은 하루에 한번(q.d.) 또는 두번(b.i.d.) 투여되는 것인, 선행 방법.
1.16. 화학식 1의 화합물의 하루 총 복용양은 250 mg 내지 2000 mg/day, 예를 들면, 500 mg 내지 1500 mg/day, 예컨대, 500 mg/day, 1000 mg/day 또는 1500mg/day인 것인, 선행 방법.
1.17. 화학식 1의 화합물은 하루에 두 번, 예컨대, 아침과 저녁에 500mg의 복용양이 투여되는 것인, 선행 방법.
1.18. 화학식 1의 화합물은 하루에 한번, 예컨대 저녁에 500 mg의 복용양이 투여되는 것인, 선행 방법.
1.19. 화학식 1의 화합물은 적어도 2주 이상, 예컨대, 적어도 한달에 걸쳐 투여되는 것인, 선행 방법.
1.20. 약학 조성물은 경구 또는 비경구 투여를 위한 고체, 액체, 젤 또는 현탁액의 제제인, 선행 방법.
1.21. 화학식 1의 화합물은 500 mg 내지 4,000 mg의 일일 총 경구 투여량을 하루에 한 번 또는 두 번 투여하는 화학식 2의 화합물인 것인, 선행 방법.
1.22. 화학식 1의 화합물은 500 mg의 PLAG 약물 물질 및 산화방지제로서 1 mg의 a-토코페롤을 포함하는 경투 투여를 위한 연질 젤라틴 캡슐의 형태로 투여되는 화학식 2(PLAG)의 화합물이고, 500 mg 내지 4,000 mg의 일일 총 복용량으로 하루에 한번 또는 두번 투여되는 것인, 선행 방법.
1.23. HUS는, 쉬가 또는 쉬가유사 독소를 생성하는 박테리아, 예컨대, 세균성 이질균; 예컨대 혈청형 O157:H7, O104:H4의 쉬가독소성 대장균(STEC), 또는 다른 장출혈성 대장균(EHEC); 및 쉬가 독소성 캠필로박터 종류로부터 선택되는 박테리아에 의해 유발되는 것인, 선행 방법.
1.24. HUS는 대장균, 예컨대, 대장균 O157:H7을 생성하는 쉬가유사 독소에 d의해 유발되는 것인, 선행 방법.
1.25. HUS는 폐렴연쇄상구균(Streptococcus pneumoniae)에 의해 유발되는 것인, 방법 1 내지 1.21의 어느 하나의 방법.
1.26. HUS는 비정형적 HUS, 예컨대, 만성, 억제되지 않은 하나 또는 그 이상의 유전자 돌연변이거나, 과도한 활성화에 의한 것인, 방법 1 내지 1.21의 선행 방법.
1.27. 환자는 다음 증상들을 나타내는 것인, 선행 방법: 혈소판 감소증, (빈혈 및/또는 분열 적혈구의 존재를 포함하는)미소혈관증 용혈, 그리고 다음 중 하나 또는 그 이상의 것: 신경학적 증상(예컨대, 혼란, 뇌의 경련, 발작, 피로); 신경 장애(예컨대, 상승된 크레아티닌; 추정된 사구체 여과율의 감소; 비정상의 소변검사, 예컨대, 단백뇨, 혈뇨, 핍뇨; 고혈압; 부종); 및 위장(GI) 증상(예컨대, 설사, 구역/구토, 복통, 위장염).
1.28. 상기 환자는 8 g/dL보다 낮은 헤모글로빈 수준을 갖는 것인, 선행 방법.
1.29. 상기 환자는 혈소판 수가 150,000 이하이거나, 적어도 25%의 기준선으로부터 감소되는 것인, 선행 방법.
1.30. 상기 치료는 환자가 적어도 혈액의 마이크로리터 당 150,000의 혈소판을 가질 때까지 지속되는 것인, 선행 방법.
1.31. 상기 치료는 환자가 적어도 12 g/dL의 헤모글로빈 수준을 가질 때까지 지속되는 것인, 선행 방법.
본 발명은 추가적으로 예를 들면 방법 1 이하의 어느 것에도 사용하기 위한, 용혈성 요독 증후군(HUS)의 치료(예컨대, 억제, 감소, 제어, 완화 또는 역전)에 사용하기 위한, 화학식 1의 화합물, 예컨대, PLAG(또는 약학 조성물, 예컨대 화학식 1의 화합물, 예컨대 PLAG의 유효량을 포함하는 여기에 설명된 약학 조성물)를 제공한다.
본 발명은 추가적으로 방법 1의 이하의 어느 것에서도, 용혈성 요독 증후군(HUS)의 치료(예컨대, 억제, 감소, 제어, 완화 또는 역전)를 위한 약의 제조에서, 화학식 1의 화합물, 예컨대 PLAG의 용도를 제공한다.
전반에 걸쳐 사용된 바와 같이, 범위는 각각의 범위 내에 있는 각각의 모든 값을 설명하기 위한 약칭으로서 사용되었다. 범위 내에 어떤 값은 범위의 종점으로서 선택될 수 있다. 또한, 여기에서 인용된 모든 참조문헌들은 그 전체가 참조로서 여기에 포함된다. 만약, 본 발명과 인용된 참조문헌의 정의가 충돌할 경우, 본 발명의 개시가 적용된다. 달리 명시되지 않으면, 모든 백분율 및 양은 여기에 표현되었으며, 그러하지 않으면 본 명세서 내에는 중량 백분율을 지칭하는 것으로 이해되어야 한다. 상기 주어진 양은 물질의 활성 중량을 기준으로 한다.
하기 실시예들은 본 발명의 더 나은 이해를 위해 제공된다. 그러나 본 발명은 실시예들에 의해 한정되지 않는다.
실시예 1- 보체 활성화 경로의 생체 외 억제
보체 활성을 조절하기 위한 PLAG의 활성은 C3의 생성을 억제함으로써 달성된다. C3의 생성은 STAT6의 활성에 의존한다. 따라서, PLAG는 STAT6의 활성을 억제하고, 이에 의해서 화학요법으로 양성 피드백되거나 활성화되는 C3의 생성을 억제한다는 가설을 세웠다.
PALG로 처리된 세포 내 에서의 STAT6의 탈인산화: STAT6의 탈인산화는 0.01 내지 10 ㎍/ml의 PLAG 농도로 처리된 U937, A549 및 Jurkat 세포 용해물에서 항-인산화된 STAT6을 사용하여 조사되었다. STAT6의 인산화 반응은 10 ng/ml의 IL-4의 처리에 의해, 유도되었다. STAT1의 탈인산화는 PLAG(0.01 내지 10㎍/ml)로 처리된 U937세포 용해물에서 조사되었다. STAT1의 인산화는 10 ng의 IFN-γ 처리로 유도되었다. STAT1 및 STAT6의 탈인산화는 PLAG 전처리된 세포 내에 각각 독립적으로, IFN-γ 및 IL-4로 자극한 후 15분에서 조사되었다. 웨스턴 블롯 분석(Western blot analysis)은 STAT6 및 STAT1의 활성을 보여준다. STAT6의 전사 활성은 STAT6의 탈인산화로 인해 감소되었다. 림프종-유도 세포주 U937, T 세포-유도 Jurkat 세포 및 폐 상피 세포주 A549에서, IL-4 처리로 유도되는 STAT6 인산화는 PLAG 농도가 증가함에 따라 억제된다. STAT1 인산화에서 PLAG는 어떤 효과도 없는 것으로 관찰된다.
STAT 6의 활성: STAT6 억제제(S6I)를 사용함으로써, HepG2 세포(인간 간세포주)의 보체 3의 저하는 STAT6에 의해 조절되는 것이 확인되었다. 루시페라아제(luciferase) 활성 연구에 의해 확인된 바와 같이, PLAG로 HepG2 세포를 처리하면, STAT6의 전사 활성은 PLAG의 양에 따라 점차적으로 감소한다. 또한, PLAG는 STAT1 이상 STAT6에서 선택적 효능을 가진다고 확인되었다. 도 1은 PLAG 처리된 HepG2 세포에서 STAT1 및 STAT6 전사 활성을 나타내는 그래프를 제시한다. NC는 자극되지 않은 억제 세포를 나타낸다. STAT1 분석을 위해, 유전자 형질전환된 HepG2(인간 간세포 세포주)가 10 ng의 IFN-γ로 처리되었고, 그리고 희석된 PLAG가 자극된 세포 내에서 유전자 발현에 미치는 영향을 보기 위해 단계적으로 첨가되었다(도면에 나타난 바와 같이, 0.01 ㎍/ml, 0.1 ㎍/ml, 1 ㎍/ml 및 10㎍/ml). STAT6 분석을 위해서, 유전자 형진전환된 HepG2 세포들은 10 ng의 IL-4로 처리되었고, 그리고 다시 한번 자극된 세포 내에서 유전자 발현에 미치는 영향을 보기 위해 희석된 PLAG가 단계적으로 첨가되었다(도면에 나타난 바와 같이, 0.01 ㎍/ml, 0.1 ㎍/ml, 1 ㎍/ml 및 10㎍/ml). 상기 분석은 처리된 세포를 12시간 동안 배양한 다음 수행되었다. PLAG는 이번 분석에서 STAT1 발현에는 아무 효과가 없으나, STAT6 발현에 상당한 투여량 의존 효과를 가진다.
인간 HMC-1 세포에서의 C3 발현의 생체 외 억제: 약물로 유도되는 백혈구 감소증에서 보체 의존적인 메커니즘 역할 및 혈관 염증에서의 호중구의 역할과 패혈증에 대한 반응에 대해 공개한 보고서는, 보체 활성이 화학용법으로 유도된 혈소판 감소증 및 백혈구 감소증과 관련될 수 있음을 시사한다. 우리는 PLAG가 C3를 하향 조절하여 보체 활성화를 약화시킬 수 있다는 것을 발견했다; PLAG 처리된 인간 단핵구 세포(human monocyte cells, HMC-1) 및 PLAG 처리된 간세포(hepatocytes, HepG2)가 감소된 C3 발현을 보여준다.
HMC-1(인간 비만세포(human mast cell), 아메리칸 타입 컬쳐 컬렉션(American Type Culture Collection), ATCC, Rockville, MD)인 혈액 세포주(blood cell line)는 37℃, 5 % 이하의 CO2 습한 조건에서 배양되었고 그리고 유지되었다. 상기 배지(medium)는 10%의 우태혈청(Fetal Calf Serum, FCS, HyClone, Logan, UT), 2mM의 L-글루탐산염(L-glutamate), 100㎍/ml의 페니실린(penicillin), 100 ㎍의 스트렙토마이신(streptomycin, Life Technologies)이 함유되어 있는 IMDM(Life Technologies, Karlsruhe, Germany)이다. 상기 배양된 HMC-1 세포들(1 x 106 cell/ml)은 0.1 및 1 ㎍/mL 농도의 PLAG로 전처리 되고, 이후 세포 활성을 유도하기 위해 IL-4(5ng) 및/또는 TNF-γ(10ng)로 처리되었다.
발현된 C3 및 그것의 mRNA 수준 변화는 RT-PCR(역전사효소 중합효소 연쇄 반응, Reverse Transcriptase Polymerase Chain Reaction)을 이용하여 관찰되었다. 상기 RT-PCR은 다음과 같이 수행되었다: 총 RNA는 표준 프로토콜에 의해 분리되고, cDNA는 AccuScript High Fidelity 1st Strand cDNA 합성 키트(스트라테이진, Stratagene)을 이용하여 합성되었다. 두번째 단계의 RT-PCR 반응은 올리고-dT 프라이머 및 역전사 gythm 프라이머 쌍 및 Taq 중합효소(Takara, Shiga, Japan)를 사용하여 수행된다. 상기 합성된 cDNA(1㎕)은 0.5 U ExTaq DNA 중합효소, 1 완충용액 및 1mM의 dNTP혼합물(Takara) 및 프라이머 쌍과의 20 ㎕의 PCR 반응에 사용되었다. PCR 증폭은 GeneAmp PCR system 2700(어플라이드 바이오시스템스(Applied Biosystems), 포스터시티(Foster city) 캘리포니아, 미국)를 사용하여 다음과 같은 조건 하에서 수행된다; 25 내지 40 사이클로, 94℃에서 5분, 94℃에서 45초, 56℃에서 45초 그리고 72℃에서 1분간 그리고 최종 연장 반응은 72℃에서 7분 동안 수행된다. dDNA 증폭에 사용되는 상기 PCR 프라이머는 프라이머3 프로그램으로 설계되고, 바이오니아(대전, 한국)에서 구매하였다. 상기 PCR의 생성물은 1.5 %의 아가로스 겔을 사용하여 분리되고, 브롬화 에티듐(ethidium bromide, EtBr)으로 염색되며 그리고 Gel Doc 2000 UV trans-illuminator(Bio-Rad Laboratories, Hercules, CA, USA)으로 가시화되고 그리고 실험 데이터는 퀀터티 원 소프트웨어(Quantity One software)(바이오-래드 래보라토리즈(Bio-Rad Laboratories))를 사용하여 분석된다. 웨스턴 블로트(Western blots)는, IL-4 및 TNF-γ로 처리되고 이후에 S6I(신호 변환기 및 전사6(STAT6)의 활성 억제제, AS1517499, Axon Medchem, Netherlands)로 처리된 세포들과 유사하게, IL-4 및 TNF-γ에 의한 HMC-1 세포의 처리가 C3의 발현을 야기하는데, 이것이 농도 의존적 기반에서 PLAG에 의해 억제됨을 보여준다. STAT6 억제제는 IL-4에 의해 세포 내에서 STAT6 신호 전달을 차단하며, 그 결과로 C3의 발현을 억제한다. 이러한 데이터는 PLAG가 STAT6 억제제와 유사한 방식으로 작동할 수 있음을 시사한다.
HMC-1 내 PLAG로 인한 C3 억제: 별도의 실험에서, 인간 비만 세포들(HMC-1, 1 x 105 cell/ml)은 다양한 농도들(1, 10 및 100 ㎕.mL)의 PLAG로 2시간 동안 처리되었다. 상기 세포들은 IMDM을 포함하는 10%의 FBS(소태아 혈청, Fetal bovine serum)로 72시간 동안 활성화 되었다. 상기 C3의 감소는 단백질 발현의 엘리자 분석법(ELISA analysis)으로 확인되었다. 도 2에 도시된 바와 같이, C3의 감소는 PLAG의 농도에 비례한다(PLAG는 도면에서 EC를 나타낸다; 단위는 ㎕/ml이다).
HepG2 세포주로부터 C3 배출: HepG2(American Type Culture Collection, ATCC, Rockville, MD)인 간 세포주는 DMEM 배지 내에 37 ℃ 및 5%의 CO2 습한 분위기에서 배양되고 그리고 유지되었다. 배양조직 내 보체를 생성한다고 알려진 HepG2 세포들은 PLAG로 처리되면, 보체의 활성이 mRNA의 RT-PCR에서 확인된 바와 같이, 효과적으로 감소된다. RT-PCR에서, HepG2 cells/ml의 5 x 105수는 12 구 플레이트(well plates) 안에 분포되어 있고, 10%의 FCS로 12시간 동안 C3가 유도되었다. 그리고 PLAG가 첨가되고 그리고 이후 2시간 동안 배양된다. 세포들은 채취되었고, mRNA는 분리되었으며, RT-PCR는 C3 특정 프라이머로 수행되었다; GAPDH는 내부통제로서 사용되었다. 상기 RT-PCR은 10 및 100 ㎍/ml의 S6I로 얻어진 결과와 유사하게, PLAG가 1 ㎍/ml에서는 약간 그리고 10㎍/ml에서는 완전히 C3 발현을 억제한다는 것을 나타낸다.
상기 배양된 HepG2 세포주는 PLAG(1 내지 100 ㎍/ml)로 처리된 다음, IL-4 및 TNF-γ로 처리되고, 1시간 동안 반응시키고, 37 ℃에서 18시간 동안 배양 되고, 상청액을 분리하였다. HepG2 세포에서 세포 배양 배지(상청액) 내 C3 양의 정량은 상업적으로 구할 수 있는 단일 클론성 항체(mAb, R&D Systems) 및 제조의 프로토콜을 사용하여 엘리사(ELISA)로 수행된다; 상기 결과들은 도 3에 나타내었다. C3는 12시간 동안 배양된 HepG2 세포들에 10%의 FCS를 첨가한 것을 사용하여 생체 외 배양 조건 하에서 자연적으로 발현된다. 상기 세포들은 상이한 복용량, 1 내지 100 ㎍/ml의 PLAG (패널 A, 패널 B) 또는 10 및 100 ㎍/ml의 S6I(패널 C) 처리되었고, 1 시간 동안 IL-4 and TNF-?에 반응시킨 다음, 37℃에서 18시간 동안 배양되었다. 세포 생존율은 WST-1 분석(패널 A)를 사용하여 확인되었다. 이 분석은 세포 생존율이 세포 내 미토콘드리아의 이산화효소(deoxygenase)에 의해 테트라졸륨 염(WST-1)으로부터 형광물질, 포르마잔(formazan)의 형성에 의해 측정된 것을 나타낸다. 도 3A는 PLAG가 세포의 증식 및 죽음에 영향을 미치지 않는 것을 확인한다. 도 3B는 C3의 발현이 PLAG의 투여로 인해 복용량-의존적으로 감소되는 것을 나타내고, 도 3C는 유사한 결과가 S6I의 투여에 의해 얻어진다는 것을 나타낸다.
실험예 2- 혈소판 감소증에서 PLAG의 생체내 효과 및 마우스에서 생체내 보체 활성화
비장에서의 생체내 콜로니 형성단위(Colony Forming Units in Spleen , CFUs ) 분석: 조혈 작용의 회복에서 PLAG의 생체내 효과를 알아내기 위해, CFUs 분석은 심하게 방사선 조사된 마우스에서 수행되었다. 50 mg/kg/d ip 또는 po 복용량의 PLAG로 처리된 마우스 비장의 현미경 검사는 비장 결절의 수 및 모든 처리된 동물들에서 원시 조상 세포들 및 거핵세포들의 수의 현저한 증가를 보여준다.
마우스에서 생체내 효능 연구: 화학요법(CIN)으로 유도되는 혈소판 감소증의 치료를 위한 상기 PLAG의 효과는 동물 모델에서 평가되었다. 항-암 치료제들(젬시타빈(Gemcitabine) 50mg/kg, 시클로포스파미드(Cyclosphosphamide) 100 mg/, 또는 타목시펜(Tamoxifen) 50mg/kg)은 3 주 동안 매일 복용되었다; PLAG 또한 3 주 동안 매일 50 mg/kg 투여되었다. 혈소판 수 데이터는, 도 4에서 PLAG가, 젬시타빈 50mg/kg, 시클로포스파미드 100 mg/, 또는 타목시펜 50 mg/kg에 대하여 유사한 혈소판 보호 효과를 제공하는 것을 묘사한다.
이러한 치료제들 및 다른 화학요법 치료체들의 백혈구 감소증 및 혈소판 감소증은 적어도 부분적으로 특정 보체-매개 독소 때문인 것으로 생각된다. 이것은 도 5에 보여진다. 이러한 치료제들 모두는 보체 3을 상당히 활성화시키고, 이 활성화는 PLAG에 의해 크게 차단된다.
실험예 3 - 마우스 내 혈소판 감소증에 대한 생체내 보호
혈소판 농도에 대한 PLAG의 효과를 평가하기 위해 마우스는 혈소판 수의 감소의 원인으로 예상되는 화합물들, 구체적으로는 페닐히드라진(phenylhydrazine), 타목시펜 또는 지질다당류(lipopolysaccharide)로 처리된다.
마우스에 빈혈 및 혈소판의 감소를 유도하는 100 mg/kg의 페닐히드라진(PHZ), i.p이 주사된다. 5 mg/kg의 PLAG는 마우스 경구에 투여되며, 혈액샘플들은 3 및 13일 후에 얻었다. 추가적으로, 비교를 위해, 페닐히드라진으로 처리되지 않은 정상 마우스는 정상군으로 준비하였고, PHZ와 PLAG 대신 올리브유로 처리된 마우스는 대조군으로서 준비하였다. 마우스에서 얻은 혈액 샘플은 0.5 ml의 EDTA(Minicollect tube, Greiner bio-one, Austria)로 처리되었고, 혈소판의 농도는 1 mL당 혈소판의 수(k: 1,000)로서 자동 혈액 샘플 분석장치 BC-6800(Mindray, Shenzhen, China)를 사용하여 측정하였다. 그 결과는 표 1에 나타내었다.
정상군 PHZ + 오일 처리대조군, 3일 PHZ + PLAG처리군, 3일
혈소판 수(k/ul, 3 일) 964.4±57.4 851±44.5 1072±125.4
혈소판 수(k/ul, 13 일) 1002.4±36.8 1051±55.4 1188.8±115.6
상기 실험은 혈소판 감소를 유도하는 100 mg/kg의 양이 주사되는 항암 치료제인 타목시펜(Tam) 또는 1 mg/kg의 양이 주사되는 감염 유도물질인 지질 다당류(LPS)를 사용하여 반복되었다. 혈소판 농도는 PLAG 처리 후 15 시간에서 측정되었다. 비교를 위해, 올리브유 및 PBS는 타목시펜 및 지질다당류 실험을 위해 각각 독립적으로 대조군으로서 PLAG 대신 사용되었다. 그 결과는 표 2 및 3에 나타내었다.
정상군 Tam + oil 처리 대조군,15 시간 후 Tam + PLAG (5 mg/kg)실험군, 15시간 후
혈소판 수(k/ul) 1015.7±33.5 459±171.1 780.7±195.9
정상군 LPS + PBS LPS +PLAG (1 mg/kg) LPS +PLAG (2 mg/kg)
혈소판 수(k/ul) 1005.50±140.7 423.33±55.2 450.00±101.8 553.33±42.0
상기 정상적인 혈소판의 농도는 400 내지 1600 k/㎕이고, 환경에 따라 달라질 수 있다. 표 1 내지 3은 혈소판 감소증이 이러한 화합물의 투여에 의해 인위적으로 유도되면, 혈액 내 혈소판 농도는 감소하고, 이러한 환자들에게 PLAG의 투여시 상기 혈소판 농도는 회복된다.
실험예 4 - 임상연구: 보체3에서 PLAG의 활성
임상연구는 PLAG의 면역-조절 효과를 연구하기 위해 27 명의 건강한 환자와 함께 대한민국의 관동대학교 명지병원 임상연구센터에서 수행되었다. 지원자들은 합법적인 임상 승인하에서 생체내 경구 투여함(하루당 500mg의 PLAG)으로서 30일 동안 테스트 되었다. 보체 3은 C3 분석 치트를 사용하여 계산되었다. 상기 분석 결과는 도 6에 나타내었고, 건강한 대상자들에게 PLAG의 투여로 인한 면역반응력(immunoactivity)의 변화는 표 4에 나타내었다(4-wk 개입 후, 말초혈액의 면역기능에서 보충하는 PLAG의 효과). 표 4에 나타낸 바와 같이, 한달 동안 PLAG를 섭취한 사람들의 가장 많은 수(27명의 환자들 중 26명)는 보체 3(C)가 감소된 것을 보여준 반면, 콩기름으로 처리된 대조군은 C3의 증가 및 감소 둘 다 나타냈다. 혈액 내 C3의 평균 농도는 p 값이 0.001 미만인 PLAG의 투여 후에 약 10 mg/dL의 감소를 나타낸다.
대조군(n=22) PLAG (n=27)
이전 이후 P 값 이전 이후 P-값
C3, mg/dl 102.6±22.5 97.5±13.4 0.131 109.5±13.0 99.7±12.4 <0.001
C4, mg/dl 19.6±5.7 19.6±5.5 0.927 21.6±6.6 20.8±5.6 0.187
실험예 5 - 단위 투역 제제( Unit dosage formulation )
(i) PLAG 및 (ii) a-토코페롤을 포함하는 것으로 여기에 설명된 방법에 사용하기 위한 예시적인 연질 젤라틴 캡슐이 다음과 같은 조성물을 가지도록 제조되었다.
PLAG 연질 겔 캡슐의 조성물
성분 기능 단위
PLAG 활성 성분 500.0 mg
α-토코페롤 산화 방지제 1.0 mg
연질 캡슐 쉘 조성물
성분 기능
젤라틴 캡슐 쉘
농축된 글리세린 가소제
메틸 파라-옥시벤조에이트 방부제
프로필 파라-옥시벤조에이트 방부제
에틸 바닐린 향미제
이산화 티타늄 착색제
타르색소, MFDS notified Blue No. 1 착색제
타르색소, MFDS notified Red No. 40 착색제
타르색소, MFDS notified Yellow No. 203 착색제
정제수 전색제

Claims (19)

  1. 화학식 1의 화합물의 유효량을, 이를 필요로 하는 환자에게 투여하는 것을 포함하는, 용혈성 요독 증후군 치료 방법,
    [화학식1]
    Figure PCTKR2016013078-appb-I000007
    여기서, R1 및 R2는 각각 독립적으로 탄소수 14 내지 22의 지방산기임.
  2. 청구항 1에 있어서, R1 및 R2는 각각 독립적으로 팔미토일, 올레오일, 리놀레오일, 리놀렌오일, 스테아로일, 미리스토일 및 아라키도노일을 포함하는 군으로부터 선택되는 것인, 방법.
  3. 청구항 1에 있어서, R1 및 R2(R1/R2)는 올레오일/팔미토일, 팔미토일/올레오일, 팔미토일/리놀레오일, 팔미토일/리놀렌오일, 팔미토일/아라키도노일, 팔미토일/스테아로일, 팔미토일/팔미토일, 올레오일/스에타로일, 리놀레오일/팔미토일, 리놀레오일/스테아로일, 스테아로일/리놀레오일, 스테아로일/올레오일, 미리스토일/리놀레오일, 미리스토일/올레오일을 포함하는 군으로부터 선택되는 것인, 방법.
  4. 상기 선행하는 청구항의 어느 하나에 있어서, 화학식 1의 화합물은 화학식 2의 화합물인 것인, 방법.
    [화학식2]
    Figure PCTKR2016013078-appb-I000008
  5. 청구항 4에 있어서 화학식 2의 화합물은 다른 모노아세틸디아실글리세롤 화합물이 실질적으로 없는 약학 조성물로 투여되는 것인, 방법.
  6. 청구항 5에 있어서, 화학식 2의 화합물은 다른 트리글레세리드 화합물이 실질적으로 없는 약학 조성물로 투여되는 것인, 방법.
  7. 상기 선행하는 청구항의 어느 하나에 있어서, 화학식 1의 화합물은 화학식 1의 화합물을 포함하는 연질 젤라틴 캡슐인 약학 조성물의 형태로 투여되는 것인, 방법.
  8. 상기 선행하는 청구항의 어느 하나에 있어서, 화학식 1의 화합물은, 500 mg 내지 4,000 mg의 일일 경구 총 복용량을 하루에 한 번 또는 두 번 투여되는 화학식 2의 화합물(PLAG)인 것인, 방법.
  9. 상기 선행하는 청구항의 어느 하나에 있어서, 화학식 1의 화합물은, 500mg의 PLAG 약 물질 및 산화방지제로서, 1mg의 α-토코페롤을 포함하고, 500 mg 내지 4,000 mg의 일일 경구 총 복용량을 하루에 한 번 또는 두 번 투여되는, 경구 투여를 위한 연질 젤라틴 캡슐의 형태로 투여되는 화학식 2의 화합물(PLAG)인 것인, 방법.
  10. 상기 선행하는 청구항의 어느 하나에 있어서, 상기 HUS는 쉬가 또는 쉬가유사 독소를 생성하는 박테리아[예컨대, 세균성 이질균; 쉬가 독소성 대장군, 예컨대, 혈청형 O157:H7, O104:H4, 또는 다른 장출혈성 대장균; 및 쉬가독소성 캠필로박터 종류에서 선택된 박테리아에 의해 유발되는 것인, 방법.
  11. 상기 선행하는 청구항의 어느 하나에 있어서, 상기 HUS는 대장균[예컨대, 대장균 O157:H7]을 생성하는 쉬가유사 독소에 의해 유발되는 것인, 방법.
  12. 청구항 1 내지 6 중 어느 한 항에 있어서, HUS는 폐렴연쇄상구균에 의해 유발되는 것인, 방법.
  13. 청구항 1 내지 6 중 어느 한 항에 있어서, HUS는 [예를 들면 보체의 만성, 제어되지 않은 및/또는 과도한 활성화를 야기하는 하나 또는 그 이상의 유전자 돌연변이에 기인하는] 비정형적 HUS인 것인, 방법.
  14. 상기 선행하는 청구항의 어느 하나에 있어서, 환자는, 혈소판 감소증, (빈혈 및/또는 분열 적혈구의 존재를 포함하는) 미소혈관증 용혈 그리고 하기의 것 중의 하나 또는 그 이상의 것: 신경학적 증상(예컨대, 혼란, 뇌의 경련, 발작, 피로); 신경 장애(예컨대, 상승된 크레아티닌; 추정된 사구체 여과율의 감소; 비정상의 소변검사, 예컨대, 단백뇨, 혈뇨, 핍뇨; 고혈압; 부종); 및 위장(GI) 증상(예컨대, 설사, 구역/구토, 복통, 위장염)을 보이는 것인, 방법.
  15. 상기 선행하는 청구항의 어느 하나에 있어서, 환자는 8 g/dL보다 낮은 헤모글로빈 수준을 갖는 것인, 방법.
  16. 상기 선행하는 청구항의 어느 하나에 있어서, 환자는 혈소판 수가 150,000 아래이거나, 적어도 25% 기준선으로부터 감소되는 것인, 방법.
  17. 상기 선행하는 청구항의 어느 하나에 있어서, 치료는 환자가 혈액의 마이크로리터 당 적어도 150,000 혈소판을 가질 때까지 지속되는 것인, 방법.
  18. 상기 선행하는 청구항의 어느 하나에 있어서, 치료는 환자가 적어도 12 g/dL의 헤모글로빈 수준을 가질 때까지 지속되는 것인, 방법.
  19. HUS의 치료를 위해, 실질적으로 다른 글리세리드는 없으며 0.1 내지 3 mg의 약학적으로 허용 가능한 토코페롤 화합물과 함께 250 내지 1000 mg의 화학식2의 화합물을 포함하는 경구 투여를 위한 연질 젤라틴 캡슐로서, 단위 투여 형태를 가지는, 약학 조성물.
PCT/KR2016/013078 2015-11-14 2016-11-14 용혈성 요독 증후군의 치료 방법 WO2017082709A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/775,811 US10653657B2 (en) 2015-11-14 2016-11-14 Method for treating hemolytic uremic syndrome

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562255422P 2015-11-14 2015-11-14
US62/255,422 2015-11-14

Publications (1)

Publication Number Publication Date
WO2017082709A1 true WO2017082709A1 (ko) 2017-05-18

Family

ID=58695804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013078 WO2017082709A1 (ko) 2015-11-14 2016-11-14 용혈성 요독 증후군의 치료 방법

Country Status (2)

Country Link
US (1) US10653657B2 (ko)
WO (1) WO2017082709A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787991C2 (ru) * 2017-08-31 2023-01-16 Новартис Аг Новые варианты применения производных пиперидинилиндола

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047447A (ko) * 2004-04-24 2006-05-18 김상희 모노아세틸디아실글리세롤류 화합물을 유효성분으로함유하는 면역조절제, 항암제 및 건강식품
KR20150021464A (ko) * 2013-08-19 2015-03-02 한국생명공학연구원 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는 혈액암 또는 암전이 억제용 조성물

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061932B1 (en) 1997-11-20 2006-01-25 Gil Ja Jhon Pharmaceutical composition containing extracts of cervus nippon antlers having growth-stimulating activities of hematopoietic stem cells and megakaryocytes
KR101278874B1 (ko) 2011-09-23 2013-06-26 주식회사 엔지켐생명과학 1-팔미토일-3-아세틸글리세롤의 제조방법 및 이를 이용한 1-팔미토일-2-리놀레오일-3-아세틸글리세롤의 제조방법
US20150266803A1 (en) 2014-03-24 2015-09-24 Enzychem Lifesciences Corporation Method for preparing monoacetyglycerols and esters thereof
CA3037762C (en) 2014-05-15 2022-03-22 Enzychem Lifesciences Corporation Methods for treating leukopenia and thrombocytopenia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047447A (ko) * 2004-04-24 2006-05-18 김상희 모노아세틸디아실글리세롤류 화합물을 유효성분으로함유하는 면역조절제, 항암제 및 건강식품
KR20150021464A (ko) * 2013-08-19 2015-03-02 한국생명공학연구원 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는 혈액암 또는 암전이 억제용 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HWANG, H. -J. ET AL.: "Effect of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol on Immune Functions in Healthy Adults in a Randomized Controlled Trial", IMMUNE NETWORK, vol. 15, no. 3, June 2015 (2015-06-01), pages 150 - 160, XP055354802 *
YANG, H. O. ET AL.: "Purification and Structural Determination of Hematopoietic Stem Cell -stimulating Monoacetyldiglycerides from Cervus Nippon (deer antler).", CHEMICAL AND PHARMACEUTICAL BULLETIN, vol. 52, no. 7, 2004, pages 874 - 878, XP002540176, DOI: doi:10.1248/cpb.52.874 *
YANG, H. O. ET AL.: "Stimulatory Effects of Monoacetyldiglycerides on Hematopoiesis.", BIOLOGICAL AND PHARMACEUTICAL BULLETIN, vol. 27, no. 7, 2004, pages 1121 - 1125, XP055326685 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787991C2 (ru) * 2017-08-31 2023-01-16 Новартис Аг Новые варианты применения производных пиперидинилиндола

Also Published As

Publication number Publication date
US20180325857A1 (en) 2018-11-15
US10653657B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2015026112A1 (ko) 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는 혈액암 또는 암전이 억제용 조성물
WO2021040371A1 (ko) 항염증용 조성물
WO2017014502A1 (ko) 해당화 꽃 추출물을 유효성분으로 포함하는 il-6 매개성 질환의 예방 또는 치료용 약학적 조성물
KR100964906B1 (ko) 리카린 이를 함유하는 염증성 질환의 치료 또는 예방용약학적 조성물
EP2091544A2 (fr) Composition pour la prevention et/ou le traitement des maladies associees a la surexpression du tnf et/ou de l&#39;il-12
JP2005511767A (ja) Hiv−1プロテアーゼインヒビターおよびその誘導体の、炎症の処置における使用
WO2017082709A1 (ko) 용혈성 요독 증후군의 치료 방법
WO2019039857A1 (ko) 타마리세틴을 유효성분으로 포함하는 패혈증 또는 패혈증성 쇼크의 예방 또는 치료용 약학적 조성물
WO2017082708A1 (ko) 발작성 야간 혈색소뇨증의 치료 방법
CN112409439A (zh) 一种甘草酸衍生物、制备方法及应用
KR20150044270A (ko) 감초추출물을 함유하는 바이오필름 형성 방지용 조성물
JP2006124296A (ja) ヘリコバクター・ピロリ菌感染症治療のための医薬組成物
KR20190041299A (ko) 상백피 추출물을 함유하는 바이오필름 형성 억제용 조성물
RU2713154C1 (ru) Антихеликобактерное средство и способ его применения
TW201309315A (zh) 玉桂萃取物、萃取方法與其做為氫離子幫浦負調控物、酵素抑制物及黏膜保護物之使用方法
WO2009148218A2 (ko) 디벤조-p-디옥신 유도체를 유효성분으로 함유하는 관절염 치료용 조성물
US20230404969A1 (en) Compositions and method for effective management of peritonitis
KR20150070062A (ko) 정향추출물을 함유하는 바이오필름 형성 방지용 조성물
KR20170107237A (ko) 정향의 에탄올 추출물을 함유하는 스트렙토코코스 뮤탄스의 바이오필름 형성 방지용 조성물
KR101799984B1 (ko) 감초추출물을 함유하는 바이오필름 형성 방지용 조성물
WO2020106050A1 (ko) 스트렙토니그린 및 항암제를 모두 포함하는 암 예방 또는 치료에 사용하기 위한 약학적 조성물
Youssef et al. Novel role of probiotics in improving cell proliferation and regulating proinflammatory cytokine-mediated oxidative damage of ethanol-induced gastric mucosal injury in rats
WO2019245223A1 (ko) 류코노스톡속 균주를 포함하는 간 기능 개선용 조성물
WO2017048029A1 (ko) 클라바스피린 펩타이드 유사체를 유효성분으로 함유하는 항염증용 조성물
CN118159277A (zh) 用于治疗疾病和感染的潮霉素a

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15775811

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864635

Country of ref document: EP

Kind code of ref document: A1