WO2016195355A1 - 필버톤의 신규한 용도 - Google Patents

필버톤의 신규한 용도 Download PDF

Info

Publication number
WO2016195355A1
WO2016195355A1 PCT/KR2016/005718 KR2016005718W WO2016195355A1 WO 2016195355 A1 WO2016195355 A1 WO 2016195355A1 KR 2016005718 W KR2016005718 W KR 2016005718W WO 2016195355 A1 WO2016195355 A1 WO 2016195355A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
present
liver
group
fatty liver
Prior art date
Application number
PCT/KR2016/005718
Other languages
English (en)
French (fr)
Inventor
박태선
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2016195355A1 publication Critical patent/WO2016195355A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/121Ketones acyclic

Definitions

  • the present invention was made by the task No. 1130373 under the support of the Ministry of Agriculture, Food and rural Affairs of Korea, the research and management institution of the project is the Ministry of Agriculture, Forestry and Fisheries Food Technology Planning and Evaluation, the research project name is "Technology Industrialization Support Project”, and the research project titled “Hanjin Extract” Development of Individually Recognized Health Functional Food Ingredients for Weight Control and Metabolic Disease Improvement ”,
  • the lead organization is Yonsei University Industry-Academic Cooperation Group, and the research period is from Dec. 04 to Dec. 2016.
  • the present invention is also made by the task number 2015R1A5A6001906 with the support of the Ministry of Education, Science and Technology, the research management specialized organization of the project is the Korea Research Foundation, the research project name is "Leading research center upbringing business science and technology (SRC)", research project The name is “Food and Nutrition Genome Research Center”, the lead organization is Kyungpook National University Industry-Academic Cooperation Group, and the research period is from Mar. 01, 2016 to Feb. 28, 2015.
  • the present invention relates to a pharmaceutical composition for preventing or treating metabolic diseases and a functional food composition for preventing or improving metabolic diseases, including filbertone as an active ingredient.
  • BMI> 25 Approximately 25% of the world's population is currently overweight (BMI> 25), and more than 300 million people in the Western region, including 120 million in the major markets of the United States, Europe and Japan, are obese (BMI> 30).
  • BMI> 30 are classified as The highest percentage of obesity among the OECD countries is the United States, with 31% of the population being obese, followed by Mexico (24%), the United Kingdom (23%), Greece (22%), Australia (22%), New Zealand (21%), Hungary (19%), Canada (14%), Spain (13%), Ireland (13%), Germany (13%), Portugal (13%), Finland (13% 0, Turkey ( 12%), followed by Belgium (12%), with a high proportion of obese patients in China, with 70 million people being obese, and the market for weight control rapidly expanding, with a total market size of 10 billion yuan.
  • Non-alcoholic fatty liver disease refers to a disease in which triglycerides accumulate in the liver regardless of drinking, and include steatosis and non-alcoholic steatohepatitis (NFLD). NASH). Simple fatty liver is considered to be a benign disease with a good prognosis, but NASH with inflammation or fibrosis along with fatty liver has been recognized as a proliferative disease that causes cirrhosis or liver cancer as a progressive liver disease.
  • Obesity and insulin resistance are risk factors for representative nonalcoholic fatty liver disease.
  • Risk factors for progression of hepatic fibrosis include obesity (BMI> 30), blood liver function index (AST / ALT> 1) and diabetes, especially if hepatitis C carriers are non-alcoholic fatty liver.
  • BMI> 30 obesity
  • AST / ALT> 1 blood liver function index
  • diabetes especially if hepatitis C carriers are non-alcoholic fatty liver.
  • the need for prevention and treatment is emerging. 69-100% of nonalcoholic fatty liver patients are obese, 20-40% of obese patients are accompanied by nonalcoholic fatty liver, and in particular, the prevalence of liver disease in male obese patients is higher than that of female obese.
  • In Western society 3-30% of normal weight adults as well as obese patients are reported to have non-alcoholic fatty liver disease.
  • Non-alcoholic fatty liver is a problem not only in adults but also in obese children. 10-77% of obese children (resident in Europe, USA and Asia) show nonalcoholic fatty liver lesions because obesity is the most important risk factor for nonalcoholic liver disease.
  • Obesity treatment products sold at home and abroad include 'Jenical' (Roche Korea), the main ingredient of orlistat, approved by the US FDA, 'Reductyl' (Ilsung New Drug), which is based on sibutramine, and 'Exo', which is composed of green tea catechol. Rize '(Savior Pharmaceuticals). Xenical, which inhibits lipase action, causes gastrointestinal side effects such as fatty stool, gas production, and decreased fat-soluble vitamin absorption. And side effects. In addition, many products developed as anti-obesity drugs have been banned due to serious side effects.
  • aminophylline has been reported to have a wide range of side effects in the mental nervous system, the circulatory system, and the digestive system, despite its excellent body fat-degrading effect.
  • the sale was forbidden.
  • the conventional synthetic drugs show limitations due to side effects, there is a growing demand for the development of a new composition for treating obesity, which is safe and can be taken for a long time, and is suitable for the treatment of chronic diseases.
  • Prior patent documents of the present invention include Korean Patent No. 108376 and Korean Patent No. 1186500.
  • the present inventors have made diligent research efforts to develop compounds having a prophylactic or therapeutic activity for metabolic diseases including obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome. As a result, the present invention has been completed by confirming that filbertone has a prophylactic, improvement and therapeutic effect on metabolic diseases by reducing body fat and blood sugar and greatly improving the indicators of various metabolic diseases. .
  • an object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of metabolic diseases selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome containing filverton as an active ingredient.
  • Another object of the present invention to provide a functional food composition for the prevention or improvement of metabolic diseases selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome containing filverton as an active ingredient.
  • Another object of the present invention is to provide a method for preventing or treating metabolic disease selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome. .
  • the present invention is metabolism selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome comprising filbertone as an active ingredient
  • a disease metabolic disease
  • the present inventors have made diligent research efforts to develop compounds having a prophylactic or therapeutic activity for metabolic diseases including obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome. As a result, it was confirmed that filbertone has a prophylactic, ameliorating and therapeutic effect on the metabolic disease by reducing body fat and blood sugar and greatly improving the indicators of various metabolic diseases.
  • the term “filbertone” is a natural compound represented by the following Chemical Formula 1, and has a structural formula of C 8 H 14 O, a molecular weight of 126.2 g / mol, and are soluble in water and insoluble in oil.
  • Filberton is known to be an edible safe substance and is a flavor and fragrance agent in Flavor and Extract Manufacturers' Association (FEMA), Korea Food and Drug Administration (KFDA), and Joint FAO / WHO Expert Committee on Food Additives (JECFA). Although it is approved as an ingredient and has been used industrially for the purpose of flavoring and flavoring, there is no report on its biological activity.
  • FEMA Flavor and Extract Manufacturers' Association
  • KFDA Korea Food and Drug Administration
  • JECFA Joint FAO / WHO Expert Committee on Food Additives
  • Filberton of the present invention may be used in the form of a pharmaceutically acceptable salt, and acid salts formed by pharmaceutically acceptable free acid are useful as salts.
  • Inorganic acids and organic acids can be used as the free acid.
  • the pharmaceutically acceptable salts of fibrton of the present invention are hydrochloride, bromate, sulfate, phosphate, citrate, acetate, trifluoroacetate, lactate, tartarate, maleate, fumarate, gluconate , Methanesulfonate, glyconate, succinate, 4-toluenesulfonate, gluturonate, embonate, glutamate, or aspartate, but may be selected from the group consisting of All salts formed using the various inorganic and organic acids used are included.
  • the compounds of the invention may also exist in the form of solvates (eg hydrates).
  • the present invention is a metabolic disease selected from the group consisting of obesity, diabetes mellitus, dyslipidemia, fatty liver and insulin resistance syndrome comprising the filverton of the present invention or a pharmaceutically acceptable salt thereof as an active ingredient It provides a pharmaceutical composition for the prophylaxis or treatment of.
  • Filverton of the present invention reduces body weight and visceral fat, decreases blood lipid concentration, improves blood liver function index, reduces blood sugar and suppresses metabolic inflammatory response. Accordingly, the compounds of the present invention can be usefully used as an effective prophylactic or therapeutic composition that variously improves various metabolic diseases.
  • diabetes refers to a chronic disease characterized by a relative or absolute lack of insulin resulting in glucose-intolerance.
  • Diabetes of the present invention includes all types of diabetes, including, for example, type 1 diabetes, type 2 diabetes and hereditary diabetes.
  • Type 1 diabetes is insulin dependent diabetes mellitus, mainly caused by the destruction of ⁇ -cells.
  • Type 2 diabetes is insulin-independent diabetes, caused by insufficient insulin secretion after meals or by insulin resistance.
  • dislipidemia is a concept including hyperlipidemia, which is caused by problems such as metabolic abnormalities of lipoproteins in addition to hypercholesterolemia, hypertriglyceridemia, and low HDL-cholesterolemia, which are indicated by increased fat levels in the blood. It means an abnormal lipid state.
  • fatty liver refers to a condition in which fat accumulates in hepatic cells due to adipose metabolism disorder of the liver, which causes various diseases such as angina, myocardial infarction, stroke, arteriosclerosis, fatty liver and pancreatitis. .
  • insulin resistance refers to the inability of insulin to lower blood sugar and thus the cells not effectively burning glucose.
  • insulin resistance is high, the body produces too much insulin, which can lead to high blood pressure or dyslipidemia, as well as heart disease and diabetes.
  • type 2 diabetes does not notice an increase in insulin in the muscles and adipose tissue, so the action of insulin does not occur.
  • insulin resistance syndrome is a generic term for the disease caused by insulin resistance, and the cell's resistance to insulin action, hyperinsulinemia and very low density lipoprotein (VLDL) and neutrality. It is a disease characterized by an increase in fat, a decrease in high density lipoprotein (HDL), and high blood pressure, and is a concept recognized as a risk factor for cardiovascular disease and type 2 diabetes (Reaven GM, Diabetes, 37). : 1595-607, (1988). Insulin resistance is also known to increase atherosclerosis by increasing intracellular oxidative stress and altering signaling systems, along with risk factors such as hypertension, diabetes and smoking (Freeman BA et al, Lab Invest 47). : 412-26, (1982)), Kawamura M et al, J Clin Invest 94: 771-8, (1994).
  • metabolic disease is a conceptualization of a group of cardiovascular disease and type 2 diabetes risk factors clustered together in one disease group, insulin resistance and related various complex metabolic disorders and clinical It is a concept that encompasses all aspects.
  • Reaven insisted that the common cause of these symptoms was insulin resistance in the body, which is poorly insulin-induced, and called it insulin resistance syndrome.
  • WHO World Health Organization
  • the dyslipidemia treated or prevented with the composition of the present invention is hyperlipidemia.
  • hyperlipidemia refers to a disease caused by a large amount of fat in the blood due to poor metabolism of triglycerides and cholesterol. More specifically, hyperlipidemia includes hypercholesterolemia or hypertriglyceridemia with high incidence with increased lipid components such as triglycerides, LDL cholesterol, phospholipids and free fatty acids in the blood.
  • the fatty liver to be treated or prevented with the composition of the invention is a non-alcoholic fatty liver.
  • non-alcoholic fatty liver refers to a disease in which excessive amounts of fat accumulate in liver cells, regardless of excessive alcohol absorption.
  • the composition of the present invention reduces weight or dietary efficiency. According to another embodiment of the present invention, the composition of the present invention reduces weight or dietary efficiency by at least 10%, 20% or 30%. According to certain embodiments of the present invention, the composition of the present invention may have a weight or dietary efficiency of 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10 -40%, 20-40% or 30-40%. As demonstrated in the following examples, the cumulative body weight increased by 33% and the dietary efficiency decreased by 32% compared to the high-fat diet control group (HFD) supplemented with Filverton (FIG. 1A-1D). ).
  • HFD high-fat diet control group
  • FIG. 1A-1D Filverton
  • the composition of the present invention reduces visceral fat.
  • the composition of the present invention reduces visceral fat by at least 10%, 20% or 30%.
  • the composition of the present invention is 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40 %, 20-40% or 30-40%.
  • HFD high-fat diet control group
  • FD Filverton
  • the visceral fat of the present invention is one or more fats selected from epididymal fat, peripheral kidney fat, mesenteric fat and celiac fat.
  • the composition of the present invention was confirmed that the high fat diet significantly reduced body weight, dietary efficiency and visceral fat than the control group, thereby having the effect of preventing, improving or treating obesity.
  • liver and intestine include cells or tissues, respectively.
  • the composition of the invention reduces plasma lipid concentration.
  • the plasma lipids of the invention are plasma lipids selected from the group consisting of triglycerides, total cholesterol and free fatty acids.
  • the composition of the present invention reduces plasma lipid concentration by at least 10%, 20%, 30% or 40%.
  • the composition of the present invention is 10-60%, 20-60%, 30-60%, 40-60%, 10-50%, 20-50%, 30-50 %, 40-50%, 10-40%, 20-40%, 30-40%, 10-30% or 20-30%.
  • the composition of the present invention was confirmed that the high fat diet significantly reduces plasma lipid concentration, thereby having an effect of preventing, improving or treating dyslipidemia, more specifically hyperlipidemia.
  • the composition of the present invention reduces the liver weight or lipid concentration in liver tissue.
  • the composition of the present invention reduces liver weight or lipid concentration in liver tissue by at least 10%, 20%, 30%, 40%, 50% or 60%.
  • the composition of the present invention has a lipid concentration of 10-80%, 20-80%, 30-80%, 40-80%, 50-80%, 60- 80%, 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 60-70%, 10-60%, 20-60%, 30-60%, 10- Decrease by 50%, 20-50%, 30-50%, 10-40%, 20-40% or 30-40%.
  • the lipid in the liver tissue of the present invention is a lipid selected from the group consisting of triglycerides, cholesterol and free fatty acids.
  • the liver supplemented with Filverton (FD) had 35% liver weight, 38% hepatic triglyceride concentration and hepatic cholesterol concentration compared to the high fat diet control group (HFD).
  • HFD high fat diet control group
  • the free fatty acid concentration of liver tissue was 67% significantly reduced (Figs. 4A-4E).
  • the composition of the present invention reduces the activity of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) in blood.
  • the composition of the present invention reduces ALT by at least 10%, 20%, 30%, 40% or 50%.
  • the compositions of the present invention comprise ALT 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 10-60%, 20-60% , 30-60%, 40-60% or 50-60%.
  • the composition of the present invention reduces AST by at least 10%, 20% or 30%.
  • the composition of the present invention comprises 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40% AST. , 20-40% or 30-40%.
  • ALT 52% and AST 34% were significantly decreased in the FB supplemented group (FD) compared to the high-fat diet control group (HFD) (FIGS. 4F and 4G). .
  • the composition of the present invention significantly lowers liver weight, lipid concentration in liver tissue, and amount of ALT and AST in blood than high control diet, thereby preventing and improving fatty liver, more specifically non-alcoholic fatty liver. Or has a therapeutic effect.
  • the composition of the present invention reduces fasting blood glucose concentration or fasting blood insulin concentration. According to another embodiment of the present invention, the composition of the present invention reduces fasting blood glucose concentration or fasting blood insulin concentration by at least 10%, 20%, 30%, 40% or 50%.
  • the composition of the present invention provides a fasting blood glucose level or fasting blood insulin concentration of 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 10- 60%, 20-60%, 30-60%, 40-60%, 50-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40% or 30- Reduce by 40%
  • the fasting blood glucose concentration was 30% and the fasting blood insulin concentration was significantly decreased in the FF supplemented group (FD) compared with the high-fat diet control group (HFD) (54%) ( 5a-5d).
  • the composition of the present invention significantly lowers fasting blood glucose levels or fasting blood insulin levels than the high fat diet control group, and thus has the effect of preventing, improving or treating diabetes, more specifically type 2 diabetes. Confirmed.
  • the composition of the invention reduces the inflammatory cytokine concentration in the blood.
  • the composition of the present invention reduces the inflammatory cytokine concentration in the blood by at least 10%, 20%, 30%, 40% or 50%.
  • the composition of the present invention provides a blood inflammatory cytokine concentration of 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 10-60%, 20 -60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40%, 30-40%, 10-30% or 20-30% .
  • the inflammatory cytokine in the blood of the invention is a cytokine selected from the group consisting of IL-6, TNF ⁇ , MCP1 and leptin.
  • FIL supplemented with Filverton (FD) reduced IL-6 by 57%, TNF ⁇ by 30%, MCP1 by 34%, and leptin by 22% compared to the high-fat diet control (HFD). It was confirmed that all significantly decreased (Fig. 6).
  • the composition of the present invention was confirmed that the high fat diet significantly reduces the inflammatory cytokine concentration in the blood than the control group, thereby preventing, improving or treating the inflammatory activation induced by obesity.
  • the composition of the present invention is UCP1 (uncoupling protein 1), UCP3 (uncoupling protein 3), PGC-1 ⁇ (Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha) or ⁇ - Increase catenin expression, or AMP-activated protein kinase (AMPK) activation, or CCAAT enhancer-binding proterins (C / EBP ⁇ ), Perxisome proliferator activated receptor gamma (PPAR ⁇ ), Cluster of Differentiation 36 (FAS), Fatty It reduces the expression of acid synthase), leptin, SterBP1C (Sterol regulatory element binding factor 1c), Liver X receptor alpha (LXR ⁇ ), Lipoprotein Lipase (LPL) or Acetyl-CoA carboxylase (ACC).
  • UCP1 uncoupling protein 1
  • UCP3 uncoupling protein 3
  • PGC-1 ⁇ Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha
  • the composition of the present invention prevents, ameliorates the accumulation of visceral fat by reducing the nuclear transcription factor and its target gene expression that plays a pivotal role in the production of fat in visceral adipose tissue, and by increasing the ⁇ -catenin protein expression It has a therapeutic effect, prevents fatty liver induced by obesity by reducing the nuclear transcription factor and its target gene expression, which plays a pivotal role in the synthesis of fat in liver tissues, and by increasing the activation of signaling substances that promote fatty acid oxidation, It was confirmed that there is an effect of improving or treating.
  • the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrups, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oils, and the like. It doesn't happen.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • the pharmaceutical composition of the present invention may be administered orally or parenterally, and in the case of parenteral administration, it may be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, transdermal administration, or the like. Specifically, the pharmaceutical composition of the present invention may be administered orally.
  • Suitable dosages of the pharmaceutical compositions of the present invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, pathological condition, food, time of administration, route of administration, rate of excretion, and response to response of the patient. Can be.
  • the daily dose of the pharmaceutical composition of the present invention is, for example, 0.0001-1000 mg / kg.
  • compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or may be in the form of extracts, powders, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • the present invention provides a functional for preventing or ameliorating metabolic diseases selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome comprising the filverton of the present invention as an active ingredient Provide a food composition.
  • the present invention is a food for the prevention or improvement of metabolic diseases selected from the group consisting of obesity, diabetes, dyslipidemia, fatty liver and insulin resistance syndrome comprising the filverton of the present invention as an active ingredient To provide a composition.
  • the functional food or the food composition of the present invention has the common pharmaceutical composition and the active ingredient (ie, Filberton), the common contents in relation to the pharmaceutical composition are described in order to avoid excessive complexity of the present invention. Omit.
  • the active ingredient includes not only the filaments of the present invention, but also components normally added in the preparation of the functional food or food, for example, protein, carbohydrate Contains fats, nutrients, seasonings and flavorings.
  • Carbohydrates described above include monosaccharides (eg, glucose, fructose, etc.); Disaccharides (eg maltose, sucrose, etc.); oligosaccharide; Polysaccharides (eg, dextrins, cyclodextrins, etc.); And sugar alcohols (eg, xylitol, sorbitol, erythritol, and the like).
  • flavoring agent natural flavoring agents (tauumatin, stevia extract (for example rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be used.
  • the functional food composition or the food composition of the present invention is prepared with a drink
  • citric acid liquid fructose, sugar, glucose, acetic acid, malic acid, fruit juice, tofu extract, jujube extract, licorice in addition to piperonal which is an active ingredient of the present invention Extracts and the like may be further included.
  • the present invention comprises the step of administering a pharmaceutical composition comprising filbertone as an active ingredient to a subject in need thereof, obesity, diabetes, dyslipidemia, fatty liver and insulin
  • a pharmaceutical composition comprising filbertone as an active ingredient to a subject in need thereof, obesity, diabetes, dyslipidemia, fatty liver and insulin
  • a method for preventing or treating metabolic diseases selected from the group consisting of resistance syndromes.
  • the dyslipidemia of the present invention is hyperlipidemia.
  • the fatty liver of the invention is a non-alcoholic fatty liver.
  • the method of preventing or treating metabolic disease of the present invention relates to a method of using the pharmaceutical composition for preventing or treating metabolic disease, which is another aspect of the present invention, and the description of overlapping content is excessively complex as described herein. Omit to avoid.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of metabolic diseases, including filbertone, and a functional food composition for the prevention or improvement of metabolic diseases using the same.
  • Filverton of the present invention can reduce obesity, diabetes, and reduce body weight and visceral fat, reduce blood lipid levels, improve blood liver function indicators, reduce blood sugar as well as metabolic inflammatory response. It can be usefully used as a medicament or a functional food composition showing the prophylactic or therapeutic activity of metabolic diseases selected from the group consisting of dyslipidemia, fatty liver and insulin resistance syndrome.
  • FIG. 1 shows the weight gain (FIG. 1A) and the dietary intake (FIG. 1B) of mice fed the experimental diet. Each value is the mean ⁇ standard error (SEM) of 8 mouse measurements. The letters on the graph bars indicate significant differences at P ⁇ 0.001 by one-way ANOVA and Duncan multirange test.
  • Figure 2 shows a picture of visceral adipose tissue (Fig. 2a) and weight of visceral fat by region (Fig. 2b) of the mouse fed the experimental diet. Each value is the mean ⁇ standard error of 8 mouse measurements. The letters on the graph bars indicate significant differences at P ⁇ 0.001 by one-way ANOVA and Duncan multirange test.
  • FIG. 3 shows blood lipid levels of mice fed the experimental diet [FIG. 3a: triglycerides (mmol / L), FIG. 3b: total cholesterol (mmol / L), FIG. 3c: HDL-cholesterol (mmol / L) and FIG. 3d. : Free fatty acid ( ⁇ Eq / L)].
  • FIG. 3a triglycerides (mmol / L)
  • FIG. 3b total cholesterol (mmol / L)
  • FIG. 3c HDL-cholesterol (mmol / L)
  • FIG. 3d. Free fatty acid ( ⁇ Eq / L)].
  • Each value is the mean ⁇ standard error of 8 mouse measurements. Letters in the same column represent significant differences at P ⁇ 0.05 by one-way ANOVA and Duncan multirange test.
  • FIG. 4 is a non-alcoholic fatty liver-related indicators of mice fed the experimental diet [FIG. 4A: liver tissue photograph, FIG. 4B: liver weight (g), FIG. 4C: triglyceride ( ⁇ mol / g), FIG. 4D: cholesterol ( ⁇ mol) / g), FIG. 4E: free fatty acid ( ⁇ Eq / g), FIG. 4F: alanine aminotransferase (IU / L) and FIG. 4G: aspartic acid aminotransferase (IU / L)].
  • Each value is the mean ⁇ standard error of 8 mouse measurements. Letters in the same column represent significant differences at P ⁇ 0.05 by one-way ANOVA and Duncan multirange test.
  • FIG. 5 shows the index of insulin resistance in mice fed the experimental diet [FIG. 5A: Oral Glucose Loading Test, FIG. 5B: AUC, FIG. 5C: Fasting Blood Sugar (mmol / L) and FIG. 5D: Fasting Insulin (pg / mL )]. Letters in the same column represent significant differences at P ⁇ 0.05 by one-way ANOVA and Duncan multirange test.
  • FIG. 6 shows inflammatory cytokines in blood of mice fed the experimental diet [FIG. 6A: IL-6 (pg / ml), FIG. 6B: TNF ⁇ (pg / ml), FIG. 6C: MCP1 (pg / ml) and FIG. 6D: Leptin (pg / ml)] concentration.
  • FIG. 6A IL-6 (pg / ml)
  • FIG. 6B TNF ⁇ (pg / ml)
  • FIG. 6C MCP1 (pg / ml)
  • FIG. 6D Leptin (pg / ml)] concentration.
  • Each value is the mean ⁇ standard error of 8 mouse measurements. Letters in the same column represent significant differences at P ⁇ 0.05 by one-way ANOVA and Duncan multirange test.
  • FIG. 7 shows gene and protein expression changes related to heat generation (FIG. 7A) and adiogenesis (FIG. 7B) of mouse visceral adipose tissue.
  • the top panel is a representative gel picture of the RT-PCR assay, and the bottom panel shows the relative expression levels of these genes. Data was normalized based on GAPDH mRNA levels and all expression levels were expressed relative to normal diet mice.
  • the top panel of FIG. 7C is a representative gel picture of Western blot analysis, and the bottom panel shows the relative expression levels of these proteins. Data was normalized based on GAPDH levels and all expression levels were expressed relative to normal diet mice. The results represent the results of three independent experiments using a pool of RNA samples from eight mice. The letters on the graph bars represent significant differences from other dietary groups at P ⁇ 0.05 by one-way ANOVA and Duncan's multirange test.
  • FIG. 8 is a graph showing changes in the expression of genes and proteins related to lipogenesis of mouse liver tissue.
  • the top panel of FIG. 8A is a representative gel picture of RT-PCR analysis, and the bottom panel shows the relative expression levels of these genes. Data was normalized based on GAPDH mRNA levels and all expression levels are relative to normal diet mice.
  • the upper panel of FIG. 8B is a representative gel photograph of Western blot analysis of p-AMPK and AMPK, and the lower panel shows the relative ratio of p-AMPK / AMPK protein expression in liver tissue. Data was normalized based on GAPDH levels and all expression levels are relative to normal diet mice. The results represent the results of three independent experiments using an RNA sample pool of 8 mice. The letters on the graph bars represent significant differences from other dietary groups at P ⁇ 0.05 by one-way ANOVA and Duncan's multirange test.
  • Obesity-induced diet used in the present invention is a high fat diet (HFD: high fat diet, 40% fat calories, 17 g lard + 3% corn oil / 100 g diet), diet supplemented with filbertone (FD: filbertone- The supplemented high fat diet had the same composition as HFD but contained 0.2% filberton.
  • Obesity drugs metformin (Met: metformin) or sibutramine (Sibu: sibutramin) was added to HFD at 0.01% level (Table 1). Chow consumed a commercial rodent chow. Filberton, metformin and sibutramine were all purchased from Sigma-Aldrich (USA).
  • mice Five-week-old male C57BL / 6J mice (Orient, South Korea) were adapted to the laboratory environment for 1 week with solid feed, and then randomly placed into the high fat diet control group and the experimental group according to the egg mass method, and reared for a total of 10 weeks.
  • the diet was fed daily with water between 10 and 11 am, the dietary intake was measured daily and the body weight was measured weekly. Body weight was measured 2 hours after removing the feed container to prevent sudden weight change due to feed intake.
  • blood, liver, and visceral fat tissue diplordial fat, perirenal fat, mesenteric fat, and abdominal fat
  • blood, liver, and visceral fat tissue were collected under anesthesia with diethyl ether to prepare 0.1 M phosphate buffer solution (pH). 7.4), and then weighed. Blood collected from the abdominal aorta was centrifuged at 1,000 x g for 15 minutes to separate plasma.
  • Plasma lipid concentrations of mice fed the experimental diet for 10 weeks were significantly lower in the FD group than in the HFD group, with 33% triglyceride, 22% total cholesterol, and 45% free fatty acid, respectively. Meanwhile, HDL-cholesterol concentration in blood was not significantly different among experimental groups (FIG. 3). Therefore, it can be seen that Filberton has a significant effect on relieving hyperlipidemia in high fat diet-induced obesity, and the effect of improving hyperlipidemia is similar to or better than that of the reference drugs used (cibutramine, metformin). have.
  • Triglyceride, cholesterol and free fatty acid concentrations of hepatic lipid extracts were measured using the same commercial lipid analysis kit (Bio Clinical System, Korea) used for the analysis of lipid concentrations in plasma.
  • the absolute liver weight (g) in the FD group was significantly reduced by 35% compared to the HFD group (Figs. 4a and 4b).
  • the FD group significantly reduced the triglyceride concentration, 38%, the cholesterol concentration, 31%, and the free fatty acid concentration, 67%, compared to the HFD group (FIGS. 4C-4D).
  • alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities which are measured in plasma, were significantly reduced in the FD group by 52% and 34%, respectively.
  • FIGS. 4F and 4G alanine aminotransferase
  • Filverton has an effect of significantly alleviating the fatty liver phenomenon in high fat diet-induced obesity, and it can be seen that the effect of improving the fatty liver of Filverton is similar to or better than that of the reference drug.
  • the animals were fasted for 16 hours, followed by oral administration of d-glucose corresponding to 2 g / kg body weight, and at 15, 30, 60, and 120 minutes, the tail vein of the mouse was removed. Blood was collected through. Glucose concentrations of the collected blood were measured using a strip-acting blood glucose sensor (ONETOUCH Ultra, Inverness Medical Ltd., UK).
  • Plasma IL-6, TNF ⁇ , MCP1 and leptin concentrations were measured by ELISA method using Milliplex map kit (Millipore corporation, USA).
  • TLR4 toll-like receptor4
  • IKK is activated to activate NF-kB
  • TNF ⁇ is a pro-inflammatory cytokine
  • TNF ⁇ and IL-6 activate SOCS3 (cytokine signaling 3) and JNK to phosphorylate the serine residues of the insulin receptor substrate (IRS) to inhibit sugar transport and induce insulin resistance in peripheral tissues such as liver or muscle. It is known.
  • SOCS3 cytokine signaling 3
  • JNK insulin receptor substrate
  • Inflammatory cytokine levels in the blood were measured by ELISA, indicating that IL-6 (57% decrease), TNF ⁇ (30% decrease), MCP1 (34% decrease) and leptin (22% decrease) in the FD group compared to the HFD group. All concentrations decreased significantly (FIG. 6). Therefore, it can be seen that filttone intake has an effect of significantly improving the inflammatory activation induced by obesity.
  • Tissue was ground by adding 1 ml of trizol solution per 0.1 g of visceral adipose tissue and liver tissue, and then centrifuged at 12,000 ⁇ g for 10 minutes at 4 ° C. The supernatant was transferred to a new tube, 200 ⁇ l of chloroform was added and stirred. This process was repeated twice, after which the supernatant was transferred to a new tube and isopropanol and supernatant were added at a 1: 1 ratio.
  • RNA samples extracted at 260 nm and 280 nm was measured, and agarose gel electrophoresis was performed to confirm the integrity of RNA samples. It was.
  • RT-PCR was used to assess the mRNA expression of liver tissues.
  • HFD group, SREBP and LXR ⁇ , and nuclear transcription factors that play an important role in lipogenesis compared to normal diet group, and targets of these transcription factors The genes, LPL, FAS and ACC, were all significantly increased.
  • supplementary intake of filberton significantly decreased all of the nuclear transcription factor and its target gene expression, which were increased in liver tissue by high-fat diet (Fig. 8a).
  • AMPK activation p-AMPK / AMPK ratio
  • the FD group was significantly increased compared to the HFD group (FIG. 8B).
  • Filtonton supplementation improves fatty liver induced by obesity by reducing the nuclear transcription factor and its target gene expression, which play a pivotal role in the synthesis of fat in liver tissue, and by increasing the activation of signaling substances that promote fatty acid oxidation. It can be seen that there is an effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 필버톤(filbertone)을 포함하는 대사질환의 예방 또는 치료용 약제학적 조성물 및 이를 이용한 대사질환의 개선 또는 완화용 기능성 식품 조성물에 관한 것이다. 본 발명의 필버톤은 체중 및 내장지방을 감소시키고, 혈중 지질농도를 감소시키며, 혈중 간기능지표를 개선시키고, 혈당을 감소시킬 뿐 아니라 대사성염증반응을 억제함으로써 궁극적으로 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 치료 활성을 나타내는 의약 또는 기능성 식품 조성물로서 유용하게 이용될 수 있다.

Description

필버톤의 신규한 용도
본 발명은 대한민국 농림축산식품부의 지원 하에서 과제번호 1130373에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 농림수산식품기술기획평가원, 연구사업명은 “기술산업화지원사업”, 연구과제명은 “한인진추출물을 활용한 체중조절 및 대사성질환 개선 용도의 개별인정형 건강기능식품 원료 개발”, 주관기관은 연세대학교 산학협력단, 연구기간은 2013. 12. 04 ~ 2016. 12. 03 이다.
본 발명은 또한 대한민국 교육과학기술부의 지원하에서 과제번호 2015R1A5A6001906에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국연구재단, 연구사업명은 “선도연구센터 육성사업 이공학분야(SRC)”, 연구과제명은 “식품영양유전체연구센터”, 주관기관은 경북대학교 산학협력단, 연구기간은 2015. 03. 01 ~ 2016. 2. 28 이다.
본 특허출원은 2015년 6월 1일에 대한민국 특허청에 제출된 대한민국 특허출원 제 10-2015-0077575호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 필버톤을 유효성분으로 포함하는 대사질환 예방 또는 치료용 약제학적 조성물 및 대사질환 예방 또는 개선용 기능성 식품 조성물에 관한 것이다.
생활환경의 변화에 의해 현대인들의 내장지방형 비만이 증가하면서 당뇨병, 고혈압, 지질대사이상, 인슐린저항성 등을 수반하는 대사증후군(metabolic syndrome)의 발병이 급증하고 있다. 이들 질환은 상호간의 발생위험을 증가시키며, 노화, 스트레스 및 면역기능저하 등의 다원적인 생체대사변화와 관련이 있는 공통 질환이다. 비만은 외관상의 문제뿐 아니라, 지방간, 고혈압, 당뇨병, 심혈관계 질환 등의 만성질환을 유발한다.
세계인구 중 약 25%에 해당하는 17억명이 현재 과체중(BMI>25)이고, 주요 시장인 미국, 유럽, 일본의 1억2천명을 포함한 서구지역의 3억명 이상이 비만환자(BMI> 30)로 분류되고 있다. OECD 국가 중에서 비만율이 가장 높은 나라는 미국으로, 전 국민의 31%가 비만환자이고, 그 다음이 멕시코(24%), 영국(23%), 그리스(22%), 호주(22%), 뉴질랜드(21%), 헝가리(19%), 캐나다(14%), 스페인(13%), 아일랜드(13%), 독일(13%), 포르투칼(13%), 핀랜드(13%0, 터키(12%), 벨기에(12%)의 순으로 전체 인구 중 비만환자 비율이 높게 나타나고 있다. 중국은 7천만명이 비만인구이고, 급속도로 체중조절 관련 시장이 확대되고 있으며, 총 시장규모는 100억위안 정도로 예측하고 있다. 아울러 현재 세계적으로 어린이 5명 중 1명이 소아비만에 해당되며, 그 숫자도 급속도로 증가하고 있어 소아비만이 심각한 사회문제로 대두되고 있다. 소아비만은 혈중 콜레스테롤과 중성지방의 수치가 높아 생활습관병으로 불리는 당뇨, 고혈압, 뇌졸중 등의 주요 원인이 되고, 소아비만아의 80% 이상이 성인비만으로 연결되어 나이가 들수록 비만으로 인한 건강상의 문제는 더욱 심각해질 수 있다. 또한 지방이 많을수록 성호르몬 분비가 자극되어 나이에 비해 사춘기가 빨리 찾아와 성장장애를 가져올 수 있으며, 혈액순환 및 영양 공급에도 영향을 미쳐 성장저해요소의 원인이 되었다.   
비알코올성 지방간질환(non-alcoholic fatty liver disease, 이하 NAFLD)은 음주와 관계없이 간 내에 중성지방이 축적되는 질환을 의미하고, 여기에는 단순지방간(steatosis)과 비알코올성 지방간염(non-alcoholic steatohepatitis, NASH)을 포함한다. 단순 지방간은 임상적으로 예후가 양호한 양성 질환으로 생각되고 있으나, 지방간과 함께 염증 혹은 섬유화를 동반하는 NASH는 진행성 간질환으로 간경변 또는 간암을 유발하는 전구 질환으로 인지되고 있다.
비만과 인슐린저항성은 대표적인 비알콜성 지방간질환의 위험인자이다. 간섬유증 진행의 위험인자로는 가령, 비만(BMI>30), 혈중 간기능지표 비율(AST/ALT >1) 및 당뇨를 들 수 있고, 특히 C형 간염 보균자가 비알콜지방간일 경우 간암까지 진행될 수 있어 예방 및 치료의 필요성이 대두되고 있다. 비알콜성 지방간환자의 69-100%는 비만환자이고, 비만환자의 20-40%는 비알콜성 지방간을 동반하며, 특히, 남성 비만환자의 간질환 유병율이 여성비만자에 비해 더 높게 나타난다. 서구사회에서는 비만환자뿐만 아니라 정상체중 성인의 3-30%가 비알콜성 지방간병변을 나타내는 것으로 보고되고 있다. 우리와 식생활이 유사한 일본의 비알콜성 지방간 유병율은 약 20%로 추정되며, 이중 1%가 NASH로 추정된다. 비알콜성 지방간은 성인 뿐 아니라 비만아동에서도 문제가 된다. 비만아동(유럽, 미국 및 아시아 거주)의 10-77%가 비알콜성 지방간 병변을 보이는데, 이는 비알콜성 간질환의 가장 중요한 위험인자가 비만이기 때문이다.
국내외에서 판매되는 비만치료제로는 미 FDA에서 승인을 받은 orlistat을 주원료로 하는 ‘제니칼’(한국로슈), sibutramine을 원료로 하는 ‘리덕틸’(일성신약) 및 녹차 카테콜 성분을 원료로 하는‘엑소리제’(구주제약)등이 있다. 리파아제작용을 억제하는 제니칼의 경우 지방변, 가스생성, 지용성비타민 흡수저하 등의 위장계 부작용을, 그리고 리덕틸의 경우에는 교감신경계의 세로토닌과 노르아드레날린 농도를 증가시킴으로서 두통, 구갈, 식욕부진, 불면, 변비 등의 부작용을 나타낸다. 이외에도 그동안 항비만 약제로 개발된 제품 중에는 심각한 부작용으로 인해 판매가 금지된 것들도 상당수에 이른다. 예를 들어, 아미노필린은 탁월한 체지방 분해효과에도 불구하고 정신 신경계, 순환기계, 소화기계에 걸쳐 폭넓은 부작용이 보고된 바 있고, 펜프루라민, 덱스펜플루라민, 토피라메이, 에페드린 등도 비만치료 부적합 약물로 판정되어 판매가 금지되었다. 이와 같이 종래의 합성의약품이 부작용으로 인한 한계를 보임에 따라, 안전하고 장기 복용이 가능하여 만성질환의 치료에 적합한 새로은 비만 치료용 조성물의 개발에 대한 요구가 커지고 있다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명의 선행특허 문헌으로는 대한민국 등록특허 제1078376호 및 대한민국 등록특허 제1186500호가 있다.
본 발명자들은 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군 등을 포함하는 대사질환의 예방 또는 치료 활성을 갖는 화합물을 개발하고자 예의 연구 노력하였다. 그 결과, 필버톤(filbertone)이 체내 지방 및 혈당을 감소시키고 다양한 대사질환의 지표를 크게 개선시킴으로서 상기 대사질환에 대한 예방, 개선 및 치료효과를 가진다는 사실을 확인함으로써, 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 필버톤을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 치료용 약제학적 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 필버톤을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 개선용 기능성 식품 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 비만, 당뇨, 이상지질혈증(dyslipidemia), 지방간 및 인슐린 저항성 증후군(insulin resistance syndrome)으로 구성된 군으로부터 선택되는 대사질환(metabolic disease)의 예방 또는 치료 방법을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 필버톤(filbertone)을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증(dyslipidemia), 지방간 및 인슐린 저항성 증후군(insulin resistance syndrome)으로 구성된 군으로부터 선택되는 대사질환(metabolic disease)의 예방 또는 치료용 약제학적 조성물을 제공한다:
본 발명자들은 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군 등을 포함하는 대사질환의 예방 또는 치료 활성을 갖는 화합물을 개발하고자 예의 연구 노력하였다. 그 결과, 필버톤(filbertone)이 체내 지방 및 혈당을 감소시키고 다양한 대사질환의 지표를 크게 개선시킴으로서 상기 대사질환에 대한 예방, 개선 및 치료효과를 가진다는 사실을 확인하였다.
본 명세서에서 사용되는 용어 “필버톤”은 하기 화학식 1로 나타내어지는 천연 화합물로 구조식은 C8H14O이고 분자량은 126.2 g/mol이며, 액상으로 물에는 잘 녹지 않고 기름에 녹는 특징이 있다. 필버톤은 식용가능한 안전한 물질로 알려져 있으며, FEMA(Flavor and Extract Manufacturers’Association), KFDA(Korea Food and Drug Administration), JECFA(Joint FAO/WHO Expert Committee on Food Additives)에 착향료(flavor and fragrance agents) 성분으로 승인되어 있고, 산업적으로 맛과 향을 내기 위한 목적으로 이용되어 왔으나, 생리활성에 대한 보고는 전무한 상태이다.
화학식 1
Figure PCTKR2016005718-appb-I000001
본 발명의 필버톤은 약제학적으로 허용 가능한 염의 형태로 사용될 수 있으며, 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 유리산으로는 무기산과 유기산을 사용할 수 있다.
구체적으로는, 본 발명의 필버톤의 약제학적 허용 가능한 염은 염산염, 브롬산염, 황산염, 인산염, 구연산염, 아세트산염, 트리플루오로아세트산염, 젖산염, 주석산염, 말레인산염, 푸마린산염, 글루콘산염, 메탄설폰산염, 글리콘산염, 숙신산염, 4-톨루엔설폰산염, 글루투론산염, 엠본산염, 글루탐산염, 또는 아스파트산염으로 구성된 군으로부터 선택될 수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 다양한 무기산 및 유기산을 이용하여 형성되는 염이 모두 포함된다. 또한, 본 발명의 화합물은 용매화물(예를 들면 수화물)의 형태로도 존재할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 본 발명의 필버톤 또는 이의 약제학적 허용 가능한 염을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 치료용 약제학적 조성물을 제공한다.
본 발명에 따르면, 본 발명의 필버톤은 체중 및 내장지방을 감소시키고, 혈중 지질농도를 감소시키며, 혈중 간기능지표를 개선시키고, 혈당을 감소시킬 뿐 아니라 대사성염증반응을 억제함이 확인되었다. 이에, 본 발명의 화합물은 다양한 대사질환(metabolic disease)을 다각적으로 개선하는 효율적인 예방 또는 치료 조성물로 유용하게 이용될 수 있다.
본 명세서에서 사용되는 용어“당뇨”는 포도당-비관용(intolerance)을 초래하는 인슐린의 상대적 또는 절대적 부족으로 특징되는 만성질환을 의미한다. 본 발명의 당뇨는 모든 종류의 당뇨병을 포함하며, 예를 들어, 제1형 당뇨, 제2형 당뇨 및 유전성 당뇨를 포함한다. 제1형 당뇨는 인슐린 의존성 당뇨병으로서, β-세포의 파괴에 의해 주로 초래된다. 제2형 당뇨는 인슐린 비의존성 당뇨병으로서, 식사 후 불충분한 인슐린 분비에 의해 초래되거나 또는 인슐린 내성에 의해 초래된다.
본 명세서에서 사용되는 용어 “이상지질혈증”은 고지혈증을 포함하는 개념으로, 혈액내의 지방수치 증가로 나타나는 고콜레스테롤혈증, 고중성지방혈증, 낮은 HDL-콜레스테롤혈증 외에도 지단백의 대사이상 등의 문제로 나타나는 비정상적 지질상태를 의미한다.
본 명세서에서 사용되는 용어 “지방간”은 간의 지방대사 장애로 지방이 간세포에 과도한 양으로 축적된 상태를 말하며, 이는 협심증, 심근경색, 뇌졸중, 동맥경화, 지방간 및 췌장염 등과 같은 다양한 질병의 원인이 된다.
본 명세서에서 사용되는 용어 “인슐린 저항성”은 혈당을 낮추는 인슐린의 기능이 떨어져 세포가 포도당을 효과적으로 연소하지 못하는 것을 말한다. 인슐린 저항성이 높을 경우, 인체는 너무 많은 인슐린을 만들어 내고 이로 인해 고혈압이나 이상지질혈증은 물론 심장병, 당뇨병 등까지 초래할 수 있다. 특히 제2형 당뇨병에서는 근육과 지방조직에서 인슐린의 증가를 알아채지 못하여, 인슐린의 작용이 일어나지 않는다.
본 명세서에서 사용되는 용어 “인슐린 저항성 증후군”은 상기 인슐린 저항성에 의하여 유발된 질환을 총칭하는 개념으로 인슐린 작용에 대한 세포의 저항성, 고인슐린혈증 및 초저밀도지단백(very low density lipoprotein, VLDL)과 중성지방의 증가, 고밀도지단백(high density lipoprotein, HDL)의 감소 및 고혈압 등을 특징으로 하는 질환을 의미하며, 심혈관질환과 제2형 당뇨병의 위험인자로 인식되고 있는 개념이다(Reaven GM, Diabetes, 37: 1595-607, (1988)). 또한 인슐린 저항성은 고혈압, 당뇨 및 흡연 등의 위험인자들과 함께 세포 내 산화스트레스를 증가시키고 신호전달체계를 변화시켜 염증반응을 유발하여 죽상경화증을 진행시킨다고 알려져 있다(Freeman BA et al, Lab Invest 47: 412-26, (1982)), Kawamura M et al, J Clin Invest 94: 771-8, (1994)).
본 명세서에서 사용되는 용어 “대사질환”은 각종 심혈관 질환과 제2형 당뇨병의 위험 요인들이 서로 군집을 이루는 현상을 한 가지 질환군으로 개념화시킨 것으로 인슐린 저항성 및 이와 관련된 복잡하고 다양한 여러 대사이상과 임상 양상을 모두 포괄하여 의미하는 개념이다. 1988년 Reaven은 이러한 증상들의 공통적인 원인이 체내의 인슐린 작용이 잘되지 않는 인슐린 저항성임을 주장하고 인슐린 저항성 증후군이라고 명명했으나 1998년 세계보건기구(WHO)는 인슐린 저항성이 이 증상들의 모든 요소를 다 설명할 수 없기에 대사증후군 또는 대사질환이라는 용어를 도입하였다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물로 치료 또는 예방되는 이상지질혈증은 고지혈증이다.
본 명세서에서 사용되는 용어“고지혈증”은 중성 지방과 콜레스테롤 등의 지방대사가 제대로 이루어지지 않아 혈액 중에 지방량이 많아 유발되는 질환을 말한다. 보다 구체적으로 고지혈증이란 혈액내의 중성지방, LDL 콜레스테롤, 인지질 및 유리 지방산 등의 지질 성분이 증가된 상태로 발생빈도가 높은 고콜레스테롤혈증 또는 고중성지방혈증을 포함한다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물로 치료 또는 예방되는 지방간은 비알콜성 지방간이다.
본 명세서에서 용어“비알콜성 지방간(Non-alcoholic fatty liver, NAFL)”은 과도한 알콜의 흡수와 무관하게 간세포에 과도한 양의 지방이 축적되는 질환을 의미한다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 체중 또는 식이효율을 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 체중 또는 식이효율을 10%, 20% 또는 30% 이상 감소시킨다. 본 발명의 어떠한 구현예에 따르면, 본 발명의 조성물은 체중 또는 식이효율을 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40% 또는 30-40% 감소시킨다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 누적체중 증가량은 33%, 식이효율은 32% 감소함을 확인하였다(도 1a-1d).
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 내장 지방을 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 내장 지방을 10%, 20% 또는 30% 이상 감소시킨다. 본 발명의 특정 구현예에 따르면, 본 발명의 조성물은 내장 지방을 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40% 또는 30-40% 감소시킨다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 내장 지방 무게가 34% 감소함을 확인하였다(도 2a-2b). 본 발명의 다른 구현예에 따르면, 본 발명의 내장 지방은 부고환지방, 신장주변지방, 장간막지방 및 후복강지방으로부터 선택되는 하나 또는 그 이상의 지방이다.
따라서 본 발명에 따르면, 본 발명의 조성물은 고지방식이 대조군보다 체중, 식이효율 및 내장 지방을 유의하게 감소시킴으로써, 비만을 예방, 개선 또는 치료하는 효과를 가짐이 확인되었다.
본 발명에서 사용하는 용어“간” 및 “내장”은 각각 세포 또는 조직을 포함한다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 혈장 지질농도를 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 혈장 지질은 중성지방, 총콜레스테롤 및 유리지방산으로 구성되는 군으로부터 선택되는 혈장지질이다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 혈장 지질농도를 10%, 20%, 30% 또는 40% 이상 감소시킨다. 본 발명의 특정 구현예에 따르면, 본 발명의 조성물은 내장 지방을 10-60%, 20-60%, 30-60%, 40-60%, 10-50%, 20-50%, 30-50%, 40-50%, 10-40%, 20-40%, 30-40%, 10-30% 또는 20-30% 감소시킨다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 중성지방농도 33%, 총콜레스테롤농도 22%, 그리고 유리지방산농도 45%가 각각 유의하게 감소함을 확인하였다(도 3a-3d).
따라서 본 발명에 따르면, 본 발명의 조성물은 고지방식이 대조군보다 혈장 지질농도를 유의하게 감소시킴으로써, 이상지질혈증, 보다 구체적으로 고지혈증을 예방, 개선 또는 치료하는 효과를 가짐이 확인되었다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 간무게 또는 간조직 내 지질농도를 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 간무게 또는 간조직 내 지질농도를 10%, 20%, 30%, 40%, 50% 또는 60% 이상 감소시킨다. 본 발명의 어떠한 구현예에 따르면, 본 발명의 조성물은 간무게 또는 간조직 내 지질농도를 10-80%, 20-80%, 30-80%, 40-80%, 50-80%, 60-80%, 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 60-70%, 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40% 또는 30-40% 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 간조직 내 지질은 중성지방, 콜테스테롤 및 유리지방산으로 구성된 군으로부터 선택되는 지질이다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 간무게가 35%, 간조직의 중성지방 농도가 38%, 간조직의 콜테스테롤 농도가 31%, 그리고 간조직의 유리지방산 농도가 67% 유의하게 감소함을 확인하였다(도 4a-4e).
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 혈액 내 ALT(alanine aminotransferase) 또는 AST(aspartate aminotransferase)의 활성을 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 ALT를 10%, 20%, 30%, 40% 또는 50% 이상 감소시킨다. 본 발명의 어떠한 구현예에 따르면, 본 발명의 조성물은 ALT를 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 10-60%, 20-60%, 30-60%, 40-60% 또는 50-60% 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 AST를 10%, 20% 또는 30% 이상 감소시킨다. 본 발명의 어떠한 구현예에 따르면, 본 발명의 조성물은 AST를 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40% 또는 30-40% 감소시킨다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 ALT 52%, AST 34%가 각각 유의하게 감소함을 확인하였다(도 4f 및 4g).
본 발명에 따르면, 본 발명의 조성물은 고지방식이 대조군보다 간무게, 간조직 내 지질농도, 혈액 내 ALT 및 AST의 양을 유의하게 감소시킴으로써, 지방간, 보다 구체적으로는 비알코올성 지방간을 예방, 개선 또는 치료하는 효과를 가짐이 확인되었다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 공복 혈당 농도 또는 공복 혈중 인슐린 농도를 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 공복 혈당 농도 또는 공복 혈중 인슐린 농도를 10%, 20%, 30%, 40% 또는 50% 이상 감소시킨다. 본 발명의 어떠한 구현예에 따르면, 본 발명의 조성물은 공복 혈당 농도 또는 공복 혈중 인슐린 농도를 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 10-60%, 20-60%, 30-60%, 40-60%, 50-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40% 또는 30-40% 감소시킨다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 공복 혈당 농도가 30%, 공복 혈중 인슐린 농도가 54% 유의하게 감소함을 확인하였다(도 5a-5d).
본 발명에 따르면, 본 발명의 조성물은 고지방식이 대조군보다 공복 혈당 농도 또는 공복 혈중 인슐린 농도를 유의하게 감소시킴으로써, 당뇨, 보다 구체적으로는 제2형 당뇨를 예방, 개선 또는 치료하는 효과를 가짐이 확인되었다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 혈중 염증성 싸이토카인 농도를 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 조성물은 혈중 염증성 싸이토카인 농도를 10%, 20%, 30%, 40% 또는 50% 이상 감소시킨다. 본 발명의 어떠한 구현예에 따르면, 본 발명의 조성물은 혈중 염증성 싸이토카인 농도를 10-70%, 20-70%, 30-70%, 40-70%, 50-70%, 10-60%, 20-60%, 30-60%, 10-50%, 20-50%, 30-50%, 10-40%, 20-40%, 30-40%, 10-30% 또는 20-30% 감소시킨다. 본 발명의 다른 구현예에 따르면, 본 발명의 혈중 염증성 싸이토카인은 IL-6, TNFα, MCP1 및 렙틴으로 구성된 군으로부터 선택되는 싸이토카인이다. 하기 실시예에서 입증한 바와 같이 필버톤을 보충 섭취시킨 군(FD)에서 고지방식이대조군(HFD)에 비해 IL-6는 57%, TNFα는 30%, MCP1는 34%, 렙틴은 22% 감소하여 모두 유의하게 감소함을 확인하였다(도 6). 본 발명에 따르면, 본 발명의 조성물은 고지방식이 대조군보다 혈중 염증성 싸이토카인 농도를 유의하게 감소시킴으로써, 비만으로 인해 유도된 염증 활성화를 예방, 개선 또는 치료하는 효과를 가짐이 확인되었다.
본 발명의 일 구현예에 따르면, 본 발명의 조성물은 내장지방 또는 간의 UCP1(uncoupling protein 1), UCP3(uncoupling protein 3), PGC-1α(Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha) 또는 β-카테닌 발현, 또는 AMPK(AMP-activated protein kinase) 활성화를 증가시키거나, 또는 C/EBPα(CCAAT enhancer-binding proterins), PPARγ(Peroxisome proliferator activated receptor gamma), CD36(Cluster of Differentiation 36), FAS(Fatty acid synthase), 렙틴, SREBP1C(Sterol regulatory element binding factor 1c), LXRα(Liver X receptor alpha), LPL(Lipoprotein Lipase) 또는 ACC(Acetyl-CoA carboxylase)의 발현을 감소시킨다. 하기 실시예에서 입증한 바와 같이 HFD군의 경우 정상식이군에 비해 열발생 관련 유전자(즉, UCP1, UCP3 및 PGC-1α)들의 발현이 모두 유의하게 감소하였으나, FD는 고지방식이 섭취에 의해 감소하였던 상기 유전자 발현을 모두 유의하게 다시 증가시켰다(도 7a). 또한, HFD군의 경우 정상식이군에 비해 지방조직생성(adipogenesis)에 관여하는 C/EBPα, PPARγ2, CD36, FAS 및 렙틴의 발현이 모두 유의하게 증가하였으나, FD는 고지방식이 섭취에 의해 감소하였던 상기 유전자 발현을 모두 유의하게 다시 감소시켰다(도 7b). 더불어, 지방생성을 조절하는 상위 신호전달물질인 β-카테닌 단백질 발현량도 FD군에서 HFD군에 비해 유의하게 증가하였다(도 7c). 또한, HFD군의 경우 정상식이군에 비해 지방생성(lipogenesis)에 중요한 SREBP, LXRα, LPL, FAS 및 ACC 발현이 모두 유의하게 증가하였으나, FD군은 이들의 발현이 모두 다시 유의하게 감소하였고(도 8a), FD군은 지방산 산화를 촉진하는 신호전달물질인 AMPK 활성화(p-AMPK/AMPK 비율)이 유의하게 증가하였다(도 8b). 따라서 본 발명에 따르면, 본 발명의 조성물은 내장지방조직에서 지방생성에 중추적 역할을 하는 핵전사인자 및 이의 타겟 유전자발현을 감소시키고, β-카테닌 단백질발현을 증가시킴으로써 내장지방 축적을 예방, 개선 또는 치료하는 효과를 가지며, 간조직에서 지방합성에 중추적 역할을 하는 핵전사인자 및 이의 타겟 유전자발현을 감소시키고, 지방산 산화를 촉진하는 신호전달물질의 활성화를 증가시킴으로서 비만으로 인해 유도된 지방간을 예방, 개선 또는 치료하는 효과가 있음을 확인하였다.
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물은 경구 또는 비경구 투여할 수 있으며, 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다. 구체적으로는, 본 발명의 약제학적 조성물은 경구투여될 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약제학적 조성물의 1일 투여량은 예컨대 0.0001-1000 ㎎/㎏이다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성매질 중의용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 본 발명의 필버톤을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 개선용 기능성 식품 조성물을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 본 발명의 필버톤을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 개선용 식품 조성물을 제공한다.
본 발명의 기능성 식품 또는 식품 조성물은 상술한 약제학적 조성물과 유효성분(즉, 필버톤)을 공통으로 하기 때문에, 상기 약제학적 조성물과의 관계에서 공통된 내용은 본 발명의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 발명의 조성물이 기능성 식품 조성물 또는 식품 조성물로 제조되는 경우, 유효성분으로서 본 발명의 필버톤 뿐만 아니라, 기능성 식품 또는 식품 제조 시에 통상적으로 첨가되는 성분을 포함하며, 예를들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 향미제를 포함한다. 상술한 탄수화물은 모노사카라이드(예컨대, 글루코오스, 프럭토오스 등); 디사카라이드(예컨대, 말토스, 수크로오스 등); 올리고당; 폴리사카라이드(예컨대, 덱스트린, 시클로덱스트린 등); 및 당알코올(예컨대, 자일리톨, 소르비톨, 에리쓰리톨 등)을 포함한다. 향미제로서 천연 향미제 [타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등)) 및 합성 향미제(사카린, 아스파르탐 등)를 사용할 수 있다.
예컨대, 본 발명의 기능성 식품 조성물 또는 식품 조성물이 드링크제로 제조되는 경우에는 본 발명의 유효성분인 피페로날 이외에 구연산, 액상과당, 설탕, 포도당, 초산, 사과산, 과즙, 두충 추출액, 대추 추출액, 감초 추출액 등을 추가로 포함시킬 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 필버톤을 유효성분으로 포함하는 약제학적 조성물을 이를 필요로하는 대상(subject)에 투여하는 단계를 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 치료 방법을 제공한다.
본 발명의 일 구현예에 있어서, 본 발명의 이상지질혈증은 고지혈증이다.
본 발명의 일 구현예에 있어서, 본 발명의 지방간은 비알콜성 지방간이다.
본 발명의 대사질환의 예방 또는 치료 방법은 본 발명의 다른 일 양태인 대사질환의 예방 또는 치료용 약제학적 조성물을 이용하는 방법에 관한 것인 바, 중복되는 내용의 기재는 본 명세서 기재의 과도한 복잡성을 피하기 위해 생략하도록 한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 필버톤을 유효성분으로 포함하는 대사질환의 예방 또는 치료용 약제학적 조성물 및 이를 이용한 대사질환의 예방 또는 개선용 기능성 식품 조성물을 제공한다.
(b) 본 발명의 필버톤은 체중 및 내장지방을 감소시키고, 혈중 지질농도를 감소시키며, 혈중 간기능지표를 개선시키고, 혈당을 감소시킬 뿐 아니라 대사성염증반응을 억제함으로써 궁극적으로 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 치료 활성을 나타내는 의약 또는 기능성 식품 조성물로서 유용하게 이용될 수 있다.
도 1은 실험식이를 섭취한 마우스의 체중 증가량(도 1a) 및 식이 섭취량(도 1b)을 나타낸다. 각 값은 8마리 마우스 측정값의 평균±표준오차(SEM)이다. 그래프 막대 위의 문자는 일원분산분석(one-way ANOVA) 및 Duncan 다중범위검정에 의한 P<0.001에서의 유의적 차이를 나타낸다.
도 2는 실험식이를 섭취한 마우스의 내장지방조직 사진(도 2a) 및 부위 별 내장지방 무게(도 2b)를 나타낸다. 각 값은 8마리 마우스 측정값의 평균±표준오차이다. 그래프 막대 위의 문자는 일원분산분석(one-way ANOVA) 및 Duncan 다중범위검정에 의한 P<0.001에서의 유의적 차이를 나타낸다.
도 3은 실험식이를 섭취한 마우스의 혈중 지질농도[도 3a: 중성지방(mmol/L), 도 3b: 총 콜레스테롤(mmol/L), 도 3c: HDL-콜레스테롤(mmol/L) 및 도 3d: 유리지방산(μEq/L)]를 나타낸다. 각 값은 8마리 마우스 측정값의 평균±표준오차이다. 같은 열 내의 문자는 일원분산분석 및 Duncan 다중범위검정에 의한 P<0.05에서의 유의적 차이를 나타낸다.
도 4는 실험식이를 섭취한 마우스의 비알콜성 지방간 관련 지표[도 4a: 간조직 사진, 도 4b: 간 무게(g), 도 4c: 중성지방(μmol/g), 도 4d: 콜레스테롤(μmol/g), 도 4e: 유리지방산(μEq/g), 도 4f: 알라닌 아미노기전달효소(IU/L) 및 도 4g: 아스파르트산 아미노기전달효소(IU/L)]를 나타낸다. 각 값은 8마리 마우스 측정값의 평균±표준오차이다. 같은 열 내의 문자는 일원분산분석 및 Duncan 다중범위검정에 의한 P<0.05에서의 유의적 차이를 나타낸다.
도 5는 실험식이를 섭취한 마우스의 인슐린 저항성 관련 지표[도 5a: 경구 포도당 부하검사, 도 5b: AUC, 도 5c: 공복 시 혈당(mmol/L) 및 도 5d: 공복 시 인슐린(pg/mL)]를 나타낸다. 같은 열 내의 문자는 일원분산분석 및 Duncan 다중범위검정에 의한 P<0.05에서의 유의적 차이를 나타낸다.
도 6은 실험식이를 섭취시킨 마우스의 혈중 염증성 싸이토카인[도 6a: IL-6(pg/ml), 도 6b: TNFα(pg/ml), 도 6c: MCP1(pg/ml) 및 도 6d: 렙틴(pg/ml)] 농도를 나타낸다. 각 값은 8마리 마우스 측정값의 평균±표준오차이다. 같은 열 내의 문자는 일원분산분석 및 Duncan 다중범위검정에 의한 P<0.05에서의 유의적 차이를 나타낸다.
도 7은 마우스 내장지방조직의 열생성(thermogenesis)(도 7a) 및 지방조직생성(adipogenesis)(도 7b) 관련 유전자 및 단백질 발현변화를 나타낸다. 상부 패널은 RT-PCR 분석의 대표적인 젤 사진이고, 하부 패널은 이들 유전자의 상대적 발현량을 나타낸다. 데이터는 GAPDH mRNA 수준을 기준으로 표준화되었고, 모든 발현 수준은 정상식이 마우스에 대한 상대적인 값으로 표시하였다. 도 7c의 상부 패널은 웨스턴 블롯 분석의 대표적인 젤 사진이고, 하부 패널은 이들 단백질의 상대적인 발현량을 나타낸다. 데이터는 GAPDH 수준을 기준으로 표준화되었고, 모든 발현 수준은 정상식이 마우스에 대한 상대적인 값으로 표시하였다. 상기 결과는 8마리 마우스의 RNA 시료 풀(pool)을 이용한 세 번의 독립적인 실험에 대한 결과를 나타낸다. 그래프 막대 위의 문자는 일원분산분석 및 Duncan 다중범위검정에 의한 P<0.05에서의 다른 식이그룹과의 유의적 차이를 나타낸다.
도 8은 마우스 간조직의 지방생성(lipogenesis) 관련 유전자 및 단백질의 발현 변화를 보여주는 그림이다. 도 8a의 상부 패널은 RT-PCR 분석의 대표적인 젤 사진이고, 하부 패널은 이들 유전자의 상대적 발현량을 나타낸다. 데이터는 GAPDH mRNA 수준을 기준으로 표준화되었으며 모든 발현 수준은 정상식이 마우스에 대한 상대적인 값이다. 도 8b의 상부 패널은 p-AMPK 및 AMPK의 웨스턴 블롯 분석의 대표적인 젤 사진이고, 하부 패널은 간조직의 p-AMPK/AMPK 단백질 발현의 상대적 비율을 나타낸다. 데이터는 GAPDH 수준을 기준으로 표준화되었으며 모든 발현 수준은 정상식이 마우스에 대한 상대적인 값이다. 상기 결과는 8마리 마우스의 RNA 시료 풀을 이용한 세 번의 독립적인 실험에 대한 결과를 나타낸다. 그래프 막대 위의 문자는 일원분산분석 및 Duncan 다중범위검정에 의한 P<0.05에서의 다른 식이그룹과의 유의적 차이를 나타낸다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: 식이성 비만 마우스에서 필버톤의 체중 및 내장지방 감소효능1 ) 실험식이 제조 및 실험동물의 사육
본 발명에서 사용한 비만유도식이는 고지방대조식이(HFD: high fat diet, 40% 지방 열량, 17 g 라드 + 3% 콘 오일/ 100 g 식이)이며, 필버톤이 보충된 식이(FD: filbertone-supplemented high fat diet)는 HFD와 조성이 동일하되 필버톤이 0.2% 수준으로 포함되었다. 대조약물로 비만치료제인 메트포르민(Met: metformin) 또는 시부트라민(Sibu: sibutramin)을 0.01% 수준으로 HFD에 첨가하여 사용하였다(표 1). 정상식이군(Chow)은 상업적인 설치류 먹이(rodent chow)를 섭취시켰다. 필버톤, 메트포르민과 시부트라민은 모두 씨그마-알드리치 사(미국)에서 구입하였다.
Figure PCTKR2016005718-appb-T000001
5주령의 수컷 C57BL/6J 마우스(오리엔트, 대한민국)를 고형사료로 1주일 간 실험실환경에 적응시킨 후, 난괴법에 따라 고지방식이대조군과 실험군으로 임의 배치하여, 총 10주 간 사육하였다. 식이는 매일 오전 10-11시 사이에 물과 함께 공급하였으며, 식이 섭취량은 매일, 그리고 체중은 매주 측정하였다. 사료섭취에 따른 갑작스런 체중변화를 막기 위해 사료 통을 제거하고 2시간 후에 체중을 측정하였다. 실험동물을 12시간 이상 금식시킨 후, 디에틸에테르로 마취한 상태에서 혈액, 간 및 내장지방조직(부고환지방, 신장주변지방, 장간막지방 및 후복강지방)을 채취하여 0.1 M 인산완충용액(pH 7.4)으로 세척한 후, 무게를 측정하였다. 복부대동맥으로부터 채혈한 혈액은 1,000×g에서 15분 간 원심 분리하여 혈장을 분리하였다.
2) 체중 및 내장지방 무게 변화
실험식이를 10주 간 섭취시킨 후 최종 체중 및 10주 간의 체중증가량을 살펴보면, 고지방식이대조군(HFD)에 비해 필버톤을 보충 섭취시킨 군(FD)에서 누적체중증가량이 33% 유의하게 감소하였다(도 1a 및 1b). 필버톤 섭취는 일일 식이섭취량에 유의한 변화를 초래하지 않았고, 따라서 실험사육기간 동안의 누적체중증가량을 총 식이섭취량으로 나눈 식이효율(food efficiency ratio) 또한 FD군에서 HFD군에 비해 32% 유의하게 감소하였다(도 1c 및 1d). 결과적으로 필버톤의 체중감소 효능은 식욕억제에 기인한 것은 아님을 알 수 있다.
실험식이를 10주 간 섭취시킨 후 내장지방을 구성하는 부고환지방, 신장주변지방, 장간막지방 및 후복강지방을 각각 적출하여 무게를 측정한 결과, 대조군(HFD)에 비해 필버톤을 보충 섭취시킨 군(FD)에서 부고환지방, 신장주변지방, 장간막지방, 후복강지방무게가 유의하게 감소하였고, 이 네가지 부위를 합한 총 내장지방무게가 34% 유의하게 감소하였다(도 2). 따라서 필버톤은 상용화된 비만치료제(시뷰트라민)과 당뇨치료제(메트포민)에 버금가는 매우 탁월한 체중 및 내장지방량 감소효과가 있음이 확인되었다.
실시예 2: 식이성비만 마우스에서 필버톤의 고지혈증 예방 및 치료 효능
1) 혈액의 생화학분석 방법
10주 간 사육된 실험동물의 혈장 콜레스테롤, 중성지방 및 유리지방산 농도를 평가하기 위하여 상업용 측정키트 (Bio Clinical System, 대한민국)를 이용하여 각각 2회 반복 측정하였다.
2) 혈장 지질농도의 변화
실험식이를 10주 간 섭취시킨 마우스의 혈장 지질농도를 살펴보면, FD군에서 HFD군에 비해 중성지방농도가 33%, 총콜레스테롤농도가 22%, 그리고 유리지방산농도가 45% 각각 유의하게 감소하였다. 한편 혈중 HDL-콜레스테롤 농도는 실험군 간에 유의한 차이가 없었다(도 3). 따라서 필버톤은 고지방식이로 유도된 비만에서 나타나는 고지혈증을 현저히 완화시키는 효과가 있음을 알 수 있으며, 이러한 고지혈증 개선효과는 사용된 대조약물(시뷰트라민, 메트포민)과 유사하거나 더 우수함을 알 수 있다.
실시예 3: 식이성비만 마우스에서 필버톤의 비알콜성 지방간 예방 및 치료 효능
1) 간조직의 지질농도 분석방법
간조직의 지질성분을 Folch 등의 방법(Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem . 1957;226:497-509)에 준하여 다음과 같이 추출하였다. 간조직(0.25 g)에 1 mL의 증류수를 가한 후 폴리트론 균질기(IKA-WERKE GmbH & Co., Ultra-Turrax, Staufen, Germany)를 사용하여 균질화시켰다. 균질액에 클로로포름:메탄올 용액(2:1, v/v) 5 mL을 가하여 잘 혼합한 후, 1000×g에서 10분 간 원심 분리하여 하층액을 분리하였고, 상층액에 다시 클로로포름:메탄올 용액(2: 1, v/v) 2 mL을 첨가한 후, 동일 과정을 반복하여 간의 지질성분을 완전히 분리하였다. 이렇게 얻은 하층액에 클로로포름:메탄올:0.05% CaCl2(3:48:47, v/v/v) 용액 3 mL을 가하여 1분 간 혼합한 후 1000×g에서 10분 간 원심 분리하였고, 최종 하층액을 취하여 질소가스로 완전히 건조시킨 후, 건조된 지질을 1 mL의 메탄올에 용해하여 지질성분 분석에 사용하였다.
간조직 지질추출액의 중성지방, 콜레스테롤 및 유리지방산 농도는 혈장의 지질농도 분석을 위해 사용된 것과 동일한 상업용 지질분석 키트(Bio Clinical System, 대한민국)를 사용하여 측정하였다.
2) 간조직의 지질농도 및 간기능수치의 변화
실험식이를 10주 간 섭취시킨 마우스의 간무게를 살펴보면, FD군에서 HFD군에 비해 절대 간무게(g)가 35% 유의하게 감소하였다(도 4a 및 4b).
간조직의 지질 농도를 살펴보면, FD군에서 HFD군에 비해 중성지방 농도가 38%, 콜테스테롤 농도가 31%, 그리고 유리지방산 농도가 67% 유의하게 감소하였다(도 4c-4d). 또한, 혈장에서 측정된 간기능 수치인 알라닌 아미노기전달효소(ALT: alanine aminotransferase) 및 아스파르트산 아미노기전달효소(AST: aspartate aminotransferase) 활성이 FD군에서 HFD군에 비해 각각 52% 및 34% 유의하게 감소하였다(도 4f 및 4g). 따라서 필버톤은 고지방식이로 유도된 비만에서 나타나는 지방간 현상을 현저히 완화시키는 효과가 있고, 이러한 필버톤의 지방간 개선효능은 대조약물의 효과와 비슷하거나 더 우수함을 알 수 있다.
실시예 4: 식이성비만 마우스에서 필버톤의 제2형 당뇨 및 인슐린저항성 증후군 예방 및 치료 효능
1) 경구포도당 부하검사, 공복 시 혈당 및 인슐린 농도 측정방법
실험사육 8주 째에 실험동물을 16시간 공복시킨 후 2 g/kg 체중에 해당하는 d-글루코오스를 경구투여 하고, 15분, 30분, 60분 및 120분이 경과한 시점에 마우스의 꼬리정맥을 통해 혈액을 채취하였다. 채혈된 혈액의 글루코오스 농도는 스트립-작동 혈액 글루코오스 센서(ONETOUCH Ultra, Inverness Medical Ltd., 영국) 기기를 이용하여 측정하였다.
한편, 10주 간 사육한 마우스로 부터 채취한 공복 시 혈장의 글루코오스 농도는 생화학자동분석기(Express Plus, Chiron Diagnostics Co., 미국)를 이용하여 측정하였으며, 분석용 키트 시약은 Bio-Clinical System(대한민국)으로부터 구입하였다.
공복 시 혈장의 인슐린 농도는 마우스 인슐린 ELISA 키트(Millipore corporation, 미국)를 사용하여 측정하였다.
2) 제2형 당뇨 및 인슐린저항성 증후군 관련 지표(경구 포도당 저항성)의 변화
실험 사육 8주 째(해부 2주 전)에 마우스를 대상으로 경구 포도당 부하검사를 실시한 결과, FD군에서 HFD군에 비해 당부하 후 시간대 별 혈중 포도당농도가 감소하였고, 포도당 농도 곡선 면적값(AUC: area under the curve)이 17% 유의하게 감소하였다(도 5a 및 5b). 한편, 실험사육 종료시에 채취한 공복시 혈액의 포도당 및 인슐린 농도는 FD군에서 HFD군에 비해 각각 30% 및 54% 유의하게 감소하였다(도 5c 및 5d).
실시예 5: 식이성비만 마우스에서 필버톤의 염증활성화 개선효능
1) 혈중 염증성 싸이토카인 농도 분석방법
혈장 IL-6, TNFα, MCP1 및 렙틴 농도는 Milliplex map 키트(Millipore corporation, 미국)를 사용하여 ELISA 방법으로 측정하였다.
2) 혈중 염증성 싸이토카인 농도 변화
영양소 또는 대사물질 공급과잉에 의해 발생하는 염증반응에 대하여 최근 ‘metaflammation’이라는 용어가 등장하고, 비만을 ‘chronic and low-level inflammation’으로 해석하는 등, 비만과 면역체계와의 상관관계에 대한 연구가 활발히 진행 중에 있다. 그 예로, 고유 면역 반응(innate immune response)에 관여하는 TLR4(toll-like receptor4)의 경우 식이성지방(특히, 포화지방산)을 기질(ligand)로 사용하여 염증반응 및 인슐린저항성 경로에서 중요한 요소로 작용한다. 고지방식이에 의해 비만이 유도되면 체액에 유리지방산(특히, 포화지방산)이 증가하게 되고, TLR4에 유리지방산이 기질로 결합하면 IKK를 활성화시켜 NF-kB를 활성화시키고, 전-염증성 싸이토카인인 TNFα 및 IL-6 등의 분비를 촉진하여 염증반응을 일으키는 것으로 알려져 있다. 그 외에도 TNFα 및 IL-6는 SOCS3(cytokine signalling 3)과 JNK를 활성화시키므로서 IRS(insulin receptor substrate)의 세린 잔기를 인산화하여 당수송을 저해하고, 간 또는 근육 등의 말초조직에서 인슐린저항성을 유도하는 것으로 알려져 있다.
혈중에서 염증성 싸이토카인 농도를 ELISA 방법에 의해 측정한 결과, FD군에서 HFD군에 비해 IL-6(57% 감소), TNFα(30% 감소), MCP1(34% 감소) 및 렙틴(22% 감소) 농도가 모두 유의하게 감소하였다(도 6). 따라서 필버톤 섭취는 비만으로 인해 유도된 염증 활성화를 현저히 개선하는 효과가 있음을 알 수 있다.
실시예 6: 필버톤에 의한 지방축적 및 열발생 관련 유전자 및 단백질 발현조절
1) RNA 분리 및 RT-PCR
내장지방조직 및 간조직 0.1g당 트리졸 용액 1 ml을 첨가하여 조직을 분쇄한 후, 4℃, 12,000×g에서 10분 간 원심 분리하였다. 상층액을 새 튜브로 옮긴 후 클로로포름 200 ㎕을 첨가하고, 교반하였다. 이 과정을 두 번 반복한 다음, 상층액을 새 튜브로 옮긴 후 이소프로파놀과 상층액을 1:1 비율로 첨가하였다. 10회 세게 흔든 다음 실온에서 10분 동안 방치한 후, 12,000×g, 4℃에서 10분 간 원심 분리하여 상층액을 제거하고, 남은 침전물에 70% 에탄올 1 ml을 가하여 7,500×g, 4℃에서 5분 동안 원심 분리하였다. 에탄올을 제거한 후 RNA 침전물이 담긴 튜브를 실온에서 5분 동안 건조시키고, 핵산 가수분해가 없는 물(nuclease free water)을 사용하여 RNA 펠렛을 용해시켰다. UV/VIS 분광광도계(Beckman coulter, DU730, 미국)를 이용하여 260 nm 및 280 nm 파장에서 추출된 RNA 시료의 농도를 측정하고, 아가로스 젤 전기영동을 실시하여 RNA 시료의 품질(integrity)을 확인하였다.
내장지방조직 및 간조직에서 추출된 RNA시료를 대상으로 올리고 dT 프라이머와 superscript 역전사효소(GIBCO BRL, 미국)을 이용하여 역전사를 수행함으로써 cDNA를 합성하였다. 역전사를 통해 얻은 cDNA를 주형으로 하고 증폭하고자 하는 유전자 cDNA의 5’과 3’ 인접서열(flanking sequence)을 프라이머로 사용하여 PCR을 수행하였으며, 이때 사용된 프라이머 서열은 표 2에 제시된 바와 같다. 증폭된 PCR 산물 1 ㎕를 1% 아가로스 젤에 전기 영동하여 DNA 밴드를 확인하였다.
Figure PCTKR2016005718-appb-T000002
2) 웨스턴 블롯 분석
막자사발에 일정량의 내장지방 또는 간조직을 액체질소 및 라이시스 완충액과 함께 균질화시킨 후, 13,000×g, 4℃에서 20분 간 원심분리한 후 가운데 층을 취하고 Bradford 법에 의해 단백질을 정량하였다. 50 μg의 단백질을 SDS 폴리아크릴아마이드 젤에 전기 영동시킨 후 PVDF 하이퍼 필름에 전기블롯팅하고 해당 항체, β-카테닌, 포스포-AMPK(AMP-활성 단백질 키나아제), AMPK, GAPDH (Cell-signaling Technology, 미국)와 각각 반응시켰다. 각 단백질의 신호를 화학발광 분석 시스템(chemiluminescent detection system, Amersham, 영국)으로 가시화한 후 밴드의 두께를 Quantity One 분석 소프트웨어(Bio-Rad Laboratories, 미국)를 사용하여 정량화하였다.
3) 내장지방조직의 유전자 및 단백질 발현 변화
RT-PCR을 이용하여 내장지방조직에서 열발생에 관여하는 유전자(UCP1, UCP3) 및 전사조절인자(PGC-1α)의 발현을 측정한 결과, HFD군의 경우 정상식이군에 비해 이들 열발생 관련 유전자들의 발현이 모두 유의하게 감소하였다. 필버톤의 보충섭취는 고지방식이 섭취에 의해 감소하였던 UCP1, UCP3 및 PGC-1α 유전자 발현을 모두 유의하게 다시 증가시켰다(도 7a).
또한 HFD군의 경우 정상식이군에 비해 지방조직생성(adipogenesis)에 중요한 역할을 담당하는 핵전사인자인 C/EBPα와 PPARγ2, 그리고 이들 전사인자의 타겟 유전자인 CD36, FAS, 렙틴의 발현이 모두 유의하게 증가하였다. 고지방식이를 섭취하는 마우스에게 필버톤을 보충 섭취시킨 결과, 내장지방조직에서 고지방식이 섭취에 의해 증가하였던 핵전사인자 및 이의 타겟유전자 발현이 다시 모두 유의하게 감소하였다(도 7b). 웨스턴 블롯을 이용하여 지방생성을 조절하는 상위 신호전달물질인 β-카테닌 단백질 발현량을 내장지방조직에서 평가한 결과, FD군에서 HFD군에 비해 유의하게 증가하였다(도 7c). 따라서 필버톤 보충섭취는 내장지방조직에서 지방생성에 중추적 역할을 하는 핵전사인자 및 이의 타겟 유전자발현을 감소시키고, β-카테닌 단백질발현을 증가시킴으로써 내장지방 축적을 예방하였음을 알 수 있다.
4) 간조직의 유전자 및 단백질 발현 변화
RT-PCR을 이용하여 간조직의 mRNA 발현정도를 평가한 결과, HFD군의 경우 정상식이군에 비해 지방생성(lipogenesis)에 중요한 역할을 담당하는 핵전사인자인 SREBP와 LXRα, 그리고 이들 전사인자의 타겟 유전자인 LPL, FAS 및 ACC 발현이 모두 유의하게 증가하였다. 한편 필버톤을 보충 섭취시킨 결과 고지방식이 섭취에 의해 간조직에서 증가하였던 핵 전사인자 및 이의 타겟 유전자 발현이 모두 다시 유의하게 감소하였다(도 8a). 웨스턴 블롯을 이용하여 지방산 산화를 촉진하는 신호전달물질인 AMPK 활성화(p-AMPK/AMPK 비율)를 간조직에서 평가한 결과, FD군에서 HFD군에 비해 유의하게 증가하였다(도 8b). 따라서 필버톤 보충섭취는 간조직에서 지방합성에 중추적 역할을 하는 핵전사인자 및 이의 타겟 유전자발현을 감소시키고, 지방산 산화를 촉진하는 신호전달물질의 활성화를 증가시킴으로서 비만으로 인해 유도된 지방간을 개선하는 효과가 있음을 알 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (15)

  1. 필버톤(filbertone)을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증(dyslipidemia), 지방간 및 인슐린 저항성 증후군(insulin resistance syndrome)으로 구성된 군으로부터 선택되는 대사질환(metabolic disease)의 예방 또는 치료용 약제학적 조성물.
  2. 제 1 항에 있어서, 상기 이상지질혈증은 고지혈증인 것을 특징으로 하는 조성물.
  3. 제 1 항에 있어서, 상기 지방간은 비알콜성 지방간인 것을 특징으로 하는 조성물.
  4. 제 1 항에 있어서, 상기 조성물은 체중 또는 식이효율을 감소시키는 것을 특징으로 하는 조성물.
  5. 제 1 항에 있어서, 상기 조성물은 내장 지방을 감소시키는 것을 특징으로 하는 조성물.
  6. 제 1 항에 있어서, 상기 조성물은 혈장 지질농도를 감소시키는 것을 특징으로 하는 조성물.
  7. 제 1 항에 있어서, 상기 조성물은 간무게 또는 간조직 내 지질농도를 감소시키는 것을 특징으로 하는 조성물.
  8. 제 1 항에 있어서, 상기 조성물은 혈액 내 ALT(alanine aminotransferase) 또는 AST(aspartate aminotransferase)의 활성을 감소시키는 것을 특징으로 하는 조성물.
  9. 제 1 항에 있어서, 상기 조성물은 공복 혈당 농도 또는 공복 혈중 인슐린 농도를 감소시키는 것을 특징으로 하는 조성물.
  10. 제 1 항에 있어서, 상기 조성물은 혈중 염증성 싸이토카인 농도를 감소시키는 것을 특징으로 하는 조성물.
  11. 제 1 항에 있어서, 상기 조성물은 내장지방 또는 간의 UCP1(uncoupling protein 1), UCP3(uncoupling protein 3), PGC-1α(Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha) 또는 β-카테닌 발현, 또는 AMPK(AMP-activated protein kinase) 활성화를 증가시키거나, 또는 C/EBPα(CCAAT enhancer-binding proterins), PPARγ(Peroxisome proliferator activated receptor gamma), CD36(Cluster of Differentiation 36), FAS(Fatty acid synthase), 렙틴, SREBP1C(Sterol regulatory element binding factor 1c), LXRα(Liver X receptor alpha), LPL(Lipoprotein Lipase) 또는 ACC(Acetyl-CoA carboxylase)의 발현을 감소시키는 것을 특징으로 하는 조성물.
  12. 필버톤을 유효성분으로 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 개선용 기능성 식품 조성물.
  13. 필버톤을 유효성분으로 포함하는 약제학적 조성물을 이를 필요로하는 대상(subject)에 투여하는 단계를 포함하는 비만, 당뇨, 이상지질혈증, 지방간 및 인슐린 저항성 증후군으로 구성된 군으로부터 선택되는 대사질환의 예방 또는 치료 방법.
  14. 제 13 항에 있어서, 상기 이상지질혈증은 고지혈증인 것을 특징으로 하는 방법.
  15. 제 13 항에 있어서, 상기 지방간은 비알콜성 지방간인 것을 특징으로 하는 방법.
PCT/KR2016/005718 2015-06-01 2016-05-30 필버톤의 신규한 용도 WO2016195355A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150077575A KR101558476B1 (ko) 2015-06-01 2015-06-01 필버톤의 신규한 용도
KR10-2015-0077575 2015-06-01

Publications (1)

Publication Number Publication Date
WO2016195355A1 true WO2016195355A1 (ko) 2016-12-08

Family

ID=54347205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005718 WO2016195355A1 (ko) 2015-06-01 2016-05-30 필버톤의 신규한 용도

Country Status (2)

Country Link
KR (1) KR101558476B1 (ko)
WO (1) WO2016195355A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000612A (ko) * 2017-06-23 2019-01-03 연세대학교 산학협력단 필버톤을 유효성분으로 함유하는 근력강화, 근육증강, 근육분화, 근육재생 또는 근감소증 억제효과를 갖는 조성물
KR102224799B1 (ko) * 2019-10-28 2021-03-08 울산대학교 산학협력단 필버톤을 유효성분으로 함유하는 신경염증질환 예방 또는 치료용 조성물
WO2022214180A1 (en) 2021-04-08 2022-10-13 Symrise Ag Sustainable process for the preparation of 5-methylhept-2-en-4-one

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230123324A (ko) 2022-02-16 2023-08-23 대구대학교 산학협력단 필버톤(Filbertone)을 유효성분으로 포함하는 골 대사성 질환의 예방, 개선 또는 치료용 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078376B1 (ko) * 2009-02-02 2011-10-31 연세대학교 산학협력단 피페린 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 비만 예방 및 치료용 조성물
KR101186500B1 (ko) * 2012-01-31 2012-09-27 연세대학교 산학협력단 신규한 피페린 유도체 및 그의 용도
KR20140108104A (ko) * 2013-02-28 2014-09-05 대전대학교 산학협력단 한인진 및 울금의 복합추출물을 유효성분으로 포함하는 비만 관련 질환의 예방, 억제 또는 치료용 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078376B1 (ko) * 2009-02-02 2011-10-31 연세대학교 산학협력단 피페린 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 비만 예방 및 치료용 조성물
KR101186500B1 (ko) * 2012-01-31 2012-09-27 연세대학교 산학협력단 신규한 피페린 유도체 및 그의 용도
KR20140108104A (ko) * 2013-02-28 2014-09-05 대전대학교 산학협력단 한인진 및 울금의 복합추출물을 유효성분으로 포함하는 비만 관련 질환의 예방, 억제 또는 치료용 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABEER, E. E. ET AL.: "Hypoglycemic Effect of Hazelnut and its Effect on Some Sex Hormones in Alloxan induced Diabetic in Female Rats", PAKISTAN JOURNAL OF NUTRITION, vol. 12, no. 3, 2013, pages 229 - 238, XP055334991 *
KASIKCI, E. S. ET AL.: "The Ejects of Corylus Avellana on Serum Lipid Profile and Oxidative Stress in Hyperlipidemic-Diabetic Rats", DISEASE AND MOLECULAR MEDICINE, vol. 3, no. 2, 2014, pages 45 - 50, XP055334992 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190000612A (ko) * 2017-06-23 2019-01-03 연세대학교 산학협력단 필버톤을 유효성분으로 함유하는 근력강화, 근육증강, 근육분화, 근육재생 또는 근감소증 억제효과를 갖는 조성물
KR101949601B1 (ko) 2017-06-23 2019-02-18 연세대학교 산학협력단 필버톤을 유효성분으로 함유하는 근력강화, 근육증강, 근육분화, 근육재생 또는 근감소증 억제효과를 갖는 조성물
KR102224799B1 (ko) * 2019-10-28 2021-03-08 울산대학교 산학협력단 필버톤을 유효성분으로 함유하는 신경염증질환 예방 또는 치료용 조성물
WO2022214180A1 (en) 2021-04-08 2022-10-13 Symrise Ag Sustainable process for the preparation of 5-methylhept-2-en-4-one

Also Published As

Publication number Publication date
KR101558476B1 (ko) 2015-10-12

Similar Documents

Publication Publication Date Title
KR100877600B1 (ko) 메타독신 및 마늘유를 유효성분으로 함유하는 알코올성지방간 및 지방간성 간염의 예방 및 치료용 약학 조성물
WO2016195355A1 (ko) 필버톤의 신규한 용도
AU2017253228B2 (en) Nalmefene, naltrexone or derivatives thereof for use in treating (non)-alcoholic steatohepatitis or non-alcoholic fatty liver disease
JP2019514872A5 (ko)
JP2008273938A (ja) アディポネクチン産生促進剤
WO2011031063A9 (ko) 항 4-1bb 항체를 포함하는 대사성 질환의 예방 또는 치료용 조성물
WO2017183902A1 (ko) 인진, 지유 및 울금 추출물 및 항바이러스제를 유효성분으로 포함하는 간질환 예방 또는 치료용 조성물
US10100011B2 (en) Pentadienoyl piperidine derivative and use thereof
WO2020085644A1 (ko) 하이드로퀴논 유도체를 포함하는 비만 또는 비알콜성 지방간염의 예방 또는 치료용 약학 조성물
WO2020085799A1 (ko) 도라지 사포닌을 포함하는 표준화된 도라지 추출물 또는 막분리 도라지 사포닌 추출물을 함유하는 간질환의 예방 또는 치료용 약학적 조성물 및 간기능 개선용 건강기능식품
WO2016195357A1 (ko) 피노카베올의 신규한 용도
WO2018030650A1 (ko) 국화잎 추출물을 유효성분으로 포함하는 항비만 조성물
CN110693873B (zh) 冬凌草活性成分组合物的制备及应用
US20120322822A1 (en) Composition containing cinchonine as an active ingredient for preventing and treating obesity, dyslipidemia, fatty liver, or insulin resistance syndrome
WO2020067832A1 (ko) 티아민 유도체를 포함하는 고코르티솔증 예방 또는 치료용 조성물
CN106176959A (zh) 改善第二型糖尿病的芭乐果实及海藻糖饮食组成物与用途
KR20190130241A (ko) 크로몰린 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 지방간의 예방 또는 치료용 약학적 조성물
CN112641779B (zh) Gw441756在制备预防和/或治疗脂肪肝药物中的应用
WO2022191443A1 (ko) 토르세미드 및 크로몰린을 포함하는 대사질환 예방 또는 치료용 조성물
JP2019511996A (ja) 膵臓脂肪浸潤を予防または治療し、膵臓脂肪浸潤に起因する膵臓病変、糖尿病または他の関連症状を緩和するための組成物、および方法
KR100992995B1 (ko) 피페로날의 신규한 용도
CN109700965B (zh) 一种减肥降脂的组合物及其制备方法与用途
WO2014017741A1 (ko) 프루네틴을 유효성분으로 함유하는 비만 또는 대사성 질환의 예방 또는 치료용 약학적 조성물
CN109700964B (zh) 一种减肥的组合物及其制备方法与用途
KR101541017B1 (ko) α-터피넨의 신규한 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803710

Country of ref document: EP

Kind code of ref document: A1