WO2016035893A1 - 金属帯板の誘導加熱装置 - Google Patents

金属帯板の誘導加熱装置 Download PDF

Info

Publication number
WO2016035893A1
WO2016035893A1 PCT/JP2015/075266 JP2015075266W WO2016035893A1 WO 2016035893 A1 WO2016035893 A1 WO 2016035893A1 JP 2015075266 W JP2015075266 W JP 2015075266W WO 2016035893 A1 WO2016035893 A1 WO 2016035893A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal strip
induction coil
coil member
magnetic core
traveling
Prior art date
Application number
PCT/JP2015/075266
Other languages
English (en)
French (fr)
Inventor
芳明 廣田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016546710A priority Critical patent/JP6323564B2/ja
Priority to RU2017107070A priority patent/RU2674250C2/ru
Priority to CA2959470A priority patent/CA2959470C/en
Priority to BR112017004175-8A priority patent/BR112017004175B1/pt
Priority to CN201580046992.4A priority patent/CN106688308B/zh
Priority to KR1020177005891A priority patent/KR101981407B1/ko
Priority to EP15838715.9A priority patent/EP3190860B1/en
Priority to US15/508,057 priority patent/US10568166B2/en
Publication of WO2016035893A1 publication Critical patent/WO2016035893A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/40Establishing desired heat distribution, e.g. to heat particular parts of workpieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • F27D2019/0037Quantity of electric current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This specification relates to an induction heating device for a metal strip.
  • Heating of the metal strip in the heat treatment furnace is mainly performed by indirect heating using a radiant tube.
  • this indirect heating increases as the difference between the temperature of the metal strip and the furnace temperature decreases. Since it is difficult to effectively input heat to the metal strip, productivity is limited.
  • indirect heating using a radiant tube for example, in steel plates such as carbon steel, it is difficult to realize high temperature annealing due to rapid heating near the transformation point where endothermic reaction occurs and heat resistance of the radiant tube. The degree of freedom in selecting the heat treatment conditions for the metal strip is limited.
  • induction heating that heats a metal strip with a high-frequency current can freely control the heating rate and the heating temperature, and thus has a large degree of freedom in terms of heat treatment operation and metal strip product development. It is a heating method that is attracting attention.
  • induction heating There are two main types of induction heating. One is to pass a high-frequency current through an induction coil that surrounds the periphery of the metal strip so that the magnetic flux passes through the cross section in the longitudinal direction (traveling direction) of the metal strip, and the width of the metal strip perpendicular to the magnetic flux. This is an LF (longitudinal magnetic flux heating) method in which an induction current that circulates in a directional section is generated to heat a metal strip.
  • LF longitudinal magnetic flux heating
  • Another method is to arrange an inductor (good magnetic material) wound with a primary coil with a metal strip sandwiched between them, and to generate a magnetic flux generated by passing a current through the primary coil via the inductor.
  • This is a TF (transverse magnetic flux heating) system that penetrates the plate surface and generates an induced current on the plate surface of the metal strip to heat the metal strip.
  • the current penetration depth ⁇ becomes deep, so that no induced current is generated when the thickness of the metal strip is thin.
  • an induced current does not generate
  • the magnetic metal strip may be attracted to one inductor and the magnetic flux will be concentrated locally, resulting in a large temperature difference of the metal strip. .
  • the inductor shape cannot be easily changed, so that there is a problem that it is difficult to cope with the change in the width of the metal strip.
  • Japanese Patent Application Laid-Open No. 2008-186589 discloses a magnetic pole segment that is arranged in parallel with a thin plate in the width direction of the thin plate and is opposed to the thin plate, and is movable independently in the thickness direction of the thin plate
  • An electromagnetic induction heating device is disclosed that includes a movable shielding plate made of a non-magnetic metal that can move in and out in the width direction of a thin plate and adjusts a magnetic field by a magnetic pole segment.
  • the electromagnetic induction heating device disclosed in Japanese Patent Application Laid-Open No. 2008-186589 can adjust the magnetic flux in response to a change in the plate width of the thin plate.
  • the plate width of the thin plate changes greatly, the magnetic flux in the plate width direction It is difficult to make adjustments quickly.
  • Japanese Unexamined Patent Application Publication No. 2009-259588 discloses an induction heating apparatus having a plurality of independent magnetic bars and a variable width magnetic circuit that can be adapted to the width of the metal strip.
  • an example is shown in which a magnetic core that is movable in the width direction is provided in the vicinity of an induction coil that is placed apart from the front and back.
  • the embodiment of the present specification can control the temperature distribution of the end portion in the plate width direction of the metal strip by adjusting the current density of the induced current flowing in the end portion in the plate width direction of the metal strip and the heating time.
  • the main object is to provide an induction heating device for a metal strip.
  • a first induction coil member and a second induction coil member arranged so that vertical projection images on the traveling metal strip do not overlap with each other in the traveling direction of the traveling metal strip, First electrical connection means for electrically connecting one of the both end portions of the induction coil member and one of the both end portions of the second induction coil member; and An induction coil comprising: the other and second electrical connection means for electrically connecting the other of the both ends of the second induction coil member; One end of the traveling metal strip in the plate width direction is provided between the first induction coil member and the second induction coil member in the traveling direction, and on one surface side of the traveling metal strip.
  • the first induction coil member side and the second induction coil member side are provided with a large number of portions at the intermediate portion between the first induction coil member and the second induction coil member.
  • the first induction coil member and the second induction coil member have a large number of end portions in the plate width direction of the traveling metal strip on the first induction coil member side and the second induction coil member side.
  • a first magnetic core having, In the traveling direction, provided between the first induction coil member and the second induction coil member, on the one surface side of the traveling metal strip, in the plate width direction of the traveling metal strip.
  • the other end opposite to the one end is more on the first induction coil member side and the second induction coil member side, and in the intermediate portion between the first induction coil member and the second induction coil member.
  • a third magnetic core member provided to cover a small amount, and the other inductive coil member provided between the first induction coil member and the second induction coil member in the traveling direction.
  • An induction heating device for a metal strip comprising:
  • FIG. 1 shows a vertical projection image of an induction coil member on the front side of a metal strip and an induction coil member on the back side of the metal strip on a metal strip of the induction coil member on the front side of the metal strip
  • FIG. 2A is a diagram showing a planar aspect of the induced current generated in the entire metal strip.
  • FIG. 2B is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3A is a diagram showing a cross-sectional structure of a magnetic core for comparison.
  • FIG. 3B is a diagram schematically showing a cross-sectional structure of the magnetic core used in the embodiment of the present specification.
  • FIG. 3C is a diagram schematically showing a cross-sectional structure of another magnetic core used in the embodiment of the present specification.
  • FIG. 3D is a diagram schematically showing a cross-sectional structure of still another magnetic core used in the embodiment of the present specification.
  • FIG. 3A is a diagram showing a cross-sectional structure of a magnetic core for comparison.
  • FIG. 3B is a diagram schematically showing a cross-sectional structure of the magnetic core used in the embodiment of the present specification.
  • FIG. 3C is a diagram schematically showing a cross-sectional structure of another magnetic core used in the embodiment of the present specification.
  • FIG. 3D is a diagram schematically showing a cross-sectional structure of still another magnetic core used in the embodiment of the present specification.
  • FIG. 4 is a diagram showing an arrangement mode of the magnetic core in the embodiment of the present specification, where the magnetic core is not divided into a plurality of magnetic cores, and the induction coil member has a plate width of the metal strip. It is a figure which shows the case where it arrange
  • FIG. 5A is a diagram showing an arrangement mode of the magnetic core in the embodiment of the present specification, where the magnetic core is divided into a plurality of magnetic cores, and the induction coil member is parallel to the plate width direction of the metal strip. It is a figure which shows the case where it has arrange
  • FIG. 5B is a diagram showing an arrangement mode of the magnetic core in the embodiment of the present specification.
  • FIG. 6 is a diagram illustrating a circuit of the induced current that circulates inside the metal strip.
  • FIG. 7 is a diagram illustrating an arrangement of magnetic cores when two sets of induction coils are installed adjacent to each other in parallel.
  • FIG. 8 is a diagram illustrating an arrangement of magnetic cores when two sets of induction coils are connected in series and installed.
  • FIG. 9A is a diagram showing an arrangement mode of the magnetic core in the embodiment of the present specification, and is a diagram showing a case where the induction coil is a TF system.
  • FIG. 9B is a diagram illustrating a circuit of the induced current that circulates the metal strip in the case of FIG. 9A.
  • FIG. 9C is a diagram showing a circuit of an induced current that circulates around the metal strip in the case where a plurality of magnetic cores are not provided in FIG. 9A.
  • FIG. 10 is a diagram schematically illustrating the configuration of the analysis model of the example.
  • FIG. 11 is a diagram schematically illustrating the configuration of the analysis model of Comparative Example 2.
  • FIG. 12 is a diagram schematically illustrating the configuration of the analysis model of Comparative Example 3.
  • the magnetic core disposed so as to cover the end of the metal strip traveling in the longitudinal direction on the end side of the metal strip is disposed on the front and back of the metal strip at the end of the metal strip.
  • the induced current generated by the arranged induction coil is pushed out to the outside of the magnetic core (in the direction of the center of the metal strip), thereby suppressing the concentration of the induced current at the end of the metal strip.
  • the current density and heating time of the induced current flowing at the end of the metal strip in the width direction of the metal strip can be controlled accurately only by partially arranging the magnetic core at the end of the metal strip in the plate width direction. It is difficult to appropriately control the temperature distribution at the end of the metal strip in the plate width direction.
  • the present inventor properly controls the current density and heating time of the induced current flowing at the end of the metal strip in the plate width direction, and appropriately controls the temperature distribution at the end of the metal strip in the plate width direction.
  • the present inventors do not dispose the magnetic core partially at the end of the metal strip in the plate width direction, but at the end of the metal strip where the induced current flows in the plate width direction.
  • the current density and heating time of the induced current flowing at the end in the width direction of the metal strip are accurately controlled, and the width of the metal strip It was found that the temperature distribution at the direction end can be controlled appropriately.
  • the predetermined profile refers to both ends of the metal strip in the running direction, and covers many end portions in the width direction of the metal strip in the vicinity of the induction coil, and the end portions in the width direction of the metal strip in the middle portion. It is preferable that the shape covers less.
  • the magnetic core may be divided into a plurality of members in the traveling direction of the metal strip, and further, moving means for moving each of the divided members in the plate width direction of the metal strip. It was found that the temperature distribution at the end in the width direction of the metal strip can be freely controlled if it is provided.
  • the induction coil member 2 a on the front side of the metal strip 1 and the induction coil member 2 b on the back side of the metal strip 1 are connected to the metal strip 1 of the induction coil member 2 a on the front side of the metal strip 1.
  • Induction heating arranged so that the vertical projection image and the vertical projection image of the induction coil member 2b on the back side of the metal strip 1 on the metal strip 1 do not overlap in the longitudinal direction (traveling direction) of the metal strip 1.
  • the aspect of an apparatus is shown.
  • the induction coil member 2 a and the induction coil member 2 b are arranged in parallel to the metal strip 1. Both end portions of the induction coil member 2 a and both end portions of the induction coil member 2 b are provided so as to protrude from the metal strip 1 in the plate width direction of the metal strip 1.
  • the end portion of the induction coil member 2 a on the front side of the metal strip 1 passing through the inside of the induction coil 2 and the end portion of the induction coil member 2 b on the back side of the metal strip 1. Are connected by the conductor 2c, the other end of the induction coil member 2b is connected to the power source 3 via the conductor 2d and the conductor 2e, and the other end of the induction coil member 2a is the conductor 2h, the coupler 2g, It is connected to the power supply 3 via the conducting wire 2f.
  • the conductor 2c is an example of an electrical connection means
  • the conductor 2d, the conductor 2e, the conductor 2f, and the conductor 2h are also an example of an electrical connection means.
  • the induction coil 2 includes an induction coil member 2a, an induction coil member 2b, a conductor 2c, a conductor 2d, a conductor 2e, a conductor 2f, and a conductor 2h.
  • the induction coil member 2 a and the induction coil member 2 b are a vertical projection image when the induction coil member 2 a is vertically projected onto the metal strip 1 and a vertical projection when the induction coil member 2 b is vertically projected onto the metal strip 1.
  • the images are arranged so as not to overlap in the longitudinal direction (traveling direction) of the metal strip 1.
  • the induced current flows in the opposite direction with the same magnitude on the front and back surfaces of the metal strip, so that if the current penetration depth ⁇ is deep, interference occurs and the induced current does not flow.
  • the vertical projection images when the induction coil member 2a and the induction coil member 2b are vertically projected onto the metal strip 1 are arranged so as not to overlap in the longitudinal direction (traveling direction) of the metal strip 1. Therefore, since the induced current flowing through the metal strip 1 immediately below the induction coil member 2a and the induced current flowing through the metal strip 1 directly below the induction coil member 2b are currents flowing in only one direction, the current penetration depth ⁇ is Even when it is deep, current flows without interference.
  • FIG. 2A and 2B show an aspect of the induced current 5 generated in the entire metal strip 1.
  • FIG. 2A shows a plane mode of the induced current
  • FIG. 2B shows a mode of the induced current 5 in the end cross section of the metal strip 1 (AA cross section in FIG. 2A).
  • the metal strip 1 immediately below the induction coil members 2a and 2b has an annular induction flowing in the direction of the arrow (the direction opposite to the direction of the current flowing through the induction coil members 2a and 2b).
  • Current 5 (5a, 5b) is generated.
  • the induction coil member 2a is arrange
  • the induction coil member 2b is arrange
  • the induction current 5 is a metal as shown in FIG. 2B. It flows across the end section of the strip 1 diagonally. Even if the metal strip 1 is a non-magnetic material, the induced current 5 is generated and circulates, so that the metal strip 1 can be heated.
  • FIG. 2B shows a current flow state when the thickness of the metal strip 1 is large. When the thickness of the metal strip 1 is thin, the entire thickness of the metal strip 1 is not traversed diagonally. Current flows through
  • the induced current flowing through the end of the metal strip 1 in the plate width direction is a conductor that connects the induction coil member 2a on the front side of the metal strip 1 and the induction coil member 2b (see FIG. 1) on the back side. 2c (see FIG. 1), or the primary current flowing through the conductor 2d, the conductor 2e, the conductor 2f, and the conductor 2h (see FIG. 1) that connect the induction coil on the front side and the induction coil on the back side of the metal strip to the power source.
  • the metal strip 1 is shifted toward the end in the plate width direction, and the current path width d2 is reduced.
  • the induction coil 2 when the induction coil 2 is one set, the magnetic flux spreads outside the induction coil 2, so that the current density of the induction current 5 decreases at the center of the metal strip 1, and the temperature hardly rises.
  • the temperature difference between the center portion and the end portion in the plate width direction of 1 is easily enlarged.
  • the induced current 5 flowing in the end portion in the plate width direction of the metal strip 1 is controlled over the entire width of the end portion through which the induced current 5 flows.
  • a magnetic core that can cover the metal strip 1 beyond the end in the plate width direction of the metal strip 1 and the metal strip is provided.
  • a plurality of metal strips 1 are arranged so as to be able to advance and retreat in the plate width direction.
  • the induction coil members 2a and 2b may be composed of a single conductor or a plurality of conductors. Moreover, in order to reinforce magnetic flux, you may mount the magnetic body core for backs on the back surface of the induction coil members 2a and 2b.
  • FIG. 3A to 3D show the cross-sectional structure of the magnetic core 6.
  • FIG. 3A shows a cross-sectional structure of the magnetic core 6 for comparison
  • FIG. 3B shows a cross-sectional structure of the magnetic core 6 used in the embodiment
  • FIG. 3C shows another magnetic body used in the embodiment.
  • the cross-sectional structure of the core 6 is shown.
  • FIG. 3D schematically shows a cross-sectional structure of still another magnetic core 6 used in the embodiment.
  • the dimensions of the magnetic core 6 are not limited to a specific range. What is necessary is just to set suitably based on the space
  • the magnetic core 6 is made of a ferromagnetic material, but the ferromagnetic material is not limited to a specific material ferromagnetic material. Examples of the ferromagnetic material include ferrite, laminated electrical steel sheet, and amorphous alloy, and may be appropriately selected depending on the heating ability, frequency, and the like applied to the induction heating apparatus.
  • the magnetic core 6 for comparison covering the widthwise end of the metal strip 1 absorbs the magnetic flux 4 ′ excited by the induction coil (not shown) (the magnetic core 6).
  • the arrow which penetrates' refers), the magnetic flux concentration to the plate width direction edge part of the metal strip 1 is prevented, and the excessive temperature rise in the plate width direction edge part of the metal strip 1 is suppressed.
  • the magnetic cores 6 ' are partially arranged individually, there is a problem that the effect of suppressing the end current is limited and the effect is small.
  • the distance d between the metal strip 1 and the metal strip 1 is set narrow in order to effectively suppress current passage at the end of the metal strip 1 in the plate width direction. Further, the magnetic core 6 covers the metal band plate beyond the end in the plate width direction of the metal band plate 1 so that the distribution of the induced current can be appropriately controlled. The depth of the portion covering the metal strip 1 is set deep so that the length L of the magnetic core is long and the magnetic core 6 can immediately respond to the change W of the width of the metal strip.
  • the magnetic core 6 includes a magnetic core member 6a on the front side of the metal strip 1, a magnetic core member 6b on the back side, and a portion covering the metal strip 1 of the magnetic core member 6a and the magnetic core member 6b.
  • the magnetic core member 6e is provided to connect the opposite end (the right end in the figure).
  • a surface portion that is likely to receive heat in the magnetic core 6 in order to suppress the temperature rise due to radiant heat from the heated metal strip 1 and to use the magnetic core 6 stably You may cover with the nonmagnetic heat insulating material 6c.
  • a water cooling plate (not shown) is attached to the magnetic body core 6, or a gas cooling device ( The magnetic core 6 may be cooled by providing a not shown).
  • the induction heating apparatus of the embodiment is provided with a moving member 9 that moves the magnetic core 6 shown in FIG. 3B or 3C forward and backward in the plate width direction of the metal strip 1.
  • the movement of the metal strip 1 of the magnetic core 6 by the moving member 9 in the plate width direction is performed by, for example, moving a carriage holding the magnetic core on a track with a driving device such as an electric cylinder, an air cylinder, or a motor.
  • a driving device such as an electric cylinder, an air cylinder, or a motor.
  • the magnetic core 6 only needs to be able to move quickly and smoothly in the plate width direction of the metal strip 1, and the moving member of the magnetic core 6 is not particularly specified as long as this is the case.
  • FIG. 3D schematically shows a cross-sectional structure of still another magnetic core 6 used in the embodiment.
  • the end portion (right end portion in the drawing) of the magnetic core 6 is not connected by a magnetic body.
  • the magnetic core 6 includes a magnetic core member 6a on the front surface side of the metal strip 1 and a magnetic core member 6b on the back surface side.
  • the end opposite to the portion covering the metal strip 1 is a non-magnetic and heat-resistant connecting member. It is connected by 6d.
  • the magnetic core member 6a and the magnetic core member 6b are respectively disposed on the front and back surfaces of the metal strip 1, and the magnetic core member 6a and the magnetic core member 6b are nonmagnetic.
  • the same current suppression effect as that of the magnetic core 6 shown in FIG. 3B, in which the magnetic core member 6a and the magnetic core member 6b are connected by the magnetic core member 6e is obtained.
  • the magnetic core 6 can immediately follow the change in the plate width by moving the metal strip 1 in the plate width direction by the moving member 9 even when the plate width of the metal strip 1 is changed. Even when 1 is meandering and the position of the end portion in the plate width direction is greatly deviated and continues, it becomes possible to immediately follow the misalignment.
  • FIG. 4 shows an arrangement mode of the magnetic cores 6 in the embodiment.
  • Induction coil members 2 a and 2 b are arranged in parallel to the plate width direction of the metal strip 1.
  • An end portion in the plate width direction of the metal strip 1 and a magnetic core 6 capable of covering the metal strip 1 beyond the end portion are disposed on both sides of the metal strip 1 in the plate width direction.
  • the magnetic core 6 includes a vertical projection image of the induction coil member 2a on the front side of the metal strip 1 onto the metal strip 1 and a vertical projection of the induction coil member 2b on the back side of the metal strip 1 to the metal strip 1. It is arranged over the entire width between the projected images.
  • the magnetic core 6 includes a magnetic core member 6a on the front side of the metal strip 1, a magnetic core member 6b on the back side, a magnetic core member 6a, and a magnetic core member 6b.
  • a magnetic core member 6e is provided for connecting an end portion (right end portion in the drawing) opposite to the portion covering the metal strip 1.
  • a nonmagnetic coupling member 6d may be provided as shown in FIG. 3D.
  • the magnetic core 6 may be covered with a nonmagnetic heat insulating material 6c.
  • the magnetic core member 6a and the magnetic core member 6b have many end portions in the width direction of the metal strip 1 on the induction coil member 2a side and the induction coil member 2b side, and the induction coil member 2a and the induction coil member 2b
  • the middle part of the cover covers little.
  • the sides of the magnetic core member 6a and the magnetic core member 6b covering the end portions in the plate width direction of the metal strip 1 are curved.
  • the magnetic core member 6a and the magnetic core member 6b are moved forward and backward in the plate width direction of the metal strip 1 by the moving member 9, can follow the plate width change, and follow the positional deviation due to meandering of the metal strip 1 and the like. it can.
  • FIG. 5A and 5B show the arrangement of the magnetic cores 6 in the embodiment.
  • FIG. 5A shows a case where the induction coil members 2a and 2b are arranged in parallel to the plate width direction of the metal strip 1
  • FIG. 5B shows that the induction coil members 2a and 2b are ends of the metal strip 1 in the plate width direction.
  • the case where it inclines and faces toward a part is shown.
  • the induction coil member 2a is disposed to be inclined toward the induction coil member 2b side toward the plate width direction end of the metal strip 1, and the induction coil member 2b is directed to the plate width direction end of the metal strip 1.
  • the case where it inclines to the side is shown.
  • the end portion of the metal strip 1 in the plate width direction and the magnetic core 6 capable of covering the metal strip 1 beyond the end portion of the plate width direction include the metal strip. 1 on both sides in the plate width direction.
  • the magnetic core 6 includes a vertical projection image of the induction coil member 2a on the front side of the metal strip 1 onto the metal strip 1 and a vertical projection of the induction coil member 2b on the back side of the metal strip 1 to the metal strip 1. It is arranged over the entire width between the projected images.
  • the magnetic core 6 is divided into a plurality of magnetic cores 60 in the longitudinal direction (traveling direction) of the metal strip 1.
  • the magnetic core member 6a on the surface side of the metal strip 1 is divided into a plurality of magnetic core members 60a.
  • the magnetic core member 6b on the back side of the metal strip 1 is divided into a plurality of magnetic core members 60b.
  • the magnetic core member 6e that connects the end (the right end in the figure) of the magnetic core member 6a and the magnetic core member 6b opposite to the portion covering the metal strip 1 includes a plurality of magnetic core members. It is divided into 60e.
  • the plurality of magnetic core members 60a and the plurality of magnetic core members 60b are the same number, and the vertical projection images of the plurality of magnetic core members 60a and the plurality of magnetic core members 60b onto the metal strip 1 are metal strips. They are arranged so as to overlap each other in the traveling direction of one traveling.
  • the divided magnetic core 60 includes a magnetic core member 60a on the front side of the metal strip 1, a magnetic core member 60b on the back side, a magnetic core member 6a, and a magnetic core.
  • a magnetic core member 60e is provided for connecting an end portion (right end portion in the figure) opposite to the portion of the member 6b covering the metal strip 1.
  • a nonmagnetic coupling member 60d may be provided as shown in FIG. 3D.
  • the magnetic core 60 may be covered with a nonmagnetic heat insulating material 60c.
  • the plurality of magnetic core members 60 a and the plurality of magnetic core members 60 b are moved forward and backward in the plate width direction of the metal strip 1 by the moving member 9, can follow the plate width change, meander the metal strip 1, etc. It is possible to follow the positional deviation caused by. Moreover, the line which connects the side which covers the board
  • the plurality of magnetic cores 60 are vertically projected onto the metal strip 1 of the induction coil member 2a on the front side of the metal strip 1 and to the metal strip 1 of the induction coil member 2b on the back side of the metal strip 1. It is not necessary to arrange them without gaps in the entire width between the vertical projection images, and an appropriate number of magnetic cores 60 may be arranged at a predetermined interval so as to obtain a desired heating temperature distribution.
  • the line connecting the sides of the magnetic core member 60a and the magnetic core member 60b covering the end portions in the plate width direction of the metal strip 1 is curved.
  • a plurality of magnetic cores 60 are arranged in the central region between the induction coil member 2a and the induction coil member 2b so as to cover the end in the width direction of the metal strip 1, and the induction coil member 2a and the induction coil member 2b. Is disposed so as to cover the inside of the metal strip 1 beyond the end of the metal strip 1 in the plate width direction.
  • the magnetic core member 60a and the magnetic core member 6b have many end portions in the width direction of the metal strip 1 on the induction coil member 2a side and the induction coil member 2b side, and the induction coil member 2a and the induction coil member 2b The middle part of the cover covers little.
  • the direction in which the induced current that flows in the end portion in the plate width direction of the metal strip 1 flows is gradually suppressed, and the end of the metal strip
  • the current density of the current flowing through the section and the heating time are adjusted to prevent overheating at the end of the metal strip 1 in the sheet width direction.
  • the current distribution of the induced current that circulates around the plate surface of the metal strip 1 is freely adjusted, and the heat generation distribution in the plate width direction of the metal strip 1 is controlled appropriately.
  • the metal strip when the metal strip is heated by a radiant tube at the first stage of the induction heating device and the end of the metal strip is in a high temperature state, the current flowing through the end of the metal strip is suppressed to reduce the heat generation amount.
  • the temperature distribution in the plate width direction of the metal strip can be made uniform on the exit side of the induction heating device while suppressing the amount of heat generated at the center of the metal strip.
  • the induction coil members 2a and 2b themselves can adjust the current flowing through the end portion in the width direction of the metal strip 1 to some extent, it is arranged between the induction coil members 2a and 2b.
  • the number of magnetic cores 60 to be performed may be smaller than that in the case of FIG. 5A.
  • FIG. 6 shows a one-round mode of the induced current 7 generated in the metal strip 1 when the induction coil member 2a described with reference to FIG. 5A, the induction coil member 2b, and the plurality of magnetic cores 60 are arranged. Show. A plurality of magnetic cores that are generated on the induction coil member 2a on the front side of the metal strip 1 and the induction coil member 2b on the back side of the metal strip 1 and arranged on both sides of the end of the metal strip 1 in the plate width direction Due to 60, the induced current 7 whose concentration on the end of the metal strip 1 is suppressed circulates in an elliptical manner in the clockwise direction within the plate surface of the metal strip 1.
  • the current density of the current flowing through the end portion of the metal strip 1 is gradually suppressed by the plurality of magnetic cores 60 by gradually suppressing the flow direction of the induced current concentrated on the end portion of the metal strip 1 in the plate width direction. And the heating time are adjusted to prevent overheating at the end of the metal strip 1 in the plate width direction.
  • the induction coil member 2a described with reference to FIG. 5B, the induction coil member 2b, and the plurality of magnetic cores 60 are arranged, the induction coil member 2a on the surface side of the metal strip 1 and the metal strip Concentration at the end of the metal strip 1 is suppressed by the plurality of magnetic cores 60 that are generated in the induction coil member 2b on the back side of the plate 1 and are arranged on both sides of the end of the metal strip 1 in the plate width direction.
  • the induced current 7 circulates in an oval shape in the clockwise direction within the plate surface of the metal strip 1. Further, even when the induction coil member 2a, the induction coil member 2b, and the magnetic core 6 described with reference to FIG.
  • the induction coil member 2a on the surface side of the metal strip 1 and the metal strip 1 Inductive current 7 that is generated in the induction coil member 2b on the back surface side of the metal strip 1 and is concentrated on the end of the metal strip 1 by the magnetic cores 6 disposed on both sides of the end of the metal strip 1 in the plate width direction. However, it circulates in an oval shape in the clockwise direction within the plate surface of the metal strip 1.
  • the arrangement of the plurality of magnetic cores 60 and the advance / retreat control of the plurality of magnetic cores 60 do not necessarily have to be symmetrical on both sides of the metal strip 1 in the plate width direction. If the metal strip 1 already has an asymmetric temperature distribution in the width direction on the entrance side of the induction heating device, or if the magnetic field distribution is not symmetric due to meandering or the like, the plate of the metal strip 1
  • the arrangement of the plurality of magnetic cores 60 is not required to be symmetrical in the width direction, and may be appropriately changed according to the purpose.
  • the circulation form of the induced current 7 is not limited to an elliptical shape, and various forms can be taken by appropriately changing the approach distance and / or the number of arrangement of the magnetic cores 60.
  • FIG. 7 shows an arrangement of the magnetic cores 60 when two sets of induction coils 2 are installed adjacent to each other in parallel.
  • an in-phase current needs to flow through the induction coil member 2b located at the center and the induction coil member 2a.
  • the induction coil 2 is installed side by side in the traveling direction of the metal strip 1 and an in-phase current is passed through the adjacent induction coil 2
  • the magnetic flux density in the central portion increases and the heat is generated relatively in the central portion in the plate width direction. Increases, the degree of overheating at the end in the plate width direction can be reduced, and more uniform heating is possible.
  • the heating rate can be freely controlled by changing the output of the first and second induction coils 2, different temperature regions can be heated at different heating rates, which is metallurgically required. It is possible to accurately cope with various heating conditions.
  • FIG. 8 shows an arrangement of the magnetic core 60 when two sets of induction coils 2 are connected in series.
  • FIG. 9A shows an arrangement of the induction coil 20 and the magnetic core 60 in the case of the TF type induction heating apparatus.
  • the induction coil 20 is disposed on both the front side and the back side of the metal strip 1.
  • the direction of the current flowing through the induction coil 20 on the front side of the metal strip 1 and the direction of the current flowing through the induction coil 20 on the back side of the metal strip 1 are the same.
  • the current flows in the direction of the arrow in the figure.
  • the induction coil 20 on the front side of the metal strip 1 and the induction coil 20 on the back side of the metal strip 1 include an induction coil member 20a, an induction coil member 20b, an induction coil member 20c, and an induction coil member 20d, respectively. Yes.
  • the induction coil member 20 a and the induction coil member 20 b are arranged in parallel to the metal strip 1. Both end portions of the induction coil member 20 a and both end portions of the induction coil member 20 b are provided so as to protrude from the metal strip 1 in the plate width direction of the metal strip 1.
  • One end of the induction coil member 20a and one end of the induction coil member 20b are connected by an induction coil member 20c, and the other end of the induction coil member 20a and the other end of the induction coil member 20b are connected to the induction coil member 20d. It is connected with.
  • the induction coil member 20c is an example of electrical connection means
  • the induction coil member 20d is also an example of electrical connection means.
  • the induction coil member 20a and the induction coil member 20b have a vertical projection image when the induction coil member 20a is vertically projected onto the metal strip 1, and a vertical projection image when the induction coil member 20b is vertically projected onto the metal strip 1.
  • the metal strips 1 are arranged so as not to overlap in the longitudinal direction (traveling direction).
  • the vertical projection image when the induction coil member 20a of the induction coil 20 on the front side of the metal strip 1 is vertically projected onto the metal strip 1 and the induction coil member 20a of the induction coil 20 on the back side of the metal strip 1 are made of metal.
  • the vertical projection image when vertically projected onto the strip 1 is arranged so as to overlap in the longitudinal direction (traveling direction) of the metal strip 1.
  • the vertical projection image when vertically projected onto the strip 1 is arranged so as to overlap in the longitudinal direction (traveling direction) of the metal strip 1.
  • the magnetic core 6 including the plurality of magnetic cores 60 (the plurality of magnetic core members 60a and the plurality of magnetic core members 60b) is the same as the plurality of magnetic cores 60 (the plurality of magnetic bodies described with reference to FIG. 5A).
  • the magnetic core 6 includes the core member 60 a and the plurality of magnetic core members 60 b), and the plurality of magnetic core members 60 a and the plurality of magnetic core members 60 b are respectively arranged in the plate width direction of the metal strip 1.
  • the moving member 9 that moves forward and backward is the same as the moving member 9 described with reference to FIG. 5A.
  • FIG. 9B shows a plan view of the induced current 70 generated in the metal strip 1 when the magnetic core 6 is provided as shown in FIG. 9A.
  • FIG. 9C shows a plan view of the induced current 70a generated in the metal strip 1 when the magnetic core 6 shown in FIG. 9A is not provided.
  • an annular induction current 70a flowing in the direction of the arrow is generated in the metal strip 1 immediately below the induction coil members 20a and 20b.
  • the induction current 70a flowing through the end portion in the width direction of the metal strip 1 is between (a) the induction coil member 20c connecting the induction coil member 20a and the induction coil member 20b, or the primary current flowing through the induction coil member 20d.
  • the metal strip 1 is shifted toward the end in the plate width direction, and the current path width d2 becomes narrower.
  • the magnetic flux generated by the current intensively penetrates the adjacent end portion of the metal strip 1 in the plate width direction, and (c) the center portion of the metal strip 1 at the end portion of the metal strip 1 in the plate width direction. Compared to the portion, the end of the metal strip 1 in the plate width direction is likely to be overheated by being heated for a long time by the distance in the longitudinal direction (traveling direction) of the metal strip 1.
  • both sides of the end portion in the plate width direction of the metal strip 1 are generated in the induction coil member 20a and the induction coil member 20b.
  • the induced current 70 whose concentration on the end of the metal strip 1 is suppressed by the plurality of magnetic cores 60 arranged in the circle circulates in an elliptical shape within the plate surface of the metal strip 1.
  • the current density of the current flowing through the end portion of the metal strip 1 is gradually suppressed by the plurality of magnetic cores 60 by gradually suppressing the flow direction of the induced current concentrated on the end portion of the metal strip 1 in the plate width direction.
  • the heating time are adjusted to prevent overheating at the end of the metal strip 1 in the plate width direction.
  • Example 1 Electromagnetic field analysis was performed under the following conditions to confirm the effect.
  • Target material 0.06% C steel plate (plate width 1 m, plate thickness 1 mm).
  • Induction coil A copper plate with a width of 150 mm is placed parallel to the front and back with a steel plate in between, and the vertical projection onto the steel plate is 300 mm apart with an internal dimension. The distance between the steel plate and the induction coil is 10 mm.
  • Magnetic core A a magnetic core (made of ferrite) disposed between the induction coil. Width 30mm, thickness 20mm, depth 200mm, pocket height 100mm, depth 180mm. 7 pieces (one end of steel plate) are placed at 10mm intervals and 15mm away from the induction coil. Relative magnetic permeability 2000.
  • Magnetic core B a magnetic core for magnetic flux concentration (made of ferrite) placed on the back surface of the induction coil.
  • the physical properties are the same as the magnetic core A.
  • Heating Heating in a non-magnetic region at 800 ° C.
  • Induction coil relative permeability 1 [-], conductivity 0 [S / m]
  • Magnetic core relative permeability 2000 [-], conductivity 0 [S / m]
  • Boundary condition Peripheral part Symmetric boundary Current: 10 kHz Constant current
  • FIG. 10 schematically shows the configuration of the analysis model of the example.
  • Comparative Examples 1 to 3 Inductive coils 2a and 2b laid to the full width of the plate with an interval of 300 mm are installed in parallel on the front and back sides of the steel plate 1, and the steel plate between the two induction coils 2a and 2b.
  • the magnetic core is not disposed on both sides of the end (Comparative Example 1), the magnetic core A1 is disposed at one end of the steel plate 1 near the induction coil 2a, and the other end of the steel plate 1 near the induction coil 2b.
  • the induced current flowing through the end of the metal strip in the width direction is controlled regardless of whether it is magnetic or non-magnetic, and even when the plate thickness is thin.
  • the temperature distribution in the plate width direction of the plate can be freely controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 金属帯板の誘導加熱装置は、長手方向に走行する金属帯板を横切って金属帯板に平行に、金属帯板から突き出し、金属帯板の走行方向において互いに重ならないように設けられた第1の誘導コイル部材および第2の誘導コイル部材と、第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、金属帯板の板幅方向の端部を第1の誘導コイル部材側および第2の誘導コイル部材側では多く第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた磁性体コア部材と、を備える。

Description

金属帯板の誘導加熱装置
 本明細書は、金属帯板の誘導加熱装置に関する。
 熱処理炉における金属帯板の加熱は、主としてラジアントチューブを用いる間接加熱で行っているが、この間接加熱は、熱慣性が大きいことに加え、金属帯板の温度と炉温の差が小さくなるにつれて、金属帯板への有効な入熱がし難くなるので、生産性が制約される。さらに、ラジアントチューブを用いる間接加熱においては、例えば、炭素鋼などの鋼板では、吸熱反応をする変態点近傍での急速加熱や、ラジアントチューブの耐熱性の制約から高温焼鈍の実現が困難であるので、金属帯板の熱処理条件の選択の自由度が制約される。
 これに対し、金属帯板を高周波電流で加熱する誘導加熱は、加熱速度や加熱温度を自由に制御することができるので、熱処理操業や金属帯板商品開発の点で自由度が大きく、近年、注目されている加熱方法である。
 誘導加熱には、大きく2つの方式がある。1つは、金属帯板の周囲を囲んだ誘導コイルに高周波電流を流して、磁束を、金属帯板の長手方向(進行方向)断面に貫通させて、この磁束に垂直な金属帯板の幅方向断面内に周回する誘導電流を発生させて金属帯板を加熱するLF(縦断磁束加熱)方式である。
 他の方法は、金属帯板を挟んで1次コイルを巻回したインダクター(良磁性体)を配置し、1次コイルに電流を流して発生させた磁束を、インダクターを介して金属帯板の板面に貫通させ、金属帯板の板面に誘導電流を発生させて金属帯板を加熱するTF(横断磁束加熱)方式である。
 誘導電流が板断面内を周回するLF方式の誘導加熱では、電流の浸透深さδと電流周波数fの関係(δ(mm)=5.03×105√(ρ/μr・f)、ρ(Ωm):比抵抗、μr:比透磁率、f:周波数(Hz))から、金属帯板の表裏で発生する誘導電流の浸透深さが鋼板の厚みより深いと干渉しあい、金属帯板断面には誘導電流が発生しない。
 例えば、非磁性金属帯板や、キュリー温度を超えて磁性を失う鋼板の場合など、電流の浸透深さδが深くなるので、金属帯板の板厚が薄いと誘導電流が発生しない。また、たとえ磁性材であっても、浸透深さに比べ、板厚が薄すぎる場合にも、LF方式では、誘導電流が鋼板断面に発生しない。
 一方、TF方式の誘導加熱では、磁束が金属帯板の板面を貫通するので、板厚に依らず、また、磁性、非磁性の区別なく金属帯板を加熱できるが、対向するインダクターが近接していないと、加熱効率が低下したり、また、全く加熱できない場合もある。また、金属帯板の端部において過加熱が生じ易い(例えば、日本国特開昭62-281291号公報参照)という問題もある。
 また、磁性のある金属帯板が、対向するインダクターの中央に位置していないと、一方のインダクターに引き寄せられて、磁束が局部的に集中して金属帯板の温度差が大きくなることもある。さらに、通常のTF方式の誘導加熱では、インダクター形状を容易に変更できないため、金属帯板の板幅変更への対応が難しいという問題もある。
 そのため、例えば、日本国特開2008-186589号公報には、薄板の板幅方向に並列に、薄板に対向して配置され、かつ、薄板の厚み方向に独立して移動可能な磁極セグメントと、薄板の板幅方向に出没自在で、磁極セグメントによる磁場を調整する非磁性金属の可動遮蔽版を備える電磁誘導加熱装置が開示されている。
 日本国特開2008-186589号公報の電磁誘導加熱装置は、薄板の板幅変化に対応して磁束を調整し得るものであるが、薄板の板幅が大きく変化した場合、板幅方向の磁束調整を迅速に行うことが難しい。
 日本国特開2009-259588号公報には、複数の独立した磁気棒を有し、金属ストリップの幅に適合し得る可変幅の磁気回路を備える誘導加熱装置が開示されている。しかし、日本国特開2009-259588号公報の誘導加熱装置においては、表裏離して設置された誘導コイルの近傍に幅方向に移動可能な磁性体コアを設けた例が示されている。
開示の概要
 本明細書の実施の形態は、金属帯板の板幅方向端部に流れる誘導電流の電流密度と加熱時間を調節することで金属帯板の板幅方向端部の温度分布を制御可能な、金属帯板の誘導加熱装置を提供することを主な目的とする。
 本明細書の一態様によれば、
 長手方向に走行する金属帯板を横切って前記走行する金属帯板に平行に設けられ、それぞれの両端部が前記走行する金属帯板の板幅方向において前記走行する金属帯板から突き出して設けられ、前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向において互いに重ならないように配置された第1の誘導コイル部材および第2の誘導コイル部材と、前記第1の誘導コイル部材の前記両端部の一方と前記第2の誘導コイル部材の前記両端部の一方を電気的に接続する第1の電気的接続手段と、前記第1の誘導コイル部材の前記両端部の他方と前記第2の誘導コイル部材の前記両端部の他方を電気的に接続する第2の電気的接続手段と、を有する誘導コイルと、
 前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の一方の面側に、前記走行する金属帯板の板幅方向の一端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第1の磁性体コア部材と、前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の前記一方の面とは反対側の他方の面側に、前記走行する金属帯板の板幅方向の前記一端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第2の磁性体コア部材と、を有する第1の磁性体コアと、
 前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の前記一方の面側に、前記走行する金属帯板の板幅方向の前記一端部と反対側の他端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第3の磁性体コア部材と、前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の前記他方の面側に、前記走行する金属帯板の板幅方向の前記他端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第4の磁性体コア部材と、を有する第2の磁性体コアと、
 を備える金属帯板の誘導加熱装置が提供される。
図1は、金属帯板の表面側の誘導コイル部材と金属帯板の裏面側の誘導コイル部材を、金属帯板の表面側の誘導コイル部材の金属帯板への垂直投影像と、金属帯板の裏面側の誘導コイル部材の金属帯板への垂直投影像が、金属帯板の長手方向にて重ならないように配置した誘導加熱装置の態様示す図である。 図2Aは、金属帯板の全体に発生する誘導電流の平面態様を示す図である。 図2Bは、図2AのA-A断面図であり、金属帯板の全体に発生する誘導電流の金属帯板の端部断面での誘導電流の態様を示す図である。 図3Aは、比較のための磁性体コアの断面構造を示す図である。 図3Bは、本明細書の実施の形態で用いる磁性体コアの断面構造を模式的に示す図である。 図3Cは、本明細書の実施の形態で用いる別の磁性体コアの断面構造を模式的に示す図である。 図3Dは、本明細書の実施の形態で用いるさらに別の磁性体コアの断面構造を模式的に示す図である。 図4は、本明細書の実施の形態における磁性体コアの配置態様を示す図であり、磁性体コアが複数の磁性体コアに分割されておらず、誘導コイル部材が金属帯板の板幅方向に平行に配置されている場合を示す図である。 図5Aは、本明細書の実施の形態における磁性体コアの配置態様を示す図であり、磁性体コアが複数の磁性体コアに分割され、誘導コイル部材が金属帯板の板幅方向に平行に配置されている場合を示す図である。 図5Bは、本明細書の実施の形態における磁性体コアの配置態様を示す図であり、磁性体コアが複数の磁性体コアに分割され、誘導コイル部材が板幅方向端部に向かい傾斜して配置されている場合を示す図である。 図6は、金属帯板の内部を周回する誘導電流の一周回態様を示す図である。 図7は、2組の誘導コイルを並列に隣接して設置した場合における磁性体コアの一配置態様を示す図である。 図8は、2組の誘導コイルを直列接続で連結して設置した場合における磁性体コアの一配置態様を示す図である。 図9Aは、本明細書の実施の形態における磁性体コアの配置態様を示す図であり、誘導コイルがTF方式の場合を示す図である。 図9Bは、図9Aの場合において、金属帯板を周回する誘導電流の一周回態様を示す図である。 図9Cは、図9Aにおいて複数の磁性体コアを設けない場合において、金属帯板を周回する誘導電流の一周回態様を示す図である。 図10は、実施例の解析モデルの構成を模式的に示す図である。 図11は、比較例2の解析モデルの構成を模式的に示す図である。 図12は、比較例3の解析モデルの構成を模式的に示す図である。
 誘導加熱装置において、長手方向に走行する金属帯板の板幅方向端部側に、該端部を覆うように配置した磁性体コアは、金属帯板の端部において、金属帯板の表裏に配置した誘導コイルで発生した誘導電流を、磁性体コアの外側(金属帯板の中心方向)に押し出し、誘導電流が金属帯板の端部に集中するのを抑制する作用をなす。
 しかし、金属帯板の板幅方向端部に、部分的に磁性体コアを配置するだけでは、金属帯板の板幅方向端部において流れる誘導電流の電流密度と加熱時間を適確に制御し、金属帯板の板幅方向端部の温度分布を適切に制御することは困難である。
 本発明者は、金属帯板の板幅方向端部に流れる誘導電流の電流密度と加熱時間を適確に制御し、金属帯板の板幅方向端部の温度分布を適切に制御する手法について鋭意検討した。その結果、本発明者らは、金属帯板の板幅方向端部に部分的に磁性体コアを配置するのではなく、誘導電流が流れる金属帯板の板幅方向端部に、板幅方向端部側に所定のプロファイルを有する磁性体コアを配置することにより、金属帯板の板幅方向端部に流れる誘導電流の電流密度と加熱時間を適確に制御し、金属帯板の板幅方向端部の温度分布を適切に制御できることを見出した。所定のプロファイルとは、金属帯板の走行方向の両端側であって誘導コイル近傍では金属帯板の板幅方向端部を多く覆い、中間部では金属帯板の板幅方向端部を両端側よりも少なく覆う形状であることが好ましい。
 また、磁性体コアは、金属帯板の走行方向において複数の部材に分割されていてもよく、さらには、金属帯板の板幅方向において、分割された複数の部材をそれぞれ移動させる移動手段を備えていれば、金属帯板の板幅方向端部の温度分布を自在に制御できることを見いだした。
 本明細書の実施の形態は、上記知見に基づいてなされたものである。以下、本明細書の実施の形態の誘導加熱装置について図面を参照して説明する。
 まず、本明細書の実施の形態の前提となる誘導加熱装置と、該誘導加熱装置により金属帯板に生じる誘導電流の態様について説明する。
 図1に、金属帯板1の表面側の誘導コイル部材2aと金属帯板1の裏面側の誘導コイル部材2bを、金属帯板1の表面側の誘導コイル部材2aの金属帯板1への垂直投影像と、金属帯板1の裏面側の誘導コイル部材2bの金属帯板1への垂直投影像が、金属帯板1の長手方向(走行方向)にて重ならないように配置した誘導加熱装置の態様示す。
 誘導コイル部材2aと誘導コイル部材2bは、金属帯板1に平行に配置されている。誘導コイル部材2aの両端部と誘導コイル部材2bの両端部は、金属帯板1の板幅方向において、金属帯板1から突き出して設けられている。
 図1に示す誘導加熱装置においては、誘導コイル2の内側を通過する金属帯板1の表面側の誘導コイル部材2aの端部と、金属帯板1の裏面側の誘導コイル部材2bの端部が導体2cで連結され、誘導コイル部材2bの他の端部は、導体2d及び導線2eを介して電源3に接続され、誘導コイル部材2aの他の端部は、導体2h、連結器2g、導線2fを介して、電源3に接続されている。電流は、図中矢印方向に流れる。導体2cは電気的接続手段の一例であり、導体2d、導線2e、導線2f、導体2hも電気的接続手段の一例である。誘導コイル2は、誘導コイル部材2a、誘導コイル部材2b、導体2c、導体2d、導線2e、導線2f、導体2hを備えている。
 そして、誘導コイル部材2aと誘導コイル部材2bは、誘導コイル部材2aを金属帯板1へ垂直投影したときの垂直投影像と、誘導コイル部材2bを金属帯板1へ垂直投影したときの垂直投影像が、金属帯板1の長手方向(走行方向)にて重ならないように配置されている。
 上述したLF方式の場合、誘導電流が、金属帯板の表裏面で、同じ大きさで逆向きに流れるので、電流の浸透深さδが深いと干渉し、誘導電流が流れなくなるが、図1の場合、誘導コイル部材2a、誘導コイル部材2bを金属帯板1へそれぞれ垂直投影したときの垂直投影像が、金属帯板1の長手方向(走行方向)にて重ならないように配置されているので、誘導コイル部材2a直下の金属帯板1に流れる誘導電流および誘導コイル部材2b直下の金属帯板1に流れる誘導電流はそれぞれ一方向のみに流れる電流となるので、電流の浸透深さδが深い場合でも、干渉することなく電流が流れるようになる。
 図2A,2Bに、金属帯板1の全体に発生する誘導電流5の態様を示す。図2Aに、誘導電流の平面態様を示し、図2Bに、金属帯板1の端部断面(図2AのA-A断面)での誘導電流5の態様を示す。
 誘導コイル部材2a、2b(図示なし)直下の金属帯板1には、図2Aに示すように、矢印方向(誘導コイル部材2a、2bに流れる電流の方向とは逆方向)に流れる環状の誘導電流5(5a、5b)が発生する。そして、誘導コイル部材2aが金属帯板1の表面側に配置され、誘導コイル部材2bが金属帯板1の裏面側に配置されているので、誘導電流5は、図2Bに示すように、金属帯板1の端部断面を斜めに横断して流れる。金属帯板1が非磁性材でも、誘導電流5が発生して周回するので、金属帯板1を加熱することができる。図2Bは、金属帯板1の板厚が厚い場合における電流の流れ状態を示すが、金属帯板1の板厚が薄い場合には斜めに横断せずに、金属帯板1の板厚全体に電流が流れる。
 しかし、(a)金属帯板1の板幅方向端部を流れる誘導電流は、金属帯板1の表面側の誘導コイル部材2aと裏面側の誘導コイル部材2b(図1参照)を連結する導体2c(図1参照)、又は、金属帯板の表面側の誘導コイルと裏面側の誘導コイルを電源に連結する導体2d、導線2e、導線2f、導体2h(図1参照)を流れる一次電流との間のリアクタンスを小さくしようとして、金属帯板1の板幅方向端部に片寄ってしまい、電流路の幅d2が狭くなってしまうこと、(b) 導体2c、導体2d、導線2e、導線2f、導体2hを流れる一次電流により発生する磁束が、近接する金属帯板1の板幅方向端部を集中的に貫通すること、また、(c)金属帯板1の板幅方向端部では、金属帯板1の中央部に比べ、金属帯板1の長手方向(走行方向)の距離d3の分、長時間加熱される(中央部の加熱される距離はd1×2、板幅方向端部の加熱される距離はd1×2+d3)こと等により、金属帯板1の板幅方向端部においては過加熱になり易い。
 また、誘導コイル2が1組の場合、磁束は誘導コイル2の外に広がるので、金属帯板1の中央部では誘導電流5の電流密度が低下して、温度が上昇し難く、金属帯板1の板幅方向の中央部と端部の温度差が拡大し易い。
 そこで、本明細書の実施の形態の誘導加熱装置においては、金属帯板1の板幅方向端部に流れる誘導電流5を、誘導電流5が流れる端部の全幅にわたって制御し、金属帯板1の板幅方向の温度分布を自在に制御するため、金属帯板1の板幅方向端部、及び、該端部を越えて金属帯板1を覆うことが可能な磁性体コアを、金属帯板1の表面側の誘導コイル部材2aの金属帯板1への垂直投影像と、金属帯板1の裏面側の誘導コイル部材2bの金属帯板1への垂直投影像の間の全幅にわたり、金属帯板1の板幅方向に進退可能に複数配置する。
 誘導コイル部材2a、2bは、一本の導体で構成してもよいし、複数本の導体で構成してもよい。また、誘導コイル部材2a、2bの背面には、磁束を強化するため、背面用磁性体コアを載置してもよい。
 図3A~3Dに、磁性体コア6の断面構造を示す。図3Aに、比較のための磁性体コア6の断面構造を示し、図3Bに、実施の形態で用いる磁性体コア6の断面構造を示し、図3Cに、実施の形態で用いる別の磁性体コア6の断面構造を示す。図3Dに、実施の形態で用いるさらに別の磁性体コア6の断面構造を模式的に示す。
 磁性体コア6の寸法は、特定の範囲に限定されない。金属帯板1の表面側と裏面側の誘導コイル部材2a,2bの間隔、金属帯板1の板幅、配置数に基づいて適宜設定すればよい。
 磁性体コア6は、強磁性体で構成するが、強磁性体は、特定の材質の強磁性体に限定されない。強磁性体としては、例えば、フェライト、積層電磁鋼板、アモルファス合金等があるが、誘導加熱装置に付与する加熱能力、周波数等に応じて適宜選択すればよい。
 金属帯板1の板幅方向端部を覆う比較のための磁性体コア6は、図3Aに示すように、誘導コイル(図示なし)が励磁する磁束4’を吸収して(磁性体コア6'を貫通する矢印、参照)、金属帯板1の板幅方向端部への磁束集中を防ぎ、金属帯板1の板幅方向端部における過度の温度上昇を抑制する。しかし、磁性体コア6'を部分的に個別に配置した場合には、端部電流の抑制効果は限定的で、効果が小さいという問題がある。
 図3Bに示す、実施の形態で用いる磁性体コア6においては、金属帯板1の板幅方向端部において、電流通過を効果的に抑制するため、金属帯板1との間隔dが狭く設定され、また、磁性体コア6が、金属帯板1の板幅方向端部を越えて金属帯板を覆い、誘導電流の分布を適切に制御できるように、金属帯板1の板幅方向の磁性体コアの長さLが長く、かつ、磁性体コア6が、金属帯板の板幅の変化Wに即応できるように、金属帯板1を覆う部分の奥行が深く設定されている。
 磁性体コア6は、金属帯板1の表面側の磁性体コア部材6aと、裏面側の磁性体コア部材6bと、磁性体コア部材6aと磁性体コア部材6bの金属帯板1を覆う部分とは反対側の端部(図では、右側端部)を連結する磁性体コア部材6eを備えている。
 加熱された金属帯板1からの輻射熱による温度上昇を抑制し、磁性体コア6を、安定して使用するために、磁性体コア6において受熱し易い表面部分を、図3Cに示すように、非磁性の断熱材6cで覆ってもよい。なお、断熱材6cの被覆のみでは、磁性体コア6の温度上昇を抑制できない場合は、磁性体コア6に水冷板(図示せず)を取り付けたり、磁性体コア6の近傍にガス冷却装置(図示せず)を設けたりして、磁性体コア6を冷却してもよい。
 実施の形態の誘導加熱装置には、図3Bまたは図3Cに示す磁性体コア6を金属帯板1の板幅方向に進退移動させる移動部材9が設けられている。移動部材9による磁性体コア6の金属帯板1の板幅方向の移動は、例えば、磁性体コアを保持する台車を、軌道上で、電動シリンダ、エアシリンダー、モーターなどの駆動装置で移動させて行うが、磁性体コア6は、金属帯板1の板幅方向で迅速かつ円滑に移動できればよく、この限りで、磁性体コア6の移動部材は、特に特定されない。
 図3Dに、実施の形態で用いる、さらに別の磁性体コア6の断面構造を模式的に示す。図3Dに示す磁性体コア6は、磁性体コア6の端部(図では、右側端部)が磁性体で連結されていない。磁性体コア6は、金属帯板1の表面側の磁性体コア部材6aと、裏面側の磁性体コア部材6bとを備えている。磁性体コア部材6aと磁性体コア部材6bの間隔を維持するため、金属帯板1を覆う部分とは反対側の端部(図では、右側端部)が、非磁性で耐熱性の連結部材6dで連結されている。
 図3Dに示す磁性体コア6においては、金属帯板1の表面と裏面に磁性体コア部材6aと磁性体コア部材6bをそれぞれ配置し、磁性体コア部材6aと磁性体コア部材6bを非磁性の連結部材6dで連結するものであるが、図3Bに示す、磁性体コア部材6aと磁性体コア部材6bを磁性体コア部材6eで連結する磁性体コア6と同様の電流抑制効果が得られている。この磁性体コア6は、金属帯板1の板幅が変更になった場合でも、移動部材9による金属帯板1の板幅方向の進退により、板幅変更に直ちに追従できるとともに、金属帯板1が蛇行して板幅方向端部の位置が大きくずれ、それが続く場合でも、直ちに位置ずれに追従することが可能となる。
 図4に、実施の形態における磁性体コア6の配置態様を示す。誘導コイル部材2a、2bが金属帯板1の板幅方向に平行に配置されている。金属帯板1の板幅方向の端部、及び、該端部を越えて金属帯板1を覆うことが可能な磁性体コア6が、金属帯板1の板幅方向の両側に配置されている。磁性体コア6は、金属帯板1の表面側の誘導コイル部材2aの金属帯板1への垂直投影像と、金属帯板1の裏面側の誘導コイル部材2bの金属帯板1への垂直投影像の間の全幅にわたり配置されている。
 磁性体コア6は、図3Bに示すように、金属帯板1の表面側の磁性体コア部材6aと、裏面側の磁性体コア部材6bと、磁性体コア部材6aと磁性体コア部材6bの金属帯板1を覆う部分とは反対側の端部(図では、右側端部)を連結する磁性体コア部材6eを備えている。なお、磁性体コア部材6eに代えて図3Dに示すように、非磁性の連結部材6dを設けてもよい。また、図3Cに示すように、磁性体コア6を非磁性の断熱材6cで覆ってもよい。
 磁性体コア部材6aおよび磁性体コア部材6bは、金属帯板1の板幅方向端部を、誘導コイル部材2a側および誘導コイル部材2b側では多く、誘導コイル部材2aと誘導コイル部材2bとの間の中間部では少なく覆っている。磁性体コア部材6aおよび磁性体コア部材6bの金属帯板1の板幅方向端部を覆う側は湾曲している。
 磁性体コア部材6aおよび磁性体コア部材6bは、移動部材9によって金属帯板1の板幅方向に進退移動し、板幅変更に追従できるとともに、金属帯板1の蛇行等による位置ずれに追従できる。
 図5A、5Bに、実施の形態における磁性体コア6の配置態様を示す。図5Aに、誘導コイル部材2a、2bが金属帯板1の板幅方向に平行に配置されている場合を示し、図5Bに、誘導コイル部材2a、2bが金属帯板1の板幅方向端部に向かい傾斜して配置されている場合を示す。誘導コイル部材2aが金属帯板1の板幅方向端部に向かい誘導コイル部材2b側に傾斜して配置され、誘導コイル部材2bが金属帯板1の板幅方向端部に向かい誘導コイル部材2a側に傾斜して配置されている場合を示す。
 図5A、5Bに示すように、金属帯板1の板幅方向端部、及び、該板幅方向端部を越えて金属帯板1を覆うことが可能な磁性体コア6が、金属帯板1の板幅方向の両側に配置されている。磁性体コア6は、金属帯板1の表面側の誘導コイル部材2aの金属帯板1への垂直投影像と、金属帯板1の裏面側の誘導コイル部材2bの金属帯板1への垂直投影像の間の全幅にわたり配置されている。
 磁性体コア6は、金属帯板1の長手方向(走行方向)において複数の磁性体コア60に分割されている。金属帯板1の表面側の磁性体コア部材6aは、複数の磁性体コア部材60aに分割されている。金属帯板1の裏面側の磁性体コア部材6bは、複数の磁性体コア部材60bに分割されている。磁性体コア部材6aと磁性体コア部材6bの金属帯板1を覆う部分とは反対側の端部(図では、右側端部)を連結する磁性体コア部材6eは、複数の磁性体コア部材60eに分割されている。複数の磁性体コア部材60aと複数の磁性体コア部材60bには同数であり、複数の磁性体コア部材60aと複数の磁性体コア部材60bの金属帯板1への垂直投影像が金属帯板1の走行する走行方向においてそれぞれ互いに重なるように配置されている。
 分割された磁性体コア60は、図3Bに示すように、金属帯板1の表面側の磁性体コア部材60aと、裏面側の磁性体コア部材60bと、磁性体コア部材6aと磁性体コア部材6bの金属帯板1を覆う部分とは反対側の端部(図では、右側端部)を連結する磁性体コア部材60eを備えている。なお、磁性体コア部材60eに代えて図3Dに示すように、非磁性の連結部材60dを設けてもよい。また、図3Cに示すように、磁性体コア60を非磁性の断熱材60cで覆ってもよい。
 複数の磁性体コア部材60aおよび複数の磁性体コア部材60bは、移動部材9によって金属帯板1の板幅方向にそれぞれ進退移動し、板幅変更に追従できるとともに、金属帯板1の蛇行等による位置ずれに追従できる。また、移動部材9によって磁性体コア部材60aおよび磁性体コア部材60bの金属帯板1の板幅方向端部を覆う側を結ぶ線を所定のプロファイルにすることができる。
 複数の磁性体コア60は、金属帯板1の表面側の誘導コイル部材2aの金属帯板1への垂直投影像と、金属帯板1の裏面側の誘導コイル部材2bの金属帯板1への垂直投影像の間の全幅において、隙間なく配置する必要はなく、所望の加熱温度分布となるように、適宜の数の磁性体コア60を、所定の間隔をあけて配置してもよい。
 磁性体コア部材60aおよび磁性体コア部材60bの金属帯板1の板幅方向端部を覆う側を結ぶ線は湾曲している。複数の磁性体コア60が、誘導コイル部材2aと誘導コイル部材2bの間の中央域では、金属帯板1の板幅方向端部を覆うように配置され、誘導コイル部材2aと誘導コイル部材2bの近接域では、金属帯板1の板幅方向端部を越えて金属帯板1の内部を覆うように配置されている。磁性体コア部材60aおよび磁性体コア部材6bは、金属帯板1の板幅方向端部を、誘導コイル部材2a側および誘導コイル部材2b側では多く、誘導コイル部材2aと誘導コイル部材2bとの間の中間部では少なく覆っている。
 磁性体コア部材60aおよび磁性体コア部材60bの板幅方向の進退制御により、金属帯板1の板幅方向端部に集中する誘導電流の流れる方向を徐々に抑制して、金属帯板の端部に流れる電流の電流密度と加熱時間を調整し、金属帯板1の板幅方向端部における過加熱を防止する。
 また、金属帯板1の板面を周回する誘導電流の電流分布を自在に調整して、金属帯板1の板幅方向における発熱分布を適確に制御する。
 例えば、金属帯板が1、誘導加熱装置の前段でラジアントチューブにより加熱され、金属帯板の端部が高温状態にある場合に、金属帯板の端部に流れる電流を抑制して発熱量を、金属帯板の中央部での発熱量よりも抑えて、誘導加熱装置の出側で、金属帯板の板幅方向の温度分布を均一にすることができる。
 図5Bに示す磁性体コア60の配置の場合、誘導コイル部材2a、2b自体で、金属帯板1の板幅方向端部を流れる電流をある程度調整できるので、誘導コイル部材2a、2b間に配置する磁性体コア60の数は、図5Aの場合に比べて少なくてもよい。
 図6に、図5Aを参照して説明した誘導コイル部材2aと、誘導コイル部材2bと複数の磁性体コア60を配置した場合における、金属帯板1に発生する誘導電流7の一周回態様を示す。金属帯板1の表面側の誘導コイル部材2aと、金属帯板1の裏面側の誘導コイル部材2bで発生し、金属帯板1の板幅方向端部の両側に配置した複数の磁性体コア60により、金属帯板1の端部への集中が抑制された誘導電流7が、金属帯板1の板面内で、楕円状に、時計回りで周回する。このように、複数の磁性体コア60により、金属帯板1の板幅方向端部に集中する誘導電流の流れる方向を徐々に抑制して、金属帯板1の端部に流れる電流の電流密度と加熱時間を調整し、金属帯板1の板幅方向端部における過加熱を防止する。
 なお、図5Bを参照して説明した誘導コイル部材2aと、誘導コイル部材2bと複数の磁性体コア60を配置した場合においても、金属帯板1の表面側の誘導コイル部材2aと、金属帯板1の裏面側の誘導コイル部材2bで発生し、金属帯板1の板幅方向端部の両側に配置した複数の磁性体コア60により、金属帯板1の端部への集中が抑制された誘導電流7が、金属帯板1の板面内で、楕円状に、時計回りで周回する。また、図4を参照して説明した誘導コイル部材2aと、誘導コイル部材2bと磁性体コア6を配置した場合においても、金属帯板1の表面側の誘導コイル部材2aと、金属帯板1の裏面側の誘導コイル部材2bで発生し、金属帯板1の板幅方向端部の両側に配置した磁性体コア6により、金属帯板1の端部への集中が抑制された誘導電流7が、金属帯板1の板面内で、楕円状に、時計回りで周回する。
 複数の磁性体コア60の配置、及び、複数の磁性体コア60の進退制御は、金属帯板1の板幅方向の両側で、必ずしも対称である必要はない。誘導加熱装置の入り側で、既に、金属帯板1に板幅方向で非対称な温度分布となっている場合や、蛇行等で磁場の分布が対称にならない場合には、金属帯板1の板幅方向で、複数の磁性体コア60の配置を対称にする必要はなく、目的に応じて適宜変更すればよい。
 また、誘導電流7の周回形態は、楕円状に限らず、磁性体コア60の進入距離及び/又は配置数を適宜変更することにより、種々の形態をとり得る。
 これまで、金属帯板1の表面側の誘導コイル部材2aと裏面側の誘導コイル部材2bが連結した1組の誘導コイルの場合について説明したが、誘導コイルを複数組連続して設置した誘導加熱装置においても、上述した磁性体コア6、複数の磁性体コア60は有効に機能することを、本発明者は確認した。
 図7に、2組の誘導コイル2を並列に隣接して設置した場合における磁性体コア60の一配置態様を示す。この場合、中央に位置する誘導コイル部材2bと、誘導コイル部材2aには、同相の電流を流す必要がある。誘導コイル2を金属帯板1の走行方向に並べて設置し、隣接する誘導コイル2に同相の電流を流すと、中央部分の磁束密度が高くなり、相対的に板幅方向中央部で発熱する割合が大きくなり、板幅方向端部の過加熱の度合いを小さくすることが可能となり、より均一な加熱が可能となる。
 また、1段目と2段目の誘導コイル2の出力を変えることにより、加熱速度を自在に制御できるので、異なる温度領域を異なる加熱速度で加熱することが可能となり、冶金的に要求される様々な加熱条件に適確に対応することが可能となる。
 図8に、2組の誘導コイル2を直列接続で連結して設置した場合における磁性体コア60の一配置態様を示す。誘導コイル2を直列に接続して配置することで、1段目と2段目の誘導コイル2に流れる電流が同じになり、1段目と2段目の誘導コイル2での発熱量を同じにすることが可能である。
 図9Aに、TF方式の誘導加熱装置の場合における誘導コイル20および磁性体コア60の一配置態様を示す。
 誘導コイル20は、金属帯板1の表面側および裏面側の両側に配置されている。金属帯板1の表面側の誘導コイル20に流れる電流の方向と、金属帯板1の裏面側の誘導コイル20に流れる電流の方向は同じである。電流は、図中矢印方向に流れる。
 金属帯板1の表面側の誘導コイル20と、金属帯板1の裏面側の誘導コイル20は、それぞれ、誘導コイル部材20a、誘導コイル部材20b、誘導コイル部材20c、誘導コイル部材20dを備えている。誘導コイル部材20aと誘導コイル部材20bは、金属帯板1に平行に配置されている。誘導コイル部材20aの両端部と誘導コイル部材20bの両端部は、金属帯板1の板幅方向において、金属帯板1から突き出して設けられている。
誘導コイル部材20aの一端部と、誘導コイル部材20bの一端部が誘導コイル部材20cで連結され、誘導コイル部材20aの他の端部と誘導コイル部材20bの他の端部は、誘導コイル部材20dで連結されている。誘導コイル部材20cは電気的接続手段の一例であり、誘導コイル部材20dも電気的接続手段の一例である。
 誘導コイル部材20aと誘導コイル部材20bは、誘導コイル部材20aを金属帯板1へ垂直投影したときの垂直投影像と、誘導コイル部材20bを金属帯板1へ垂直投影したときの垂直投影像が、金属帯板1の長手方向(走行方向)にて重ならないように配置されている。
 金属帯板1の表面側の誘導コイル20の誘導コイル部材20aを金属帯板1へ垂直投影したときの垂直投影像と、金属帯板1の裏面側の誘導コイル20の誘導コイル部材20aを金属帯板1へ垂直投影したときの垂直投影像とは、金属帯板1の長手方向(走行方向)にて重なって配置されている。
 金属帯板1の表面側の誘導コイル20の誘導コイル部材20bを金属帯板1へ垂直投影したときの垂直投影像と、金属帯板1の裏面側の誘導コイル20の誘導コイル部材20bを金属帯板1へ垂直投影したときの垂直投影像とは、金属帯板1の長手方向(走行方向)にて重なって配置されている。
 複数の磁性体コア60(複数の磁性体コア部材60aおよび複数の磁性体コア部材60b)を備える磁性体コア6は、図5Aを参照して説明した複数の磁性体コア60(複数の磁性体コア部材60aおよび複数の磁性体コア部材60b)を備える磁性体コア6と同じ構成であり、複数の磁性体コア部材60aおよび複数の磁性体コア部材60bを金属帯板1の板幅方向にそれぞれ進退移動させる移動部材9も図5Aを参照して説明した移動部材9と同じである。
 図9Bには、図9Aに示すように、磁性体コア6を設けた場合に、金属帯板1に発生する誘導電流70の平面態様示す。図9Cには、図9Aに示す磁性体コア6を設けない場合に、金属帯板1に発生する誘導電流70aの平面態様示す。
 図9Cを参照すれば、誘導コイル部材20a、20b直下の金属帯板1には、矢印方向に流れる環状の誘導電流70aが発生する。金属帯板1の板幅方向端部を流れる誘導電流70aは、(a)誘導コイル部材20aと誘導コイル部材20bを連結する誘導コイル部材20c、又は、誘導コイル部材20dを流れる一次電流との間のリアクタンスを小さくしようとして、金属帯板1の板幅方向端部に片寄ってしまい、電流路の幅d2が狭くなってしまうこと、 (b) 誘導コイル部材20c、又は、誘導コイル部材20d流れる一次電流により発生する磁束が、近接する金属帯板1の板幅方向端部を集中的に貫通すること、また、(c)金属帯板1の板幅方向端部では、金属帯板1の中央部に比べ、金属帯板1の長手方向(走行方向)の距離の分、長時間加熱されること等により、金属帯板1の板幅方向端部においては過加熱になり易い。
 図9Bを参照すれば、これに対して、複数の磁性体コア60を設けているので、誘導コイル部材20aと、誘導コイル部材20bで発生し、金属帯板1の板幅方向端部の両側に配置した複数の磁性体コア60により、金属帯板1の端部への集中が抑制された誘導電流70が、金属帯板1の板面内で、楕円状に周回する。このように、複数の磁性体コア60により、金属帯板1の板幅方向端部に集中する誘導電流の流れる方向を徐々に抑制して、金属帯板1の端部に流れる電流の電流密度と加熱時間を調整し、金属帯板1の板幅方向端部における過加熱を防止する。
 次に、実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。
 (実施例1)
 下記条件で電磁場解析を行って、効果を確認した。
  対象素材:0.06%Cの鋼板(板幅1m、板厚1mm)。
  誘導コイル:150mm幅の銅板を、鋼板を挟んで表裏平行に、鋼板への垂直投影を内寸で300mm離して設置。鋼板と誘導コイルの間隔は10mm。
  磁性体コアA:誘導コイルと誘導コイルの間に配置する磁性体コア(フェライト製)。幅30mm、厚さ20mm、奥行き200mm、懐高さ100mm、奥行き180mm。7個(鋼板端部片側)を、10mm間隔で、誘導コイルから15mm離して配置。比透磁率2000。
  磁性体コアB:誘導コイルの背面に載せる磁束集中用の磁性体コア(フェライト製)。物性は、磁性体コアAと同じ。
 加熱:800℃の非磁性域での加熱。
 物性値
  鋼板:比透磁率1[-]、導電率106[S/m]
  誘導コイル:比透磁率1[-]、導電率0[S/m]
  磁性体コア:比透磁率2000[-]、導電率0[S/m]
 境界条件
  外周部 対称境界
 電流:10kHz 定電流
 解析モデル
 実施例:300mmの間隔を開けて板幅いっぱいに敷設した誘導コイル2a、2bを、鋼板1の表面側と裏面側に平行に設置し、二つの誘導コイル2a、2bの間の鋼板端部両側に、磁性体コアA1~A7を配置した。図10に、実施例の解析モデルの構成を模式的に示す。
 磁性体コアA1~A7の鋼板端部からの進入距離(mm)を変えて、誘導コイル2a(表面側)と誘導コイル2b(裏面側)で生じる誘導電流7の周回形態を変え、鋼板端部の温度と鋼板中央部の温度を計算し、温度比=鋼板端部の温度/鋼板中央部の温度を算出した。結果を表1に示す。
 比較例1~3:300mmの間隔を開けて板幅いっぱいに敷設した誘導コイル2a、2bを、鋼板1の表面側と裏面側に平行に設置し、二つの誘導コイル2a、2bの間の鋼板端部両側に磁性体コアは配置しなかった場合(比較例1)、誘導コイル2a近傍の鋼板1の一端部に磁性体コアA1を配置し、誘導コイル2b近傍の鋼板1の他端部に磁性体コアA7を配置した場合(比較例2)および誘導コイル2a、2b近傍の鋼板1の両端部に磁性体コアA1、A7をそれぞれを配置した場合(比較例3)の鋼板端部の温度と鋼板中央部の温度を計算し、温度比=鋼板端部の温度/鋼板中央部の温度を算出した。結果を表1に示す。図11、図12に、比較例2、3の解析モデルの構成を模式的に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す温度比から、鋼板の板幅方向における温度分布が大きく改善され均一化されていることが解る。
 上述した本明細書の実施の形態によれば、磁性、非磁性を問わず、また、板厚が薄い場合でも、金属帯板の板幅方向端部側を流れる誘導電流を制御し、金属帯板の板幅方向の温度分布を自在に制御することができる。
 また、本明細書の実施の形態によれば、金属帯板が誘導加熱装置に進入する前に加熱され、金属帯板の温度分布に大きな偏差がある場合でも、金属帯板を加熱しながら、所望の温度分布に自在に修正することが可能となり、金属帯板の熱処理品質を向上させることができる。
 さらに、本明細書の実施の形態によれば、輻射加熱では被加熱材が高温になるにつれ熱授受がし難くなるキュリー点を超える温度領域でも、加熱速度を落とすことなく加熱できるので、生産性を向上させることが可能になり、生産スケジュールの柔軟性が飛躍的に向上する。
 2014年9月5日に出願された日本国特許出願2014-181710号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 以上、種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。本発明の範囲は、次の請求の範囲によってのみ限定されるものである。

Claims (6)

  1.  長手方向に走行する金属帯板を横切って前記走行する金属帯板に平行に設けられ、それぞれの両端部が前記走行する金属帯板の板幅方向において前記走行する金属帯板から突き出して設けられ、前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向において互いに重ならないように配置された第1の誘導コイル部材および第2の誘導コイル部材と、前記第1の誘導コイル部材の前記両端部の一方と前記第2の誘導コイル部材の前記両端部の一方を電気的に接続する第1の電気的接続手段と、前記第1の誘導コイル部材の前記両端部の他方と前記第2の誘導コイル部材の前記両端部の他方を電気的に接続する第2の電気的接続手段と、を有する誘導コイルと、
     前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の一方の面側に、前記走行する金属帯板の板幅方向の一端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第1の磁性体コア部材と、前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の前記一方の面とは反対側の他方の面側に、前記走行する金属帯板の板幅方向の前記一端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第2の磁性体コア部材と、を有する第1の磁性体コアと、
     前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の前記一方の面側に、前記走行する金属帯板の板幅方向の前記一端部と反対側の他端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第3の磁性体コア部材と、前記走行方向において、前記第1の誘導コイル部材および第2の誘導コイル部材の間に設けられ、前記走行する金属帯板の前記他方の面側に、前記走行する金属帯板の板幅方向の前記他端部を前記第1の誘導コイル部材側および第2の誘導コイル部材側では多く前記第1の誘導コイル部材と第2の誘導コイル部材との間の中間部では少なく覆って設けられた第4の磁性体コア部材と、を有する第2の磁性体コアと、
     を備える金属帯板の誘導加熱装置。
  2.  前記第1の誘導コイル部材は前記走行する金属帯板の前記一方の面側に設けられ、前記第2の誘導コイル部材は前記走行する金属帯板の前記他方の面側に設けられている請求項1記載の金属帯板の誘導加熱装置。
  3.  長手方向に走行する金属帯板を横切って前記走行する金属帯板に平行に設けられ、それぞれの両端部が前記走行する金属帯板の板幅方向において前記走行する金属帯板から突き出して設けられ、前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向において互いに重ならないように配置された第3の誘導コイル部材および第4の誘導コイル部材と、前記第3の誘導コイル部材の前記両端部の一方と前記第4の誘導コイル部材の前記両端部の一方を電気的に接続する第3の電気的接続手段と、前記第3の誘導コイル部材の前記両端部の他方と前記第4の誘導コイル部材の前記両端部の他方を電気的に接続する第4の電気的接続手段と、を有する第2の誘導コイルをさらに備え、
     前記第1の誘導コイル部材および前記第3の誘導コイル部材の前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向において互いに重なるように配置され、前記第2の誘導コイル部材および前記第4の誘導コイル部材の前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向において互いに重なるように配置され、
     前記第1の誘導コイル部材および前記第2の誘導コイル部材は前記走行する金属帯板の前記一方の面側に設けられ、前記第3の誘導コイル部材および前記第4の誘導コイル部材は前記走行する金属帯板の前記他方の面側に設けられている請求項1記載の金属帯板の誘導加熱装置。
  4.  前記第1の磁性体コア部材および前記第2の磁性体コア部材は、前記走行方向において互いに同数の複数の部材にそれぞれ分割され、前記第1の磁性体コア部材および前記第2の磁性体コア部材の分割された前記複数の部材は、前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向においてそれぞれ互いに重なるように配置され、
     前記第3の磁性体コア部材および前記第4の磁性体コア部材は、前記走行方向において互いに同数の複数の部材にそれぞれ分割され、前記第3の磁性体コア部材および前記第4の磁性体コア部材の分割された前記複数の部材は、前記走行する金属帯板への垂直投影像が前記金属帯板の走行する走行方向においてそれぞれ互いに重なるように配置されている請求項1から請求項3までのいずれか一項に記載の金属帯板の誘導加熱装置。
  5.  前記第1の磁性体コア部材および前記第2の磁性体コア部材の前記分割された複数の部材、および前記第3の磁性体コア部材および前記第4の磁性体コア部材の前記分割された複数の部材を、前記走行する金属帯板の板幅方向においてそれぞれ移動させる移動手段をさらに備える請求項4記載の金属帯板の誘導加熱装置。
  6.  前記誘導コイルと同じ構成の第2の誘導コイルと、第1の磁性体コアと同じ構成の第3の磁性体コアと、第2の磁性体コアと同じ構成の第4の磁性体コアをさらに備え、
     前記誘導コイルと前記第2の誘導コイルとが前記走行方向において並列に配置されている請求項2記載の金属帯板の誘導加熱装置。
PCT/JP2015/075266 2014-09-05 2015-09-04 金属帯板の誘導加熱装置 WO2016035893A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016546710A JP6323564B2 (ja) 2014-09-05 2015-09-04 金属帯板の誘導加熱装置
RU2017107070A RU2674250C2 (ru) 2014-09-05 2015-09-04 Индукционное нагревательное устройство для металлической полосы
CA2959470A CA2959470C (en) 2014-09-05 2015-09-04 Induction heating device for metal strip
BR112017004175-8A BR112017004175B1 (pt) 2014-09-05 2015-09-04 Dispositivo de aquecimento por indução para tira de metal
CN201580046992.4A CN106688308B (zh) 2014-09-05 2015-09-04 金属带板的感应加热装置
KR1020177005891A KR101981407B1 (ko) 2014-09-05 2015-09-04 금속 띠판의 유도 가열 장치
EP15838715.9A EP3190860B1 (en) 2014-09-05 2015-09-04 Induction heating device for metal strip
US15/508,057 US10568166B2 (en) 2014-09-05 2015-09-04 Induction heating device for metal strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181710 2014-09-05
JP2014-181710 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035893A1 true WO2016035893A1 (ja) 2016-03-10

Family

ID=55439946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075266 WO2016035893A1 (ja) 2014-09-05 2015-09-04 金属帯板の誘導加熱装置

Country Status (10)

Country Link
US (1) US10568166B2 (ja)
EP (1) EP3190860B1 (ja)
JP (1) JP6323564B2 (ja)
KR (1) KR101981407B1 (ja)
CN (1) CN106688308B (ja)
BR (1) BR112017004175B1 (ja)
CA (1) CA2959470C (ja)
RU (1) RU2674250C2 (ja)
TW (1) TWI552648B (ja)
WO (1) WO2016035893A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018075353A1 (en) * 2016-10-17 2018-04-26 Novelis Inc. Metal sheet with tailored properties
EP3335968A1 (en) 2016-12-14 2018-06-20 FCA Italy S.p.A. Motor-vehicle floor-panel structure including lateral longitudinal beams with locally differentiated features
US10370749B2 (en) 2016-09-27 2019-08-06 Novelis Inc. Systems and methods for threading a hot coil on a mill
US11785678B2 (en) 2016-09-27 2023-10-10 Novelis Inc. Rotating magnet heat induction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190860B1 (en) * 2014-09-05 2019-08-21 Nippon Steel Corporation Induction heating device for metal strip
JP6368831B1 (ja) 2017-06-19 2018-08-01 中外炉工業株式会社 金属ストリップの冷却装置
IT201900006433A1 (it) * 2019-04-29 2020-10-29 Rotelec Sa Apparato di riscaldamento di prodotti metallici
WO2024206070A1 (en) * 2023-03-24 2024-10-03 Novelis Inc. Induction systems and methods for localized heating of a metal strip

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111981A (ja) * 1996-10-08 1998-04-28 Daiwa Can Co Ltd 飲料缶誘導加熱装置
JP2004296368A (ja) * 2003-03-28 2004-10-21 Nippon Steel Corp 板幅方向の均温性に優れた金属帯板の加熱装置
JP2006294396A (ja) * 2005-04-11 2006-10-26 Shimada Phys & Chem Ind Co Ltd 誘導加熱装置
JP2007095651A (ja) * 2005-02-18 2007-04-12 Nippon Steel Corp 金属板の誘導加熱装置及び誘導加熱方法
JP2008204648A (ja) * 2007-02-16 2008-09-04 Nippon Steel Corp 誘導加熱装置
JP2008288200A (ja) * 2007-04-16 2008-11-27 Nippon Steel Corp 金属板の誘導加熱装置および誘導加熱方法
JP2009259588A (ja) * 2008-04-16 2009-11-05 Nippon Steel Corp 金属板の誘導加熱装置および誘導加熱方法
JP2010245029A (ja) * 2009-03-17 2010-10-28 Shimada Phys & Chem Ind Co Ltd 誘導加熱装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722589A (en) * 1950-11-30 1955-11-01 Ohio Crankshaft Co Method and apparatus for uniformly heating intermittently moving metallic material
US3031555A (en) * 1959-07-15 1962-04-24 Magnethermic Corp Induction heating
JPH0237075B2 (ja) 1983-05-09 1990-08-22 Sumitomo Heavy Industries Denjudokanetsusochi
JPS6298588A (ja) * 1985-10-25 1987-05-08 日本軽金属株式会社 横磁束型電磁誘導加熱装置
FR2593345B1 (fr) * 1986-01-21 1988-03-04 Alsthom Dispositif a armature articulee pour chauffage inductif au defile
JPS62281291A (ja) 1986-05-30 1987-12-07 新日本製鐵株式会社 誘導加熱装置
JPS63119188A (ja) 1986-11-07 1988-05-23 三菱電機株式会社 トランスバ−ス磁束を利用した帯状金属の誘導加熱装置
US4751360A (en) * 1987-06-26 1988-06-14 Ross Nicholas V Apparatus for the continuous induction heating of metallic strip
DE4040281A1 (de) * 1990-12-17 1992-07-02 Thomson Brandt Gmbh Induktives kochgeraet
JPH04294091A (ja) * 1991-03-22 1992-10-19 Mitsubishi Heavy Ind Ltd 誘導加熱装置
FR2693071B1 (fr) * 1992-06-24 2000-03-31 Celes Dispositif de chauffage inductif homogene de produits plats metalliques au defile.
US5837976A (en) * 1997-09-11 1998-11-17 Inductotherm Corp. Strip heating coil apparatus with series power supplies
US6198083B1 (en) * 2000-04-12 2001-03-06 American Spring Wire Corp. Method and apparatus for heat treating wires
FR2808163B1 (fr) * 2000-04-19 2002-11-08 Celes Dispositif de chauffage par induction a flux transverse a circuit magnetique de largeur variable
US6570141B2 (en) * 2001-03-26 2003-05-27 Nicholas V. Ross Transverse flux induction heating of conductive strip
US20030222079A1 (en) * 2002-05-30 2003-12-04 Lawton Robert J. System for inductively heating a belt
DE10312623B4 (de) * 2003-03-19 2005-03-24 Universität Hannover Querfeld-Erwärmungsanlage
US6963056B1 (en) * 2003-05-09 2005-11-08 Inductotherm Corp. Induction heating of a workpiece
CN1810069B (zh) * 2003-06-26 2010-06-23 应达公司 感应加热线圈的电磁屏蔽
CN101120616B (zh) * 2005-02-18 2011-06-08 新日本制铁株式会社 用于金属板的感应加热装置
TWI326713B (en) * 2005-02-18 2010-07-01 Nippon Steel Corp Induction heating device for heating a traveling metal plate
US9888529B2 (en) * 2005-02-18 2018-02-06 Nippon Steel & Sumitomo Metal Corporation Induction heating device for a metal plate
US20070012663A1 (en) * 2005-07-13 2007-01-18 Akihiro Hosokawa Magnetron sputtering system for large-area substrates having removable anodes
US7297907B2 (en) * 2005-12-08 2007-11-20 Uri Rapoport Means and method of maintaining a constant temperature in the magnetic assembly of a magnetic resonance device
AU2007220866A1 (en) * 2006-02-22 2007-09-07 Inductotherm Corp. Transverse flux electric inductors
US7534980B2 (en) * 2006-03-30 2009-05-19 Ut-Battelle, Llc High magnetic field ohmically decoupled non-contact technology
JP4890278B2 (ja) 2007-01-26 2012-03-07 新日本製鐵株式会社 金属板の誘導加熱装置
US20090057301A1 (en) * 2007-08-28 2009-03-05 Jean Lovens Electric induction heating apparatus with fluid medium flow through
CN102067254B (zh) * 2008-04-14 2013-09-25 应达公司 电感应线圈、感应炉以及感应加热扁平导电工件的方法
RU2497314C2 (ru) * 2008-07-25 2013-10-27 Индактотерм Корп. Электроиндукционный нагрев краев электропроводящего сляба
KR101123810B1 (ko) * 2009-03-17 2012-04-05 쥬가이로 고교 가부시키가이샤 유도가열장치
TWI394547B (zh) * 2009-03-18 2013-05-01 Delta Electronics Inc 加熱裝置
TWM372605U (en) * 2009-04-17 2010-01-11 Jung Shing Wire Co Ltd Heating system device using contactless sensing coils
US8803046B2 (en) * 2009-08-11 2014-08-12 Radyne Corporation Inductor assembly for transverse flux electric induction heat treatment of electrically conductive thin strip material with low electrical resistivity
RU2518175C2 (ru) * 2010-02-19 2014-06-10 Ниппон Стил Корпорейшн Устройство индукционного нагрева поперечным потоком
CA2789978C (en) * 2010-02-19 2015-11-24 Nippon Steel Corporation Transverse flux induction heating device
TW201215242A (en) * 2010-09-27 2012-04-01 Univ Chung Yuan Christian Induction heating device and control method thereof
JP4886080B1 (ja) * 2011-03-23 2012-02-29 三井造船株式会社 誘導加熱装置、誘導加熱装置の制御方法、及び制御プログラム
CN202090027U (zh) * 2011-05-29 2011-12-28 内蒙古科技大学 中厚板横向感应加热装置
TWI421161B (zh) * 2011-07-13 2014-01-01 Quanta Comp Inc 高週波電磁感應加熱裝置及使用其加熱模具表面的方法
CN202401098U (zh) * 2011-12-12 2012-08-29 亚实履带(天津)有限公司 履带板感应预热装置
EP3190860B1 (en) * 2014-09-05 2019-08-21 Nippon Steel Corporation Induction heating device for metal strip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111981A (ja) * 1996-10-08 1998-04-28 Daiwa Can Co Ltd 飲料缶誘導加熱装置
JP2004296368A (ja) * 2003-03-28 2004-10-21 Nippon Steel Corp 板幅方向の均温性に優れた金属帯板の加熱装置
JP2007095651A (ja) * 2005-02-18 2007-04-12 Nippon Steel Corp 金属板の誘導加熱装置及び誘導加熱方法
JP2006294396A (ja) * 2005-04-11 2006-10-26 Shimada Phys & Chem Ind Co Ltd 誘導加熱装置
JP2008204648A (ja) * 2007-02-16 2008-09-04 Nippon Steel Corp 誘導加熱装置
JP2008288200A (ja) * 2007-04-16 2008-11-27 Nippon Steel Corp 金属板の誘導加熱装置および誘導加熱方法
JP2009259588A (ja) * 2008-04-16 2009-11-05 Nippon Steel Corp 金属板の誘導加熱装置および誘導加熱方法
JP2010245029A (ja) * 2009-03-17 2010-10-28 Shimada Phys & Chem Ind Co Ltd 誘導加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190860A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499213B2 (en) 2016-09-27 2022-11-15 Novelis Inc. Systems and methods for threading a hot coil on a mill
US10837090B2 (en) 2016-09-27 2020-11-17 Novelis Inc. Magnetic levitation heating of metal with controlled surface quality
US11821066B2 (en) 2016-09-27 2023-11-21 Novelis Inc. Systems and methods for non-contact tensioning of a metal strip
US10370749B2 (en) 2016-09-27 2019-08-06 Novelis Inc. Systems and methods for threading a hot coil on a mill
US11072843B2 (en) 2016-09-27 2021-07-27 Novelis Inc. Systems and methods for non-contact tensioning of a metal strip
US10508328B2 (en) 2016-09-27 2019-12-17 Novelis Inc. Rapid heating of sheet metal blanks for stamping
US11785678B2 (en) 2016-09-27 2023-10-10 Novelis Inc. Rotating magnet heat induction
US10844467B2 (en) 2016-09-27 2020-11-24 Novelis Inc. Compact continuous annealing solution heat treatment
US11479837B2 (en) 2016-09-27 2022-10-25 Novelis Inc. Pre-ageing systems and methods using magnetic heating
US11242586B2 (en) 2016-09-27 2022-02-08 Novelis Inc. Systems and methods for threading a hot coil on a mill
US11377721B2 (en) 2016-09-27 2022-07-05 Novelis Inc. Systems and methods for threading a hot coil on a mill
WO2018075353A1 (en) * 2016-10-17 2018-04-26 Novelis Inc. Metal sheet with tailored properties
CN109804094A (zh) * 2016-10-17 2019-05-24 诺维尔里斯公司 带有定制特性的金属板
US11874063B2 (en) 2016-10-17 2024-01-16 Novelis Inc. Metal sheet with tailored properties
US10407102B2 (en) 2016-12-14 2019-09-10 Fca Italy S.P.A. Motor-vehicle floor-panel structure including lateral longitudinal beams with locally differentiated features
EP3335968A1 (en) 2016-12-14 2018-06-20 FCA Italy S.p.A. Motor-vehicle floor-panel structure including lateral longitudinal beams with locally differentiated features

Also Published As

Publication number Publication date
KR20170038060A (ko) 2017-04-05
JPWO2016035893A1 (ja) 2017-06-15
US20170290102A1 (en) 2017-10-05
BR112017004175B1 (pt) 2022-12-27
CA2959470A1 (en) 2016-03-10
RU2017107070A3 (ja) 2018-10-05
CN106688308B (zh) 2020-03-17
EP3190860B1 (en) 2019-08-21
TWI552648B (zh) 2016-10-01
EP3190860A1 (en) 2017-07-12
EP3190860A4 (en) 2018-04-18
JP6323564B2 (ja) 2018-05-16
RU2674250C2 (ru) 2018-12-06
RU2017107070A (ru) 2018-10-05
KR101981407B1 (ko) 2019-05-23
TW201622477A (zh) 2016-06-16
US10568166B2 (en) 2020-02-18
CA2959470C (en) 2019-04-02
CN106688308A (zh) 2017-05-17
BR112017004175A2 (pt) 2017-12-05

Similar Documents

Publication Publication Date Title
JP6323564B2 (ja) 金属帯板の誘導加熱装置
JP4912912B2 (ja) 誘導加熱装置
JP5114671B2 (ja) 金属板の誘導加熱装置および誘導加熱方法
US10327287B2 (en) Transverse flux induction heating device
EP1854336B1 (en) Induction heating device for a metal plate
US9888529B2 (en) Induction heating device for a metal plate
CN106576400B (zh) 金属带的感应加热装置
JP4786365B2 (ja) 金属板の誘導加熱装置及び誘導加熱方法
JP5042909B2 (ja) 金属板の誘導加熱装置および誘導加熱方法
JP6331900B2 (ja) 金属帯板の誘導加熱装置
JP4926608B2 (ja) 金属板の誘導加熱装置及び誘導加熱方法
JP4890278B2 (ja) 金属板の誘導加熱装置
JP5015345B2 (ja) 金属板の誘導加熱装置及び誘導加熱方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2959470

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016546710

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15508057

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177005891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015838715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838715

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017004175

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017107070

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017004175

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170302