WO2016035409A1 - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
WO2016035409A1
WO2016035409A1 PCT/JP2015/066808 JP2015066808W WO2016035409A1 WO 2016035409 A1 WO2016035409 A1 WO 2016035409A1 JP 2015066808 W JP2015066808 W JP 2015066808W WO 2016035409 A1 WO2016035409 A1 WO 2016035409A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
moisture
humidity control
hygroscopic material
hygroscopic
Prior art date
Application number
PCT/JP2015/066808
Other languages
English (en)
French (fr)
Inventor
伸基 崎川
浦元 嘉弘
康昌 鈴木
隆志 宮田
Original Assignee
シャープ株式会社
学校法人関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 学校法人関西大学 filed Critical シャープ株式会社
Priority to JP2016546352A priority Critical patent/JP6271744B2/ja
Priority to CN201580008866.XA priority patent/CN106061581B/zh
Publication of WO2016035409A1 publication Critical patent/WO2016035409A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements

Definitions

  • the present invention relates to a humidity control apparatus using a polymeric hygroscopic material having a property of changing from hydrophilic to hydrophobic and from hydrophobic to hydrophilic depending on a change in temperature.
  • Zeolite, silica gel, and the like have been widely known as hygroscopic materials (dehumidifying materials), and desiccant type hygroscopic (dehumidifying) devices using these are commercially available (for example, JP 2000-126540 A (patent document) 1), Japanese Patent Application Laid-Open No. 2010-69428 (Patent Document 2) and the like).
  • a dehumidifying device using zeolite, silica gel, etc. moisture in the air is adsorbed by applying indoor air to a honeycomb-shaped breathable rotor applied to zeolite, silica gel, etc. In order to take it out, it is discharged as water vapor by warming it with hot air using a heater. This high-temperature air containing water vapor is cooled by a heat exchanger, moisture is taken out, and the room air is dehumidified.
  • the blowing air is heated and released after dehumidification, the room temperature becomes too high, and there is a concern about the use in the rainy season when the humidity is particularly high. Furthermore, in the conventional desiccant type moisture absorption device, there is also a problem that the warm air must be cooled in order to release the moisture into water.
  • Patent Document 3 describes a gel sheet that dehumidifies and absorbs water using a gel whose water absorption characteristics change with a phase transition temperature as a boundary.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a humidity control apparatus that can perform humidity adjustment efficiently with less thermal energy required. That is.
  • the present invention is a humidity control apparatus comprising a moisture absorbing portion in which a polymer moisture absorbing material is provided on at least one of a substrate, and a heat source that partially heats the moisture absorbing portion, wherein the polymer moisture absorbing material is in the air.
  • a hydrophilic state capable of absorbing water and a hydrophobic state for releasing the absorbed water in the hydrophilic state, and from the hydrophilic state to the hydrophobic state due to an increase in temperature. It has a property of changing and returning from the hydrophobic state to the hydrophilic state as the temperature decreases.
  • the hygroscopic unit includes a heat insulating material that covers the polymer hygroscopic material except for a part on the heat source side, and can absorb the moisture in the absorbed air as water droplets in the part heated by the heat source. It is preferable that it is comprised.
  • a polymer hygroscopic material is provided in a layered manner on one side of the substrate so as to face the hygroscopic unit, and further includes an accumulation unit having a heat source capable of heating the polymer hygroscopic material on the other side. Is preferred.
  • the substrate is preferably a plate or net.
  • the substrate is preferably formed of a material having higher thermal conductivity than the polymer moisture absorbent, and the outermost surface of the substrate and the end of the polymer moisture absorbent are fixed.
  • the humidity control apparatus of the present invention unlike the conventional desiccant-type moisture absorption apparatus, moisture is absorbed without being heated at a very high temperature and without cooling the warm air. The amount of heat energy required is low, and the humidity can be adjusted efficiently.
  • FIG. 1 is a diagram schematically showing a humidity control apparatus 1 according to a first embodiment of the present invention, in which FIG. 1 (a) is a cross-sectional view taken along the section line IA-IA in FIG. 2 (a), and FIG. ) Is a cross-sectional view taken along section line IB-IB in FIG. It is a figure which shows typically the external appearance of the humidity control apparatus 1 of the 1st Embodiment of this invention, Fig.2 (a) is a top view, FIG.2 (b) is a front part, FIG.2 (c) is a rear view. 2D is a left side view, and FIG. 2E is a right side view.
  • FIG.7 (a) is a figure which shows typically the structural unit used for the humidity control apparatus 61 of the 5th Embodiment of this invention
  • FIG.7 (b) is a structural unit shown to Fig.7 (a). It is a figure which shows typically the comprised humidity control apparatus 61.
  • FIG. 1 is a diagram schematically showing a humidity control apparatus 1 according to a first embodiment of the present invention
  • FIG. 1 (a) is a cross-sectional view taken along the section line IA-IA in FIG. 2 (a).
  • FIG. 1B is a cross-sectional view taken along section line IB-IB in FIG.
  • FIG. 2 is a figure which shows typically the external appearance of the humidity control apparatus 1 of the 1st Embodiment of this invention
  • FIG. 2 (a) is a top view
  • FIG.2 (b) is a front part
  • FIG. c) is a rear view
  • FIG. 2 (d) is a left side view
  • FIG. 2 (e) is a right side view.
  • the humidity control apparatus 1 of the present invention basically includes a hygroscopic part 2 provided with a polymer hygroscopic material 4 on at least one of the base materials 3 and a heat source 5 for partially heating the hygroscopic part 2.
  • a hygroscopic part 2 provided with a polymer hygroscopic material 4 on at least one of the base materials 3 and a heat source 5 for partially heating the hygroscopic part 2.
  • moisture is absorbed without being heated at a very high temperature and without cooling the warm air. Therefore, less heat energy is required and the humidity can be adjusted efficiently (low power consumption, suppression of room temperature rise, dehumidification efficiency).
  • the polymer hygroscopic material 4 is formed in layers on both surfaces of the plate-like substrate 3, and a heat source 5 is provided so that a part of the polymer hygroscopic material 4 can be heated.
  • the plate substrate is substantially parallel to the vertical direction as shown in FIG. It is preferable to arrange so that.
  • FIG. 1 illustrates the case where the substrate 3 has a flat plate shape
  • the shape of the substrate is not limited thereto, and may be a rod shape, a column shape, a cylindrical shape, a spherical shape, or any other indefinite shape.
  • the material for forming the base material 3 is not particularly limited, and examples thereof include metals, resins, ceramics, rubbers, and glass papers. Among them, among metals such as aluminum and stainless steel, high thermal conductive resins, ceramics, and the like, a material having higher thermal conductivity than the polymer hygroscopic material is preferable. As will be described later, when the base material 3 is made of metal, the shape may be a net-like material or a cage-like material.
  • FIG. 1 illustrates the case where the polymer hygroscopic material is formed in layers on both surfaces of the substrate 3, but the polymer hygroscopic material may be formed in layers on only one side of the substrate.
  • the polymer hygroscopic material 4 in a layered form formed on the substrate 3 has a hydrophilic state capable of absorbing moisture in the air, and a hydrophobic state releasing the absorbed moisture in the hydrophilic state. And having a property of changing from the hydrophilic state to the hydrophobic state by increasing the temperature and returning from the hydrophobic state to the hydrophilic state by decreasing the temperature.
  • a polymer hygroscopic material according to the present invention is known from Patent Document 3 and the like, and those skilled in the art will be able to sense, for example, poly N-isopropylacrylamide (PNIPAM) and derivatives thereof, polyvinyl ether and derivatives thereof, and the like. It is possible to appropriately prepare a polymer hygroscopic material having desired properties using a warm polymer as a material.
  • PNIPAM poly N-isopropylacrylamide
  • Such a polymer hygroscopic material in the present invention may require a high-temperature (for example, 200 ° C.) heat source that is necessary for releasing adsorbed moisture when using zeolite, silica gel, or the like. Less heat energy is required. Further, when using zeolite, silica gel or the like, there is an advantage that it is not necessary to cool in order to recover the moisture released as water, and it can be recovered as it is from the polymer moisture absorbent.
  • a high-temperature for example, 200 ° C.
  • the thickness of the layer of the polymer hygroscopic material 4 is not particularly limited, but is appropriately determined in consideration of the moisture absorption speed, responsiveness, water movement speed, air volume, overall scale, etc., based on the use environment and target capacity. Can be determined.
  • a conventionally known appropriate adhesive may be interposed so that the outermost surface of the substrate and the end of the polymer moisture absorbent may be fixed.
  • FIG. 3 schematically shows an example of joining of the polymeric moisture absorbent 4 when the base material 3 is a metal (shown is SUS surface iron) in the present invention.
  • a technique for bonding an organic substance such as a resin and an inorganic substance such as a metal is known from, for example, JP2013-007355A and WO2013 / 140845 regarding a heater.
  • a polymer moisture absorbent for example, N-isopropylacrylamide (NIPAM)
  • NIPAM N-isopropylacrylamide
  • the metal material, the type of silane coupling, and the type of polymer hygroscopic material 4 are not limited thereto.
  • the silane coupling agent used for the silane coupling 6 a conventionally known appropriate silane coupling agent can be used, and is not particularly limited.
  • a silane coupling agent having a polymerizable functional group at the terminal is used.
  • 3-acryloxyalkyl (for example, propyl) trialkyl (methoxy, ethoxy) (or chloro) silane, vinyl trialkyl silane, etc. may be mentioned, and silane coupling 6 is preferably performed according to known procedures and conditions, respectively. Can do.
  • the heat source 5 in the humidity control apparatus 1 of the present invention is not particularly limited, and may be any conventionally known appropriate heat source such as a sheath heater, a film heater, a heating material incorporating a heating wire, or a carbon heater.
  • the polymer hygroscopic material 4 in the present invention does not require heating at a very high temperature when moisture is absorbed, unlike conventional zeolite and silica gel.
  • the heat source depends on the temperature sensitive point of the polymer hygroscopic material to be heated, it is preferably 40 to 60 ° C. (that is, (23 ° C. + 17 ° C.) to (23 ° C. + 37 ° C.)) in addition to normal temperature (23 ° C.).
  • any material can be used as long as it can be heated to the range.
  • heating temperature can be set lower than before, power saving and the risk of ignition smoke can be reduced.
  • the heat source 5 only needs to be disposed at a position where the polymer moisture absorbent 4 can be partially heated above the temperature sensitive point.
  • the polymer hygroscopic material that absorbs moisture in the air and is in a hydrophilic state is heated by the heat source 5 to give a thermal stimulus, and the polymer hygroscopic material 4 is in a hydrophobic state due to the increase in temperature.
  • the absorbed water is recovered as water droplets.
  • a flat base material 3 in which polymer hygroscopic materials 4 are formed in layers on both sides is disposed so that both main surfaces thereof are substantially parallel to the vertical direction, and a position below the base material 3. Is provided with a heat source 5.
  • water that has been taken into the polymer network alternately repeats a hydrophobic state and a hydrophilic state each time the polymer absorbent material 4 is repeatedly heated and lowered by the heat stimulus from the heat source 5.
  • the upper region of the polymer hygroscopic material 4 is always in a hydrophilic state at room temperature, and absorbs moisture in the air. In order to continue to absorb moisture, it is necessary to move the water inside, and the moisture absorbed in the polymer moisture absorbent 4 is lowered in the polymer moisture absorbent 4 mainly by diffusion concentration equilibrium and its own weight, that is, once hydrophobic.
  • the humidity control apparatus of the present invention can absorb moisture several tens of times or more than its own weight when directly exposed to water, but moisture in the air absorbs only its own weight or about twice that amount.
  • the problem that it is difficult to be solved can be solved only by a static element having no operation, without including a dynamic element such as a rotation mechanism in the apparatus.
  • the polymer hygroscopic material 4 provided on the base material 3 is the same throughout, but the region affected by the heat source 5 and the intermediate region above the region can be said to be the movement path of moisture in the polymer hygroscopic material. . These sizes are determined by the hygroscopic capacity, water discharge capacity, and stimulus responsiveness of the polymeric hygroscopic material.
  • a water recovery dish portion 9 is provided at a position where the water droplets can be received, and the recovered water can be stored in the water tank 10 through the water recovery tray portion. It is configured.
  • the water tank 10 is a pull-out type and is configured to be able to be removed from the humidity control device 1 and the collected water appropriately discarded (FIG. 2 (d)).
  • the moisture absorption part 2 includes a heat insulating material 11 that covers the polymer moisture absorbent 4 except for a part on the heat source 5 side, and absorbs absorbed moisture in the air. It is preferable that the portion heated by the heat source 5 can be discharged as water droplets.
  • the upper region 4 a of the hygroscopic part 2 is covered with the heat insulating material 11, and the lower region 4 b is exposed.
  • the region 4a on the upper side of the hygroscopic part 2 covered with the heat insulating material 11 is less likely to exceed the temperature sensing point, absorbs moisture in the air while maintaining a hydrophilic state, and efficiently absorbs moisture.
  • the heat insulating material 11 a conventionally well-known appropriate material, for example, a urethane heat insulating material etc., can be used suitably.
  • the moisture absorption part 2 described above includes an intake port 13 in which an air filter 14 is fitted at a height position where the moisture absorption part 2 is disposed, and an exhaust gas. Covered with a casing 12 formed facing the mouth 15. Further, in the example shown in FIG. 1, a humidity control fan 16 is provided between the moisture absorption part 2 and the exhaust port 15, and the humidity control fan 16 allows air dampened from the intake port 13 to enter the housing 12. An air passage 17 is formed which is sucked in and passes through the moisture absorbing portion 2 so as to be discharged from the exhaust port 15 to the outside of the housing 12. Thereby, moist air is made to contact the moisture absorption part 2 intensively, and a polymer moisture absorption material can absorb the water
  • FIG. 4 is a diagram schematically illustrating the humidity control apparatus 21 according to the second embodiment of the present invention.
  • the humidity control apparatus 21 in the example shown in FIG. 4 includes a hygroscopic portion 22 in which a polymer hygroscopic material 24 is formed in a layer on one side of a flat substrate 23, and a heat source 25 is provided on the other side of the substrate 23. It has been.
  • the polymer hygroscopic material 28 may be provided in a layered manner on one side of the base material 27 so as to face the hygroscopic portion 22, and the polymer hygroscopic material 28 may be heated on the other side of the base material 27.
  • An accumulation unit 26 having a heat source 29 is further provided. The accumulating portion 26 is disposed so that the polymer hygroscopic material 28 faces the polymer hygroscopic material 24 of the hygroscopic portion 22.
  • the humidity control apparatus 21 of the second embodiment As described above, after the moisture in the air is absorbed by the polymer moisture absorbent 24 of the moisture absorber 22, the polymer moisture absorbent 24 is removed from the substrate 23 side by the heat source 25. By heating, the polymer hygroscopic material 24 changes from a hydrophilic state to a hydrophobic state. At this time, the polymer hygroscopic material 28 of the accumulating unit 26 is brought into contact with the polymer hygroscopic material 24 of the hygroscopic unit 22.
  • the moisture contained in the polymer hygroscopic material 24 of the hygroscopic part 22 moves to the polymer hygroscopic material 28 of the accumulating part 26, and most of the polymer hygroscopic material 24 of the hygroscopic part 22 is hydrophobic.
  • most of the polymer hygroscopic material 28 of the accumulating portion 26 is in a hydrophilic state.
  • the accumulating portion 26 is separated from the hygroscopic portion 22.
  • the heat can be heated by the heat source 25, and the water can be collected in the accumulating part 26.
  • the polymer hygroscopic material 28 is heated from the substrate 27 side by the heat source 29 of the accumulating unit 26 every time the accumulating unit 26 collects moisture or at a timing when a sufficient amount of moisture is collected in the accumulating unit 26.
  • the polymer hygroscopic material 28 of the accumulating portion 26 changes from the hydrophilic state to the hydrophobic state, and the absorbed moisture is released as water droplets 30.
  • the humidity control apparatus 21 of the second embodiment a phenomenon that is well known in a solvent such as water but exhales moisture that has been absorbed as the temperature of the polymer moisture absorbent increases (for example, LCST). ) Occurs in the air, and the absorbed moisture can be condensed and recovered as water droplets without using excessive cooling or a large amount of heat.
  • the polymer hygroscopic material in the example shown in FIG. The polymer hygroscopic material 28) of the accumulating part 26 can be moved by water.
  • the material forming the base material 23 is not particularly limited, but is preferably a metal.
  • a solvent containing a stimulus-responsive polymer gel when heated, the heat transferred from the solvent is hydrophobic on the outside of the gel (surface and areas close to the surface). There is a phenomenon called skin effect that forms a shell. The same phenomenon occurs in polymer gels used in air.
  • the surface of the polymeric hygroscopic material When applying heat to the polymeric hygroscopic material, if heat is applied from the outside of the polymeric hygroscopic material, the surface of the polymeric hygroscopic material will be in a hydrophobic state first, and the inner hydrophilic portion will be hydrophobic.
  • the base material 23 from a metal having good thermal conductivity and high mechanical strength, heat is generated by the heat source 25 from the opposite side of the base material 23 where the polymer moisture absorbent 24 is provided. Can be added. Thereby, the polymer hygroscopic material 24 is warmed from the inner side and gradually changes from the hydrophilic state to the hydrophobic state from the inner side to the outer side, so that the skin effect does not occur.
  • the absorbed water moves and accumulates moisture on the surface layer portion of the polymer moisture absorbent 24. can do.
  • the moisture absorption part 22 is disposed in the air passage 31 through which the wet air passes.
  • the formation of the air passage 31 is not particularly limited, but can be formed using, for example, an air inlet, an air outlet, and a humidity control fan as described above for the humidity control apparatus 1 of the first embodiment.
  • moist air can be made to contact the moisture absorption part 22 intensively, and the water
  • the stacking unit 26 is arranged outside the air passage 31.
  • the accumulation unit 26 may be in contact with the polymer hygroscopic material 24 of the hygroscopic unit 22 so as to pressurize the polymer hygroscopic material 24. Thereby, the moisture absorbed in the polymer hygroscopic material 24 is pressurized from the accumulating portion 26, so that the adhesion between the polymer hygroscopic material 24 and the polymer hygroscopic material 28 is improved, and the polymer hygroscopic material in the accumulating portion 26 is increased. 28.
  • FIG. 5 is a diagram schematically showing a humidity control apparatus 41 according to the third embodiment of the present invention.
  • the humidity control apparatus 41 in the example shown in FIG. 5 includes a polymer base material 44a, 44b, 44c, 44d, 44e, and 44f on a hollow base (hexagonal cylinder) 43 having a hexagonal cross section and six outer surfaces in layers.
  • the moisture absorption part 42 in which is formed is provided.
  • a heat source 45 that can heat any one of the polymeric moisture absorbents 44a, 44b, 44c, 44d, 44e, and 44f from the base material 43 side is provided on one of the six inner surfaces of the base material 43. Be In the example illustrated in FIG.
  • the polymer moisture absorbents 44 a, 44 b, 44 c, 44 d, 44 e, 44 f at positions corresponding to any one of the six outer surfaces of the base material 43 are further opposed.
  • a stacking unit 26 is provided. As in the stacking unit 26 in the example shown in FIG. 4, the stacking unit 26 is provided with a polymer hygroscopic material 28 in a layered form on one side of the base material 27 and heats the polymer hygroscopic material 28 on the other side of the base material 27. It has a heat source 29 that can.
  • the polymer hygroscopic material of the accumulation portion 26 faces any one of the polymer hygroscopic materials 44a, 44b, 44c, 44d, 44e, and 44f at a position corresponding to any one of the six outer surfaces of the base material 43.
  • air passages 46 and 47 are provided in the hollow portion of the base material 43 and outside the base material 43.
  • any one of the polymer hygroscopic materials 44 a, 44 b, 44 c, 44 d, 44 e, 44 f at positions corresponding to the six outer surfaces of the base material 43 sequentially faces the polymer hygroscopic material 28 of the accumulation unit 26.
  • the moisture absorbents 44a, 44b, 44c, 44d, 44e, 44f for example, the polymer moisture absorbent 44b
  • the base material 43 is rotated again, and the next polymer hygroscopic material 44a, 44b, 44c, 44d, 44e, 44f is positioned in the rear of the rotation direction (for example, the polymer hygroscopic material 44a),
  • the state where the water is collected while it is collected and the state where the rotation stops and the state where the rotation is stopped are alternately repeated so that the water can be sequentially collected from the polymer hygroscopic material of the hygroscopic part 42.
  • Such a mechanism can be realized by combining conventionally known appropriate mechanisms without particular limitation.
  • the polymer hygroscopic material of the hygroscopic part 42 and the polymer hygroscopic material 28 of the accumulating part 26 that are opposed to each other are brought into contact with each other.
  • the stacking unit 26 may be moved.
  • FIG. 5 With the rotation of the base material 43 described above, it is possible to recover water from the polymer hygroscopic material in the hygroscopic part by the accumulating part 26 in sequence.
  • a base material is a hexagonal cylinder shape
  • the cross-sectional shape of a base material is not limited to this, A triangular cylinder shape, a square cylinder shape, a pentagonal cylinder shape, It may be a polygonal cylinder that exceeds seven angles.
  • FIG. 6 is a diagram schematically showing a humidity control apparatus 51 according to the fourth embodiment of the present invention.
  • the humidity control apparatus 51 of the example shown in FIG. 6 includes a moisture absorption part 52 in which a polymer moisture absorbent 54 is formed in a layered manner on the outer peripheral surface of a hollow (cylindrical or disk-shaped) base material 53 having a circular cross section.
  • the accumulation unit 26 is further provided so as to face a partial region of the polymer hygroscopic material provided on the outer peripheral surface of the base material 53.
  • the accumulation unit 26 is provided with a polymer hygroscopic material 28 in a layered form on one side of the base material 27 and the polymer hygroscopic material 28 on the other side of the base material 27. It has a heat source 29 that can heat.
  • the accumulating portion 26 maintains a pressure and frictional force so that the polymer moisture absorbent 28 is not broken, and directly contacts a part of the polymer moisture absorbent 54 of the moisture absorbent portion 52.
  • a heat source 55 capable of heating the polymer hygroscopic material 54 from the base 53 side is provided at a position corresponding to the accumulation portion 26 on the inner peripheral surface in the base 53.
  • air passages 56 and 57 are provided on the hollow portion of the base 53 and the outside of the base 53.
  • the base material 53 is rotated around the central axis, and the polymer moisture absorbent 54 is partially heated by the heat source 55, so that moisture in the air absorbed by the polymer moisture absorbent 54 is collected in the accumulation unit 26.
  • the heat source 55 and the base material 53 are separated and not integrated, the polymer moisture absorbent 54 provided thereon also moves as the base material 53 rotates.
  • the heat source 55 is located at a place where the stacking unit 26 faces. Stop.
  • the accumulating unit 26 concentrates on accumulating without using the heat source 29 until water is sufficiently transferred to the polymer hygroscopic material 28.
  • the heat source 29 is heated simultaneously with the heat source 55 of the accumulation unit 26, and water accumulated mainly in the polymer hygroscopic material 28 is dripped as water droplets by its own weight.
  • the accumulating unit 26 In order to prevent the moisture transferred to the polymer hygroscopic material 28 of the accumulating unit 26 from returning to the polymer hygroscopic material 54 of the hygroscopic unit 52, the accumulating unit 26 is separated from the hygroscopic unit 52, or the What is necessary is just to cool the part which the molecular hygroscopic material 28 and the polymer hygroscopic material 54 of the hygroscopic part 52 contact.
  • heat radiation fins may be provided on the inner peripheral surface of the base material 53.
  • the heat radiating fins may be provided on a part of the inner peripheral surface or may be provided over the entire inner peripheral surface of the substrate 53.
  • FIG.7 (a) is a figure which shows typically the structural unit 61a used for the humidity control apparatus 61 of the 5th Embodiment of this invention
  • FIG.7 (b) is a some structural unit (for example, structural unit 61a).
  • 61b, 61c, 61d, 61e) is a view schematically showing a humidity control device 61 configured by the above.
  • a metal net (mesh) formed of stainless steel having an electric resistance of about 70% of Ni—Cr is used as the base material 62, and the polymer hygroscopic material 66 is described above. Bond using silane coupling.
  • the structural unit shown in FIG. 7A includes an energization unit (power source) 64 for energizing the base material 62, which is a metal net, to generate resistance heat, and between the base material 62 and the energization unit 64.
  • a wiring 63 for electrical connection is provided.
  • a plurality of such structural units are arranged so that the polymer hygroscopic materials 66 are in contact with each other to form the humidity control device 61 (in FIG. 7B, the polymer hygroscopic materials 66 appear to be separated from each other). , Actually touching).
  • the base material 62 which is a metal net, is exposed to an air passage 65 through which moist air flows.
  • the polymer hygroscopic material 66 of each structural unit absorbs moisture in the air and becomes hydrophilic.
  • the substrate 62 is sequentially energized through the energization unit 64 and the wiring 63 from the side close to the air path 65 (left side with respect to the paper surface in FIG. 7).
  • a metal net is suitable as the base material as described above.
  • the base material may be composed of a metal flat plate or block-like material.
  • the mesh substrate can be wrapped with a thin ceramic and a polymer can be attached to the ceramic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 基材の少なくとも一方に高分子吸湿材を設けた吸湿部と、前記吸湿部を部分的に加熱する熱源とを備える調湿装置であって、前記高分子吸湿材が、空気中の水分を吸収し得る親水性の状態と、前記親水性の状態のときに吸収した水分を放出する疎水性の状態とを有し、温度の上昇により前記親水性の状態から疎水性の状態に変化し、かつ、前記温度の下降により前記疎水性の状態から前記親水性の状態に戻る性質を有する調湿装置によって、必要とされる熱エネルギーが少なく、効率的に湿度調節を行なうことができる調湿装置を提供できる。

Description

調湿装置
 本発明は、温度の変化により親水性から疎水性、疎水性から親水性へ変化する性質を有する高分子吸湿材を利用した調湿装置に関する。
 ゼオライト、シリカゲルなどは従来より吸湿材(除湿材)として広く知られており、これらを利用したデシカント式の吸湿(除湿)装置が市販されている(たとえば、特開2000-126540号公報(特許文献1)、特開2010-69428号公報(特許文献2)などを参照)。このようなゼオライト、シリカゲルなどを利用した除湿装置では、ゼオライト、シリカゲルなどをハニカム状などの通気性のローターに塗布したものに室内の空気を当てて空気中の水分を吸着させ、そこから水分を取り出すためにはヒーターを使った高温の風によって温めることによって水蒸気となって放出させる。この水蒸気を含んだ高温の空気を熱交換機によって冷却し、水分を取出し室内空気を除湿する。
 ゼオライト、シリカゲルなどの従来の吸湿材は、水分を吸着後、再度、水分を吸着できる状態に再生するために、ヒーターなどの高熱源を用いて200℃以上といった非常に高い温度で加熱し、水分を除去する必要がある。このように従来の吸湿材は、放湿させるために多くの熱エネルギーを必要とする。上述のデシカント式の吸湿(除湿)装置では、吸湿部と加熱部を分け、基材ローターを回転させながら常時吸放水を可能とする構造が採られており、常時加熱用のヒーターを通電する必要があり、消費電力が高く、また高温加熱による発火の危険性もあった。また吹出し風も除湿後加熱放出するため、室温が高くなり過ぎてしまい、特に湿度の高い梅雨時期の使用に懸念の声がある。さらに、従来のデシカント式の吸湿装置では、放湿させて水に変えるためには、せっかく温めた空気を冷却しなければならないという問題もあった。
 一方、特開2002-126442号公報(特許文献3)では、相転移温度を境として吸水特性が変化するゲルを用いて除湿・吸水するゲルシートが記載されている。
特開2000-126540号公報 特開2010-69428号公報 特開2002-126442号公報
 本発明は、上記課題を解決するためになされたものであって、その目的とするところは、必要とされる熱エネルギーが少なく、効率的に湿度調節を行なうことができる調湿装置を提供することである。
 本発明は、基材の少なくとも一方に高分子吸湿材を設けた吸湿部と、前記吸湿部を部分的に加熱する熱源とを備える調湿装置であって、前記高分子吸湿材が、空気中の水分を吸収し得る親水性の状態と、前記親水性の状態のときに吸収した水分を放出する疎水性の状態とを有し、温度の上昇により前記親水性の状態から疎水性の状態に変化し、かつ、前記温度の下降により前記疎水性の状態から前記親水性の状態に戻る性質を有することを特徴とする。
 本発明の調湿装置において、吸湿部が、熱源側の一部を除いて高分子吸湿材を覆う断熱材を備え、吸収した空気中の水分を熱源により加熱された部分において水滴として放出し得るように構成されていることが好ましい。
 本発明の調湿装置において、吸湿部に対向して、基材の一方側に高分子吸湿材を層状に設け、他方側に高分子吸湿材を加熱し得る熱源を有する集積部をさらに備えることが好ましい。
 本発明の調湿装置において、基材は板状物または網状物であることが好ましい。
 本発明の調湿装置において、基材は高分子吸湿材よりも熱伝導性の高い材料で形成され、基材最表面と高分子吸湿材の末端が固着されたものであることが好ましい。
 本発明の調湿装置によれば、従来のデシカント式の吸湿装置とは異なり、非常に高い温度で加熱することなく、かつ、せっかく温めた空気を冷却するようなことなく吸湿した水分を放出することが可能であり、必要とする熱エネルギーが少なく、かつ、効率的な湿度の調節が可能となる。
本発明の第1の実施形態の調湿装置1を模式的に示す図であり、図1(a)は、図2(a)の切断面線IA-IAからみた断面図、図1(b)は図2(a)の切断面線IB-IBからみた断面図である。 本発明の第1の実施形態の調湿装置1の外観を模式的に示す図であり、図2(a)は上面図、図2(b)は前面部、図2(c)が背面図、図2(d)は左側面図、図2(e)は右側面図である。 本発明において基材が金属である場合の高分子吸湿材の接合例である。 本発明の第2の実施形態の調湿装置21を模式的に示す図である。 本発明の第3の実施形態の調湿装置41を模式的に示す図である。 本発明の第4の実施形態の調湿装置51を模式的に示す図である。 図7(a)は、本発明の第5の実施形態の調湿装置61に用いられる構成単位を模式的に示す図であり、図7(b)は図7(a)に示す構成単位で構成された調湿装置61を模式的に示す図である。
 <第1の実施形態>
 図1は、本発明の第1の実施形態の調湿装置1を模式的に示す図であり、図1(a)は、図2(a)の切断面線IA-IAからみた断面図、図1(b)は、図2(a)の切断面線IB-IBからみた断面図である。また図2は、本発明の第1の実施形態の調湿装置1の外観を模式的に示す図であり、図2(a)は上面図、図2(b)は前面部、図2(c)が背面図、図2(d)は左側面図、図2(e)は右側面図である。本発明の調湿装置1は、基材3の少なくとも一方に高分子吸湿材4を設けた吸湿部2と、前記吸湿部2を部分的に加熱する熱源5とを基本的に備える。本発明の調湿装置1によれば、従来のデシカント式の吸湿装置とは異なり、非常に高い温度で加熱することなく、かつ、せっかく温めた空気を冷却するようなことなく吸湿した水分を放出することが可能であり、必要とする熱エネルギーが少なく、かつ、効率的な湿度の調節が可能となる(低消費電力、室温上昇の抑制、除湿効率化)。
 図1に示す例では、板状の基材3の両面に高分子吸湿材4が層状に形成され、高分子吸湿材4の一部を加熱し得るように熱源5が設けられている。本発明の調湿装置1は、平板状の基材に高分子吸湿材を層状に形成する場合、図1に示す例のように板状の基材がその両主面が鉛直方向に略平行となるように配置されることが好ましい。後述するように熱の刺激による高分子吸湿材の親水性の状態から疎水性の状態への変化を利用した水分の回収に際し、重力を利用して水滴を効率的に回収することができるためである。
 図1には、基材3が平板状である場合を例示したが、基材の形状はこれに限定されるものではなく、棒状、柱状、筒状、球状、その他不定形状であってもよい。基材3を形成する材料としても特に制限されるものではなく、金属、樹脂、セラミック、ゴム、ガラスペーパーなどを挙げることができる。中でも、アルミニウム、ステンレスなどの金属、高熱伝導性樹脂、セラミックなどのうち、高分子吸湿材よりも熱伝導性の高い材料が好ましい。また後述するように、基材3が金属で形成されている場合、その形状は網状物、籠状物であってもよい。
 図1には、基材3の両面に高分子吸湿材が層状に形成されている場合を例示したが、基材の一方側のみに高分子吸湿材が層状に形成されていても勿論よい。
 基材3上に形成される層状に高分子吸湿材4は、空気中の水分を吸収し得る親水性の状態と、前記親水性の状態のときに吸収した水分を放出する疎水性の状態とを有し、温度の上昇により前記親水性の状態から疎水性の状態に変化し、かつ、前記温度の下降により前記疎水性の状態から前記親水性の状態に戻る性質を有するものである。このような本発明における高分子吸湿材は、特許文献3などにより公知のものであり、当業者であれば、たとえばポリN-イソプロピルアクリルアミド(PNIPAM)およびその誘導体、ポリビニルエーテルおよびその誘導体などの感温性高分子を材料として用いて所望の性質を有する高分子吸湿材を適宜調製することが可能である。
 このような本発明における高分子吸湿材は、ゼオライト、シリカゲルなどを利用する場合に、吸着した水分を放湿するために必要となるような高温(たとえば200℃)の熱源を必要とすることがなく、必要とする熱エネルギーが少なくて済む。また、ゼオライト、シリカゲルなどを利用する場合に、放湿された水分を水として回収するために冷却する必要がなく、高分子吸湿材からそのまま水分として回収できるという利点もある。
 高分子吸湿材4の層は、その厚みは特に制限されるものではないが、使用環境、目標能力に基づき、吸湿速度、応答性、水移動速度、風量、全体の規模などを考慮して適宜決定され得る。
 本発明において、基材3と高分子吸湿材4の層との間には、基材の材質にもよるが、たとえば基材がセラミックで形成されている場合などにおいても高分子吸湿材との間にシランカップリングを介することで固定化できる他、従来公知の適宜の接着剤が介在されて、基材最表面と高分子吸湿材の末端が固着されていてもよい。
 また、図3は、本発明において基材3が金属(図示しているのはSUS表面の鉄)である場合の高分子吸湿材4の接合例を模式的に示している。樹脂などの有機物と金属などの無機物を結合させる技術については、たとえばヒーターに関して、特開2013-007355号公報やWO2013/140845などより公知である。たとえば、基材3が金属(たとえばSUS)である場合には、金属表面の酸化膜を除去した後、シランカップリング6を介して、高分子吸湿材(たとえばN-イソプロピルアクリルアミド(NIPAM))が共有結合で強く結びつく。金属の材料、シランカップリングの種類、高分子吸湿材4の種類については勿論これに限定されるものではない。シランカップリング6に用いるシランカップリング剤としては、従来公知の適宜のシランカップリング剤を用いることができ、特に制限されないが、好適な例として、重合性官能基を末端に有するシランカップリング剤、たとえば3-アクリロキシアルキル(たとえば、プロピル)トリアルキル(メトキシ、エトキシ)(またはクロロ)シラン、ビニルトリアルキルシランなどが挙げられ、それぞれ公知の手順、条件でシランカップリング6を好適に行なうことができる。
 本発明の調湿装置1における熱源5は、特に制限なく、シースヒータ、フィルムヒータ、電熱線を内蔵する加熱材、カーボンヒータなどの従来公知の適宜の熱源であればよい。ここで、上述のように、本発明における高分子吸湿材4は、従来のゼオライト、シリカゲルのように、吸湿した水分を放湿させる際の、非常な高温加熱を必要としないため、本発明における熱源は、加熱する高分子吸湿材の感温点にもよるが、常温(23℃)に加えて好ましくは40~60℃(すなわち、(23℃+17℃)~(23℃+37℃))の範囲にまで加温できるものであればよい。このように本発明の調湿装置では、加熱温度を従来よりも低く設定できるため、省電力化、発火発煙の危険性の軽減できる。また、調湿装置において加熱部(ON/OFF)と非加熱部とを分けて構成しやすく、これにより常時水分の吸放出が可能となる(非加熱部において吸収、加熱部において放出)という利点もある。
 本発明の調湿装置1において、熱源5は、高分子吸湿材4を部分的に感温点以上に加熱し得る位置に配置されていればよい。空気中の水分を吸収して親水性の状態となっている高分子吸湿材を、熱源5により加熱することで熱刺激を与え、この温度の上昇により、高分子吸湿材4が疎水性の状態に相転移し、吸収した水分は水滴として回収される。図1に示す例では、両面に高分子吸湿材4が層状に形成された平板状の基材3が、その両主面が鉛直方向に略平行となるように配置され、その下方となる位置に熱源5が設けられる。このため、高分子ネットワーク中に取り込まれていた水が熱源5からの熱刺激によって高分子吸湿材4の下方は昇温と降温を繰り返す毎に疎水性と親水性の状態を交互に繰り返すのに対し、高分子吸湿材4の上側の領域は、室温条件下にて常に親水性の状態であり、空気中の水分を吸収する。水分を吸収し続けるには内部での水の移動が必要であり、高分子吸湿材4に吸収された水分は主に拡散濃度平衡と自重によって高分子吸湿材4内において下方、つまり一旦疎水性となって水分を吐き出した領域が降温して親水性となった領域(高分子吸湿材4の下方)にまで広がっていく。その後、熱源5により下方の高分子吸湿材4を加熱することにより、感温点を超えた領域は親水性の状態から再び疎水性の状態へと相転移する。この相転移により高分子吸湿材4から放出された水分は、自重によって水滴として滴下されることになる。このように本発明の調湿装置では、直接水に触れさせれば自重の数十倍或いはそれ以上もの吸湿能力があるが、空気中の水分はせいぜい自重かその2倍程度の量しか吸湿されにくい高分子吸湿材が有していた、空気中の水分を吸湿した高分子吸湿材を感温点まで上げて含んでいた水分を放出させても吸湿材の表面に付着したままになり滴下水となりにくいという問題も、回転機構などいわば動的な要素を装置内に含まずに、動作のない、いわば静的な要素のみで解決することができる。基材3上に設けられた高分子吸湿材4は全域同一であるが、熱源5の影響の及ぶ領域とそれよりも上部の領域の中間領域は高分子吸湿材中の水分の移動路ともいえる。また高分子吸湿材の吸湿能力、放水能力、刺激応答性によってこれらのサイズが決まる。図1に示す例では、この水滴を受けることができる位置に水回収用皿部(ツユウケザラ)9が設けられ、この水回収用皿部を経て、水タンク10に回収した水分を収容し得るように構成されている。水タンク10は、引き出し式で、調湿装置1から取り外し、回収された水を適宜廃棄できるように構成されている(図2(d))。
 本発明の調湿装置1は、図1に示すように、吸湿部2が、熱源5側の一部を除いて高分子吸湿材4を覆う断熱材11を備え、吸収した空気中の水分を熱源5により加熱された部分において水滴として放出し得るように構成されていることが好ましい。図1に示す例では、吸湿部2の上側の領域4aが断熱材11にて覆われ、下側の領域4bは露出している。これにより、断熱材11で覆われた吸湿部2の上側の領域4aでは感温点を超える状態となりにくく、親水性の状態を維持したまま空気中の水分を吸収し、効率的な水分の吸収が可能となる。断熱材11としては、従来公知の適宜の材料、たとえばウレタン断熱材などを好適に用いることができる。
 図1および図2に示す第1の実施態様の調湿装置1では、上述した吸湿部2は、吸湿部2が配置される高さ位置にエアフィルタ14が嵌め込まれた吸気口13と、排気口15とが対向して形成された筐体12に覆われる。また、図1に示す例では、吸湿部2と排気口15との間に調湿用ファン16が設けられ、当該調湿用ファン16により、吸気口13から湿った空気が筐体12内に吸い込まれ、吸湿部2に接触するように通過して排気口15から筐体12外に排出される風路17が形成される。これにより、湿った空気を吸湿部2に集中的に接触させ、高分子吸湿材が空気中の水分を効率的に吸収することができるようになる。
 <第2の実施形態>
 図4は、本発明の第2の実施形態の調湿装置21を模式的に示す図である。図4に示す例の調湿装置21は、平板状の基材23の一方側に高分子吸湿材24が層状に形成された吸湿部22を備え、基材23の他方側に熱源25が設けられている。図4に示す例では、さらに、吸湿部22に対向して、基材27の一方側に高分子吸湿材28を層状に設け、基材27の他方側に高分子吸湿材28を加熱し得る熱源29を有する集積部26をさらに備える。この集積部26は、高分子吸湿材28が、吸湿部22の高分子吸湿材24と対向するように配置される。
 このような第2の実施形態の調湿装置21によれば、吸湿部22の高分子吸湿材24により空気中の水分を吸収した後、熱源25で基材23側から高分子吸湿材24を加熱することにより、高分子吸湿材24は親水性の状態から疎水性の状態となる。この際、吸湿部22の高分子吸湿材24に、集積部26の高分子吸湿材28を接触させる。これにより、吸湿部22の高分子吸湿材24に含まれていた水分が、集積部26の高分子吸湿材28へと移動し、吸湿部22の高分子吸湿材24の大部分が疎水性の状態となる一方で、集積部26の高分子吸湿材28の大部分は親水性の状態となる。吸湿部22の高分子吸湿材24と集積部26の高分子吸湿材28とを接触させるために、吸湿部22側のみを動かしてもよいし、集積部26側のみを動かしてもよいし、吸湿部22、集積部26の両方を動かしてもよい。
 集積部26の高分子吸湿材28に水分を吸収させた後、集積部26を吸湿部22から離す。その状態で、また吸湿部22の高分子吸湿材に空気中の水分を吸収させた後、熱源25で加熱し、集積部26での水分の回収、というように繰り返すことができる。集積部26での水分の回収のたびに、あるいは、集積部26に十分な量の水分が回収できたタイミングで、集積部26の熱源29で高分子吸湿材28を基材27側から加熱することで、集積部26の高分子吸湿材28は、親水性の状態から疎水性の状態となり、吸収していた水分は、水滴30として放出される。
 このように第2の実施形態の調湿装置21では、水などの溶媒中では良く知られているが、高分子吸湿材の温度の上昇に応じて吸収していた水分を吐き出す現象(たとえばLCST)が空気中でも生じることを応用して、過度な冷却や大きな熱量を用いることなく、吸収した水分を凝縮して水滴として回収することができる。このように熱刺激によって高分子吸湿材の親水性の状態と疎水性の状態とをコントロールすることで、高分子吸湿材の間(図4に示す例では吸湿材22の高分子吸湿材24と集積部26の高分子吸湿材28)を水移動させることができる。最初に水蒸気(気体)として吸収した空気中の水分は、高分子吸湿材内で空気中にあるよりも大きなクラスターを形成し、熱刺激によって相転移して水滴として放出されるが、それを別の高分子吸湿材28(集積側)が吸収し、その内部に蓄積した後に、この集積部26に熱源29によって熱刺激を加えて大きな水滴として滴下させ回収する。
 図4に示す例の調湿装置21の場合、基材23を形成する材料については特に制限されないが、金属であることが好ましい。ここで水などの溶媒中ではよく知られているが、刺激応答性の高分子ゲルを入れた溶媒を加熱すると、溶媒から伝わる熱がゲルの外側(表面および表面に近い領域)に疎水性の殻を形成するスキン効果という現象がある。それと同じ現象が空気中で使用した高分子ゲルにおいても発生する。高分子吸湿材に温度の刺激を与える際、高分子吸湿材の外側から熱を加えた場合、高分子吸湿材の表面が先に疎水性の状態となり、内側の親水性の状態の部分が疎水性の状態になる際、または、疎水性の状態になった後の水の行き場を妨げてしまい、効率的な水の回収が困難となることが考えられる。しかしながら、基材23を熱伝導性がよく、かつ、高い機械的強度を有する金属で形成することで、基材23の高分子吸湿材24が設けられたのとは反対側から熱源25で熱を加えることができる。これにより、高分子吸湿材24は内側から温められて、内側から外側に向かって徐々に順に親水性の状態から疎水性の状態となるため、スキン効果が生じることがない。したがって熱伝導と共に親水性の状態から疎水性の状態に変化した領域が内側(基材23側)から外側へ広がることで吸った水が移動し、高分子吸湿材24の表層部に水分を集積することができる。この場合、集積部26の基材27も同様に水滴を回収する際のスキン効果を防ぐ観点からは金属で形成することが好ましいが、基材23から基材27への熱移動も起こるため、加熱の時間制御、高分子吸湿材の厚み、隙間材の調整などによって最適搬送条件を見つけるようにすることが望ましい。
 図4に示す例のように、吸湿部22は、湿った空気が通り抜ける風路31に配置されることが好ましい。風路31の形成は、特に制限されないが、第1の実施形態の調湿装置1について上述したように、たとえば吸気口、排気口および調湿用ファンを用いて形成することができる。これにより、湿った空気を吸湿部22に集中的に接触させ、高分子吸湿材に空気中の水分を効率的に吸収させることができる。この際、集積部26は風路31の外に配置されるようにする。
 図4に示す例において、集積部26は、高分子吸湿材24に対し加圧するように、吸湿部22の高分子吸湿材24と接触するようにしてもよい。これにより、高分子吸湿材24に吸収されていた水分が集積部26からの加圧により、高分子吸湿材24と高分子吸湿材28との密着性が上がり、集積部26の高分子吸湿材28に移動させることができる。
 <第3の実施形態>
 図5は、本発明の第3の実施形態の調湿装置41を模式的に示す図である。図5に示す例の調湿装置41は、断面六角形状の中空(六角筒状)の基材43に、6つの外面に層状にそれぞれ高分子吸湿材44a,44b,44c,44d,44e,44fが形成された吸湿部42を備える。基材43内の6つの内面のうちの1つに、基材43側から高分子吸湿材44a,44b,44c,44d,44e,44fのうちのいずれか1つを加熱し得る熱源45が設けられる。図5に示す例では、さらに、基材43の6つの外面のいずれか1つの面に対応する位置の高分子吸湿材44a,44b,44c,44d,44e,44fのいずれかに対向するように、集積部26が設けられる。集積部26は、図4に示した例の集積部26と同様に、基材27の一方側に高分子吸湿材28を層状に設け、基材27の他方側に高分子吸湿材28を加熱し得る熱源29を有する。この集積部26の高分子吸湿材が、基材43の6つの外面のいずれか1つの面に対応する位置の高分子吸湿材44a,44b,44c,44d,44e,44fのいずれかに対向するように配置される。
 図5に示す例では、基材43の中空となった部分および基材43の外側に風路46,47が設けられる。基材43は、基材43の6つの外面に対応する位置の高分子吸湿材44a,44b,44c,44d,44e,44fのいずれかが、集積部26の高分子吸湿材28に順に対向するように回転し、高分子吸湿材44a,44b,44c,44d,44e,44fのいずれか1つ(たとえば高分子吸湿材44b)からの集積部26による水分の回収の間停止し、水分の回収が終わったら、また基材43が回転し、次の高分子吸湿材44a,44b,44c,44d,44e,44fの回転方向後方の次のいずれか(たとえば高分子吸湿材44a)が位置し、水分を回収する間回収し、という回転する状態と回転が停止する状態とが交互に繰り返され、吸湿部42の高分子吸湿材から順次水分を回収できるように構成される。このような機構は、従来公知の適宜の機構を特に制限なく組み合わせて実現することができる。水分の回収の際には、上述した第2の実施形態の調湿装置21について上述したように、互いに対向する吸湿部42の高分子吸湿材と集積部26の高分子吸湿材28とを接触させるように、たとえば集積部26を動かすようにしてもよい。
 このようにすることで、集積部26に対向する位置にあるいずれか1つの高分子吸湿材以外の5つの高分子吸湿材には、風路46,47により空気中の水分を効率的に吸収させることができ、上述の基材43の回転により、順次、集積部26による吸湿部の高分子吸湿材からの効率的な水分の回収が可能となる。なお、図5には、基材が六角筒状の場合を例示しているが、基材の断面形状は勿論これに限定されるものではなく、三角筒状、四角筒状、五角筒状、七角を超える多角筒状でもよい。
 <第4の実施形態>
 図6は、本発明の第4の実施形態の調湿装置51を模式的に示す図である。図6に示す例の調湿装置51は、断面円状の中空(円筒状、円盤状)の基材53の外周面に層状に高分子吸湿材54が形成された吸湿部52を備える。図6に示す例では、さらに、基材53の外周面に設けられた高分子吸湿材の一部の領域に対向するように、集積部26が設けられる。集積部26は、図4、5に示した例の集積部26と同様に、基材27の一方側に高分子吸湿材28を層状に設け、基材27の他方側に高分子吸湿材28を加熱し得る熱源29を有する。図6に示す例では、この集積部26が、高分子吸湿材28が壊れない程度の圧力と摩擦力を維持して、吸湿部52の高分子吸湿材54の一部に直接接触するようにする。基材53内の内周面の、集積部26に対応する位置には、基材53側から高分子吸湿材54を加熱し得る熱源55を備える。
 図6に示す例では、基材53の中空の部分および基材53の外側に風路56,57が設けられる。基材53は、中心軸周りに回転され、熱源55で高分子吸湿材54を部分的に加熱するようにすることで、高分子吸湿材54で吸収した空気中の水分は、集積部26に移動する。熱源55と基材53とは分かれており一体ではないため、基材53が回転するにつれてその上に設けられた高分子吸湿材54も移動するが、熱源55は集積部26が対向する場所に止まる。したがって高分子吸湿材54の熱源55から離れていった領域では吸湿し、熱源55近傍で放水した際に集積部26の高分子吸湿材28(親水状態)に水が移動する。また、集積部26は高分子吸湿材28に水が十分に移るまで熱源29を働かすことなく、集積に専念する。自重で落下するほどの水分量が集積できたところで熱源29を集積部26の熱源55と同時に加熱し、主に高分子吸湿材28に集積していた水を水滴として自重で滴下させる。集積部26の高分子吸湿材28に移った水分が、吸湿部52の高分子吸湿材54に戻らないようにする場合には、集積部26を吸湿部52から離すか、集積部26の高分子吸湿材28と吸湿部52の高分子吸湿材54とが接触する部分を冷却すればよい。
 このようにして、図6に示すような構造でも、図5に示した構造と同様に、吸湿材52の高分子吸湿材54の集積部26に対向する領域以外の領域では風路56,57により空気中の水分を効率的に吸収させることができ、上述の基材53の回転により、順次、集積部26による吸湿部52の高分子吸湿材54からの効率的な水分の回収が可能となる。
 また、基材53の内周面に放熱フィンが設けられていてもよい。放熱フィンは内周面の一部に設けられていても、基材53の内周面の全面にわたって設けられていてもよい。このように基材53に放熱フィンを設けることで、高分子吸湿材54の集積部26に対向する領域以外の領域において、熱源55での加熱により基材53に残っていた熱を放出し、疎水性の状態となりにくくすることができる。なお、上述した図4の基材23の熱源25側、図5の基材43の内側に放熱フィンを設けるようにしても勿論よい。
 <第5の実施形態>
 図7(a)は、本発明の第5の実施形態の調湿装置61に用いられる構成単位61aを模式的に示す図であり、図7(b)は複数の構成単位(たとえば構成単位61a,61b,61c,61d,61e)で構成された調湿装置61を模式的に示す図である。図7に示す例では、たとえばNi-Crの約70%も電気抵抗を有するステンレスなどで形成された金属製網状物(メッシュ)を基材62として用い、これに高分子吸湿材66を上述したシランカップリングを利用して結合する。これにより金属の表面粗さとシランカップリングとで、基材62と高分子吸湿材66とを強固に結合させることができる(基材62の網目の中に高分子吸湿材66が入り込む)。さらに、図7(a)に示す構成単位には、金属製網状物である基材62に通電して抵抗発熱させるための通電部(電源)64および基材62と通電部64との間を電気的に接続する配線63が設けられる。
 このような構成単位を、高分子吸湿材66同士が接触するように複数並べて、調湿装置61を構成する(図7(b)では、高分子吸湿材66同士が離れているように見えるが、実際には接触している)。この際、金属製網状物である基材62は、湿った空気が流れる風路65に曝されるようにする。これにより各構成単位の高分子吸湿材66は、空気中の水分を吸収し、親水性の状態となる。その後、風路65に近い側(図7では、紙面に関して左側)から、通電部64および配線63を介し、順次、基材62に通電していく。このようにすることで、図7の紙面に関して左側から右側に向かって、高分子吸湿材66の水分を移動させ、集積させることが可能となる。このようにして、最終的に端の構成単位の高分子吸湿材に水分を集積させ、最終的に水滴として回収すればよい。なお、図7に示す構成において、基材としては上述のように金属製網状物が好適であるが、金属製の平板状物、ブロック状物などで基材を構成するようにしても勿論よい。また特に吸湿した状態でのメッシュ同士の電気的な短絡を防ぐためにメッシュ基材を薄いセラミックで包みセラミックに高分子を付けることもできる。
 1 調湿装置、2 調湿部、3 基材、4 高分子吸湿材、5 熱源、6 シランカップリング、7 高分子吸湿材、9 水回収用皿部、10 水タンク、11 断熱材、12 筐体、13 吸気口、14 エアフィルタ、15 排気口、16 調湿用ファン、17 風路、21 調湿装置、22 吸湿部、23 基材、24 高分子吸湿材、25 熱源、26 集積部、27 基材、28 高分子吸湿材、29 熱源、41 調湿装置、42 調湿部、43 基材、44a,44b,44c,44d,44e,44f 高分子吸湿材、45 熱源、46 風路、47 風路、51 調湿装置、52 吸湿部、53 基材、54 高分子吸湿材、55 熱源、56 風路、57 風路、61 調湿装置、62 基材(金属製網状体)、63 配線、64 通電部(電源)、65 風路、66 高分子吸湿材。

Claims (5)

  1.  基材の少なくとも一方に高分子吸湿材を設けた吸湿部と、前記吸湿部を部分的に加熱する熱源とを備える調湿装置であって、
     前記高分子吸湿材が、空気中の水分を吸収し得る親水性の状態と、前記親水性の状態のときに吸収した水分を放出する疎水性の状態とを有し、温度の上昇により前記親水性の状態から疎水性の状態に変化し、かつ、前記温度の下降により前記疎水性の状態から前記親水性の状態に戻る性質を有する、調湿装置。
  2.  吸湿部が、熱源側の一部を除いて高分子吸湿材を覆う断熱材を備え、吸収した空気中の水分を熱源により加熱された部分において水滴として放出し得るように構成されている、請求項1に記載の調湿装置。
  3.  吸湿部に対向して、基材の一方側に高分子吸湿材を層状に設け、他方側に高分子吸湿材を加熱し得る熱源を有する集積部をさらに備える、請求項1に記載の調湿装置。
  4.  基材が板状物または網状物である、請求項1~3のいずれか1項に記載の調湿装置。
  5.  基材が高分子吸湿材よりも熱伝導性の高い材料で形成され、基材最表面と高分子吸湿材の末端が固着されたものである、請求項1~4のいずれか1項に記載の調湿装置。
PCT/JP2015/066808 2014-09-05 2015-06-11 調湿装置 WO2016035409A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016546352A JP6271744B2 (ja) 2014-09-05 2015-06-11 調湿装置
CN201580008866.XA CN106061581B (zh) 2014-09-05 2015-06-11 调湿装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181293 2014-09-05
JP2014-181293 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035409A1 true WO2016035409A1 (ja) 2016-03-10

Family

ID=55439481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066808 WO2016035409A1 (ja) 2014-09-05 2015-06-11 調湿装置

Country Status (3)

Country Link
JP (1) JP6271744B2 (ja)
CN (1) CN106061581B (ja)
WO (1) WO2016035409A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261887A1 (ja) * 2019-06-24 2020-12-30 パナソニックIpマネジメント株式会社 調湿デバイス、水分の吸収及び排出の方法、発電方法、熱交換換気システム、及び熱交換換気システムの制御方法
CN115216852A (zh) * 2021-04-15 2022-10-21 财团法人纺织产业综合研究所 感温调湿纤维及其制备方法
EP4201505A4 (en) * 2020-08-18 2024-05-22 Sharp Kabushiki Kaisha WATER COLLECTION APPARATUS AND WATER COLLECTION METHOD

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528097B2 (ja) 2015-05-29 2019-06-12 シャープ株式会社 除湿装置及び除湿方法
US11383201B2 (en) * 2017-09-04 2022-07-12 Sharp Kabushiki Kaisha Humidity controller
CN108437572B (zh) * 2018-01-15 2020-10-16 青岛海尔股份有限公司 一种冰箱用调湿装置和调湿片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069257A (ja) * 2002-08-09 2004-03-04 Daikin Ind Ltd 調湿エレメント及び調湿装置
JP2009511261A (ja) * 2005-10-10 2009-03-19 オプティマイアー ホールディング ベー フェー イー オー 収着ドライヤ又はクリーナを再生する方法及び装置
JP2013530819A (ja) * 2010-05-12 2013-08-01 オプティメア・ホールディング・ベスローテン・フエンノートシャップ 吸着ドライヤ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT939283E (pt) * 1998-02-25 2005-02-28 Sanyo Electric Co Aparelho para controlo de humidade
JP4661170B2 (ja) * 2004-11-09 2011-03-30 パナソニック株式会社 除湿装置
KR101158579B1 (ko) * 2005-06-13 2012-06-22 엘지전자 주식회사 제습기
GB0517776D0 (en) * 2005-09-01 2005-10-12 Oxycell Holding Bv Vapour extraction device
CN201791458U (zh) * 2010-07-26 2011-04-13 张清杰 一种转轮抽湿机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069257A (ja) * 2002-08-09 2004-03-04 Daikin Ind Ltd 調湿エレメント及び調湿装置
JP2009511261A (ja) * 2005-10-10 2009-03-19 オプティマイアー ホールディング ベー フェー イー オー 収着ドライヤ又はクリーナを再生する方法及び装置
JP2013530819A (ja) * 2010-05-12 2013-08-01 オプティメア・ホールディング・ベスローテン・フエンノートシャップ 吸着ドライヤ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020261887A1 (ja) * 2019-06-24 2020-12-30 パナソニックIpマネジメント株式会社 調湿デバイス、水分の吸収及び排出の方法、発電方法、熱交換換気システム、及び熱交換換気システムの制御方法
EP4201505A4 (en) * 2020-08-18 2024-05-22 Sharp Kabushiki Kaisha WATER COLLECTION APPARATUS AND WATER COLLECTION METHOD
CN115216852A (zh) * 2021-04-15 2022-10-21 财团法人纺织产业综合研究所 感温调湿纤维及其制备方法

Also Published As

Publication number Publication date
JP6271744B2 (ja) 2018-01-31
JPWO2016035409A1 (ja) 2017-04-27
CN106061581A (zh) 2016-10-26
CN106061581B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
JP6271744B2 (ja) 調湿装置
JP6385781B2 (ja) 除湿装置
JP6439157B2 (ja) 吸湿材、除湿装置及び除湿方法
EP3043888B1 (en) Water extracting device
JP6432022B2 (ja) 除湿機および製水機
JP2008057953A (ja) 空調システム
JP6198960B2 (ja) 調湿装置
CN116379524A (zh) 集水装置及集水方法
JP2008249272A (ja) 冷房空調システム
EP3429728B1 (en) Dehumidifier using a stimulus responsive polymer
CN108106005A (zh) 一种净化暖风机
TWI296942B (ja)
JP2012183460A (ja) 除湿体及びこれを備えたデシカント除湿装置
WO2014194714A1 (zh) 吸附式除湿机
JP5634495B2 (ja) 除加湿ロータ
US20220390127A1 (en) Desiccant coated fan blade
US11378289B2 (en) Energy exchange apparatus for sensible and latent heat
WO2021210627A1 (ja) 調湿装置および調湿方法
JP5844058B2 (ja) 除湿体及びこれを備えたデシカント除湿装置
KR101710779B1 (ko) 제습 및 가습 장치
JP2012179559A (ja) 除湿体及びこれを備えたデシカント除湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838916

Country of ref document: EP

Kind code of ref document: A1