WO2016035397A1 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
WO2016035397A1
WO2016035397A1 PCT/JP2015/064679 JP2015064679W WO2016035397A1 WO 2016035397 A1 WO2016035397 A1 WO 2016035397A1 JP 2015064679 W JP2015064679 W JP 2015064679W WO 2016035397 A1 WO2016035397 A1 WO 2016035397A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
power supply
memory alloy
wiper
relay
Prior art date
Application number
PCT/JP2015/064679
Other languages
English (en)
French (fr)
Inventor
謙一 小谷
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2016546347A priority Critical patent/JP6187702B2/ja
Publication of WO2016035397A1 publication Critical patent/WO2016035397A1/ja
Priority to US15/440,636 priority patent/US20170158173A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/18Means for transmitting drive mechanically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • B60S1/566Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens including wiping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • F03G7/06143Wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories

Definitions

  • the present invention relates to a drive device, and more particularly to a drive device that is applied to a foreign matter removing device that removes foreign matter such as raindrops and dust and that displaces an object by rotationally driving a rotary shaft.
  • Patent Document 1 An example of this type of driving device is disclosed in Patent Document 1.
  • the shape memory alloy provided in the drive unit is self-heated when energized and contracts at a temperature exceeding the transformation temperature. Further, the shape memory alloy is formed in a coil shape so that the operating range due to temperature change is increased. One end of the shape memory alloy is fixed by a hook, and the other end of the shape memory alloy is connected to a wire. The direction of the wire is changed by the pulley, and the changed wire movement is propagated to the blade through the transducer. Water droplets on the mirror surface are wiped off by the rotation of the blade.
  • the heat capacity of the shape memory alloy becomes large, it takes time until the temperature of the shape memory alloy becomes equal to or lower than the transformation temperature after the energization is stopped (the cooling time of the shape memory alloy is long). That is, in the background art, there is a problem that the response characteristic of the driving device is not excellent and the interval during the repeated operation becomes long.
  • a main object of the present invention is to provide a drive device that can suppress power consumption, has excellent response characteristics, and can adaptively adjust the rotation angle of an object.
  • the drive device is a rotating member supported by a housing so as to be able to rotate in each of a first direction and a second direction assigned in opposite directions around a reference axis, and an external force directed in the first direction.
  • Wire-shaped shape memory alloy that urges the rotating member by thermal contraction, an elastic body that urges the rotating member to apply an external force in the second direction, an object that is displaced as the rotating member rotates, and a shape
  • a power supply terminal is provided at three or more positions of the memory alloy, and a power supply system that supplies power individually so as to give a potential difference between adjacent power supply terminals is provided.
  • the three or more positions include specific power supply positions for supplying a part of the shape memory alloy, the power supply system is movably provided in the specific power supply terminal for supplying power to the specific power supply position, and the housing; A support member that supports the specific power supply terminal is included.
  • the shape memory alloy is supported by the support member so as to extend in a zigzag manner.
  • the number of specific power feeding positions is two or more, and the shape memory alloy is divided into two or more partial shape memory alloys each having a specific power feeding position assigned thereto.
  • the two or more specific power supply positions are assigned such that two or more partial shape memory alloys overlap at least partially when viewed from a specific direction.
  • the object includes a wiper that rotates to remove raindrops.
  • the rotating member has a tapered first end surface formed at one end in the reference axis direction, and the object has a tapered second end surface in contact with the first end surface.
  • the shape memory alloy By making the shape memory alloy into a wire shape, power consumption for energization can be suppressed, and response characteristics of the shape memory alloy to energization can be enhanced.
  • the shape memory alloy contracts with a contraction amount according to the power supply mode. Thereby, the rotation angle of the rotation member can be adaptively changed.
  • (A) is a front view which shows the state which looked at the camera and the raindrop removal apparatus of 1st Example from the front
  • (B) is the state which looked at the camera and the raindrop removal apparatus of 1st Example from the side. It is a side view to show
  • (C) is a front view which shows the state which the wiper provided in the raindrop removal apparatus of 1st Example rotated.
  • It is a disassembled perspective view which shows an example of the state which looked at the raindrop removal apparatus of 1st Example from the diagonal direction.
  • It is a disassembled perspective view which shows the state which the wiper provided in the raindrop removal apparatus of 1st Example rotated.
  • a raindrop removing device 10 is a device that is provided at the rear of an automobile together with a camera 12 to remove raindrops attached to a lens 12z. And includes a housing 14 in which a rectangular parallelepiped storage chamber RM1 is formed.
  • a housing 14 in which a rectangular parallelepiped storage chamber RM1 is formed.
  • the two inner side surfaces that form the storage chamber RM1 and face each other are orthogonal to the X axis or the Z axis, and the bottom surface that forms the storage chamber RM1 is orthogonal to the Y axis.
  • the two outer surfaces that are opposite to each other in the housing 14 are orthogonal to the X axis or the Z axis.
  • the lid 20 has a main surface that is substantially the same size as the main surface of the housing 14 and is formed in a plate shape.
  • the surface facing the positive side in the X-axis direction and the surface facing the negative side in the X-axis direction are defined as “X-axis positive outer surface” and “X-axis negative outer surface”, respectively.
  • the surface facing the positive side in the Z-axis direction and the surface facing the negative side in the Z-axis direction are defined as “Z-axis positive outer surface” and “Z-axis negative outer surface”, respectively.
  • the surface opposite to the X-axis positive outer surface and the surface opposite to the X-axis negative outer surface are defined as “X-axis negative inner surface” and “X-axis positive inner surface”, respectively.
  • the surface opposite to the Z-axis positive outer surface and the surface opposite to the Z-axis negative outer surface are defined as “Z-axis negative inner surface” and “Z-axis positive inner surface”, respectively.
  • the wall formed by the X-axis positive outer surface and the X-axis negative inner surface is defined as “X-axis positive side wall”, and the wall formed by the X-axis negative outer surface and the X-axis positive inner surface is defined as “X-axis negative side wall”.
  • the wall formed by the Z-axis positive outer side surface and the Z-axis negative inner side surface is defined as “Z-axis positive side wall”, and the wall formed by the Z-axis negative outer side surface and the Z-axis positive inner side surface is defined as “Z-axis negative side wall”.
  • the rotary shaft 22 is attached to the housing 14 so as to extend along the Z axis in the vicinity of the X axis positive side wall in the storage chamber RM1.
  • the rotating shaft 22 has a length that exceeds the height of the housing 14.
  • One end of the rotation shaft 22 passes through the Z-axis positive side wall of the housing 14 and protrudes to the outside of the housing 14, and the other end of the rotation shaft 22 passes through the Z-axis negative side wall of the housing 14. Projects outward. That is, the rotating shaft 22 is supported by the housing 14 so as to be able to rotate around the Z axis.
  • the rotation direction of the rotation shaft 22 that is clockwise when viewed from the negative side in the Z-axis direction is defined as “positive rotation direction”
  • the rotation shaft 22 that is counterclockwise when viewed from the negative side in the Z-axis direction is defined.
  • the direction of rotation is defined as the “reverse direction of rotation”.
  • a wiper 16 extending in the radial direction of the rotary shaft 22 is provided at one end of the rotary shaft 22.
  • the rubber blade 18 is attached to the arm portion of the wiper 16, extends in the radial direction of the rotary shaft 22, and slides on the surface of the lens 12z in the manner shown in FIGS. 1 (A) to 1 (C).
  • the rotation angle of the wiper 16 changes with the rotation of the rotating shaft 22, and raindrops attached to the lens 12 z are removed by the blade 18.
  • a nose 14n is integrally formed on the outer side surface of the housing 14 along the Z axis.
  • the wiper 16 hits the nose 14n. Thereby, the rotation of the wiper 16 in the reverse rotation direction is restricted, and the wiper 16 is protected from an unexpected external force.
  • the upper limit of the angle at which the rotating shaft 22 can rotate in reverse is less than the angle corresponding to the maximum amount of strain that the shape memory alloys 241a and 241b described later can repeat transformation.
  • the housing 14 is integrally formed with a spring post 14sp that is paired with the spring post 22sp.
  • the spring post 14sp is provided in the Z-axis direction from the Z-axis positive side wall of the storage chamber RM1 so that the spring post 14sp is provided at a position substantially the same as the height position of the spring post 22sp in the Z-axis direction and near the X-axis negative side wall. Projects to the negative side.
  • the one end of the bias spring (coiled tension spring) 26 is locked to the spring post 22sp, and the other end of the bias spring 26 is locked to the spring post 14sp. As a result, the external force in the reverse rotation direction is urged to the rotation shaft 22 by the bias spring 26.
  • the power supply terminals 281a to 281c are fixedly provided in the vicinity of the X-axis negative side wall in the bottom surface of the storage chamber RM1. At this time, the power supply terminals 281a to 281c are arranged in this order from the negative side in the Z-axis direction to the positive side, and are drawn out to the Y-axis positive outer side surface of the housing 14.
  • a plate-like relay member 301 is provided substantially at the center of the bottom surface of the storage chamber RM1.
  • the size of the main surface of the relay member 301 is smaller than the size of the bottom surface of the storage chamber RM1.
  • the guide 301g supports the relay member 301 so that the relay member 301 can slide in the X-axis direction with one main surface of the relay member 301 facing the bottom surface of the storage chamber RM1.
  • relay terminals (specific power supply terminals) 321a and 321b and an SMA post 301ap are provided on the other main surface of the relay member 301. More specifically, the relay terminal 321a is provided at a position on the negative side in the X-axis direction and the negative side in the Z-axis direction, and the relay terminal 321b is provided at a position on the negative side in the X-axis direction and on the positive side in the Z-axis direction.
  • the SMA post 301ap is provided on the positive side in the X-axis direction and at the center position in the Z-axis direction.
  • the relay terminal 321a is connected to the power supply terminal 281a by a lead wire 341a
  • the relay terminal 321b is connected to the power supply terminal 281c by a lead wire 341b.
  • the shape memory alloy 241a is formed in a wire shape, and one end and the other end thereof are connected to the power supply terminals 281a and 281b, respectively.
  • the central portion in the length direction of the shape memory alloy 241a is hooked on the SMA post 301ap.
  • the shape memory alloy 241b is also formed in a wire shape, and one end and the other end (both are specific power feeding positions) are connected to the relay terminals 321a and 321b, respectively.
  • the central portion in the length direction of the shape memory alloy 241b passes between the rotary shaft 22 and the bottom surface of the storage chamber RM1, and then is folded back to the negative side in the Y-axis direction at a position on the positive side in the X-axis direction from the rotary shaft 22. And hooked on the SMA post 22ap.
  • the shape memory alloys 241a and 241b thus hooked draw a substantially U shape when viewed from the Y-axis direction. Further, the shape memory alloys 241a and 241b partially overlap when viewed from the Z-axis direction.
  • the power supply terminals 281a to 281c, the relay terminals 321a to 321b and the lead wires 341a to 341b connected as described above are collectively referred to as “power supply system”. Since the shape memory alloys 241a and 241b are connected to the power feeding system in the manner described above, power feeding is performed individually for three or more different positions of the shape memory alloys 241a and 241b.
  • the characteristics of the shape memory alloys 241a and 241b will be briefly described. Below the transformation temperature, the atoms forming the crystal lattice of the shape memory alloys 241a and 241b are not broken, and only lattice deformation occurs. Therefore, when a load having a magnitude that does not break the bond between atoms at a temperature lower than the transformation temperature is applied in the length direction of the shape memory alloys 241a and 241b, a strain of about 6% is generated due to lattice deformation, resulting in a shape memory alloy. 241a and 241b extend. When the shape memory alloys 241a and 241b are heated to a temperature above the transformation temperature, the lattice deformation is restored and the lengths of the shape memory alloys 241a and 241b are shortened.
  • the relay member 301 slides to the positive side in the X-axis direction when none of the power supply terminals 281a to 281c is supplied with power.
  • the shape memory alloys 241a and 241b are elongated by lattice deformation below the transformation temperature.
  • the shape memory alloy 241a When the power supply to the power supply terminals 281a and 281b is started, the shape memory alloy 241a is energized.
  • the shape memory alloy 241a is self-heated by Joule heat, and the lattice deformation is restored when the temperature of the shape memory alloy 241a exceeds the transformation temperature.
  • the shape memory alloy 241a undergoes thermal shrinkage, which causes the relay member 301 to slide to the negative side in the X-axis direction. As a result, the rotating shaft 22 rotates in the forward rotation direction, and the wiper 16 rotates in the forward rotation direction.
  • the shape memory alloy 241a When the power supply to the power supply terminals 281a and 281b is stopped, the shape memory alloy 241a is naturally cooled. When the temperature of the shape memory alloy 241a falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 241a expands. As a result, the relay member 301 slides to the positive side in the X axis direction, and the rotary shaft 22 rotates in the reverse rotation direction. The wiper 16 rotates in the reverse rotation direction with the rotation of the rotating shaft 22.
  • the shape memory alloy 241b When the power supply to the power supply terminals 281a and 281c is started, the shape memory alloy 241b is energized.
  • the shape memory alloy 241b is self-heated by Joule heat, and the lattice deformation is restored when the temperature of the shape memory alloy 241b exceeds the transformation temperature.
  • the shape memory alloy 241b undergoes thermal contraction, and as a result, the rotating shaft 22 rotates in the forward rotation direction and the wiper 16 rotates in the forward rotation direction.
  • the shape memory alloy 241b When the power supply to the power supply terminals 281a and 281c is stopped, the shape memory alloy 241b is naturally cooled. When the temperature of the shape memory alloy 241b falls below the transformation temperature, lattice deformation occurs due to the elastic force of the bias spring 26, and the shape memory alloy 241b expands. As a result, the rotating shaft 22 rotates in the reverse rotation direction, and the wiper 16 rotates in the reverse rotation direction.
  • the relay member 301 slides to the negative side in the X axis direction and the rotary shaft 22 rotates in the positive rotation direction as shown in FIG.
  • the sliding angle of the relay member 301 is added to the rotation angle of the rotating shaft 22, and the wiper 16 rotates to the maximum angle.
  • the rotation angle of the wiper 16 is less than the maximum angle. That is, the rotation angle of the wiper 16 changes stepwise by switching the power supply mode for the power supply terminals 281a to 281c.
  • the shape memory alloys 241a and 241b are alloys made of Ni / Ti or the like.
  • the rotating shaft 22, the wiper 16, the spring posts 14sp, 22sp, and the SMA post 22ap are made of a metal such as aluminum or a resin such as PPS (polyphenylene sulfide).
  • the bias spring 26 is made of a spring material such as stainless steel, and the blade 18 is made of natural rubber or synthetic rubber.
  • the power supply terminals 281a to 281c, the relay terminals 321a to 321b, and the lead wires 341a to 341b are made of a conductor such as copper, brass, or aluminum.
  • the casing 14, the lid 20, the relay member 301, and the SMA post 301ap are made of resin such as PPS.
  • the rotation shaft (rotating member) 22 is moved in each of the forward rotation direction (first direction) and the reverse rotation direction (second direction) assigned around the Z axis (reference axis). It is supported by the housing 14 so that it can rotate.
  • the wire-shaped (linear) shape memory alloys 241a and 241b urge external force toward the forward rotation direction to the rotating shaft 22 by thermal contraction.
  • the bias spring (elastic body) 26 urges the rotating shaft 22 to apply an external force in the reverse rotation direction.
  • the wiper (object) 16 is displaced as the rotating shaft 22 rotates.
  • the power supply system constituted by the power supply terminals 281a to 281c, the relay terminals 321a to 321b, and the lead wires 341a to 341b individually supplies power to three or more different positions of the shape memory alloys 241a and 241b.
  • the force due to lattice deformation becomes the contraction force as it is, and a large force can be obtained.
  • the shape memory alloys 241a and 241b can be thinned.
  • the heat capacity is reduced, and power consumption for energization can be suppressed.
  • the interval between repeated operations can be shortened, and the response characteristics of the shape memory alloys 241a and 241b to energization are improved.
  • the shape memory alloys 241a and 241b contract with different contraction amounts depending on the power supply mode.
  • the rotation angle of the wiper 16 can be adaptively changed.
  • the raindrops adhering to the blade 18 are satisfactorily shaken off by changing the rotation angle irregularly.
  • a relay member 301 is provided between the rotating shaft 22 and the power supply terminals 281a to 281c, and the positions of the relay terminals 321a to 321b for energizing the shape memory alloy 241b are set by the SMA post 301ap for hooking the shape memory alloy 241a. Also, by arranging the shape memory alloys 241a and 241b at the same time by arranging them on the power supply terminals 281a to 281c side, the rotation angle of the wiper 16 can be adjusted without changing the distance from the rotary shaft 22 to the power supply terminals 281a to 281c. Can be bigger. Thereby, size reduction of the housing
  • a coiled tension spring is used as the bias spring 26.
  • an elastic body such as a leaf spring, a tension spring, or rubber is used. May be adopted.
  • the rotation shaft 22 is formed in a true cylinder shape, but the rotation shaft 22 may be formed in an elliptic column shape or a prism shape.
  • an SMA holding member 222h is adopted instead of the SMA post 22ap, and shape memory alloys 241a to 241b are used.
  • the power supply terminals 282a to 282c are used instead of the power supply terminals 281a to 281c
  • the relay member 302 is used instead of the relay member 301
  • the guide 302g is used instead of the guide 301g.
  • relay terminals (specific power supply terminals) 322a to 322c are employed instead of the relay terminals 321a to 321b, and lead wires 342 are employed instead of the lead wires 341a to 341b.
  • the relay member 302, the SMA holding member 222h, the rotating shaft 22, and the spring post 22sp are made of a metal such as aluminum (may be a conductor obtained by plating the surface of a resin such as PPS).
  • the bias spring 26 is made of a spring material such as stainless steel.
  • the power supply terminals 282a to 282b are fixedly provided near the X-axis negative side wall in the bottom surface of the storage chamber RM1.
  • the power supply terminal 282c has substantially the same shape as the spring post 14sp shown in FIG. 2, and is fixedly provided at the same position as the position of the spring post 14sp.
  • the power supply terminals 282a to 282b are arranged in this order from the negative side to the positive side in the Z-axis direction. In addition, all of the power supply terminals 282a to 282c are drawn out to the outer surface on the Y axis front side of the housing 14.
  • the relay member 302 is formed in a plate shape, and is provided at substantially the center of the bottom surface of the storage chamber RM1.
  • the size of the main surface of the relay member 302 is also smaller than the size of the bottom surface of the storage chamber RM1.
  • the guide 302g supports the relay member 302 so that the relay member 302 can slide in the X-axis direction with one main surface of the relay member 302 facing the bottom surface of the storage chamber RM1.
  • the relay terminals 322 a and 322 b are integrally formed on the other main surface of the relay member 302, and the relay terminal 322 c is integrally formed on the side surface of the relay member 302.
  • the formation position of the relay terminal 322a is a position on the positive side in the X-axis direction of the other main surface and on the negative side in the Z-axis direction.
  • the relay terminal 322b is formed on the negative side of the other main surface in the X-axis direction and on the positive side in the Z-axis direction.
  • the side surface on which the relay terminal 322 c is formed is a side surface facing the negative side in the X-axis direction among the four side surfaces forming the relay member 302.
  • the height position of the relay terminal 322a substantially coincides with the height position of the power supply terminal 282a
  • the height position of the relay terminal 322b substantially coincides with the height position of the SMA holding member 222h
  • the height position of the relay terminal 322c Substantially coincides with the height position of the power supply terminal 282b.
  • the relay terminal 322c is connected to the power supply terminal 282b by a lead wire 342.
  • the shape memory alloys 242a and 242b are both formed in a wire shape. Among these, one end and the other end (specific power supply position) of the shape memory alloy 242a are connected to the power supply terminal 282a and the relay terminal 322a, respectively. Further, one end (specific power feeding position) and the other end of the shape memory alloy 242b are connected to the relay terminal 322b and the SMA holding member 222h, respectively. In particular, the other end of the shape memory alloy 242b passes between the rotating shaft 22 and the bottom surface of the housing 14 and is connected to the SMA holding member 222h.
  • the shape memory alloys 242a and 242b connected in this way extend parallel to the X axis and partially overlap when viewed from the Z axis direction.
  • the power supply terminals 282a to 282c, the relay member 302, the relay terminals 322a to 322c, and the lead wires 342 connected as described above are collectively referred to as “power supply system”. Since the shape memory alloys 242a and 242b are connected to the power feeding system in the manner described above, power feeding is performed individually for three or more different positions of the shape memory alloys 242a and 242b.
  • the external force in the reverse rotation direction is urged to the rotation shaft 22 by the bias spring 26. Therefore, in a state in which none of the power supply terminals 282a to 282c is supplied with power, the relay member 302 slides to the positive side in the X-axis direction, and the shape memory alloys 242a and 242b expand by lattice deformation below the transformation temperature. . As a result, the wiper 16 rotates in the reverse rotation direction and stops at a position where it hits the nose 14n.
  • the shape memory alloy 242a When power supply to the power supply terminals 282a and 282b is started, the shape memory alloy 242a is energized and self-heats. The shape memory alloy 242a undergoes thermal contraction, which causes the relay member 302 to slide to the negative side in the X-axis direction. The rotating shaft 22 rotates in the forward rotation direction, and the wiper 16 rotates in the forward rotation direction.
  • the shape memory alloy 242a When the power supply to the power supply terminals 282a and 282b is stopped, the shape memory alloy 242a is naturally cooled. When the temperature of the shape memory alloy 242a falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 242a expands. As a result, the relay member 302 slides to the positive side in the X axis direction, and the rotary shaft 22 rotates in the reverse rotation direction. The wiper 16 rotates in the reverse rotation direction with the rotation of the rotating shaft 22.
  • the shape memory alloy 242b When power supply to the power supply terminals 282b and 282c is started, the shape memory alloy 242b is energized and self-heats. The shape memory alloy 242b undergoes thermal contraction, and as a result, the rotating shaft 22 rotates in the forward rotation direction and the wiper 16 rotates in the forward rotation direction.
  • the shape memory alloy 242b When the power supply to the power supply terminals 282b and 282c is stopped, the shape memory alloy 242b is naturally cooled. When the temperature of the shape memory alloy 242b falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 242b extends. As a result, the rotating shaft 22 rotates in the reverse rotation direction, and the wiper 16 rotates in the reverse rotation direction.
  • the wiper 16 rotates to the maximum angle when both of the shape memory alloys 242a and 242b contract, and rotates to an angle below the maximum angle when only one of the shape memory alloys 242a and 242b contracts. That is, the rotation angle of the wiper 16 changes stepwise by switching the power supply mode for the power supply terminals 282a to 282c.
  • the shape memory alloys 242a and 242b linear, power consumption for energization can be suppressed, and the response characteristics of the shape memory alloys 242a and 242b with respect to energization can be enhanced. Further, by individually supplying power to three or more different positions of the shape memory alloys 242a and 242b, the rotation angle of the wiper 16 can be adaptively changed. The raindrops adhering to the blade 18 are satisfactorily shaken off by changing the rotation angle irregularly.
  • a relay member 302 is provided between the rotary shaft 22 and the power supply terminals 282a to 282c, and the relay terminal 322b for energizing the shape memory alloy 242b is more power supply terminal than the relay terminal 322a for energizing the shape memory alloy 242a.
  • the rotation angle of the wiper 16 is increased without changing the distance from the rotating shaft 22 to the power supply terminals 282a to 282c. Can do. Thereby, size reduction of the housing
  • each of the shape memory alloys 242a and 242b is arranged in a straight line as in this embodiment reduces the amount of the shape memory alloy used, increases the displacement per unit amount of the shape memory alloy, and simplifies the structure. To contribute.
  • Such a structure is suitable when the driving force of the wiper 16 may be small.
  • an SMA holding member 223h is adopted instead of the SMA post 22ap, and shape memory alloys 241a to 241b are used.
  • the power supply terminals 283a to 283c are used instead of the power supply terminals 281a to 281c
  • the relay member 303 is used instead of the relay member 301
  • the pin 303p is used instead of the guide 301g.
  • the relay terminals (specific power supply terminals) 323a to 323c are employed instead of the relay terminals 321a to 321b, and the lead wire 343 is employed instead of the lead wires 341a to 341b.
  • the relay member 303, the SMA holding member 223h, the rotating shaft 22, and the spring post 22sp are made of a metal such as aluminum (may be a conductor made by plating the surface of a resin such as PPS).
  • the bias spring 26 is made of a spring material such as stainless steel.
  • the SMA holding member 223h is formed integrally with the rotary shaft 22 so as to protrude in a radial direction at a certain position in the storage chamber RM1.
  • the power supply terminal 283a is fixedly provided in the vicinity of the Z-axis negative side wall and in the vicinity of the rotating shaft 22 in the bottom surface of the storage chamber RM1.
  • the power supply terminal 283b is fixedly provided in the vicinity of the corner formed by the X-axis negative side wall and the Z-axis positive side wall in the bottom surface of the storage chamber RM1.
  • the power supply terminal 283c has substantially the same shape as the spring post 14sp shown in FIG. 2, and is fixedly provided at the same position as the position of the spring post 14sp. All of the power supply terminals 283a to 283c thus provided are drawn out to the outer side surface of the casing 14 on the Y axis front side.
  • the relay member 303 is provided at a position on the negative side in the Z-axis direction with respect to the power supply terminal 283c in the bottom surface of the storage chamber RM1. More specifically, the relay member 303 is attached to the bottom surface of the storage chamber RM1 by a cylindrical pin 303p extending in the Y-axis direction, and can be rotated around the axis of the pin 303p.
  • the relay terminals 323a and 323b are both formed integrally with the relay member 303 so as to extend in the radial direction of the pin 303p. At this time, the extending direction of the relay terminal 323b makes an angle of 180 ° with respect to the extending direction of the relay terminal 323a.
  • the relay terminal 323c is integrally formed with the relay member 303 so as to extend in parallel with each of the relay terminals 323a and 323b.
  • the relay terminal 323c is also connected to the power supply terminal 283b by a lead wire 343.
  • the shape memory alloys 243a and 243b are both formed in a wire shape. Among these, one end (specific power supply position) and the other end of the shape memory alloy 243a are connected to the relay terminal 323a and the power supply terminal 283a, respectively. Further, one end (specific feeding position) and the other end of the shape memory alloy 243b are connected to the relay terminal 323b and the SMA holding member 223h, respectively.
  • the shape memory alloys 243a and 243b connected in this way extend parallel to the X axis and partially overlap when viewed from the Z axis direction.
  • the power supply terminals 283a to 283c, the relay member 303, the relay terminals 323a to 323c, and the lead wires 343 connected as described above are collectively referred to as “power supply system”. Since the shape memory alloys 243a and 243b are connected to the power feeding system in the manner described above, the power feeding is performed individually for three or more different positions of the shape memory alloys 243a and 243b.
  • the external force in the reverse rotation direction is urged to the rotation shaft 22 by the bias spring 26. Therefore, in a state where none of the power supply terminals 283a to 283c is supplied with power, the relay member 303 rotates so that the relay terminal 323b moves to the positive side in the X-axis direction, and the shape memory alloys 243a and 243b are transformed to the transformation temperature. The lattice deforms and expands below. As a result, the wiper 16 rotates in the reverse rotation direction and stops at a position where it hits the nose 14n.
  • the shape memory alloy 243a When power supply to the power supply terminals 283a and 283b is started, the shape memory alloy 243a is energized.
  • the shape memory alloy 243a undergoes thermal contraction, whereby the relay member 303 rotates so that the relay terminal 323a moves to the positive side in the X-axis direction.
  • the rotating shaft 22 rotates in the forward rotation direction, and the wiper 16 rotates in the forward rotation direction.
  • the shape memory alloy 243a When the power supply to the power supply terminals 283a and 283b is stopped, the shape memory alloy 243a is naturally cooled. When the temperature of the shape memory alloy 243a falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 243a expands. As a result, the relay member 303 rotates so that the relay terminal 323b moves to the positive side in the X-axis direction. The rotating shaft 22 rotates in the reverse rotation direction, and the wiper 16 rotates in the reverse rotation direction accordingly.
  • the shape memory alloy 243b When the power supply to the power supply terminals 283b and 283c is started, the shape memory alloy 243b is energized. The shape memory alloy 243b undergoes thermal contraction, and as a result, the rotating shaft 22 rotates in the forward rotation direction and the wiper 16 rotates in the forward rotation direction.
  • the shape memory alloy 243b When the power supply to the power supply terminals 283b and 283c is stopped, the shape memory alloy 243b is naturally cooled. When the temperature of the shape memory alloy 243b falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 243b expands. As a result, the rotating shaft 22 rotates in the reverse rotation direction, and the wiper 16 rotates in the reverse rotation direction.
  • the wiper 16 rotates to the maximum angle when both of the shape memory alloys 243a and 243b contract, and rotates to an angle below the maximum angle when only one of the shape memory alloys 243a and 243b contracts. That is, the rotation angle of the wiper 16 changes stepwise by switching the power supply mode for the power supply terminals 283a to 283c.
  • the shape memory alloys 243a and 243b linear, power consumption for energization can be suppressed, and the response characteristics of the shape memory alloys 243a and 243b with respect to energization can be enhanced.
  • the rotational angle of the wiper 16 can be adaptively changed by individually supplying power to three or more different positions of the shape memory alloys 243a and 243b.
  • the relay member 303 rotatably attached by the pin 303p is provided with the relay terminals 323a and 323b, and the shape memory alloys 243a and 243b are arranged in parallel to each other via the relay terminals 323a and 323b, whereby the housing 14 Can be reduced in size.
  • the shape memory alloys 243a and 243b are arranged in a straight line, the amount of the shape memory alloy used can be reduced and the structure can be simplified.
  • the rotation angle of the wiper 16 can be adjusted by changing the ratio of the length from the pin 303p to the relay terminal 323a and the length from the pin 303p to the relay terminal 323b.
  • an arm cover 14c is additionally provided on the nose 14n, and the relay terminals 322a to 322b are replaced.
  • SMA posts 304ap1 to 304ap2 are employed, and shape memory alloys 244 are employed instead of the shape memory alloys 242a to 242b.
  • the SMA holding member 224h shown in FIG. 6 matches the SMA holding member 222h shown in FIG. 4, and the power supply terminals 284a to 284c shown in FIG. 6 match the power supply terminals 282a to 282c shown in FIG.
  • the relay member 304 shown in FIG. 6 matches the relay member 302 shown in FIG. 4, and the guide 304g shown in FIG. 6 matches the guide 302g shown in FIG.
  • the relay terminal (specific power supply terminal) 324 shown in FIG. 6 matches the relay terminal 322c shown in FIG. 4, and the lead wire 344 shown in FIG. 6 matches the lead wire 342 shown in FIG.
  • the relay member 304, the SMA holding member 224h, the rotary shaft 22, the spring post 22sp, and the SMA posts 304ap1 to 304ap2 are made of a metal such as aluminum (resin such as PPS) as in the raindrop removing device 10 shown in FIG.
  • the surface may be plated to make a conductor).
  • the bias spring 26 is made of a spring material such as stainless steel.
  • the arm cover 14c is provided at the positive end of the nose 14n in the Z-axis direction and extends along the X-axis.
  • the arm portion of the wiper 16 is hidden by the arm cover 14c. The arm portion of the wiper 16 is protected from an unexpected external force from the positive side in the Z-axis direction.
  • the SMA posts 304ap1 to 304ap2 are integrally formed on the other main surface of the relay member 304.
  • the formation position of the SMA post 304ap1 is a position on the positive side in the X-axis direction and on the negative side in the Z-axis direction of the other main surface.
  • the SMA post 304ap2 is formed on the negative side of the other main surface in the X-axis direction and on the positive side in the Z-axis direction.
  • the height position of the SMA post 304ap1 substantially coincides with the height position of the power supply terminal 284a
  • the height position of the SMA post 304ap2 substantially coincides with the height position of the SMA holding member 224h.
  • the shape memory alloy 244 is formed in a wire shape. One end thereof is connected to the power supply terminal 284a, and the other end thereof is connected to the SMA holding member 224h via the SMA post 304ap1 and the SMA post 304ap2. More specifically, when the power supply terminal 284a is used as a starting point, the shape memory alloy 244 extends to the positive side in the X-axis direction and is folded back to the negative side in the X-axis direction by the SMA post 304ap1. The folded shape memory alloy 244 is folded again by the SMA post 304ap2 to the positive side in the X-axis direction, and then connected to the SMA holding member 224h. Therefore, when viewed from the negative side in the Y-axis direction, the shape memory alloy 244 extends in a zigzag manner.
  • section A1 a section from one end to a position (specific feeding position) in contact with the SMA post 304ap1 is defined as “section A1”.
  • section B1 A section from the position where the SMA post 304ap2 is in contact to the other end is defined as “section B1”.
  • the power supply terminals 284a to 284c, the relay member 304, the relay terminal 324, the lead wire 344, and the SMA posts 304ap1 to 304ap2 are collectively referred to as “power supply system”. Since the shape memory alloy 244 is connected to the power feeding system in the above-described manner, the power feeding is performed individually at three or more different positions of the shape memory alloy 244.
  • the external force in the reverse rotation direction is urged to the rotation shaft 22 by the bias spring 26. Therefore, in a state where none of the power supply terminals 284a to 284c is supplied with power, the relay member 304 slides to the positive side in the X-axis direction, and the shape memory alloy 244 expands by lattice deformation below the transformation temperature. As a result, the wiper 16 rotates in the reverse rotation direction and stops at a position where it hits the nose 14n.
  • the section A1 of the shape memory alloy 244 is self-heated by energization.
  • the shape memory alloy 244 undergoes thermal contraction in the section A1, and thereby the relay member 304 slides to the negative side in the X-axis direction.
  • the rotating shaft 22 rotates in the forward rotation direction, and the wiper 16 rotates in the forward rotation direction.
  • the section A1 of the shape memory alloy 244 is naturally cooled.
  • the temperature of the shape memory alloy 244 falls below the transformation temperature in the section A1, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 244 expands.
  • the relay member 304 slides to the positive side in the X axis direction, and the rotary shaft 22 rotates in the reverse rotation direction.
  • the wiper 16 rotates in the reverse rotation direction with the rotation of the rotating shaft 22.
  • the section B1 of the shape memory alloy 244 is self-heated by energization.
  • the shape memory alloy 244 undergoes thermal contraction in the section B1, and as a result, the rotary shaft 22 rotates in the forward rotation direction and the wiper 16 rotates in the forward rotation direction.
  • the section B1 of the shape memory alloy 244 is naturally cooled.
  • the temperature of the shape memory alloy 244 falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 244 extends.
  • the rotating shaft 22 rotates in the reverse rotation direction, and the wiper 16 rotates in the reverse rotation direction.
  • the wiper 16 rotates to the maximum angle when the entire section of the shape memory alloy 244 contracts, and rotates to an angle below the maximum angle when only the section A1 or the section B1 of the shape memory alloy 244 contracts. That is, the rotation angle of the wiper 16 changes stepwise by switching the power supply mode for the power supply terminals 284a to 284c.
  • the shape memory alloy 244 linear, power consumption for energization can be suppressed, and response characteristics of the shape memory alloy 244 to energization can be improved. Further, by individually supplying power to three or more different positions of the shape memory alloy 244, the rotation angle of the wiper 16 can be adaptively changed.
  • the relay member 304 is provided between the rotating shaft 22 and the power supply terminals 284a to 284c, and the SMA post 304ap2 is arranged on the power supply terminals 284a to 284c side with respect to the SMA post 304ap1, so that the sections A1 and B1 are energized simultaneously.
  • the rotation angle of the wiper 16 can be increased without changing the distance from the rotary shaft 22 to the power supply terminals 284a to 284c. Thereby, size reduction of the housing
  • the rotation angle of the wiper 16 can be adjusted by changing the ratio between the length of the section A1 and the length of the section B1.
  • raindrop removing device 10 of this embodiment employs a housing 36 having a storage room RM2 instead of housing 14 and has a shape memory.
  • Alloy 245 is employed instead of shape memory alloy 244, power supply terminals 285a-285b are employed instead of power supply terminals 284a-284b, relay terminals (specific power supply terminals) 325a-325b are relay terminals 324 and SMA posts 304ap1-304ap2
  • the lead wire 345 is adopted instead of the lead wire 344.
  • the SMA holding member 225h matches the SMA holding member 224h
  • the feeding terminal 285c matches the feeding terminal 284c
  • the relay member 305 substantially matches the relay member 304
  • the guide 305g substantially matches the guide 304g.
  • the relay member 305, the SMA holding member 225h, and the rotating shaft 22 are made of metal such as aluminum (the surface of a resin such as PPS may be plated to be a conductor).
  • the bias spring 26 is made of a spring material such as stainless steel.
  • the width of the housing 36 is larger than the width of the housing 14. Therefore, the width of the storage room RM2 is also wider than the width of the storage room RM1.
  • the power supply terminals 285a to 285b are fixedly provided in the vicinity of the X-axis negative side wall in the bottom surface of the storage chamber RM2. Specifically, the power supply terminals 285a to 285b are arranged in this order from the negative side to the positive side in the Z-axis direction. The height position of the power supply terminal 285b in the Z-axis direction matches the height position of the SMA holding member 225h. In addition, all of the power supply terminals 285 a to 285 b are drawn out to the outer surface on the Y axis front side of the housing 36.
  • the relay terminals 325a and 325b are integrally formed on the other main surface of the relay member 305.
  • the formation position of the relay terminal 325a is a position slightly shifted to the negative side in the X-axis direction and the negative side in the Z-axis direction from the center position of the other main surface.
  • the formation position of the relay terminal 325b is slightly shifted to the positive side in the Z-axis direction from the center position of the other main surface.
  • the height position of the relay terminal 325b substantially coincides with the height position of the power supply terminal 285b.
  • the relay terminal 325a is connected to the power supply terminal 285a by a lead wire 345.
  • the shape memory alloy 245 is formed in a wire shape. One end of the shape memory alloy 245 is connected to the power supply terminal 285b, and the other end of the shape memory alloy 245 passes through the relay terminal 325b and is connected to the SMA holding member 225h.
  • the relay terminal 325 b is fixed to the shape memory alloy 245 at the center position in the length direction of the shape memory alloy 245.
  • section A2 a section from one end to a position (specific power feeding position) in contact with the relay terminal 325b is defined as “section A2”.
  • section B2 A section from the position in contact with the relay terminal 325b to the other end.
  • the power supply terminals 285a to 285c, the relay member 305, the relay terminals 325a to 325b, and the lead wire 345 are collectively referred to as “power supply system”. Since the shape memory alloy 245 is connected to the power supply system in the above-described manner, the power supply is performed individually for three or more different positions of the shape memory alloy 245.
  • the external force in the reverse rotation direction is urged to the rotation shaft 22 by the bias spring 26. Therefore, in a state where none of the power supply terminals 285a to 285c is supplied with power, the relay member 305 slides to the positive side in the X-axis direction, and the shape memory alloy 245 expands by lattice deformation below the transformation temperature. As a result, the wiper 16 rotates in the reverse rotation direction and stops at a position where it hits the nose 14n.
  • the section A2 of the shape memory alloy 245 is self-heated by energization.
  • the shape memory alloy 245 undergoes thermal contraction in the section A2, and thereby the relay member 305 slides to the negative side in the X-axis direction.
  • the rotating shaft 22 rotates in the forward rotation direction, and the wiper 16 rotates in the forward rotation direction.
  • the section A2 of the shape memory alloy 245 is naturally cooled.
  • the temperature of the shape memory alloy 245 falls below the transformation temperature in the section A2, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 245 extends.
  • the relay member 305 slides to the positive side in the X axis direction, and the rotary shaft 22 rotates in the reverse rotation direction.
  • the wiper 16 rotates in the reverse rotation direction with the rotation of the rotating shaft 22.
  • the section B2 of the shape memory alloy 245 is self-heated by energization.
  • the shape memory alloy 245 undergoes thermal contraction in the section B2, and as a result, the rotary shaft 22 rotates in the forward rotation direction and the wiper 16 rotates in the forward rotation direction.
  • the section B2 of the shape memory alloy 245 is naturally cooled.
  • the temperature of the shape memory alloy 245 falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 245 extends.
  • the rotating shaft 22 rotates in the reverse rotation direction, and the wiper 16 rotates in the reverse rotation direction.
  • the wiper 16 rotates to the maximum angle when all the sections of the shape memory alloy 245 contract, and rotates to an angle below the maximum angle when only the section A2 or the section B2 of the shape memory alloy 245 contracts. That is, the rotation angle of the wiper 16 changes stepwise by switching the power supply mode for the power supply terminals 285a to 285c.
  • the shape memory alloy 245 by making the shape memory alloy 245 linear, power consumption for energization can be suppressed, and response characteristics of the shape memory alloy 245 to energization can be improved.
  • the rotation angle of the wiper 16 can be adaptively changed. Further, since only one shape memory alloy 245 needs to be disposed, the raindrop removing device 10 can be easily assembled. The rotation angle of the wiper 16 can be adjusted by changing the ratio between the length of the section A2 and the length of the section B2.
  • the raindrop removal apparatus 10 of this embodiment employs a power supply terminal 286a instead of the power supply terminal 285a, and includes a relay member 305, a guide 305g, The relay terminals 325a to 325b and the lead wire 345 are omitted.
  • the SMA holding member 226h matches the SMA holding member 225h
  • the power supply terminals 286b and 286c match the power supply terminals 285b and 285c, respectively
  • the shape memory alloy 246 matches the shape memory alloy 245.
  • the SMA holding member 226h and the rotating shaft 22 are made of a metal such as aluminum (the surface of a resin such as PPS may be plated to be a conductor).
  • the bias spring 26 is made of a spring material such as stainless steel.
  • the power supply terminal 286a is provided at a substantially central position on the bottom surface of the storage room RM2. More specifically, the power supply terminal 286a is disposed at a height position that coincides with the height position of the power supply terminal 286b, and is drawn out to the outer surface on the Y axis front side of the housing 36.
  • the shape memory alloy 246 comes into contact with the power supply terminal 286a.
  • a section to a certain position is defined as “section A3”
  • a section from the position in contact with the power supply terminal 286a to the other end is defined as “section B3”.
  • the power supply terminals 286a to 286c are collectively referred to as “power supply system”. Since the shape memory alloy 246 is connected to the power feeding system in the above-described manner, the power feeding is performed individually for three or more different positions of the shape memory alloy 246.
  • the external force in the reverse rotation direction is urged to the rotation shaft 22 by the bias spring 26. Therefore, in a state where none of the power supply terminals 286a to 286c is supplied with power, the shape memory alloy 246 is elongated by lattice deformation below the transformation temperature. As a result, the wiper 16 rotates in the reverse rotation direction and stops at a position where it hits the nose 14n.
  • the section A3 of the shape memory alloy 246 is self-heated by energization.
  • the shape memory alloy 246 undergoes thermal contraction in the section A3, whereby the rotating shaft 22 and thus the wiper 16 rotate in the forward rotation direction.
  • the section A3 of the shape memory alloy 246 is naturally cooled.
  • the temperature of the shape memory alloy 246 falls below the transformation temperature in the section A3, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 246 extends.
  • the rotating shaft 22 and thus the wiper 16 rotate in the reverse rotation direction.
  • the section B3 of the shape memory alloy 246 is self-heated by energization.
  • the shape memory alloy 246 undergoes thermal contraction in the section B3, and as a result, the rotary shaft 22 and thus the wiper 16 rotate in the forward rotation direction.
  • the section B3 of the shape memory alloy 246 is naturally cooled.
  • the temperature of the shape memory alloy 246 falls below the transformation temperature, lattice deformation occurs due to the biasing force of the bias spring 26, and the shape memory alloy 246 extends. As a result, the rotating shaft 22 and thus the wiper 16 rotate in the reverse rotation direction.
  • the wiper 16 rotates to the maximum angle when the entire section of the shape memory alloy 246 contracts, and rotates to an angle below the maximum angle when only the section A3 or the section B3 of the shape memory alloy 246 contracts. That is, the rotation angle of the wiper 16 changes stepwise by switching the power supply mode for the power supply terminals 286a to 286c.
  • the rotation angle of the wiper 16 can be adaptively changed. Further, since the relay member 305, the guide 305g, the relay terminals 325a to 325b, and the lead wire 345 shown in FIG. 7 are omitted, the assembly of the raindrop removing device 10 is further facilitated. Note that the rotation angle of the wiper 16 can be adjusted by changing the ratio between the length of the section A3 and the length of the section B3. [Seventh embodiment]
  • the head drive device 40 of this embodiment has a housing 42 having a storage chamber RM2 instead of the housing 14 having the storage chamber RM1.
  • a control head 46 and a working head 48 are employed instead of the wiper 16
  • a rotation stop 42s is employed instead of the nose 14n
  • a lid 44 is employed instead of the lid 20.
  • the plurality of members provided in the storage chamber RM2 are the same as the plurality of members provided in the storage chamber RM1 of the raindrop removal apparatus 10 shown in FIG. 2 except that the arrangement of each member is reversed in the X-axis direction. The same. Therefore, redundant description is omitted by adding a dash to the reference number of each member.
  • the one end of the rotating shaft 22 ′ protrudes outside through the Z-axis positive side wall of the housing 42.
  • a cylindrical control head 46 and a working head 48 are mounted.
  • the control head 46 and the working head 48 are arranged in this order from the negative side to the positive side in the Z-axis direction.
  • the positive side end surface 46t in the Z-axis direction of the control head 46 is a tapered surface
  • the negative side end surface 48t in the Z-axis direction of the working head 48 is also a tapered surface that abuts on the positive side end surface 46t of the control head 46.
  • the control head 46 is fixedly mounted on the rotary shaft 22 ′, and the working head 48 is supported by a rotation stop 42 s in a manner that it can slide relative to the control head 46.
  • the working head 48 moves to the positive side in the Z-axis direction when the rotary shaft 22 'rotates clockwise as viewed from the negative side in the Z-axis direction, and the rotary shaft 22' moves from the negative side in the Z-axis direction. When viewed and rotated counterclockwise, it moves to the negative side in the Z-axis direction (see FIG. 10).
  • the rotational motion of the rotating shaft 22 ' is converted into a linear motion in a direction orthogonal to the rotating shaft 22'.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Studio Devices (AREA)

Abstract

 消費電力を抑えることができ、応答特性に優れ、そして対象物の回動角度を適応的に調整することができる、駆動装置を提供する。 【解決手段】回転軸22は、Z軸の周りに割り当てられた正回転方向および逆回転方向の各々に回動できるように筐体14によって支持される。針金状の形状記憶合金241aおよび241bは、正回転方向に向かう外力を熱収縮によって回転軸22に付勢する。バイアスバネ26は、逆回転方向に向かう外力を回転軸22に付勢する。ワイパー16は、回転軸22の回転に伴って変位する。給電端子281a~281c,中継部材301,中継端子321a~321cおよびリード線341a~341bによって構成される給電系は、形状記憶合金241aおよび241bの互いに異なる3つ以上の位置に個別に給電する。

Description

駆動装置
 この発明は、駆動装置に関し、特に、雨滴や埃などの異物を除去する異物除去装置に適用され、回転軸の回転駆動によって対象物を変位させる、駆動装置に関する。
 この種の駆動装置の一例が、特許文献1に開示されている。この背景技術によれば、駆動部に設けられた形状記憶合金は、通電されることで自己加熱し、変態温度を上回る温度で収縮する。また、形状記憶合金は、温度変化による動作範囲が大きくなるようにコイル状に形成される。形状記憶合金の一端はフックによって固定され、形状記憶合金の他端はワイヤと接続される。ワイヤの方向はプーリによって変更され、変更されたワイヤの動きは変換器を介してブレードに伝播される。ミラー面の水滴は、ブレードの回動によって払拭される。
特開昭62-64649号公報
 しかし、コイル状の形状記憶合金では収縮方向の力が小さいため、ブレードとミラーとの動摩擦に勝る回動力をブレードに与えるには形状記憶合金を太くする必要がある。この結果、背景技術では、形状記憶合金の通電による消費電力が大きくなるという問題がある。
 背景技術ではまた、形状記憶合金の熱容量が大きくなるため、通電を停止してから形状記憶合金の温度が変態温度以下になるまでに時間がかかる(形状記憶合金の冷却時間が長い)。つまり、背景技術では、駆動装置の応答特性が優れず、繰り返し動作時のインターバルが長くなるという問題がある。
 背景技術ではさらに、形状記憶合金の温度が変態温度を上回ったときの形状記憶合金の収縮量を細かく制御することが難しく、この結果、ブレードの回動角度を適応的に調整することが難しいという問題もある。
 それゆえに、この発明の主たる目的は、消費電力を抑えることができ、応答特性に優れ、そして対象物の回動角度を適応的に調整することができる、駆動装置を提供することである。
 この発明の駆動装置は、基準軸の周りに反対向きに割り当てられた第1方向および第2方向の各々に回動できるように筐体によって支持された回動部材、第1方向に向かう外力を熱収縮によって回動部材に付勢する針金状の形状記憶合金、第2方向に向かう外力を回動部材に付勢する弾性体、回動部材の回動に伴って変位する対象物、および形状記憶合金の3つ以上の位置に給電端子を備え、それぞれ隣り合う給電端子間で電位差を与えるように個別に給電する給電系を備える。
 好ましくは、3つ以上の位置は形状記憶合金の一部を通電するための特定給電位置を含み、給電系は、特定給電位置に給電する特定給電端子、および筐体に可動的に設けられかつ特定給電端子を支持する支持部材を含む。
 或る局面では、形状記憶合金はつづら折り状に延在するように支持部材によって支持される。
 他の局面では、特定給電位置の数は2つ以上であり、形状記憶合金は特定給電位置が各々に割り当てられた2つ以上の部分形状記憶合金に分割されている。
 さらに好ましくは、2つ以上の特定給電位置は2つ以上の部分形状記憶合金が特定方向から眺めて少なくとも部分的に重なり合うように割り当てられる。
 好ましくは、対象物は雨滴を除去するべく回動するワイパーを含む。
 好ましくは、回動部材は基準軸方向の一方端に形成されたテーパ状の第1端面を有し、対象物は第1端面と当接するテーパ状の第2端面を有する。
 形状記憶合金を針金状とすることで、通電のための消費電力を抑えることができるとともに、通電に対する形状記憶合金の応答特性を高めることができる。また、形状記憶合金の3つ以上の位置に個別に給電するようにすることで、形状記憶合金は給電態様に従う収縮量で収縮する。これによって、回動部材の回動角度を適応的に変更することができる。
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
(A)はカメラと第1実施例の雨滴除去装置とを正面から眺めた状態を示す正面図であり、(B)はカメラと第1実施例の雨滴除去装置とを側面から眺めた状態を示す側面図であり、(C)は第1実施例の雨滴除去装置に設けられたワイパーが回動した状態を示す正面図である。 第1実施例の雨滴除去装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第1実施例の雨滴除去装置に設けられたワイパーが回動した状態を示す分解斜視図である。 第2実施例の雨滴除去装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第3実施例の雨滴除去装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第4実施例の雨滴除去装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第5実施例の雨滴除去装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第6実施例の雨滴除去装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第7実施例のヘッド駆動装置を斜め方向から眺めた状態の一例を示す分解斜視図である。 第7実施例のヘッド駆動装置に設けられたヘッドが変位した状態を示す分解斜視図である。
[第1実施例]
 図1(A)~図1(C)および図2を参照して、第1実施例の雨滴除去装置10は、カメラ12とともに自動車の後部に設けられてレンズ12zに付着した雨滴を除去する装置であり、直方体状の収納室RM1が形成された筐体14を含む。筐体14の幅方向にX軸を割り当て、筐体14の厚み方向にY軸を割り当て、筐体14の高さ方向にZ軸(基準軸)を割り当てると、収納室RM1はY軸方向の負側に開口する。また、収納室RM1をなして互いに正対する2つの内側面はX軸またはZ軸に直交し、収納室RM1をなす底面はY軸に直交する。さらに、筐体14をなして互いに反対を向く2つの外側面は、X軸またはZ軸に直交する。
 蓋20は、筐体14の主面のサイズとほぼ同じサイズの主面を有して板状に形成される。蓋20の側面が筐体14の外側面と面一となる姿勢で蓋20をY軸方向の負側から筐体14に被せると、収納室RM1は蓋20によって密閉される。
 以下では、筐体14の外側面について、X軸方向の正側を向く面およびX軸方向の負側を向く面をそれぞれ“X軸正外側面”および“X軸負外側面”と定義し、Z軸方向の正側を向く面およびZ軸方向の負側を向く面をそれぞれ“Z軸正外側面”および“Z軸負外側面”と定義する。
 また、筐体14の内側面について、X軸正外側面と反対の面およびX軸負外側面と反対の面をそれぞれ“X軸負内側面”および“X軸正内側面”と定義し、Z軸正外側面と反対の面およびZ軸負外側面と反対の面をそれぞれ“Z軸負内側面”および“Z軸正内側面”と定義する。
 さらに、X軸正外側面およびX軸負内側面がなす壁を“X軸正側壁”と定義し、X軸負外側面およびX軸正内側面がなす壁を“X軸負側壁”と定義する。また、Z軸正外側面およびZ軸負内側面がなす壁を“Z軸正側壁”と定義し、Z軸負外側面およびZ軸正内側面がなす壁を“Z軸負側壁”と定義する。
 回転軸22は、収納室RM1内のX軸正側壁の近傍をZ軸に沿って延びるように、筐体14に装着される。ただし、回転軸22は、筐体14の高さを上回る長さを有する。回転軸22の一方端は筐体14のZ軸正側壁を貫通して筐体14の外側に突出し、回転軸22の他方端は筐体14のZ軸負側壁を貫通して筐体14の外側に突出する。つまり、回転軸22は、Z軸の周りを回転できるように筐体14によって支持される。
 以下では、Z軸方向の負側から眺めて時計回りとなる回転軸22の回転方向を“正回転方向”と定義し、Z軸方向の負側から眺めて反時計回りとなる回転軸22の回転方向を“逆回転方向”と定義する。
 回転軸22の一方端には、回転軸22の径方向に延びるワイパー16が設けられる。ゴム製のブレード18は、ワイパー16のアーム部に取り付けられて回転軸22の径方向に延び、図1(A)~図1(C)に示す要領でレンズ12zの表面を摺動する。ワイパー16の回動角度は回転軸22の回転に伴って変化し、レンズ12zに付着した雨滴はブレード18によって除去される。
 筐体14のZ軸正外側面には、ノーズ14nが一体的に形成される。回転軸22を逆回転方向に回転させると、ワイパー16がノーズ14nに当たる。これによって、逆回転方向におけるワイパー16の回動が規制されるとともに、ワイパー16が予期しない外力から保護される。なお、回転軸22が逆回転できる角度の上限は、後述する形状記憶合金241aおよび241bが変態を繰り返すことができる最大歪み量に対応する角度を下回る。
 回転軸22には、収納室RM1内の或る位置(=略中央位置)で径方向に突出するSMAポスト22apが一体的に形成される。回転軸22にはまた、収納室RM1内の他の位置(=Z軸正側壁の近傍の位置)で径方向に突出するバネポスト22spが一体的に形成される。また、筐体14には、バネポスト22spと対をなすバネポスト14spが一体的に形成される。詳しくは、バネポスト14spは、バネポスト22spのZ軸方向の高さ位置とほぼ同じ高さ位置でかつX軸負側壁に近い位置に設けられるよう、収納室RM1のZ軸正側壁からZ軸方向の負側に突出する。
 バイアスバネ(コイル状の引っ張りバネ)26の一方端はバネポスト22spに係止され、バイアスバネ26の他方端はバネポスト14spに係止される。この結果、逆回転方向の外力が、バイアスバネ26によって回転軸22に付勢される。
 収納室RM1の底面のうちX軸負側壁の近傍には、給電端子281a~281cが固定的に設けられる。このとき、給電端子281a~281cは、Z軸方向の負側から正側に向かってこの順で並び、かつ筐体14のY軸正外側面に引き出される。また、収納室RM1の底面のほぼ中央には、板状の中継部材301が設けられる。ここで、中継部材301の主面のサイズは、収納室RM1の底面のサイズよりも小さい。ガイド301gは、中継部材301の一方主面が収納室RM1の底面と正対した状態で中継部材301がX軸方向にスライドできるように、中継部材301を支持する。
 中継部材301の他方主面には、中継端子(特定給電端子)321aおよび321bとSMAポスト301apとが設けられる。より詳しくは、中継端子321aはX軸方向の負側でかつZ軸方向の負側の位置に設けられ、中継端子321bはX軸方向の負側でかつZ軸方向の正側の位置に設けられ、SMAポスト301apはX軸方向の正側でかつZ軸方向の中央の位置に設けられる。中継端子321aはリード線341aによって給電端子281aと接続され、中継端子321bはリード線341bによって給電端子281cと接続される。
 形状記憶合金241aは針金状に形成され、その一方端および他方端は給電端子281aおよび281bとそれぞれ接続される。形状記憶合金241aの長さ方向中央部は、SMAポスト301apに引っ掛けられる。形状記憶合金241bも針金状に形成され、その一方端および他方端(いずれも特定給電位置)は中継端子321aおよび321bとそれぞれ接続される。形状記憶合金241bの長さ方向中央部は、回転軸22と収納室RM1の底面との間を経た後に、回転軸22よりもX軸方向の正側の位置でY軸方向の負側に折り返され、SMAポスト22apに引っ掛けられる。
 こうして引っ掛けられた形状記憶合金241aおよび241bは、Y軸方向から眺めて略U字を描く。また、形状記憶合金241aおよび241bは、Z軸方向から眺めて部分的に重なり合う。
 この実施例では、上述のようにして接続された給電端子281a~281c,中継端子321a~321bおよびリード線341a~341bを“給電系”と総称する。形状記憶合金241aおよび241bは上述の要領で給電系と接続されるため、給電は、形状記憶合金241aおよび241bの互いに異なる3つ以上の位置に対して個別に行われる。
 ここで、形状記憶合金241aおよび241bの特性を簡単に説明する。変態温度以下では、形状記憶合金241aおよび241bの結晶格子を形成する原子の結合が切られることはなく、格子変形だけが起きる。したがって、変態温度以下の状態で、原子間の結合が切られない大きさの負荷を形状記憶合金241aおよび241bの長さ方向に加えると、格子変形により6%程度の歪が生じて形状記憶合金241aおよび241bが伸長する。変態温度を上回る温度まで形状記憶合金241aおよび241bを加熱すると、格子変形が元に戻り、形状記憶合金241aおよび241bの長さが短縮される。
 回転軸22には逆回転方向の外力がバイアスバネ26によって付勢されるため、給電端子281a~281cのいずれもが給電されていない状態では、中継部材301がX軸方向の正側にスライドするとともに、形状記憶合金241aおよび241bが変態温度以下で格子変形して伸長する。なお、ワイパー16はノーズ14nに当たると、これ以上の回転軸22の回転つまりワイパー16の回動が規制される。
 給電端子281aおよび281bへの給電が開始されると、形状記憶合金241aが通電する。形状記憶合金241aはジュール熱によって自己加熱し、形状記憶合金241aの温度が変態温度を超えた時点で格子変形が元に戻る。形状記憶合金241aは熱収縮を起こし、これによって中継部材301がX軸方向の負側にスライドする。この結果、回転軸22が正回転方向に回転し、ワイパー16が正回転方向に回動する。
 給電端子281aおよび281bへの給電が停止されると、形状記憶合金241aは自然冷却される。形状記憶合金241aの温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金241aが伸長する。この結果、中継部材301がX軸方向の正側にスライドし、回転軸22が逆回転方向に回転する。ワイパー16は、回転軸22の回転とともに逆回転方向に回動する。
 給電端子281aおよび281cへの給電が開始されると、形状記憶合金241bが通電する。形状記憶合金241bはジュール熱によって自己加熱し、形状記憶合金241bの温度が変態温度を超えた時点で格子変形が元に戻る。形状記憶合金241bは熱収縮を起こし、この結果、回転軸22が正回転方向に回転するとともに、ワイパー16が正回転方向に回動する。
 給電端子281aおよび281cへの給電が停止されると、形状記憶合金241bは自然冷却される。形状記憶合金241bの温度が変態温度を下回ると、バイアスバネ26の弾性力によって格子変形が生じ、形状記憶合金241bが伸長する。この結果、回転軸22が逆回転方向に回転し、ワイパー16が逆回転方向に回動する。
 したがって、形状記憶合金241aおよび241bの両方が収縮すると、図3に示すように、中継部材301がX軸方向の負側にスライドし、かつ回転軸22が正回転方向に回転する。回転軸22の回転角度には中継部材301のスライド分が上乗せされ、ワイパー16は最大角度まで回動する。これに対して、形状記憶合金241aおよび241bの一方だけが収縮すると、ワイパー16の回動角度は最大角度を下回る。つまり、ワイパー16の回動角度は、給電端子281a~281cに対する給電態様を切り替えることで段階的に変化する。
 なお、形状記憶合金241aおよび241bは、Ni/Tiなどからなる合金である。また、回転軸22,ワイパー16,バネポスト14sp,22sp,SMAポスト22apは、アルミなどの金属やPPS(ポリフェニレンサルファイド)などの樹脂を材料とする。さらに、バイアスバネ26はステンレスなどのバネ材を材料とし、ブレード18は天然ゴムや合成ゴムなどを材料とする。また、給電端子281a~281c,中継端子321a~321bおよびリード線341a~341bは、銅,黄銅,アルミなどの導体を材料とする。筐体14,蓋20,中継部材301,SMAポスト301apは、PPSなどの樹脂を材料とする。
 以上の説明から分かるように、回転軸(回動部材)22は、Z軸(基準軸)の周りに割り当てられた正回転方向(第1方向)および逆回転方向(第2方向)の各々に回動できるように筐体14によって支持される。針金状(線状)の形状記憶合金241aおよび241bは、正回転方向に向かう外力を熱収縮によって回転軸22に付勢する。バイアスバネ(弾性体)26は、逆回転方向に向かう外力を回転軸22に付勢する。ワイパー(対象物)16は、回転軸22の回転に伴って変位する。給電端子281a~281c,中継端子321a~321bおよびリード線341a~341bによって構成される給電系は、形状記憶合金241aおよび241bの互いに異なる3つ以上の位置に個別に給電する。
 形状記憶合金241aおよび241bを線状とすることで、格子変形による力がそのまま収縮力となり、大きな力を得ることができる。これは、形状記憶合金241aおよび241bを細くできることを意味する。これによって熱容量が小さくなり、通電のための消費電力を抑えることができる。また、自然冷却時間も短くなるため、繰返し動作のインターバルを短縮でき、通電に対する形状記憶合金241aおよび241bの応答特性が向上する。
 また、形状記憶合金241aおよび241bの互いに異なる3つ以上の位置に個別に給電するようにすることで、形状記憶合金241aおよび241bは、給電態様に応じて異なる収縮量で収縮する。これによって、ワイパー16の回動角度を適応的に変更することができる。ブレード18に付着した雨滴は、回動角度を不規則に変化させることで良好に振り払われる。
 さらに、回転軸22と給電端子281a~281cとの間に中継部材301を設け、形状記憶合金241bを通電するための中継端子321a~321bの位置を形状記憶合金241aを引っ掛けるためのSMAポスト301apよりも給電端子281a~281c側に配置することで、形状記憶合金241aおよび241bを同時に通電した場合は、回転軸22から給電端子281a~281cまでの距離を変えることなく、ワイパー16の回動角度を大きくすることができる。これによって、筐体14の小型化が図られる。
 なお、この実施例では、バイアスバネ26としてコイル状の引っ張りバネを採用しているが、逆回転方向に向かう外力を回転軸22に付勢できる限り、板バネ,テンションバネ,ゴムなどの弾性体を採用してもよい。また、この実施例では、回転軸22は真円柱状に形成しているが、回転軸22は楕円柱状や角柱状に形成してもよい。
[第2実施例]
 図4を参照して、この実施例の雨滴除去装置10では、図2に示す雨滴除去装置10と比較したとき、SMAポスト22apに代えてSMA保持部材222hが採用され、形状記憶合金241a~241bに代えて形状記憶合金242a~242bが採用され、給電端子281a~281cに代えて給電端子282a~282cが採用され、中継部材301に代えて中継部材302が採用され、ガイド301gに代えてガイド302gが採用され、中継端子321a~321bに代えて中継端子(特定給電端子)322a~322cが採用され、リード線341a~341bに代えてリード線342が採用される。また、中継部材302,SMA保持部材222h,回転軸22,バネポスト22spは、アルミなどの金属を材料とする(PPSなどの樹脂の表面にメッキなどを施し導体としたものでもよい)。また、バイアスバネ26はステンレスなどのバネ材を材料とする。
 したがって、以下では、図2に示す雨滴除去装置10との相違点を重点的に説明し、同様の構成に関する重複した説明は極力省略する。
 SMA保持部材222hは、収納室RM1内の或る位置(=略中央位置)で径方向に突出するように、回転軸22に一体的に形成される。
 給電端子282a~282bは、収納室RM1の底面のうちX軸負側壁の近傍に固定的に設けられる。給電端子282cは、図2に示すバネポスト14spとほぼ同じ形状を有して、バネポスト14spの位置と同じ位置に固定的に設けられる。給電端子282a~282bは、Z軸方向の負側から正側に向かってこの順で並ぶ。また、給電端子282a~282cはいずれも、筐体14のY軸正外側面に引き出される。
 中継部材302は、板状に形成され、かつ収納室RM1の底面のほぼ中央に設けられる。中継部材302の主面のサイズも、収納室RM1の底面のサイズよりも小さい。ガイド302gは、中継部材302の一方主面が収納室RM1の底面と正対した状態で中継部材302がX軸方向にスライドできるように、中継部材302を支持する。
 中継端子322aおよび322bは中継部材302の他方主面に一体的に形成され、中継端子322cは中継部材302の側面に一体的に形成される。ここで、中継端子322aの形成位置は、他方主面のX軸方向における正側でかつZ軸方向における負側の位置である。また、中継端子322bの形成位置は、他方主面のX軸方向における負側でかつZ軸方向における正側の位置である。さらに、中継端子322cが形成される側面は、中継部材302をなす4つの側面のうち、X軸方向における負側を向く側面である。
 また、中継端子322aの高さ位置は給電端子282aの高さ位置とほぼ一致し、中継端子322bの高さ位置はSMA保持部材222hの高さ位置とほぼ一致し、中継端子322cの高さ位置は給電端子282bの高さ位置とほぼ一致する。中継端子322cは、リード線342によって給電端子282bと接続される。
 形状記憶合金242aおよび242bはいずれも、針金状に形成される。このうち、形状記憶合金242aの一方端および他方端(特定給電位置)は、給電端子282aおよび中継端子322aにそれぞれ接続される。また、形状記憶合金242bの一方端(特定給電位置)および他方端は、中継端子322bおよびSMA保持部材222hにそれぞれ接続される。特に、形状記憶合金242bの他方端は、回転軸22と筐体14の底面との間を通ってSMA保持部材222hと接続される。こうして接続された形状記憶合金242aおよび242bはX軸に平行に延在し、かつZ軸方向から眺めて部分的に重なり合う。
 この実施例では、上述のようにして接続された給電端子282a~282c,中継部材302,中継端子322a~322cおよびリード線342を“給電系”と総称する。形状記憶合金242aおよび242bは上述の要領で給電系と接続されるため、給電は、形状記憶合金242aおよび242bの互いに異なる3つ以上の位置に対して個別に行われる。
 回転軸22には、逆回転方向の外力がバイアスバネ26によって付勢される。したがって、給電端子282a~282cのいずれもが給電されていない状態では、中継部材302がX軸方向の正側にスライドするとともに、形状記憶合金242aおよび242bが変態温度以下で格子変形して伸長する。この結果、ワイパー16は逆回転方向に回動し、ノーズ14nに当たる位置で停止する。
 給電端子282aおよび282bへの給電が開始されると、形状記憶合金242aが通電して自己加熱する。形状記憶合金242aは熱収縮を起こし、これによって中継部材302がX軸方向の負側にスライドする。回転軸22は正回転方向に回転し、ワイパー16は正回転方向に回動する。
 給電端子282aおよび282bへの給電が停止されると、形状記憶合金242aは自然冷却される。形状記憶合金242aの温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金242aが伸長する。この結果、中継部材302がX軸方向の正側にスライドし、回転軸22が逆回転方向に回転する。ワイパー16は、回転軸22の回転とともに逆回転方向に回動する。
 給電端子282bおよび282cへの給電が開始されると、形状記憶合金242bが通電して自己加熱する。形状記憶合金242bは熱収縮を起こし、この結果、回転軸22が正回転方向に回転するとともに、ワイパー16が正回転方向に回動する。
 給電端子282bおよび282cへの給電が停止されると、形状記憶合金242bは自然冷却される。形状記憶合金242bの温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金242bが伸長する。この結果、回転軸22が逆回転方向に回転し、ワイパー16が逆回転方向に回動する。
 したがって、ワイパー16は、形状記憶合金242aおよび242bの両方が収縮したときに最大角度まで回動し、形状記憶合金242aおよび242bの一方だけが収縮したときに最大角度を下回る角度まで回動する。つまり、ワイパー16の回動角度は、給電端子282a~282cに対する給電態様を切り替えることで段階的に変化する。
 この実施例においても、形状記憶合金242aおよび242bを線状とすることで、通電のための消費電力を抑えることができ、かつ通電に対する形状記憶合金242aおよび242bの応答特性を高めることができる。また、形状記憶合金242aおよび242bの互いに異なる3つ以上の位置に個別に給電するようにすることで、ワイパー16の回動角度を適応的に変更することができる。ブレード18に付着した雨滴は、回動角度を不規則に変化させることで良好に振り払われる。
 さらに、回転軸22と給電端子282a~282cとの間に中継部材302を設け、形状記憶合金242bを通電するための中継端子322bを形状記憶合金242aを通電するための中継端子322aよりも給電端子282a~282c側に配置することで、形状記憶合金242aおよび242bを同時に通電した場合は、回転軸22から給電端子282a~282cまでの距離を変えることなく、ワイパー16の回動角度を大きくすることができる。これによって、筐体14の小型化が図られる。
 また、この実施例のように形状記憶合金242aおよび242bの各々を一直線に配置する構造は、形状記憶合金の使用量の低減、形状記憶合金の単位量あたりの変位の増大、および構造の簡略化に貢献する。このような構造は、ワイパー16の駆動力が小さくてもよい場合に好適である。
[第3実施例]
 図5を参照して、この実施例の雨滴除去装置10では、図2に示す雨滴除去装置10と比較したとき、SMAポスト22apに代えてSMA保持部材223hが採用され、形状記憶合金241a~241bに代えて形状記憶合金243a~243bが採用され、給電端子281a~281cに代えて給電端子283a~283cが採用され、中継部材301に代えて中継部材303が採用され、ガイド301gに代えてピン303pが採用され、中継端子321a~321bに代えて中継端子(特定給電端子)323a~323cが採用され、リード線341a~341bに代えてリード線343が採用される。また、中継部材303,SMA保持部材223h,回転軸22,バネポスト22spは、アルミなどの金属を材料とする(PPSなどの樹脂の表面にメッキなどを施し導体としたものでもよい)。また、バイアスバネ26はステンレスなどのバネ材を材料とする。
 したがって、以下では、図2に示す雨滴除去装置10との相違点を重点的に説明し、同様の構成に関する重複した説明は極力省略する。
 SMA保持部材223hは、収納室RM1内の或る位置で径方向に突出するように、回転軸22に一体的に形成される。
 給電端子283aは、収納室RM1の底面のうちZ軸負側壁の近傍でかつ回転軸22の近傍に固定的に設けられる。給電端子283bは、収納室RM1の底面のうちX軸負側壁およびZ軸正側壁がなす角部の近傍に固定的に設けられる。給電端子283cは、図2に示すバネポスト14spとほぼ同じ形状を有して、バネポスト14spの位置と同じ位置に固定的に設けられる。こうして設けられた給電端子283a~283cはいずれも、筐体14のY軸正外側面に引き出される。
 中継部材303は、収納室RM1の底面のうち給電端子283cよりもZ軸方向における負側の位置に設けられる。より詳しくは、中継部材303は、Y軸方向に延在する円柱状のピン303pによって収納室RM1の底面に取り付けられ、ピン303pの軸回り方向に回動可能とされる。
 中継端子323aおよび323bはいずれも、ピン303pの径方向に延在するように中継部材303に一体的に形成される。このとき、中継端子323bの延在方向は、中継端子323aの延在方向に対して180°の角度をなす。また、中継端子323cは、中継端子323aおよび323bの各々と平行に延在するように、中継部材303に一体的に形成される。中継端子323cはまた、リード線343によって給電端子283bと接続される。
 形状記憶合金243aおよび243bはいずれも、針金状に形成される。このうち、形状記憶合金243aの一方端(特定給電位置)および他方端は、中継端子323aおよび給電端子283aにそれぞれ接続される。また、形状記憶合金243bの一方端(特定給電位置)および他方端は、中継端子323bおよびSMA保持部材223hにそれぞれ接続される。こうして接続された形状記憶合金243aおよび243bはX軸に平行に延在し、Z軸方向から眺めたときに部分的に重なり合う。
 この実施例では、上述のようにして接続された給電端子283a~283c,中継部材303,中継端子323a~323cおよびリード線343を“給電系”と総称する。形状記憶合金243aおよび243bは上述の要領で給電系と接続されるため、給電は、形状記憶合金243aおよび243bの互いに異なる3つ以上の位置に対して個別に行われる。
 回転軸22には、逆回転方向の外力がバイアスバネ26によって付勢される。したがって、給電端子283a~283cのいずれもが給電されていない状態では、中継端子323bがX軸方向の正側に移動するように中継部材303が回動し、形状記憶合金243aおよび243bが変態温度以下で格子変形して伸長する。この結果、ワイパー16は逆回転方向に回動し、ノーズ14nに当たる位置で停止する。
 給電端子283aおよび283bへの給電が開始されると、形状記憶合金243aが通電する。形状記憶合金243aは熱収縮を起こし、これによって中継端子323aがX軸方向の正側に移動するように中継部材303が回動する。回転軸22は正回転方向に回転し、ワイパー16は正回転方向に回動する。
 給電端子283aおよび283bへの給電が停止されると、形状記憶合金243aは自然冷却される。形状記憶合金243aの温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金243aが伸長する。この結果、中継端子323bがX軸方向の正側に移動するように中継部材303が回動する。回転軸22は逆回転方向に回転し、ワイパー16はこれに伴って逆回転方向に回動する。
 給電端子283bおよび283cへの給電が開始されると、形状記憶合金243bが通電する。形状記憶合金243bは熱収縮を起こし、この結果、回転軸22が正回転方向に回転するとともに、ワイパー16が正回転方向に回動する。
 給電端子283bおよび283cへの給電が停止されると、形状記憶合金243bは自然冷却される。形状記憶合金243bの温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金243bが伸長する。この結果、回転軸22が逆回転方向に回転し、ワイパー16が逆回転方向に回動する。
 したがって、ワイパー16は、形状記憶合金243aおよび243bの両方が収縮したときに最大角度まで回動し、形状記憶合金243aおよび243bの一方だけが収縮したときに最大角度を下回る角度まで回動する。つまり、ワイパー16の回動角度は、給電端子283a~283cに対する給電態様を切り替えることで段階的に変化する。
 この実施例においても、形状記憶合金243aおよび243bを線状とすることで、通電のための消費電力を抑えることができ、かつ通電に対する形状記憶合金243aおよび243bの応答特性を高めることができる。また、形状記憶合金243aおよび243bの互いに異なる3つ以上の位置に個別に給電するようにすることで、ワイパー16の回動角度を適応的に変更することができる。
 さらに、ピン303pによって回動可能に取り付けられた中継部材303に中継端子323aおよび323bを設け、形状記憶合金243aおよび243bを中継端子323aおよび323bを介して互いに平行に配置することで、筐体14の小型化が図られる。また、形状記憶合金243aおよび243bの各々を一直線に配置することで、形状記憶合金の使用量の低減と構造の簡略化が可能となる。
 なお、ワイパー16の回動角度は、ピン303pから中継端子323aまでの長さとピン303pから中継端子323bまでの長さとの比率を変えることで調整可能である。
[第4実施例]
 図6を参照して、この実施例の雨滴除去装置10では、図4に示す雨滴除去装置10と比較したとき、ノーズ14nにアームカバー14cが追加的に設けられ、中継端子322a~322bに代えてSMAポスト304ap1~304ap2が採用され、形状記憶合金242a~242bに代えて形状記憶合金244が採用される。
 ただし、図6に示すSMA保持部材224hは図4に示すSMA保持部材222hと一致し、図6に示す給電端子284a~284cは図4に示す給電端子282a~282cと一致する。また、図6に示す中継部材304は図4に示す中継部材302と一致し、図6に示すガイド304gは図4に示すガイド302gと一致する。さらに、図6に示す中継端子(特定給電端子)324は図4に示す中継端子322cと一致し、図6に示すリード線344は図4に示すリード線342と一致する。
 また、中継部材304,SMA保持部材224h,回転軸22,バネポスト22sp,SMAポスト304ap1~304ap2は、図4に示す雨滴除去装置10と同様、アルミなどの金属を材料とする(PPSなどの樹脂の表面にメッキなどを施し導体としたものでもよい)。また、バイアスバネ26はステンレスなどのバネ材を材料とする。
 したがって、以下では、図4に示す雨滴除去装置10との相違点を重点的に説明し、同様の構成に関する重複した説明は極力省略する。
 アームカバー14cは、ノーズ14nのZ軸方向における正側端部に設けられ、X軸に沿って延在する。ワイパー16がノーズ14nに当たっている状態で雨滴除去装置10をZ軸方向の正側から眺めると、ワイパー16のアーム部がアームカバー14cによって隠れる。ワイパー16のアーム部は、Z軸方向における正側からの予期しない外力から保護される。
 SMAポスト304ap1~304ap2は、中継部材304の他方主面に一体的に形成される。ここで、SMAポスト304ap1の形成位置は、他方主面のX軸方向における正側でかつZ軸方向における負側の位置である。また、SMAポスト304ap2の形成位置は、他方主面のX軸方向における負側でかつZ軸方向における正側の位置である。また、SMAポスト304ap1の高さ位置は給電端子284aの高さ位置とほぼ一致し、SMAポスト304ap2の高さ位置はSMA保持部材224hの高さ位置とほぼ一致する。
 形状記憶合金244は、針金状に形成される。その一方端は給電端子284aに接続され、その他方端はSMAポスト304ap1およびSMAポスト304ap2を介してSMA保持部材224hに接続される。より詳しく説明すると、給電端子284aを起点としたとき、形状記憶合金244は、X軸方向の正側に延び、SMAポスト304ap1でX軸方向の負側に折り返される。折り返された形状記憶合金244は、SMAポスト304ap2でX軸方向の正側に再度折り返され、その後にSMA保持部材224hに接続される。したがって、Y軸方向の負側から眺めたとき、形状記憶合金244は、つづら折り状に延在する。
 なお、以下では、形状記憶合金244の一方端から他方端までの区間のうち、一方端からSMAポスト304ap1に接触している位置(特定給電位置)までの区間を“区間A1”と定義し、SMAポスト304ap2の接触している位置から他方端までの区間を“区間B1”と定義する。
 この実施例では、給電端子284a~284c,中継部材304,中継端子324,リード線344およびSMAポスト304ap1~304ap2を“給電系”と総称する。形状記憶合金244は上述の要領で給電系と接続されるため、給電は、形状記憶合金244の互いに異なる3つ以上の位置に対して個別に行われる。
 回転軸22には、逆回転方向の外力がバイアスバネ26によって付勢される。したがって、給電端子284a~284cのいずれもが給電されていない状態では、中継部材304がX軸方向の正側にスライドするとともに、形状記憶合金244が変態温度以下で格子変形して伸長する。この結果、ワイパー16は逆回転方向に回動し、ノーズ14nに当たる位置で停止する。
 給電端子284aおよび284bへの給電が開始されると、形状記憶合金244の区間A1が通電によって自己加熱する。形状記憶合金244は区間A1において熱収縮を起こし、これによって中継部材304がX軸方向の負側にスライドする。回転軸22は正回転方向に回転し、ワイパー16は正回転方向に回動する。
 給電端子284aおよび284bへの給電が停止されると、形状記憶合金244の区間A1は自然冷却される。区間A1において形状記憶合金244の温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金244が伸長する。この結果、中継部材304がX軸方向の正側にスライドし、回転軸22が逆回転方向に回転する。ワイパー16は、回転軸22の回転とともに逆回転方向に回動する。
 給電端子284bおよび284cへの給電が開始されると、形状記憶合金244の区間B1が通電によって自己加熱する。形状記憶合金244は区間B1において熱収縮を起こし、この結果、回転軸22が正回転方向に回転するとともに、ワイパー16が正回転方向に回動する。
 給電端子284bおよび284cへの給電が停止されると、形状記憶合金244の区間B1は自然冷却される。形状記憶合金244の温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金244が伸長する。この結果、回転軸22が逆回転方向に回転し、ワイパー16が逆回転方向に回動する。
 したがって、ワイパー16は、形状記憶合金244の全区間が収縮したとき最大角度まで回動し、形状記憶合金244の区間A1または区間B1だけが収縮したとき最大角度を下回る角度まで回動する。つまり、ワイパー16の回動角度は、給電端子284a~284cに対する給電態様を切り替えることで段階的に変化する。
 この実施例においても、形状記憶合金244を線状とすることで、通電のための消費電力を抑えることができ、かつ通電に対する形状記憶合金244の応答特性を高めることができる。また、形状記憶合金244の互いに異なる3つ以上の位置に個別に給電するようにすることで、ワイパー16の回動角度を適応的に変更することができる。
 さらに、回転軸22と給電端子284a~284cとの間に中継部材304を設け、SMAポスト304ap2をSMAポスト304ap1よりも給電端子284a~284c側に配置することで、区間A1および区間B1を同時に通電した場合は、回転軸22から給電端子284a~284cまでの距離を変えることなく、ワイパー16の回動角度を大きくすることができる。これによって、筐体14の小型化が図られる。
 また、1本の形状記憶合金244を配置するだけでよいので、雨滴除去装置10の組み立てが容易になる。なお、ワイパー16の回動角度は、区間A1の長さと区間B1の長さとの比率を変えることで調整可能である。
[第5実施例]
 図7を参照して、この実施例の雨滴除去装置10は、図6に示す雨滴除去装置10と比較したとき、収納室RM2を有する筐体36が筐体14に代えて採用され、形状記憶合金245が形状記憶合金244に代えて採用され、給電端子285a~285bが給電端子284a~284bに代えて採用され、中継端子(特定給電端子)325a~325bが中継端子324およびSMAポスト304ap1~304ap2に代えて採用され、リード線345がリード線344に代えて採用される。
 ただし、SMA保持部材225hはSMA保持部材224hと一致し、給電端子285cは給電端子284cと一致し、中継部材305は中継部材304とほぼ一致し、ガイド305gはガイド304gとほぼ一致する。また、中継部材305,SMA保持部材225h,回転軸22は、アルミなどの金属を材料とする(PPSなどの樹脂の表面にメッキなどを施し導体としたものでもよい)。また、バイアスバネ26はステンレスなどのバネ材などを材料とする。
 したがって、以下では、図6に示す雨滴除去装置10との相違点を重点的に説明し、同様の構成に関する重複した説明は極力省略する。
 筐体36の厚みおよび高さは筐体14の厚みおよび高さと一致するものの、筐体36の幅は筐体14の幅よりも大きい。したがって、収納室RM2の広さもまた、収納室RM1の広さよりも広い。
 給電端子285a~285bは、収納室RM2の底面のうちX軸負側壁の近傍に固定的に設けられる。詳しくは、給電端子285a~285bは、Z軸方向の負側から正側に向かってこの順で並ぶ。給電端子285bのZ軸方向の高さ位置は、SMA保持部材225hの高さ位置と一致する。また、給電端子285a~285bはいずれも、筐体36のY軸正外側面に引き出される。
 中継端子325aおよび325bは、中継部材305の他方主面に一体的に形成される。ここで、中継端子325aの形成位置は、他方主面の中央位置よりもX軸方向における負側でかつZ軸方向における負側にややずれた位置である。また、中継端子325bの形成位置は、他方主面の中央位置よりもZ軸方向における正側にややずれた位置である。中継端子325bの高さ位置は、給電端子285bの高さ位置とほぼ一致する。中継端子325aは、リード線345によって給電端子285aと接続される。
 形状記憶合金245は、針金状に形成される。形状記憶合金245の一方端は給電端子285bに接続され、形状記憶合金245の他方端は中継端子325bを貫通してSMA保持部材225hに接続される。中継端子325bは、形状記憶合金245の長さ方向中央位置で形状記憶合金245に固着される。
 なお、以下では、形状記憶合金245の一方端から他方端までの区間のうち、一方端から中継端子325bに接触している位置(特定給電位置)までの区間を“区間A2”と定義し、中継端子325bに接触している位置から他方端までの区間を“区間B2”と定義する。
 この実施例では、給電端子285a~285c,中継部材305,中継端子325a~325b,リード線345を“給電系”と総称する。形状記憶合金245は上述の要領で給電系と接続されるため、給電は、形状記憶合金245の互いに異なる3つ以上の位置に対して個別に行われる。
 回転軸22には、逆回転方向の外力がバイアスバネ26によって付勢される。したがって、給電端子285a~285cのいずれもが給電されていない状態では、中継部材305がX軸方向の正側にスライドするとともに、形状記憶合金245が変態温度以下で格子変形して伸長する。この結果、ワイパー16は逆回転方向に回動し、ノーズ14nに当たる位置で停止する。
 給電端子285aおよび285bへの給電が開始されると、形状記憶合金245の区間A2が通電によって自己加熱する。形状記憶合金245は区間A2において熱収縮を起こし、これによって中継部材305がX軸方向の負側にスライドする。回転軸22は正回転方向に回転し、ワイパー16は正回転方向に回動する。
 給電端子285aおよび285bへの給電が停止されると、形状記憶合金245の区間A2は自然冷却される。区間A2において形状記憶合金245の温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金245が伸長する。この結果、中継部材305がX軸方向の正側にスライドし、回転軸22が逆回転方向に回転する。ワイパー16は、回転軸22の回転とともに逆回転方向に回動する。
 給電端子285aおよび285cへの給電が開始されると、形状記憶合金245の区間B2が通電によって自己加熱する。形状記憶合金245は区間B2において熱収縮を起こし、この結果、回転軸22が正回転方向に回転するとともに、ワイパー16が正回転方向に回動する。
 給電端子285aおよび285cへの給電が停止されると、形状記憶合金245の区間B2は自然冷却される。形状記憶合金245の温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金245が伸長する。この結果、回転軸22が逆回転方向に回転し、ワイパー16が逆回転方向に回動する。
 したがって、ワイパー16は、形状記憶合金245の全区間が収縮したとき最大角度まで回動し、形状記憶合金245の区間A2または区間B2だけが収縮したとき最大角度を下回る角度まで回動する。つまり、ワイパー16の回動角度は、給電端子285a~285cに対する給電態様を切り替えることで段階的に変化する。
 この実施例においても、形状記憶合金245を線状とすることで、通電のための消費電力を抑えることができ、かつ通電に対する形状記憶合金245の応答特性を高めることができる。また、形状記憶合金245の互いに異なる3つ以上の位置に個別に給電するようにすることで、ワイパー16の回動角度を適応的に変更することができる。また、1本の形状記憶合金245を配置するだけでよいので、雨滴除去装置10の組み立てが容易になる。なお、ワイパー16の回動角度は、区間A2の長さと区間B2の長さとの比率を変えることで調整可能である。
[第6実施例]
 図8を参照して、この実施例の雨滴除去装置10は、図7に示す雨滴除去装置10と比較したとき、給電端子286aが給電端子285aに代えて採用され、中継部材305,ガイド305g,中継端子325a~325bおよびリード線345が省略される。
 ただし、SMA保持部材226hはSMA保持部材225hと一致し、給電端子286bおよび286cは給電端子285bおよび285cとそれぞれ一致し、形状記憶合金246は形状記憶合金245と一致する。また、SMA保持部材226h,回転軸22は、アルミなどの金属を材料とする(PPSなどの樹脂の表面にメッキなどを施し導体としたものでもよい)。また、バイアスバネ26は、ステンレスなどのバネ材を材料とする。
 したがって、以下では、図7に示す雨滴除去装置10との相違点を重点的に説明し、同様の構成に関する重複した説明は極力省略する。
 給電端子286aは、収納室RM2の底面のほぼ中央位置に設けられる。より詳しくは、給電端子286aは、給電端子286bの高さ位置と一致する高さ位置に配置され、筐体36のY軸正外側面に引き出される。
 なお、以下では、形状記憶合金246の一方端(給電端子286bとの接続端)から他方端(SMA保持部材226hとの接続端)までの区間のうち、一方端から給電端子286aに接触している位置までの区間を“区間A3”と定義し、給電端子286aに接触している位置から他方端までの区間を“区間B3”と定義する。
 この実施例では、給電端子286a~286cを“給電系”と総称する。形状記憶合金246は上述の要領で給電系と接続されるため、給電は、形状記憶合金246の互いに異なる3つ以上の位置に対して個別に行われる。
 回転軸22には、逆回転方向の外力がバイアスバネ26によって付勢される。したがって、給電端子286a~286cのいずれもが給電されていない状態では、形状記憶合金246が変態温度以下で格子変形して伸長する。この結果、ワイパー16は逆回転方向に回動し、ノーズ14nに当たる位置で停止する。
 給電端子286aおよび286bへの給電が開始されると、形状記憶合金246の区間A3が通電によって自己加熱する。形状記憶合金246は区間A3において熱収縮を起こし、これによって、回転軸22ひいてはワイパー16が正回転方向に回動する。
 給電端子286aおよび286bへの給電が停止されると、形状記憶合金246の区間A3は自然冷却される。区間A3において形状記憶合金246の温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金246が伸長する。この結果、回転軸22ひいてはワイパー16が逆回転方向に回動する。
 給電端子286aおよび286cへの給電が開始されると、形状記憶合金246の区間B3が通電によって自己加熱する。形状記憶合金246は区間B3において熱収縮を起こし、この結果、回転軸22ひいてはワイパー16が正回転方向に回動する。
 給電端子286aおよび286cへの給電が停止されると、形状記憶合金246の区間B3は自然冷却される。形状記憶合金246の温度が変態温度を下回ると、バイアスバネ26の付勢力によって格子変形が生じ、形状記憶合金246が伸長する。この結果、回転軸22ひいてはワイパー16が逆回転方向に回動する。
 したがって、ワイパー16は、形状記憶合金246の全区間が収縮したとき最大角度まで回動し、形状記憶合金246の区間A3または区間B3だけが収縮したとき最大角度を下回る角度まで回動する。つまり、ワイパー16の回動角度は、給電端子286a~286cに対する給電態様を切り替えることで段階的に変化する。
 この実施例においても、形状記憶合金246を線状とすることで、通電のための消費電力を抑えることができ、かつ通電に対する形状記憶合金246の応答特性を高めることができる。また、形状記憶合金246の互いに異なる3つ以上の位置に個別に給電するようにすることで、ワイパー16の回動角度を適応的に変更することができる。また、図7に示す中継部材305,ガイド305g,中継端子325a~325bおよびリード線345が省略されるため、雨滴除去装置10の組み立てがさらに容易になる。なお、ワイパー16の回動角度は、区間A3の長さと区間B3の長さとの比率を変えることで調整可能である。
[第7実施例]
 図9を参照して、この実施例のヘッド駆動装置40は、図2に示す雨滴除去装置10と比較したとき、収納室RM1を有する筐体14に代えて収納室RM2を有する筐体42が採用され、ワイパー16に代えて制御ヘッド46および作用ヘッド48が採用され、ノーズ14nに代えて回転止め42sが採用され、そして蓋20に代えて蓋44が採用される。
 収納室RM2に設けられた複数の部材は、各部材の配置がX軸方向において反転している点を除いて、図2に示す雨滴除去装置10の収納室RM1に設けられた複数の部材と同じである。したがって、各部材の参照番号にダッシュを付すことで重複した説明を省略する。
 回転軸22´の一方端は、筐体42のZ軸正側壁を貫通して外部に突出する。この一方端には、円筒状の制御ヘッド46および作用ヘッド48が装着される。詳しくは、制御ヘッド46および作用ヘッド48は、Z軸方向の負側から正側に向かってこの順で並ぶ。また、制御ヘッド46のZ軸方向における正側端面46tはテーパ面とされ、作用ヘッド48のZ軸方向における負側端面48tもまた制御ヘッド46の正側端面46tと当接するテーパ面とされる。制御ヘッド46は回転軸22´に固定的に装着され、作用ヘッド48は制御ヘッド46に対して摺動可能な態様で回転止め42sによって支持される。
 したがって、作用ヘッド48は、回転軸22´がZ軸方向の負側から眺めて時計回り方向に回転したときZ軸方向の正側に移動し、回転軸22´がZ軸方向の負側から眺めて反時計回り方向に回転したときZ軸方向の負側に移動する(図10参照)。こうして、回転軸22´の回転運動が、回転軸22´に直交する方向における直線運動に変換される。
 10 …雨滴除去装置(駆動装置)
 14,36,42 …筐体
 16 …ワイパー(対象物)
 22,22´ …回転軸(回動部材)
 241a~243a,241a´ …形状記憶合金(部分形状記憶合金)
 241b~243b,241b´ …形状記憶合金(部分形状記憶合金)
 244~246 …形状記憶合金
 26,26´ …バイアスバネ(弾性体)
 281a~281c,282a~282c,283a~283c,284a~284c,285a~285c,286a~286c,281a´~281c´ …給電端子(給電系の一部)
 301~305, 301´ …支持部材
 321a~321b,322a~322c,323a~323b,324,325a~325b, 321a´~321b´ …中継端子(給電系の他の一部、特定給電端子)
 341a~341b,342~345,341a´~341b´ …リード線(給電系のその他の一部)
 40 …ヘッド駆動装置(駆動装置)
 46 …制御ヘッド
 46t …端面(第1端面)
 48 …作用ヘッド(対象物)
 48t …端面(第2端面)

Claims (7)

  1.  基準軸の周りに反対向きに割り当てられた第1方向および第2方向の各々に回動できるように筐体によって支持された回動部材、
     前記第1方向に向かう外力を熱収縮によって前記回動部材に付勢する針金状の形状記憶合金、
     前記第2方向に向かう外力を前記回動部材に付勢する弾性体、
     前記回動部材の回動に伴って変位する対象物、および
     前記形状記憶合金の3つ以上の位置に給電端子を備え、それぞれ隣り合う給電端子間で電位差を与えるように個別に給電する給電系を備える、駆動装置。
  2.  前記3つ以上の位置は前記形状記憶合金の一部に通電するための特定給電位置を含み、
     前記給電系は、前記特定給電位置に給電する特定給電端子、および前記筐体に可動的に設けられかつ前記特定給電端子を支持する支持部材を含む、請求項1記載の駆動装置。
  3.  前記形状記憶合金はつづら折り状に延在するように前記支持部材によって支持される、請求項2記載の駆動装置。
  4.  前記特定給電位置の数は2つ以上であり、
     前記形状記憶合金は前記特定給電位置が各々に割り当てられた2つ以上の部分形状記憶合金に分割されている、請求項2記載の駆動装置。
  5.  前記2つ以上の特定給電位置は前記2つ以上の部分形状記憶合金が特定方向から眺めて少なくとも部分的に重なり合うように割り当てられる、請求項4記載の駆動装置。
  6.  前記対象物は雨滴を除去するべく回動するワイパーを含む、請求項1ないし5のいずれかに記載の駆動装置。
  7.  前記回動部材は前記基準軸方向の一方端に形成されたテーパ状の第1端面を有し、
     前記対象物は前記第1端面と当接するテーパ状の第2端面を有する、請求項1ないし5のいずれかに記載の駆動装置。
PCT/JP2015/064679 2014-09-02 2015-05-22 駆動装置 WO2016035397A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016546347A JP6187702B2 (ja) 2014-09-02 2015-05-22 駆動装置
US15/440,636 US20170158173A1 (en) 2014-09-02 2017-02-23 Driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-178343 2014-09-02
JP2014178343 2014-09-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/440,636 Continuation US20170158173A1 (en) 2014-09-02 2017-02-23 Driving device

Publications (1)

Publication Number Publication Date
WO2016035397A1 true WO2016035397A1 (ja) 2016-03-10

Family

ID=55439471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064679 WO2016035397A1 (ja) 2014-09-02 2015-05-22 駆動装置

Country Status (3)

Country Link
US (1) US20170158173A1 (ja)
JP (1) JP6187702B2 (ja)
WO (1) WO2016035397A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111267779A (zh) * 2020-03-26 2020-06-12 义乌市重心汽车用品有限公司 一种汽车侧视镜除雨设备
KR20200070547A (ko) * 2018-12-10 2020-06-18 김종문 Cctv용 탈부착 이물질 제거 장치
JP7449021B1 (ja) 2023-10-23 2024-03-13 株式会社ミカミ ワイパー装置、およびカメラ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218255A1 (de) * 2018-10-25 2020-04-30 Robert Bosch Gmbh Vorrichtung zur Reinigung einer Innenfläche und/oder Außenfläche einer Abdeckung und Verfahren zum Betrieb der Vorrichtung
IT201900003589A1 (it) * 2019-03-12 2020-09-12 Actuator Solutions GmbH Attuatore multistabile basato su fili in lega a memoria di forma
CN110248161B (zh) * 2019-06-19 2021-06-01 安徽创安达智能科技有限公司 一种基于风能的安防监控系统
DE102020208111A1 (de) 2020-06-30 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Erweiterungsmodul für einen Lidar-Sensor und modulare Lidar-Einheit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151454A (en) * 1981-03-13 1982-09-18 Toyota Motor Corp Wiper of outside mirror
JPH02502710A (ja) * 1987-03-23 1990-08-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動車のガラスに用いられるワイパ装置
JPH0335859U (ja) * 1989-08-10 1991-04-08
US5062175A (en) * 1990-05-16 1991-11-05 General Motors Corporation Windshield wiper with adjustable wiping pressure
JPH04126644A (ja) * 1990-09-19 1992-04-27 Hino Motors Ltd ワイパー
JPH08167449A (ja) * 1994-12-12 1996-06-25 Hosiden Corp カードコネクタのカード排出装置及びカードコネクタ
JP2005337262A (ja) * 2003-05-12 2005-12-08 Mitsubishi Electric Corp 駆動装置、レンズ駆動装置、及びカメラ
JP2007233314A (ja) * 2006-02-03 2007-09-13 Ask:Kk 触覚ピン表示装置
US20130209079A1 (en) * 2012-02-15 2013-08-15 Dynalloy, Inc. Camera system
US20140007904A1 (en) * 2012-07-08 2014-01-09 Noam Shapira Cleaning of Solar Panels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242841B1 (en) * 2000-01-06 2001-06-05 Eastman Kodak Company Stepper motor with shaped memory alloy rotary-driver
US20050160858A1 (en) * 2002-07-24 2005-07-28 M 2 Medical A/S Shape memory alloy actuator
JP2007092556A (ja) * 2005-09-27 2007-04-12 Konica Minolta Opto Inc 駆動装置及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151454A (en) * 1981-03-13 1982-09-18 Toyota Motor Corp Wiper of outside mirror
JPH02502710A (ja) * 1987-03-23 1990-08-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動車のガラスに用いられるワイパ装置
JPH0335859U (ja) * 1989-08-10 1991-04-08
US5062175A (en) * 1990-05-16 1991-11-05 General Motors Corporation Windshield wiper with adjustable wiping pressure
JPH04126644A (ja) * 1990-09-19 1992-04-27 Hino Motors Ltd ワイパー
JPH08167449A (ja) * 1994-12-12 1996-06-25 Hosiden Corp カードコネクタのカード排出装置及びカードコネクタ
JP2005337262A (ja) * 2003-05-12 2005-12-08 Mitsubishi Electric Corp 駆動装置、レンズ駆動装置、及びカメラ
JP2007233314A (ja) * 2006-02-03 2007-09-13 Ask:Kk 触覚ピン表示装置
US20130209079A1 (en) * 2012-02-15 2013-08-15 Dynalloy, Inc. Camera system
US20140007904A1 (en) * 2012-07-08 2014-01-09 Noam Shapira Cleaning of Solar Panels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200070547A (ko) * 2018-12-10 2020-06-18 김종문 Cctv용 탈부착 이물질 제거 장치
KR102168750B1 (ko) * 2018-12-10 2020-10-22 김종문 Cctv용 탈부착 이물질 제거 장치
CN111267779A (zh) * 2020-03-26 2020-06-12 义乌市重心汽车用品有限公司 一种汽车侧视镜除雨设备
JP7449021B1 (ja) 2023-10-23 2024-03-13 株式会社ミカミ ワイパー装置、およびカメラ装置

Also Published As

Publication number Publication date
US20170158173A1 (en) 2017-06-08
JP6187702B2 (ja) 2017-08-30
JPWO2016035397A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6187702B2 (ja) 駆動装置
JP7150786B2 (ja) 画像スタビライザの位置決めデバイス
JP5884303B2 (ja) 圧電アクチュエーター、ロボットハンド、及びロボット
JP5799596B2 (ja) 圧電アクチュエーター、ロボットハンド、及びロボット
EP3669074B1 (en) Sma actuator wire optical assembly
WO2004099611A1 (ja) 駆動装置
JP2009240155A (ja) 電動歯ブラシ装置
CN112678136B (zh) 一种压电驱动的机器胸鳍姿态调整系统及其工作方法
JP2005319983A (ja) ワイパ装置
JP4353921B2 (ja) 駆動装置、レンズ駆動装置、及びカメラ
WO2015147744A1 (en) A vane-slot mechanism for a rotary vane machine
JP3753131B2 (ja) アクチュエータ
CN111929799A (zh) 驱动组件、相机模块和具有拍摄功能的电子设备
JP2001518423A (ja) アクチュエータ
US20040156752A1 (en) Micro-beam friction liner and method of transferring energy
CN109581653A (zh) 一种基于突出梳齿的mems驱动器及其工作方法
JP2012175746A (ja) 変位拡大機構及び研磨装置
JP2012121130A (ja) 研磨装置
US7813063B2 (en) Driving unit and optical pick-up device including the same
JP4151251B2 (ja) 駆動装置
JP5579430B2 (ja) アクチュエータ
CN214742190U (zh) 一种便于夹持固定的便携风扇
JP4565850B2 (ja) 超音波モータおよびレンズ装置
CN211259121U (zh) 风叶倾斜角度可调的风叶结构及轴流风机
WO2010032624A1 (ja) 圧電アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837793

Country of ref document: EP

Kind code of ref document: A1