WO2016035366A1 - 撮像システム - Google Patents

撮像システム Download PDF

Info

Publication number
WO2016035366A1
WO2016035366A1 PCT/JP2015/058032 JP2015058032W WO2016035366A1 WO 2016035366 A1 WO2016035366 A1 WO 2016035366A1 JP 2015058032 W JP2015058032 W JP 2015058032W WO 2016035366 A1 WO2016035366 A1 WO 2016035366A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
image
optical
optical image
endoscope
Prior art date
Application number
PCT/JP2015/058032
Other languages
English (en)
French (fr)
Inventor
恭輔 水野
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2016035366A1 publication Critical patent/WO2016035366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array

Definitions

  • the present invention relates to an imaging system, and more particularly to an imaging system that generates a new display image using two types of images.
  • Japanese Patent No. 5030675 discloses an endoscope that simultaneously forms two types of optical images, a front-field image and a side-field image, on a single image sensor and newly acquires a wide-angle field image. Yes.
  • Japanese Patent Application Laid-Open No. 2003-032559 discloses a technique for generating a display image having a high dynamic range using two types of captured images having different luminances.
  • one optical image is separated into two optical images by a light beam separation unit, and the two separated optical images are connected on the imaging surface of one imaging element. It is something to be imaged.
  • the technique performs photoelectric conversion on the two types of optical images on the imaging element to generate two imaging signals having different luminances, converts the two imaging signals into image signals, and combines them. A high dynamic range image is acquired.
  • the two imaging signals are generated by extracting and optically converting two optical images on the imaging surface of the imaging element.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an imaging system that accurately cuts out an optical image position on an imaging surface of an imaging element and generates an accurate imaging signal.
  • An imaging system includes an imaging unit including an imaging element that can capture an optical image of a subject and output the image as an imaging signal, a first optical image of the subject, and a second optical image of the subject And an optical system that forms each of the optical images in a corresponding predetermined region on the image sensor, and the first optical image and the second image formed on the imaging surface of the imaging unit.
  • An imaging area cutout unit that cuts out an imaging area corresponding to the first optical image and the second optical image on the imaging surface based on the imaging position information of the optical image.
  • FIG. 1 is a diagram illustrating a configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a configuration of the distal end portion of the insertion portion in the endoscope system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of two types of optical images formed on the image sensor in the endoscope system according to the first embodiment.
  • FIG. 4 is a diagram showing a configuration of an endoscope system according to the second embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of an optical member disposed at the distal end portion of the insertion portion in the endoscope system according to the second embodiment.
  • FIG. 6 is a diagram illustrating an example of two types of optical images formed on the image sensor in the endoscope system according to the second embodiment.
  • FIG. 7 is a diagram showing a configuration of an endoscope system according to the third embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating the configuration of the distal end portion of the insertion portion in the endoscope system according to the third embodiment.
  • FIG. 9 is a diagram illustrating an example of two types of optical images formed on the image sensor in the endoscope system according to the third embodiment.
  • FIG. 10 is a diagram showing a configuration of an endoscope system according to the fourth embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a configuration of a distal end portion of an insertion portion in the endoscope system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of two types of optical images formed on the image sensor in the endoscope system according to the first embodiment.
  • an endoscope system 1 includes an endoscope 2 that is a so-called 3D endoscope that includes an imaging element 25 and generates a stereoscopic image, and an endoscope. 2 is detachably connected to the processor 3 that performs predetermined signal processing, the endoscope 2 is detachably connected to the light source device 4 that supplies illumination light to the endoscope 2, and the processor 3 generates And a monitor 5 as a display device that displays the image signal as an endoscopic image.
  • the endoscope 2 includes an elongated insertion portion 6 to be inserted into a body cavity, an operation portion 7 provided at the rear end of the insertion portion 6, and a universal cord 8 extending from the operation portion 7. .
  • the universal cord 8 branches into a light guide cord 9 and a signal cord (signal cable) 10 near or at the base end thereof.
  • the light source connector 11 at the end of the light guide cord 9 is detachably connected to the light source device 4, and the signal connector 12 at the end of the signal cord 10 is detachably connected to the processor 3.
  • the signal connector 12 is provided with an ID memory 20 that is a storage unit for storing individual information for each endoscope 2, for example, individual information relating to the image sensor 25.
  • a light guide 13 for transmitting illumination light is inserted through the insertion section 6, the operation section 7 and the universal cord 8. Then, by connecting the light source connector 11 to the light source device 4, the illumination light from the light source device 4 is transmitted by the light guide 13, and the light guide attached to the illumination window provided at the distal end portion 14 of the insertion portion 6. The transmitted illumination light is emitted from the tip surface 13a.
  • a connector in which the light source connector 11 and the signal connector 12 are integrated is connected to the light source device 4, and the signal of the signal connector 12 is exchanged with the processor 3 through a cable connecting the light source device 4 and the processor 3. You may make it the structure to carry out.
  • the distal end portion 14 is provided with an observation window (imaging window) adjacent to the illumination window, and the optical window of the illuminated subject such as an affected area enters the observation window with parallax.
  • An objective lens 21 and a second objective lens 22 are disposed (see FIG. 2).
  • Predetermined objective optical systems 23 and 24 are disposed behind the first objective lens 21 and the second objective lens 22, respectively.
  • An imaging element 25 is disposed at the imaging positions of the first objective lens 21 and the second objective lens 22 through the objective optical systems 23 and 24.
  • the endoscope 2 in the first embodiment inputs an optical image having parallax between the two first objective lens 21 and the second objective lens 22 as a 3D endoscope,
  • Each of the objective optical systems 23 and 24 generates a first optical image and a second optical image which are separate optical images.
  • An image is formed on the imaging surface.
  • the image pickup element 25 is constituted by, for example, a CCD image sensor, and is connected to the processor 3 via the signal connector 12 after passing through the insertion portion 6 and the cable inserted into the universal cord 8.
  • the image sensor 25 corresponds to the first optical image and the second optical image, which are different optical images, from each optical image on the same imaging surface of the CCD. An image is formed on a predetermined area.
  • the first optical image for the left is formed in the region 51
  • the second optical image for the right is formed in the region 52.
  • the region 51 and the region 52 are illustrated as having a substantially rectangular shape, but this is performed when the processor 3 cuts out the predetermined imaging region relating to the first optical image and the second optical image. Because it corresponds to the area of.
  • the region 51 and the region 52 which are the respective image formation regions of the first optical image and the second optical image, are not limited to a rectangular shape, and may be, for example, a region having a circular shape. Further, the area 51 and the area 52 may be set so that some areas overlap each other.
  • the design accuracy of the two objective lenses and the two objective optical systems that form an optical image of a subject, or the assembly accuracy or processing of these mechanisms Due to the influence of accuracy, the positions of the two optical images formed on the imaging surface of the CCD may slightly deviate from the desired positions for each individual endoscope.
  • the two optical images are formed at any position (region) on the imaging surface of the imaging element 25.
  • “Imaging position information” indicating whether or not the image is shipped is obtained in advance for each endoscope to be shipped, and the “imaging position information” is stored in the ID memory 20 provided in the signal connector 12. It has become.
  • This position information is, for example, XY coordinate information on the imaging surface of a region 51 corresponding to the first optical image for the left and a region 52 corresponding to the second optical image for the right as shown in FIG. is there.
  • the processor 3 includes a power supply circuit (not shown) that generates a plurality of power supply voltages necessary for the operation of the image sensor and the like, and a signal processing circuit (image processing unit) that performs predetermined signal processing on an image signal output from the image sensor 32, a preprocessing unit 33, etc.), a CCD drive circuit 34 that drives the image pickup device 25 in the endoscope 2, and a control unit that controls various circuits including the power supply circuit, the signal processing circuit, and the CCD drive circuit 34. 31.
  • the control unit 31 controls various circuits in the processor 3 as described above, and stores the internal circuit stored in the ID memory 20 in the signal connector 12 when the endoscope 2 is connected to the processor 3.
  • the “imaging position information” which is individual information of the endoscope 2 is obtained.
  • the preprocessing unit 33 inputs an image pickup signal from the image pickup device 25 (in this embodiment, an image pickup signal related to the first optical image and the second optical image) and performs predetermined presignal processing.
  • the control unit 31 includes a known signal amplification unit, process circuit, A / D converter, white balance circuit, and the like.
  • the image processing unit 32 performs predetermined image processing on the output signal from the preprocessing unit 33, and finally generates two display output signals for 3D images in the monitor 5 in this embodiment. In response to this, it is designed to output.
  • the image processing unit 32 then performs predetermined imaging of the first optical image and the second optical image based on the “imaging position information” stored in the ID memory 20 under the control of the control unit 31.
  • An imaging area cutout unit 32a that cuts out an area is provided.
  • the imaging area cutout unit 32a is the information of the endoscope 2 connected to the processor 3, and the first optical image formed on the imaging surface of the imaging element 25 and the first optical image. Based on the “imaging position information” of the second optical image, an imaging region corresponding to the first optical image and the second optical image on the imaging surface is cut out.
  • the image processing unit 32 performs predetermined image processing on each of the two imaging regions cut out by the imaging region cutting unit 32a and performs two display video signals (in this embodiment, a left video signal and a right video signal). ) Are generated and output to the monitor 5.
  • the monitor 5 adopts a so-called 3D-compatible monitor device, and appropriately displays a known 3D process on the two input video signals.
  • the means for executing the 3D processing is not limited to this.
  • the image processing unit 32 performs predetermined 3D synthesis processing on the imaging signals corresponding to the two imaging areas, and outputs the video signal to a normal monitor as one video signal. Alternatively, it may be output.
  • the two optical images are formed at any position (region) on the imaging surface of the imaging element 25.
  • the “imaging position information” is acquired in advance by inspection for each endoscope to be shipped, and the “imaging position information” is stored in the ID memory 20 provided in the signal connector 12.
  • control unit 31 obtains “imaging position information” stored in the ID memory 20.
  • the preprocessing unit 33 inputs an imaging signal from the imaging device 25 and performs predetermined preprocessing, and then the imaging region cutting unit in the image processing unit 32. 32a cuts out a predetermined imaging region of the first optical image and the second optical image based on the “imaging position information”.
  • the image processing unit 32 performs predetermined image processing on each of the two imaging regions cut out by the imaging region cutting unit 32 a to generate a left video signal and a right video signal, and outputs them to the monitor 5. .
  • the monitor 5 appropriately performs known 3D processing on the input left video signal and right video signal and displays them in 3D.
  • 3D processing is performed on the monitor side.
  • the image processing unit 32 performs predetermined 3D synthesis on the imaging signals corresponding to the two imaging regions. Processing may be performed and output as a single video signal to a normal monitor.
  • the “imaging position information” indicating at which position (region) on the imaging surface of the imaging device the two types of optical images are formed. ”Is stored in advance for each endoscope, and on the other hand, an imaging region corresponding to the two types of optical images on the imaging surface is cut out based on the“ imaging position information ”in the connected processor. An accurate display image can be obtained when a new display image is generated based on the two types of optical images.
  • the endoscope system according to the first embodiment includes an 3D endoscope that forms two optical images having parallax as two types of optical images on one image sensor.
  • the present invention is applied to a system.
  • the endoscope system according to the second embodiment has two optical images generated by separating one incident optical image into one optical image.
  • An endoscope system including an endoscope that forms an image on an image sensor.
  • the endoscope system forms two separated optical images on the image pickup surface of one image pickup device, and two different brightnesses with respect to the two optical images.
  • a high dynamic range image is obtained by generating an imaging signal and converting the two imaging signals into an image signal and combining them.
  • FIG. 4 is a diagram showing a configuration of an endoscope system according to a second embodiment of the present invention
  • FIG. 5 is a configuration of an optical member disposed at a distal end portion of an insertion portion in the endoscope system according to the second embodiment
  • FIG. 6 is a diagram illustrating an example of two types of optical images formed on the image sensor in the endoscope system according to the second embodiment.
  • the basic configuration of the endoscope system 101 of the second embodiment is the same as that of the first embodiment, but the distal end portion of the insertion portion in the endoscope 102 as compared to the first embodiment.
  • the configuration of 114 is different.
  • the two first objective lens 21 and the second objective lens 22 that are incident on each other with parallax are arranged.
  • An objective lens 121 for receiving an optical image of a subject such as an affected part is disposed at the distal end portion 114.
  • An optical prism 123 is disposed behind the objective lens 121. As shown in FIG. 5, the optical prism 123 divides the one optical image from the objective lens 121 into a first optical image and a second optical image, and emits the optical image toward the image sensor 125. An image dividing unit.
  • An imaging element 125 is disposed at the imaging position of the first optical image and the second optical image output from the optical prism 123 as two optical paths (first optical path and second optical path). .
  • a mirror 124b and means for reducing light for example, an ND filter 124a, are provided on the first optical path related to the first optical image among the two optical images output from the optical prism 123. It is arranged.
  • the first optical image reflected by the prism surface is folded back by the mirror 124b and incident on the optical prism 123 again, and the luminance is actively reduced by the ND filter 124a.
  • the image is formed on the image sensor 125.
  • the first optical image formed on the image sensor 125 is an image having a relatively low brightness as compared with the second optical image.
  • the first optical image and the second optical image divided from the one optical image by the optical prism 123 are formed on the imaging surface of the imaging element 125, respectively.
  • the optical image 1 is formed as an image with reduced brightness by the light reducing means.
  • the image sensor 125 corresponds to each optical image on the same imaging surface of the CCD, the first optical image and the second optical image, which are two types of optical images. An image is formed in a predetermined area.
  • the low-luminance first optical image is formed in the region 151 and the high-luminance second optical image is formed in the region 152, respectively.
  • the position of the two optical images on the imaging surface of the imaging element 125 (The “imaging position information” indicating whether or not the image is formed in the region) is obtained in advance by inspection for each endoscope to be shipped, and the “imaging position information” is provided in the signal connector 12. It is stored in the memory 20.
  • the processor 3 has the same configuration as the processor 3 in the first embodiment, and thus detailed description thereof is omitted. However, as in the first embodiment, an endoscope is used. When 102 is connected to the processor 3, the “imaging position information”, which is individual information of the endoscope 102, stored in the ID memory 20 of the signal connector 12 is obtained. ing.
  • the image processing unit 32 in the second embodiment is similar to the first embodiment in that the “connection” stored in the ID memory 20 is stored in the imaging region cutout unit 32a under the control of the control unit 31. Based on the “image position information”, a predetermined imaging region of the first optical image and the second optical image is cut out.
  • the image processing unit 32 performs predetermined image processing on each of the two imaging regions cut out by the imaging region cutting unit 32a. That is, two optical images having different luminances, that is, a low-luminance first optical image and a high-luminance second optical image are synthesized to generate a display image having a high dynamic range, and the monitor 5 Output.
  • two types of optical images are picked up by the image sensor as in the first embodiment.
  • “Image formation position information” indicating in which position (area) on the surface the image is formed is stored in advance for each endoscope, and on the other hand, the connected processor is based on the “image formation position information” and the image pickup surface Since the imaging regions corresponding to the above two types of optical images are cut out, an accurate display image can be obtained when a new display image is generated based on the two types of optical images.
  • the endoscope system includes an endoscope that simultaneously forms two types of optical images, a front-field image and a side-field image, on a single image sensor and newly acquires a wide-angle field image.
  • An endoscope system provided.
  • FIG. 7 is a diagram showing a configuration of an endoscope system according to a third embodiment of the present invention
  • FIG. 8 is a perspective view showing a configuration of a distal end portion of an insertion portion in the endoscope system according to the third embodiment
  • FIG. 9 is a diagram illustrating an example of two types of optical images formed on the image sensor in the endoscope system according to the third embodiment.
  • the basic configuration of the endoscope system 201 of the third embodiment is the same as that of the first embodiment, but the distal end portion of the insertion portion in the endoscope 202 as compared to the first embodiment.
  • the configuration of 214 is different.
  • the two first objective lens 21 and the second objective lens 22 that are incident on each other with parallax are disposed.
  • the front end portion 214 is provided with a front observation window portion 221 for receiving a front view optical image of a subject such as an affected part and a side observation window portion 222 for receiving a side view optical image.
  • the distal end portion 214 of the insertion portion is formed with a cylindrical portion 223 as a cylindrical member that protrudes in a cylindrical shape from a position eccentric from the center of the distal end surface of the distal end portion 214, for example, upward. Yes.
  • the cylindrical portion 223 has a distal end surface that is smaller than the distal end (outer diameter) of the insertion portion and faces the insertion direction, and an outer peripheral side surface that faces the circumferential direction of the insertion portion.
  • a window portion 222 is formed, and at least one side illumination window is formed near the base end of the cylindrical portion 223 as a side illumination portion.
  • the side observation window 222 is formed in an annular shape so as to observe the entire circumference along the circumferential direction of the side surface for observing the cylindrical side surface direction.
  • the side observation window unit 222 captures light from a subject incident from an arbitrary direction facing the annular shape in a side observation field (also simply referred to as a field of view) and acquires it as a side field image.
  • a mirror lens (not shown) is provided as a reflection optical system for this purpose.
  • one imaging element 225 is disposed at the imaging position of the objective optical system (not shown) serving as the front side and the side side at the distal end portion 214.
  • an image of the subject in the front visual field incident on the front observation window 221 is formed in a circle on the center side, and is acquired as a front visual field image.
  • an image of the subject in the side field is formed in an annular shape by the mirror lens facing the side observation window 222 on the outer peripheral side of the front field image. It is acquired as a visual field image (see FIG. 9).
  • the front-field optical image as the first optical image and the side-field optical image as the second optical image are displayed. And are respectively imaged.
  • the image sensor 225 corresponds to the first optical image and the second optical image, which are two types of optical images, to each optical image on the same imaging surface of the CCD. An image is formed in a predetermined area.
  • the first optical image of the front visual field image is formed in the region 251 and the second optical image of the side visual field image is formed in the region 252.
  • the two optical images are on the imaging surface of the imaging element 225.
  • “Image formation position information” indicating in which position (area) the image is formed is acquired in advance for each endoscope to be shipped, and the “image formation position information” is disposed in the signal connector 12. Further, it is stored in the ID memory 20.
  • the processor 3 has the same configuration as the processor 3 in the first embodiment, and thus detailed description thereof is omitted. However, as in the first embodiment, an endoscope is used.
  • the “imaging position information”, which is individual information of the endoscope 202, stored in the ID memory 20 of the signal connector 12 is obtained. ing.
  • the image processing unit 32 in the third embodiment is similar to the first embodiment in that the “connection” stored in the ID memory 20 is stored in the imaging region cutout unit 32a under the control of the control unit 31. Based on the “image position information”, a predetermined imaging region of the first optical image and the second optical image is cut out.
  • the image processing unit 32 performs predetermined image processing on each of the two imaging regions cut out by the imaging region cutting unit 32a. That is, two different optical images, that is, a display image in which the first optical image of the front visual field image and the second optical image of the side visual field image are arranged at predetermined positions are generated and output to the monitor 5. It is supposed to be.
  • two types of optical images are captured on the imaging surface of the image sensor, as in the first embodiment.
  • “Image formation position information” on which position (area) the image is formed is stored in advance for each endoscope, and on the imaging surface based on the “image formation position information” in the connected processor. Since the imaging regions corresponding to the two types of optical images are cut out, an accurate display image can be obtained when a new display image is generated based on the two types of optical images.
  • the endoscope system according to the first embodiment includes the imaging region extraction unit 32a that extracts the imaging region corresponding to the two types of optical images on the processor 3 side (in the image processing unit 32).
  • the endoscope system according to the fourth embodiment is characterized in that the imaging region cutout portion is provided in the signal connector 12 on the endoscope 2 side.
  • FIG. 10 is a diagram showing a configuration of an endoscope system according to the fourth embodiment of the present invention.
  • the endoscope system 301 according to the fourth embodiment has the same basic configuration as that of the first embodiment, but the imaging region cutout unit 28 is endoscopically compared to the first embodiment.
  • the point provided in the signal connector 12 on the mirror 302 side is different.
  • a signal in the endoscope 302 is based on “imaging position information” (which may be temporarily stored in the ID memory 20) acquired on the endoscope 302 side.
  • An imaging area corresponding to the two types of optical images on the imaging surface is cut out by the imaging area cutout section 28 provided in the connector 12.
  • the imaging region cutout unit 28 inputs two types of imaging signals from the imaging element 25 to the signal connector 12, and when the endoscope 302 is connected to the processor 3, the processor 3 is controlled by the control unit 31 in FIG.
  • the imaging area cutout unit 28 performs a process of cutting out the imaging areas corresponding to the two types of optical images on the imaging surface
  • the processor 3 performs, for example, predetermined signal processing in the image processing unit 32 in accordance with the imaging regions corresponding to the two types of optical images on the imaging surface that are cut out by the imaging region cutting unit 28.
  • the endoscope side in the fourth embodiment, as in the first embodiment, in the 3D endoscope in which two types of optical images having a field of view are formed on the imaging surface of one imaging device, the endoscope side
  • the type of endoscope is not limited to this.
  • an imaging region cutting unit is provided on the endoscope side. You may make it provide a protrusion part.
  • the positions (regions) of the two types of optical images on the imaging surface of the image sensor are as follows.
  • the “image formation position information” indicating whether or not the image has been formed is acquired in advance for each endoscope, and the two types of optical images on the imaging surface are obtained on the endoscope side based on the “image formation position information”. Since the imaging region corresponding to the above is cut out, when the processor to be connected does not have a function such as the imaging region cutting unit, a new display image is generated based on the two types of optical images. An accurate display image can be obtained.
  • the imaging system of the present invention it is possible to provide an imaging system that accurately cuts out the optical image position on the imaging surface of the imaging device and generates an accurate imaging signal.

Abstract

 被写体の光学像を撮像し、撮像信号として出力可能な撮像素子25と、被写体の第1の光学像と第2の光学像を生成し、それぞれの前記光学像を前記撮像素子25上の対応する所定の領域に結像させる光学系21,22と、撮像素子25の撮像面上に結像された第1の光学像と第2の光学像の結像位置情報を記憶するIDメモリ20と、IDメモリ20に記憶された結像位置情報に基づいて、撮像素子25の撮像面上の第1の光学像と第2の光学像に対応する撮像領域を切出す撮像領域切出部32aと、を備える。

Description

撮像システム
 本発明は、撮像システムに関し、特に、2種の画像を用いて新たな表示用画像を生成する撮像システムに関するものである。
 従来、2種類の画像を取得可能な撮像システムにおいて、当該2種類の画像を用いて新たな表示用画像を生成する技術が実用化されている。たとえば、視差を有する2種類の撮像画像を用いた立体画像を生成する技術が知られている。
 また、特許第5030675号公報には、前方視野画像と側方視野画像という2種類の光学像を1つの撮像素子に同時に結像し、新たに広角視野画像を取得する内視鏡が開示されている。
 さらに、特開2003-032559号公報には、輝度の異なる2種類の撮像画像を用いてハイダイナミックレンジを有する表示用画像を生成する技術が知られている。
 この特開2003-032559号公報に記載の技術は、1つの光学像を光束分離部により2つの光学像に分離し、これら分離された2つの光学像を1つの撮像素子の撮像面上に結像させるようにしたものである。そして当該技術は、当該撮像素子上の2種の光学像に対して光電変換を施して輝度の異なる2つの撮像信号を生成し、当該2つの撮像信号を画像信号に変換して合成することでハイダイナミックレンジ画像を取得するようになっている。
 ここで、たとえば上記特開2003-032559号公報に記載された技術において上記2つの撮像信号は、撮像素子の撮像面上の2つの光学像を切出して光電変換することで生成される。
 一方で、この種の撮像システムにおいては、被写体の光学像を結像する対物レンズ、または、光学像を分割する光学プリズム等の設計精度の影響により、あるいは、これら機構の組み立て精度もしくは加工精度の影響により、撮像素子の撮像面上に結像される光学像位置が所望に位置からずれてしまう虞がある。
 このように、撮像素子の撮像面上に結像される光学像位置が所望に位置からずれてしまうと、上述した、撮像面上での光学像の切出しの際、光学像の位置に対応した撮像信号を精度よく切出すことができず、結果として、被写体の光学像に対応した正確な2種類の画像を取得できないという問題があった。
 そして、被写体の光学像に対応した正確な2種類の画像を取得できないことにより、これら2種の撮像画像を合成する等により新たな表示用画像を生成する際に、正確な表示用画像を得ることができないという問題があった。
 本発明は上述した事情に鑑みてなされたものであり、撮像素子の撮像面上における光学像位置を正確に切出して、正確な撮像信号を生成する撮像システムを提供することを目的とする。
 本発明の一態様の撮像システムは、被写体の光学像を撮像し、撮像信号として出力可能な撮像素子を備えた撮像部と、前記被写体の第1の光学像と前記被写体の第2の光学像を生成し、それぞれの前記光学像を前記撮像素子上の対応する所定の領域に結像させる光学系と、前記撮像部の撮像面上に結像された前記第1の光学像と前記第2の光学像の結像位置情報に基づいて、撮像面上の前記第1の光学像と前記第2の光学像に対応する撮像領域を切出す撮像領域切出し部と、を備える。
図1は、本発明の第1の実施形態の内視鏡システムの構成を示す図である。 図2は、第1の実施形態の内視鏡システムにおける挿入部先端部の構成を示す斜視図である。 図3は、第1の実施形態の内視鏡システムにおける撮像素子に結像される2種の光学像の一例を示した図である。 図4は、本発明の第2の実施形態の内視鏡システムの構成を示す図である。 図5は、第2の実施形態の内視鏡システムにおける挿入部先端部に配設した光学部材の構成を示した図である。 図6は、第2の実施形態の内視鏡システムにおける撮像素子に結像される2種の光学像の一例を示した図である。 図7は、本発明の第3の実施形態の内視鏡システムの構成を示す図である。 図8は、第3の実施形態の内視鏡システムにおける挿入部先端部の構成を示す斜視図である。 図9は、第3の実施形態の内視鏡システムにおける撮像素子に結像される2種の光学像の一例を示した図である。 図10は、本発明の第4の実施形態の内視鏡システムの構成を示す図である。
 以下、図面を参照して本発明の実施形態を説明する。
(第1の実施形態)
 図1から図3を用いて第1の実施形態の内視鏡システムの構成について説明する。図1は、本発明の第1の実施形態の内視鏡システムの構成を示す図、図2は、第1の実施形態の内視鏡システムにおける挿入部先端部の構成を示す斜視図、図3は、第1の実施形態の内視鏡システムにおける撮像素子に結像される2種の光学像の一例を示した図である。
 図1に示すように本発明の第1の実施形態の内視鏡システム1は、撮像素子25を有するとともに立体画像を生成する、いわゆる3D内視鏡である内視鏡2と、内視鏡2が着脱自在に接続され、所定の信号処理を行うプロセッサ3と、内視鏡2が着脱自在に接続され、内視鏡2に対して照明光を供給する光源装置4と、プロセッサ3により生成された画像信号を内視鏡画像として表示する表示装置としてのモニタ5と、を備える。
 内視鏡2は、体腔内に挿入される細長の挿入部6と、この挿入部6の後端に設けられた操作部7と、この操作部7から延出されたユニバーサルコード8とを有する。ユニバーサルコード8は、その基端付近または途中でライトガイドコード9と、信号コード(信号ケーブル)10に分岐する。
 ライトガイドコード9の端部の光源用コネクタ11は、光源装置4に着脱自在に接続され、信号コード10の端部の信号用コネクタ12は、プロセッサ3に着脱自在に接続される。
 また、この信号用コネクタ12には、内視鏡2ごとの個別の情報、たとえば撮像素子25にかかる個別の情報を記憶する記憶部であるIDメモリ20が配設されている。
 挿入部6、操作部7およびユニバーサルコード8内には照明光を伝送するライトガイド13が挿通されている。そして、光源用コネクタ11を光源装置4に接続することにより、光源装置4からの照明光をライトガイド13により伝送し、挿入部6の先端部14に設けられた照明窓に取り付けられたライトガイド先端面13aから、伝送した照明光を出射する。
 なお、光源用コネクタ11と信号用コネクタ12とが一体となったコネクタを光源装置4に接続し、信号用コネクタ12の信号を、光源装置4とプロセッサ3を接続するケーブルにより、プロセッサ3とやり取りする構成にしても良い。
 先端部14には照明窓に隣接して観察窓(撮像窓)が設けられ、観察窓には照明された患部等の被写体の光学像を、互いに視差を有して入光する2つの第1対物レンズ21および第2対物レンズ22が配設されている(図2参照)。
 前記第1対物レンズ21および第2対物レンズ22の後方には、それぞれ所定の対物光学系23,24が配設されている。この対物光学系23,24を経て前記第1対物レンズ21および第2対物レンズ22の結像位置には撮像素子25が配設されている。
 すなわち、本第1の実施形態における内視鏡2は、図2に示すように、3D内視鏡として2つの第1対物レンズ21および第2対物レンズ22において互いに視差ある光学像を入力し、それぞれ対物光学系23,24において別々の光学像である第1の光学像と第2の光学像とを生成するが、図1に示すように、これら別々の光学像を1つの撮像素子25の撮像面上に結像するようになっている。
 撮像素子25は、たとえばCCDイメージセンサにより構成され、挿入部6およびユニバーサルコード8内に挿通されたケーブルを経たのち信号用コネクタ12を介してプロセッサ3に接続される。
 また、撮像素子25は、本実施形態においては上述したように、互いに別々の光学像である第1の光学像と第2の光学像とを、CCDの同一撮像面上における各光学像に対応する所定の領域に結像するようになっている。
 たとえば、図3に示すように、左用の第1の光学像は領域51に、右用の第2の光学像は領域52にそれぞれ結像するようになっている。
 なお、図3においては領域51と領域52を略矩形状を呈するものとして示したが、これは、プロセッサ3において当該第1の光学像および第2の光学像に係る所定の撮像領域として切り出す際の領域に対応したことによる。
 しがたって、前記第1の光学像と第2の光学像とのそれぞれの結像領域である前記領域51および領域52は矩形形状に限らず、例えば、円形形状を呈する領域としてもよい。さらに、これら領域51と領域52とは互いに一部の領域が重なるように設定してもよい。
 ところで、上述したように、本実施形態のごとき内視鏡においては、被写体の光学像を結像する前記2つの対物レンズおよび2つの対物光学系の設計精度、または、これら機構の組み立て精度もしくは加工精度の影響により、CCDの撮像面上に結像される2つの光学像位置は個別の内視鏡ごとに僅かながらも所望に位置からずれる虞がある。
 本第1の実施形態における内視鏡システムにおいては、たとえば内視鏡製造工程内の検査工程において、前記2つの光学像が当該撮像素子25の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を、出荷される内視鏡ごとに検査により予め取得し、その「結像位置情報」を信号用コネクタ12に配設された前記IDメモリ20に記憶するようになっている。
 この位置情報は、たとえば、図3に示すごとき左用の第1の光学像に対応する領域51および右用の第2の光学像に対応する領域52の、撮像面上のX-Y座標情報である。
 前記プロセッサ3は、撮像素子等の動作に必要な複数の電源電圧の電源を発生する図示しない電源回路と、撮像素子から出力される撮像信号に対する所定の信号処理を行う信号処理回路(画像処理部32および前処理部33等)と、内視鏡2における前記撮像素子25の駆動するCCD駆動回路34と、前記電源回路、信号処理回路およびCCD駆動回路34を含む各種回路の制御を行う制御部31と、を備える。
 制御部31は、上述したようにプロセッサ3内における各種回路を制御するとともに、内視鏡2が当該プロセッサ3に接続された際、信号用コネクタ12における前記IDメモリ20に記憶された、当該内視鏡2個別の情報であるところの前記「結像位置情報」を入手するようになっている。
 前処理部33は、撮像素子25からの撮像信号(本実施形態においては第1の光学像および第2の光学像に係る撮像信号)を入力して所定の前信号処理を施すものであり、公知の信号増幅部、プロセス回路、A/Dコンバータ、ホワイトバランス回路等により構成され、制御部31により制御される。
 画像処理部32は、前処理部33からの出力信号に対して所定の画像処理を施し、本実施形態においては、最終的に3D画像用の2つの表示用出力信号を生成してモニタ5に対して出力するようになっている。
 そして画像処理部32は、制御部31の制御下に、IDメモリ20に記憶された前記「結像位置情報」に基づいて、前記第1の光学像と前記第2の光学像の所定の撮像領域を切り出す撮像領域切出部32aを備える。
 すなわちこの撮像領域切出部32aは、当該プロセッサ3に接続された内視鏡2個別の情報であるところの、撮像素子25の撮像面上に結像された前記第1の光学像と前記第2の光学像の「結像位置情報」に基づいて、撮像面上の前記第1の光学像と前記第2の光学像に対応する撮像領域を切り出すようになっている。
 画像処理部32は、撮像領域切出部32aにおいて切り出した2つの撮像領域においてそれぞれ所定の画像処理を施して2つの表示用の映像信号(本実施形態においては、左用映像信号および右用映像信号)を生成し、モニタ5に向けて出力するようになっている。
 なお前記モニタ5は、本実施形態においては、いわゆる3D対応のモニタ装置を採用するものとし、入力した2つの映像信号に対して適宜公知の3D処理を施し表示するようになっている。
 一方、3D処理を実行する手段はこれに限らず、例えば画像処理部32において前記2つの撮像領域に対応する撮像信号に対して所定の3D合成処理を施し、1つの映像信号として通常のモニタに対して出力するようにしてもよい。
 次に本第1の実施形態の内視鏡システムの作用について説明する。
 まず、内視鏡2においては、上述したように、内視鏡製造工程内の検査工程において、前記2つの光学像が当該撮像素子25の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を、出荷される内視鏡ごとに検査により予め取得し、その「結像位置情報」を信号用コネクタ12に配設された前記IDメモリ20に記憶する。
 次に、プロセッサ3においては、当該プロセッサ3に内視鏡2が接続された際には、制御部31がIDメモリ20に記憶された「結像位置情報」を入手する。
 一方、プロセッサ3においては、制御部31の制御下に、前処理部33が撮像素子25からの撮像信号を入力して所定の前処理を施したのち、画像処理部32における撮像領域切出部32aが、前記「結像位置情報」に基づいて前記第1の光学像と前記第2の光学像の所定の撮像領域を切り出す。
 その後、画像処理部32は、撮像領域切出部32aにおいて切り出した2つの撮像領域においてそれぞれ所定の画像処理を施して左用映像信号と右用映像信号とを生成し、モニタ5に向けて出力する。
 モニタ5は、入力した左用映像信号と右用映像信号に対して適宜公知の3D処理を施し3D表示する。
 なお、上述したように、本実施形態においてはモニタ側において3D処理を行うものとしたが、これに限らず画像処理部32において前記2つの撮像領域に対応する撮像信号に対して所定の3D合成処理を施し、1つの映像信号として通常のモニタに対して出力するようにしてもよい。
 以上説明したように、本第1の実施形態の内視鏡システムによると、2種の光学像が撮像素子の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を予め内視鏡ごとに記憶し、一方、接続されたプロセッサにおいてその「結像位置情報」に基づいて撮像面上の前記2種の光学像に対応する撮像領域を切り出すようにしたので、2種の光学像に基づいて新たに表示用画像を生成する際に正確な表示用画像を得ることができる。
(第2の実施形態)
 次に、本発明の第2の実施形態について説明する。
 上述したように上記第1の実施形態の内視鏡システムは、2種の光学像として互いに視差を有する2つの光学像を1つの撮像素子上に結像する3D内視鏡を備える内視鏡システムに本願発明を適用するものであるが、これに対して本第2の実施形態の内視鏡システムは、入光する一の光学像を分離することで生成した2つの光学像を1つの撮像素子上に結像する内視鏡を備える内視鏡システムである。
 そして、本第2の実施形態の内視鏡システムは、分離された2つの光学像を1つの撮像素子の撮像面上に結像させるとともに、当該2つの光学像に対して輝度の異なる2つの撮像信号を生成し、当該2つの撮像信号を画像信号に変換して合成することでハイダイナミックレンジ画像を取得することを特徴とする。
 図4は、本発明の第2の実施形態の内視鏡システムの構成を示す図、図5は、第2の実施形態の内視鏡システムにおける挿入部先端部に配設した光学部材の構成を示した図、図6は、第2の実施形態の内視鏡システムにおける撮像素子に結像される2種の光学像の一例を示した図である。
 本第2の実施形態の内視鏡システム101は、その基本的な構成は第1の実施形態と同様であるが、第1の実施形態に比して内視鏡102における挿入部の先端部114の構成を異にするものである。
 したがって、ここでは、第1の実施形態と異なる部分の説明にとどめ、第1の実施形態と同様の部分についての説明は省略する。
 上記第1の実施形態においては互いに視差を有して入光する2つの第1対物レンズ21および第2対物レンズ22が配設されたが、図4に示すように、本第2の実施形態においては、先端部114には患部等の被写体の光学像を入光する対物レンズ121が配設されている。
 前記対物レンズ121の後方には、光プリズム123が配設されている。この光プリズム123は、図5に示すように、前記対物レンズ121からの前記一の光学像を第1の光学像と第2の光学像とに分割して撮像素子125に向けて出射する光学像分割部である。
 そして、光プリズム123から2つの光路(第1の光路と第2の光路)として出力される前記第1の光学像および第2の光学像の結像位置には撮像素子125が配設される。
 一方、本第2の実施形態においては、光プリズム123から出力される前記2つの光学像のうち第1の光学像に係る第1の光路上には、すなわち、図5に示すように、前記光プリズム123の近傍における、前記一の光学像をプリズム面にて反射された前記第1の光学像に係る第1の光路上には、ミラー124bおよび光を低減する手段、例えばNDフィルタ124aが配設されている。
 これにより、前記プリズム面にて反射された前記第1の光学像は、前記ミラー124bにより折り返されて再び光プリズム123に入射されるとともに、前記NDフィルタ124aにより輝度が積極的に低減されたのち、撮像素子125において結像されることとなる。
 すなわち、撮像素子125に結像される第1の光学像は第2の光学像に比して相対的に低輝度の画像となる。
 以上説明したように、撮像素子125の撮像面上には、光プリズム123によって一の光学像から分割された第1の光学像と第2の光学像とがそれぞれ結像されるが、そのうち第1の光学像は光低減手段により低輝度化された像として結像されるようになっている。
 そして、本第2の実施形態においても、撮像素子125は、2種の光学像である第1の光学像と第2の光学像とを、CCDの同一撮像面上における各光学像に対応する所定の領域に結像するようになっている。
 たとえば、図6に示すように、低輝度の第1の光学像は領域151に、高輝度の第2の光学像は領域152にそれぞれ結像するようになっている。
 また、本第2の実施形態においても、第1の実施形態と同様に、たとえば内視鏡製造工程内の検査工程において、前記2つの光学像が当該撮像素子125の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を、出荷される内視鏡ごとに検査により予め取得し、その「結像位置情報」を信号用コネクタ12に配設された前記IDメモリ20に記憶するようになっている。
 本第2の実施形態においてプロセッサ3は、上記第1の実施形態におけるプロセッサ3と同様の構成をなすためここでの詳しい説明は省略するが、上記第1の実施形態と同様に、内視鏡102が当該プロセッサ3に接続された際、信号用コネクタ12における前記IDメモリ20に記憶された、当該内視鏡102個別の情報であるところの前記「結像位置情報」を入手するようになっている。
 また、本第2の実施形態における画像処理部32は、上記第1の実施形態と同様に、制御部31の制御下に撮像領域切出部32aにおいて、IDメモリ20に記憶された前記「結像位置情報」に基づいて、前記第1の光学像と前記第2の光学像の所定の撮像領域を切り出すようになっている。
 そして画像処理部32は、撮像領域切出部32aにおいて切り出した2つの撮像領域においてそれぞれ所定の画像処理を施す。すなわち、前記輝度の異なる2つの光学像、すなわち、低輝度の第1の光学像と高輝度の第2の光学像を合成してハイダイナミックレンジを有する表示用画像を生成してモニタ5に対して出力するようになっている。
 以上説明したように、本第2の実施形態の内視鏡システムにおいても上記第1の実施形態と同様に、2種の光学像(低輝度光学像および高輝度光学像)が撮像素子の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を予め内視鏡ごとに記憶し、一方、接続されたプロセッサにおいてその「結像位置情報」に基づいて撮像面上の前記2種の光学像に対応する撮像領域を切り出すようにしたので、2種の光学像に基づいて新たに表示用画像を生成する際に、正確な表示用画像を得ることができる。
(第3の実施形態)
 次に、本発明の第3の実施形態について説明する。
 本第3の実施形態の内視鏡システムは、前方視野画像と側方視野画像という2種類の光学像を1つの撮像素子に同時に結像し、新たに広角視野画像を取得する内視鏡を備える内視鏡システムである。
 図7は、本発明の第3の実施形態の内視鏡システムの構成を示す図、図8は、第3の実施形態の内視鏡システムにおける挿入部先端部の構成を示す斜視図、図9は、第3の実施形態の内視鏡システムにおける撮像素子に結像される2種の光学像の一例を示した図である。
 本第3の実施形態の内視鏡システム201は、その基本的な構成は第1の実施形態と同様であるが、第1の実施形態に比して内視鏡202における挿入部の先端部214の構成を異にするものである。
 したがって、ここでは、第1の実施形態と異なる部分の説明にとどめ、第1の実施形態と同様の部分についての説明は省略する。
 上記第1の実施形態においては互いに視差を有して入光する2つの第1対物レンズ21および第2対物レンズ22が配設されたが、図7に示すように、本第3の実施形態においては、先端部214には患部等の被写体の前方視野光学像を入光する前方観察窓部221と側方視野光学像を入光する側方観察窓部222とが配設されている。
 図8に示すように挿入部の先端部214には、当該先端部214の先端面の中央から例えば上方寄りに偏心した位置から円筒形状に突出する円筒状部材としての円筒部223が形成されている。この円筒部223は、挿入部先端(の外径)よりも細径で挿入方向を臨む先端面及び該挿入部の周方向を臨む外周側面を有する。
 この円筒部223の先端側に光学的観察を行うための前方及び側方を兼ねる図示しない対物光学系を用いて前方観察部としての前方観察窓部221と、側方観察部としての側方観察窓部222とが形成され、円筒部223の基端付近には側方照明部として少なくとも一つの側方照明窓が形成されている。
 側方観察窓部222は、円筒形状の側面方向を観察するための、該側面の周方向に沿ってその全周を観察視野とするように円環形状に形成されている。そして、側方観察窓部222は、円環形状に対向する任意の方向から入射される被写体からの光を側方の観察視野(単に視野とも言う)内に捉えて側方視野画像として取得するための反射光学系としての図示しないミラーレンズを備える。
 一方、先端部214における、前記前方及び側方を兼ねる図示しない対物光学系の結像位置には、1つの撮像素子225が配設されている。
 そして、前記撮像素子225の撮像面には、その中央側に前方観察窓部221に入光した前方視野内の被写体の像が円形に結像され、前方視野画像として取得される。また、前記撮像素子225の撮像面には、前方視野画像の外周側に側方観察窓部222に臨む前記ミラーレンズにより側方視野内の被写体の像が円環形状に結像され、側方視野画像として取得されることになる(図9参照)。
 以上説明したように、本第3の実施形態においては、撮像素子225の撮像面上には、第1の光学像としての前方視野光学像と、第2の光学像としての側方視野光学像とがそれぞれ結像されるようになっている。
 すなわち、本第3の実施形態においても、撮像素子225は、2種の光学像である第1の光学像と第2の光学像とを、CCDの同一撮像面上における各光学像に対応する所定の領域に結像するようになっている。
 たとえば、図9に示すように、前方視野像の第1の光学像は領域251に、側方視野像の第2の光学像は領域252にそれぞれ結像するようになっている。
 また、本第3の実施形態においても、第1、第2の実施形態と同様に、たとえば内視鏡製造工程内の検査工程において、前記2つの光学像が当該撮像素子225の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を、出荷される内視鏡ごとに検査により予め取得し、その「結像位置情報」を信号用コネクタ12に配設された前記IDメモリ20に記憶するようになっている。
 本第3の実施形態においてプロセッサ3は、上記第1の実施形態におけるプロセッサ3と同様の構成をなすためここでの詳しい説明は省略するが、上記第1の実施形態と同様に、内視鏡202が当該プロセッサ3に接続された際、信号用コネクタ12における前記IDメモリ20に記憶された、当該内視鏡202個別の情報であるところの前記「結像位置情報」を入手するようになっている。
 また、本第3の実施形態における画像処理部32は、上記第1の実施形態と同様に、制御部31の制御下に撮像領域切出部32aにおいて、IDメモリ20に記憶された前記「結像位置情報」に基づいて、前記第1の光学像と前記第2の光学像の所定の撮像領域を切り出すようになっている。
 そして画像処理部32は、撮像領域切出部32aにおいて切り出した2つの撮像領域においてそれぞれ所定の画像処理を施す。すなわち、異なる2つの光学像、すなわち、前方視野像の第1の光学像と側方視野像の第2の光学像を所定の位置に配置した表示用画像を生成してモニタ5に対して出力するようになっている。
 以上説明したように、本第3の実施形態の内視鏡システムにおいても上記第1の実施形態と同様に、2種の光学像(前方視野像および側方視野像)が撮像素子の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を予め内視鏡ごとに記憶し、一方、接続されたプロセッサにおいてその「結像位置情報」に基づいて撮像面上の前記2種の光学像に対応する撮像領域を切り出すようにしたので、2種の光学像に基づいて新たに表示用画像を生成する際に、正確な表示用画像を得ることができる。
(第4の実施形態)
 次に、本発明の第4の実施形態について説明する。
 上述したように上記第1の実施形態の内視鏡システムは、2種の光学像に対応する撮像領域を切り出す撮像領域切出部32aをプロセッサ3側(画像処理部32内)に設けたが、本第4の実施形態の内視鏡システムにおいては、当該撮像領域切出部を内視鏡2側の信号用コネクタ12内に設けたことを特徴とする。
 図10は、本発明の第4の実施形態の内視鏡システムの構成を示す図である。
 本第4の実施形態の内視鏡システム301は、その基本的な構成は第1の実施形態と同様であるが、第1の実施形態に比して、撮像領域切出部28を内視鏡302側の信号用コネクタ12内に設けた点を異にするものである。
 したがって、ここでは、第1の実施形態と異なる部分の説明にとどめ、第1の実施形態と同様の部分についての説明は省略する。
 上記第1の実施形態においては、内視鏡2におけるIDメモリ20からの「結像位置情報」に基づいてプロセッサ3に設けた撮像領域切出部32aにおいて撮像面上の前記2種の光学像に対応する撮像領域を切り出した。
 これに対して本第4の実施形態においては、内視鏡302側で取得した「結像位置情報」(一旦、IDメモリ20に記憶してもよい)に基づいて、内視鏡302における信号用コネクタ12に設けた撮像領域切出部28において撮像面上の前記2種の光学像に対応する撮像領域を切り出すようになっている。
 すなわち、前記撮像領域切出部28は、前記信号用コネクタ12において前記撮像素子25からの2種の撮像信号を入力するとともに、当該内視鏡302がプロセッサ3に接続された際には、プロセッサ3における前記制御部31により制御されるようになっている。
 そして、当該内視鏡302がプロセッサ3に接続された際、まず、前記撮像領域切出部28において撮像面上の前記2種の光学像に対応する撮像領域を切り出す処理を行い、一方、前記プロセッサ3は撮像領域切出部28において切り出した、撮像面上の前記2種の光学像に対応する撮像領域に応じて、たとえば画像処理部32において所定の信号処理を行うようになっている。
 なお、本第4の実施形態は、第1の実施形態の如き、互いに視野のある2種の光学像が1つの撮像素子の撮像面上に結像する3D内視鏡において、内視鏡側に撮像領域切出部を設けるものとしたが、内視鏡の種別はこれに限らず、たとえば、上記第2、第3の実施形態に係る内視鏡において、内視鏡側に撮像領域切出部を設けるようにしてもよい。
 以上説明したように、本第4の実施形態の内視鏡システムにおいても上記第1~第3の実施形態と同様に、2種の光学像が撮像素子の撮像面上のどの位置(領域)に結像されたのかという「結像位置情報」を予め内視鏡ごとに取得するとともに、当該内視鏡側においてその「結像位置情報」に基づいて撮像面上の前記2種の光学像に対応する撮像領域を切り出すようにしたので、接続されるプロセッサが当該撮像領域切出部の如き機能を備えずとも、2種の光学像に基づいて新たに表示用画像を生成する際に、正確な表示用画像を得ることができる。
 本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
 本発明の撮像システムによれば、撮像素子の撮像面上における光学像位置を正確に切出して、正確な撮像信号を生成する撮像システムを提供することができる。
 本出願は、2014年9月4日に日本国に出願された特願2014-180585号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (5)

  1.  被写体の光学像を撮像し、撮像信号として出力可能な撮像素子を備えた撮像部と、
     前記被写体の第1の光学像と前記被写体の第2の光学像を生成し、それぞれの前記光学像を前記撮像素子上の対応する所定の領域に結像させる光学系と、
     前記撮像部の撮像面上に結像された前記第1の光学像と前記第2の光学像の結像位置情報に基づいて、撮像面上の前記第1の光学像と前記第2の光学像に対応する撮像領域を切出す撮像領域切出し部と、
     を備えたことを特徴とする撮像システム。
  2.  前記撮像部と前記光学系を備えた内視鏡と、
     前記内視鏡に接続され、前記撮像領域切出し部を備えたプロセッサと、
     前記内視鏡に設けられ、前記第1の光学像と前記第2の光学像の結像位置情報を予め格納した記憶部と、をさらに備え、
     前記撮像領域切出し部は、前記内視鏡から出力される前記撮像信号を受信し、前記記憶部に記憶された結像位置情報に基づいて、前記受信した撮像信号から前記第1の光学像に対応する撮像領域と前記第2の光学像に対応する前記撮像領域を切り出すことを特徴とする請求項1に記載の撮像システム。
  3.  前記プロセッサは、前記撮像領域切出し部が切出した前記第1の光学像に対応する撮像領域と前記第2の光学像に対応する前記撮像領域をそれぞれ第1の画像信号と第2の画像信号として生成する画像信号生成部を、さらに備えたことを特徴とする請求項2に記載の撮像システム。
  4.  前記第1の画像信号と前記第2の画像信号を合成して出力する合成処理部をさらに備えたことを特徴とする請求項3に記載の撮像システム。
  5.  前記光学系は、前記被写体の光学像を前記第1の光学像と前記第2の光学像とに分割する光学像分割部を、さらに備えたことを特徴とする請求項1に記載の撮像システム。
PCT/JP2015/058032 2014-09-04 2015-03-18 撮像システム WO2016035366A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180585 2014-09-04
JP2014180585 2014-09-04

Publications (1)

Publication Number Publication Date
WO2016035366A1 true WO2016035366A1 (ja) 2016-03-10

Family

ID=55439441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058032 WO2016035366A1 (ja) 2014-09-04 2015-03-18 撮像システム

Country Status (1)

Country Link
WO (1) WO2016035366A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334056B (zh) * 2018-06-27 2024-05-14 奥林巴斯株式会社 图像显示装置和图像显示方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045328A (ja) * 2003-07-22 2005-02-17 Sharp Corp 3次元画像撮像装置
WO2011132383A1 (ja) * 2010-04-21 2011-10-27 パナソニック株式会社 カメラシステム、カメラ本体ユニット、3d撮影用レンズユニット
JP2014138691A (ja) * 2012-12-20 2014-07-31 Olympus Corp 画像処理装置、電子機器、内視鏡装置、プログラム及び画像処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045328A (ja) * 2003-07-22 2005-02-17 Sharp Corp 3次元画像撮像装置
WO2011132383A1 (ja) * 2010-04-21 2011-10-27 パナソニック株式会社 カメラシステム、カメラ本体ユニット、3d撮影用レンズユニット
JP2014138691A (ja) * 2012-12-20 2014-07-31 Olympus Corp 画像処理装置、電子機器、内視鏡装置、プログラム及び画像処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334056B (zh) * 2018-06-27 2024-05-14 奥林巴斯株式会社 图像显示装置和图像显示方法

Similar Documents

Publication Publication Date Title
US9618726B2 (en) Endoscope apparatus
KR100852310B1 (ko) 내시경 및 내시경 시스템
JP5226533B2 (ja) 内視鏡装置
US10523911B2 (en) Image pickup system
JP6017735B2 (ja) 撮像システム
JP6001219B1 (ja) 内視鏡システム
US11653824B2 (en) Medical observation system and medical observation device
US9148554B2 (en) Image pickup unit for endoscope and endoscope
JP7449736B2 (ja) 医療用画像処理装置及び医療用観察システム
EP3241481B1 (en) Dual path endoscope
US11571109B2 (en) Medical observation device
CN110996749B (zh) 3d视频内窥镜
JP2014228851A (ja) 内視鏡装置、画像取得方法および画像取得プログラム
WO2016035366A1 (ja) 撮像システム
US11109744B2 (en) Three-dimensional endoscope system including a two-dimensional display image portion in a three-dimensional display image
JPWO2018088215A1 (ja) 内視鏡システム
US10602113B2 (en) Medical imaging device and medical observation system
JP6663692B2 (ja) 画像処理装置、内視鏡システム、及び画像処理装置の制御方法
JP2020137955A (ja) 医療用制御装置及び医療用観察システム
US11071444B2 (en) Medical endoscope system providing enhanced illumination
CN109788888B (zh) 医学成像装置和医学观察系统
WO2022044898A1 (ja) 医療撮像システム、医療撮像装置、および動作方法
JP2020141916A (ja) 医療用画像処理装置及び医療用観察システム
JPWO2019235010A1 (ja) 内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15838875

Country of ref document: EP

Kind code of ref document: A1