WO2016035357A1 - 障害物検出システム及び運搬車両 - Google Patents

障害物検出システム及び運搬車両 Download PDF

Info

Publication number
WO2016035357A1
WO2016035357A1 PCT/JP2015/056264 JP2015056264W WO2016035357A1 WO 2016035357 A1 WO2016035357 A1 WO 2016035357A1 JP 2015056264 W JP2015056264 W JP 2015056264W WO 2016035357 A1 WO2016035357 A1 WO 2016035357A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle detection
vehicle
detection device
detected object
detection
Prior art date
Application number
PCT/JP2015/056264
Other languages
English (en)
French (fr)
Inventor
一野瀬 昌則
佐藤 隆之
石本 英史
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP15837828.1A priority Critical patent/EP3190576B1/en
Priority to US15/329,337 priority patent/US10613218B2/en
Priority to CN201580019283.7A priority patent/CN106165001B/zh
Priority to CA2956865A priority patent/CA2956865C/en
Priority to AU2015310310A priority patent/AU2015310310B2/en
Publication of WO2016035357A1 publication Critical patent/WO2016035357A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/411Identification of targets based on measurements of radar reflectivity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • G01S13/726Multiple target tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93273Sensor installation details on the top of the vehicles

Definitions

  • the present invention relates to an obstacle detection system and a transport vehicle, and more particularly to a technique for monitoring surrounding obstacles in a transport vehicle traveling in a mine.
  • a large dump truck (hereinafter abbreviated as “dump”) traveling in a mine has a significantly larger vehicle width (for example, about 9 m) and a vehicle height (for example, about 7 m) than a general truck or bus. ing.
  • the cab where the dump driver is located is installed on the upper deck at the front of the dump truck, so it is difficult to confirm that a small vehicle at a relatively short distance from the driver enters the blind spot in the field of view. It may be difficult to determine the distance to the vehicle ahead due to the difference in vehicle height. Therefore, a technique for detecting an obstacle by mounting a radar on a mining dump has been proposed.
  • Patent Document 1 a plurality of radars having different detection ranges and characteristics are mounted on a dump, the same point is measured using these radars, calibration is performed, and the accuracy of distance measurement is improved. A configuration to improve is disclosed.
  • Dumps In a mine, small vehicles such as patrol cars and watering trucks for management and large vehicles such as dump trucks may travel together on the conveyance path. Dumps travel under the control of the parking, loading and unloading sites according to a predetermined order and speed limit, so there is interference between dumps, especially dumps that are traveling in the same direction of travel. Risk is generally not high.
  • a small vehicle is boarded by a safety supervisor, etc., and may travel in a direction approaching the dump truck in order to confirm the safety of the surroundings of the vehicle and the conveyance path. May be inconsistent. Furthermore, since the small vehicle and the dump truck have different motion performance such as turning performance, braking performance, acceleration performance, and the like, the behaviors of the two are different. In addition, since a small vehicle may not be subject to control control, the risk of interference between the small vehicle and the dump tends to be greater than the risk of interference between dumps. Therefore, there is a desire to detect small vehicles separately from dumps.
  • Patent Document 1 can improve measurement accuracy when obtaining distance data to an obstacle, for example, a vehicle ahead by using a plurality of radars having different characteristics, but distinguishes between a large vehicle and a small vehicle. Detection is not taken into consideration, and the above request cannot be met.
  • the present invention has been made in view of the above circumstances, and provides an obstacle detection system and a transport vehicle that distinguish and detect a large vehicle and a small vehicle when traveling together in a mine. With the goal.
  • the present invention is an obstacle detection system mounted on a mine transport vehicle, the first obstacle detection device that is installed in the transport vehicle and measures the distance to the detected object, and the detected object
  • a second obstacle detection device for measuring a distance of the second obstacle detection device installed at a higher position in the transport vehicle than an installation position of the first obstacle detection device, and the first obstacle Determining whether the detected object is a small vehicle having a relatively small vehicle body or a large vehicle having a relatively large vehicle body based on detection results of the object detection device and the second obstacle detection device
  • the large vehicle and The detection range of the first obstacle detection device and the detection range of the second obstacle detection device overlap in a vertical plane within a determination target distance range from the transport vehicle that is desired to be distinguished from the small vehicle. It is installed in the transport vehicle at a different height so that it does not become, and the determination processing unit is within an allowable range in which the first obstacle detection device can be regarded as the same vehicle based on a detection point where the detected object is detected.
  • the second obstacle detection device also detects the detected object, the detected object is determined to be the large vehicle, and the point where the first obstacle detection device detects the detected object is used as a reference.
  • the second obstacle detection device does not detect the detected object within the allowable range, it is determined that the detected object is the small vehicle.
  • the determination processing unit can determine that the detected object is a small vehicle.
  • the first obstacle detection device and the second obstacle detection device both detect the detected object, the height of the detected object is determined from the height of the detection range of the first obstacle detection device. Since it can be said that the height of the detection range of the detection device is present, the determination processing unit can determine that the detected object is a large vehicle. Thereby, a large vehicle and a small vehicle can be distinguished and determined. And when an output processing part outputs a determination result outside, it becomes possible to perform the operation
  • the present invention is characterized in that, in the above configuration, the second obstacle detection device is installed in the transport vehicle with an elevation angle with respect to a horizontal plane.
  • the detection range of the second obstacle detection device is more reliably and easily compared to the case where the height of the installation position of the first obstacle detection device and the second obstacle detection device is changed.
  • a second obstacle detection device can be installed so as not to overlap the detection range of the detection device.
  • the second obstacle detection device may irradiate a detection beam and receive a reflected wave generated on the detected body to measure a distance from the detected body.
  • the detection beam of the second obstacle detection device has an irradiation width in the vertical direction, and the second obstacle detection device is configured such that the lower limit irradiation line of the detection beam is parallel to a horizontal plane. It is installed in the transport vehicle with an elevation angle.
  • the present invention further includes an elevation angle changing mechanism that changes the elevation angle of the second obstacle detection device, and a drive control device that outputs an elevation angle change instruction signal to the elevation angle changing mechanism. It is characterized by.
  • the present invention further includes a vehicle type information storage unit that stores vehicle type information that associates a vehicle type and a vehicle height of a vehicle to be detected as the detected object, and the determination processing unit includes the first processing unit.
  • the vehicle type of the detected object is determined by comparing the detection results of the obstacle detection device and the second obstacle detection device with the vehicle type information.
  • the present invention is a transport vehicle that travels in a mine, provided at a first position, and a first obstacle detection device that measures a distance to a detected object, and a second position higher than the first position. And a second obstacle detection device that measures the distance to the object to be detected, and the first obstacle detection device and the second obstacle detection device have the same detection direction in a horizontal plane.
  • the first position is a position capable of detecting the small vehicle among the small vehicle and the large vehicle as the detected body, and the second position is only the large vehicle. It is a position that can be detected.
  • the detected object when detecting the detected object located in the periphery of the transport vehicle using a plurality of obstacle detection devices, the detected object is utilized by utilizing the different heights of the installation positions of the respective obstacle detection devices. Can be easily determined. And it can distinguish whether a to-be-detected body is a small vehicle or a large vehicle using this height.
  • the figure which shows the state where both the lower radar and the upper radar are detecting the detected object The figure which shows the state where only the lower radar is detecting the detected object
  • the flowchart which shows the flow of a process of the obstacle detection system which concerns on 1st embodiment.
  • Dump top view showing a state where multiple sets of obstacle detection devices are installed in front of the dump
  • It is a functional block diagram which shows the internal structure of the obstruction detection system which concerns on 2nd embodiment, (a) shows the obstruction detection system mounted in a manned dump, (b) is mounted in an autonomous running dump. An obstacle detection system is shown.
  • the table which shows the vehicle type information memorize
  • the flowchart which shows the flow of a process of the obstacle detection system which concerns on 2nd embodiment.
  • FIG. 1 It is a functional block diagram which shows the internal structure of the obstacle detection system which concerns on 3rd embodiment, (a) shows the obstacle detection system mounted in a manned dump, (b) is mounted in an autonomous running dump. An obstacle detection system is shown.
  • positioning of the obstacle detection apparatus which is embodiment of this invention The flowchart which shows the flow of a process of the obstruction detection system which concerns on other embodiment.
  • each or all of the configurations, functions, processing units, processing means, and the like in the following embodiments may be realized as, for example, an integrated circuit or other hardware.
  • each configuration, function, processing unit, processing unit, and the like, which will be described later may be realized as a program executed on a computer. That is, it may be realized as software.
  • Information such as programs, tables, files, etc. for realizing each configuration, function, processing unit, processing means, etc. is stored in memory, hard disk, storage device such as SSD (Solid State Drive), storage medium such as IC card, SD card, DVD, etc. Can be stored.
  • FIG. 1 is a diagram showing a schematic configuration of a dump truck equipped with an obstacle detection system according to an embodiment of the present invention.
  • a mine dump truck 100 (hereinafter abbreviated as “dump truck”, corresponding to a large vehicle) 100 shown in FIG. )have.
  • the vehicle height of a light vehicle (equivalent to a small vehicle) such as a four-wheel drive vehicle often used for management in a mine is about 2 m or less. Therefore, the height of the dump truck is several times different from the height of the small vehicle.
  • vehicles with greatly different vehicle heights are running in a mixed manner, so an obstacle detection system for detecting a small vehicle is mounted on the dump truck 100.
  • the dump 100 includes a plurality of obstacle detection devices 111 and 112 included in the obstacle detection system, and detection processing of the detected object based on the detection results of these obstacle detection devices 111 and 112. And a detection processing device 120 for performing.
  • the detection directions of the obstacle detection devices 111 and 112 are directed in the same direction (forward in the present embodiment) in the horizontal plane, and vertical lines at different positions in the vertical direction of the dump truck 100. Installed side by side. Then, the revealing processing device 120 sets the two obstacle detection devices 111 and 112 in combination, and detects the size of the detected object by cooperating them.
  • a millimeter wave radar device will be described as an example of the obstacle detection devices 111 and 112.
  • the obstacle detection devices 111 and 112 are not limited to the millimeter wave radar device, and the distances to the objects to be detected around the obstacle detection device are Any type of obstacle detection device can be used as long as it can be measured.
  • the obstacle detection device 111 installed at a low position of the dump 100 is referred to as a lower radar 111
  • the obstacle detection device 112 installed at a high position of the dump 100 is referred to as an upper radar 112.
  • the lower radar 111 is installed at a height of about 2 m from the traveling surface, that is, a height similar to the vehicle height of a small vehicle.
  • the detection radar emitted from the lower radar 111 is emitted near the ground. Therefore, the irradiation range (detection range) 131 of the lower radar 111 is set near the ground, more specifically, near 2 m in height from the traveling surface.
  • the upper radar 112 is installed at a height where a small vehicle is not included in the irradiation range (detection range) 132 of the radar.
  • the lower radar 111 is installed at the lower end of the structure 101 at the front of the dump truck 100, for example, a radiator assembly including a radiator grille and a fixed frame, and the upper radar 112 is installed at the upper end. That is, the lower radar 111 and the upper radar 112 are installed side by side on a vertical line with the radiator assembly interposed therebetween. Since the upper end portion of the radiator assembly including the radiator grille and the fixed frame has a height of about 5 m from the traveling surface, the upper radar 112 is also installed at a height of about 5 m from the traveling surface.
  • the irradiation range 132 of the upper radar 112 is provided at a relatively high position with respect to the traveling surface. Since this height is higher than the upper end of the small vehicle, the irradiation range 132 does not include the small vehicle.
  • the detection processing device 120 determines that the detected object is a large vehicle within a detection distance range (hereinafter referred to as “allowable range”) in which both the lower radar 111 and the upper radar 112 can be regarded as the same vehicle.
  • allowable range a detection distance range in which both the lower radar 111 and the upper radar 112 can be regarded as the same vehicle.
  • FIG. 2 is a diagram illustrating a state in which the lower radar and the upper radar are both detecting the detected object.
  • FIG. 3 is a diagram illustrating a state in which only the lower radar is detecting the detection target.
  • the lower radar 111 and the upper radar 112 both detect the detected object.
  • the detected object 300 is a small vehicle as shown in FIG. 3, the detected object 300 is included in the radar irradiation range 131 of the lower radar 111, but is detected in the radar irradiation range 132 of the upper radar 112. Body 300 is not included. Accordingly, the detection processing device 120 detects the size (height) of the detected object 300 only from the lower radar 111 and the height of the irradiation range 131 of the upper radar 112 from the traveling surface. Can be determined to be less than In this case, it can be determined that the detected object is a small vehicle.
  • the upper radar 112 and the lower radar 111 are attached to the dump truck 100 at different heights, but the upper radar 112 so that the lower limit irradiation line of the detection beam emitted from the upper radar 112 is substantially parallel to the horizontal plane. May be attached to the dump truck 100 with an elevation angle.
  • the detected object is detected by emitting radio waves (detection beams), and therefore has a detection range in the vertical direction due to the spread of the directivity of the radio waves.
  • the upper and lower detection widths of the detection beam become wider, there may occur a range in which the detection range of the upper radar 112 and the detection range of the lower radar overlap in the vertical direction (height direction). Then, it becomes difficult to discriminate the height of the detected objects detected in the overlapping range from a large vehicle or a small vehicle using the presence / absence of detection of the upper radar 112.
  • the detection width of the detection beam in the vertical direction is set so that the upper radar 112 and the lower detection width are within a desired detection distance range (hereinafter referred to as “determination target distance range”) in which a detection target is to be detected with reference to the dump position in the horizontal plane. It is desirable to set so that the detection ranges of the side radars 111 do not overlap.
  • the determination target distance range here is close enough to avoid interference when, for example, the transport vehicle detects the detected object and then starts the interference avoiding operation, and whether or not the avoiding operation is necessary even if the detected object is detected. Is not so far as it is completely unnecessary to determine the speed, and can be determined in consideration of the speed of the transport vehicle, the braking distance, and the like.
  • the radar antenna may be designed to have a large gain in an angle range of about ⁇ 4 degrees with respect to the horizontal plane.
  • the millimeter wave radar has a detection range mainly composed of an angular range of about ⁇ 4 degrees in the vertical direction.
  • the detection range in the vertical direction of the radar has a certain angle in a sensor that uses radio waves, so that the upper radar irradiation range 132 goes up and down as the distance increases. There is a possibility that the width becomes wider and eventually overlaps with the irradiation range 131 of the lower radar.
  • the upper radar 112 is arranged so as to have an elevation angle with an upper and lower detection angle width as an upper limit, thereby suppressing detection of a lower detection object.
  • all the radars installed above the lowermost radar in the set of obstacle detection devices are installed with an elevation angle.
  • the upper radar 112 is arranged so that the lower limit angle of the detection beam width of the upper radar 112 is horizontal.
  • the lower limit of the detection beam of the upper radar 112 is parallel to the horizontal plane, and the irradiation range 132 of the upper radar 112 is irradiated only weakly below the horizontal plane.
  • the upper radar is installed in the dump with an elevation angle, so that the size of the detected object can be easily separated, and the size of the detected object can be detected in a wide area up to a distant place. There is an effect that it becomes possible.
  • FIGS. 1 to 3 show a state in which the upper radar 112 is attached to the dump 100 with an elevation angle, but the height difference and detection width are adjusted even when the upper radar 112 and the lower radar 111 are both horizontally oriented. By doing so, it is possible to prevent an overlapping range of detection ranges from occurring in the height direction.
  • FIG. 4 is a functional block diagram showing the internal configuration of the obstacle detection system according to the present embodiment, where (a) shows the obstacle detection system mounted on the manned dump, and (b) shows the autonomous traveling dump. The installed obstacle detection system is shown.
  • the obstacle detection system 110 includes a detection processing device 120, a lower radar 111, and an upper radar 112.
  • the detection processing device 120 includes a determination processing unit 121 that determines the detection of a detection target and the size (height) of the detection target based on the detection results of the lower radar 111 and the upper radar 112, and a determination processing unit. And an output processing unit 122 that performs processing for outputting the determination result 121 to the outside.
  • the detection processing device 120 includes hardware including a calculation / control device such as a CPU (Central Processing Unit), a storage device such as a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). And the software executed by the processing device 120, and the functions of the detection processing device 120 are realized by the cooperation of these.
  • the output processing unit 122 visually displays the determination result to the operator, and a voice. Then, the process of outputting the determination result to the warning sound generator 124 that notifies the operator of the determination result is performed.
  • the monitor 123 and the warning sound generator 124 are shown, but either one may be provided.
  • the output processing unit 122 sends the dump 100 to the dump 100 as shown in FIG. A process of transmitting detection information indicating a determination result to the control device via the mounted wireless device 125 is performed. Furthermore, the output processing unit 122 outputs a determination result to the vehicle control device 126 provided for the autonomous traveling dump, and the vehicle control device 126 refers to the determination result to provide a braking device (not suitable for the autonomous traveling dump). Drive control may be performed. Accordingly, it is possible to execute an interference avoidance operation with a small vehicle that is not an object of control control of the control device using the output result from the detection processing device 120.
  • FIG. 5 is a diagram illustrating an example of the grouping process, in which (a) shows the position of the detected object on the horizontal plane, and (b) shows the position of the detected object in the vertical plane.
  • FIG. 6 is a flowchart illustrating a processing flow of the obstacle detection system.
  • a determination process between a large vehicle and a small vehicle in the detection processing device 120 will be described.
  • the position where each of the lower radar 111 or the upper radar 112 detects the detected object is referred to as a detection point.
  • indicates a detection point detected by the lower radar 111
  • indicates a detection point detected by the upper radar 112.
  • reference numeral 501 indicates a point (hereinafter referred to as “recently detected point”) where the detection distance is minimum among the detection points detected by the lower radar 111.
  • the determination processing unit 121 performs a grouping process in which detection points within a distance range (hereinafter referred to as “allowable range”) that can be regarded as the same vehicle are grouped as one group based on the latest detection points.
  • This permissible range is to absorb the detection distance error caused by the shape of the body to be detected and the shaking of the car body while the host vehicle is running, so that different detection points are detected as having detected the same vehicle.
  • GRL_1 in the figure indicates a group of detection points that have been generated based on the detection point 501 recently.
  • GRL_2 in the figure indicates a group generated based on a detection point 502 having a short detection distance among detection points not included in GRL_1.
  • GRH_1 in the figure indicates a group generated based on the latest detection point among the detection points of the upper radar 112.
  • the upper radar 112 does not detect the detection object at the detection distance corresponding to GRL_1 on the horizontal plane. Therefore, as shown in FIG. 5B, at the detection distance d1 indicated by the detection point in GRL_1, the detection result in the height direction is only the radar irradiation range (detection range) of the lower radar 111. Therefore, in this case, the height of the detected object is less than the height of the irradiation range of the upper radar 112.
  • the irradiation range of the upper radar 112 at the detection distance d1 can be obtained by geometrically calculating from the vertical angle of the radar, but the height of the detected object that cannot be detected by the upper radar 112 is determined by the installation of the upper radar 112.
  • the processing may be simplified assuming that the position is less than the height of the position.
  • GRL_1 can be determined as a detected body having a vehicle height of less than 5 m.
  • the determination process part 121 can determine the to-be-detected body of GRL_1 as a small vehicle by providing the reference
  • the upper radar 112 detects the detected object indicated by GRH_1 within an allowable range that can be regarded as the same vehicle as GRL_2.
  • the height of the detected object is equal to or higher than the installation position height of the upper radar 112. Therefore, the determination processing unit 121 determines that the detected object is a large vehicle.
  • the lower radar 111 and the upper radar 112 start the distance measurement process of the detected object (S601).
  • the detection results of the lower radar 111 and the upper radar 112 are output to the determination processing unit 121 of the detection processing device 120.
  • the detection processing unit 121 searches for the latest detection point among the detection results of the lower radar 111 (S603).
  • the determination processing unit 121 collects detection points that are within an allowable range that can be regarded as the same vehicle as a group based on the latest detection points (S604).
  • the determination processing unit 121 also searches the latest detection point for the upper radar 112 (S605), and groups the detection points within the allowable range (S606).
  • steps S605 and S606 are executed after steps S603 and S604.
  • steps S603 and S604 may be executed after steps S605 and S606.
  • the grouping process of step S604, S606 may be performed (the order of step S604, S606 is ask
  • the determination processing unit 121 detects a detection point group (lower detection point group) based on the latest detection point of the lower radar 111 and a detection point group (upper detection point) based on the latest detection point of the upper radar 112. It is determined whether or not the difference from the group is equal to or greater than a specified value (S607). If it is equal to or greater than the specified value, that is, if the upper detection point group is far away (S607 / Yes), the detection object indicated by the upper detection point group is a separate detection object from the lower detection point group, or It was not detected at height. Therefore, the determination processing unit 121 determines that the height of the detected object is less than the installation height of the upper radar 112, that is, the detected object is a small vehicle (S608). The output processing unit 122 outputs this determination result to the outside.
  • the difference between the upper detection point group and the lower detection point group is within the specified value (S607 / No)
  • the determination The processing unit 121 determines that the detected object has a height comparable to that of the own vehicle, that is, a large vehicle (S609).
  • the output processing unit 122 outputs this determination result to the outside. Thereafter, the process returns to step S601, and distance measurement to the detected object is again performed by the lower radar 111 and the upper radar 112. And the above-mentioned process is performed with respect to a new detection result. This series of processing is repeated until the engine of the dump 100 stops.
  • the plurality of obstacle detection devices are dumped so that the detection range is directed in the same direction in the horizontal plane, and the height of the detection range can be distinguished from the small vehicle and the large vehicle. Since the small vehicle and the large vehicle are discriminated and determined based on the detection results of the both obstacle detection devices, it is possible to detect the small vehicle having a behavior different from that of the dump truck. Thereby, the interference avoidance operation
  • a set of radars is provided at the center in the vehicle width direction on the front surface of the dump.
  • a plurality of sets of radars are arranged in front of the dump in front of the dump at intervals in the vehicle width direction.
  • An obstacle other than the front of the vehicle, such as an obstacle, may be detected.
  • FIG. 7 is a top view of the dump truck showing a state where a plurality of sets of obstacle detection devices are installed in front of the dump truck.
  • a dump 100 shown in FIG. 7 has a central upper radar 701 (a lower radar installed below this is not shown) at the center of the dump front in the vehicle width direction, an upper right radar 702 at the right end of the dump front, A left upper radar 703 (upper right radar 702 and lower radars installed below the upper left radar 703 are not shown) at the left end.
  • Reference numerals 731, 732, and 733 denote detection ranges of the central upper radar 701, the upper right radar 702, and the left upper radar 703. And what is necessary is just to repeat the process of previous FIG. 6 about the group of each radar.
  • the second embodiment is an embodiment in which the vehicle type of the detected object is determined based on the detection result of the obstacle detection device. Note that in the second embodiment, the same configurations and processing steps as those in the first embodiment are denoted by the same reference numerals as those used in the description of the first embodiment, and redundant description is omitted.
  • FIG. 8 is a functional block diagram showing the internal configuration of the obstacle detection system according to the second embodiment, where (a) shows the obstacle detection system mounted on the manned dump, and (b) shows the autonomous traveling dump. Shows the obstacle detection system installed in
  • the obstacle detection system 110a stores vehicle type information in which vehicle types and vehicle heights that are candidates for the detection target are associated with each other.
  • a vehicle type information storage unit 127 is provided. An example of vehicle type information will be described with reference to FIG. FIG. 9 is a table showing vehicle type information stored in the vehicle type information storage unit.
  • the vehicle type table 900 shown in FIG. 9 three vehicle types and vehicle heights of the respective vehicle types are stored in association with each other.
  • the vehicle type 1 is assumed to be a vehicle type used for a navigation vehicle, for example, and the vehicle height h1 is less than 2 m.
  • the vehicle type 2 is a watering vehicle, for example, and the vehicle height h2 is a value of 2 m or more and less than 5 m.
  • the vehicle type 3 is a transport vehicle using a large dump truck, for example, and the vehicle height h3 is assumed to be a value of 5 m or more.
  • the determination processing unit 121 determines the vehicle type of the detected object using the vehicle type table 900.
  • FIG. 10 is a flowchart showing a process flow of the obstacle detection system according to the second embodiment.
  • step S601 to step S606 of the first embodiment is performed.
  • the determination processing unit 121 calculates the vehicle height of the detected object by scanning the detection result in the height direction in the order of the lower detection point group generated in step S604 and the upper detection point group generated in step S606. (S1001).
  • the determination processing unit 121 collates the vehicle type table 900 with the calculated vehicle height, and specifies the vehicle type of the detected object (S1002).
  • the output processing unit 122 outputs the specific result to the outside.
  • the conveyance vehicle can perform the response
  • the third embodiment is an embodiment in which the mounting angle (elevation angle) of the upper radar can be changed.
  • the third embodiment will be described with reference to FIGS. 11 to 13.
  • FIG. 11 is a diagram showing a schematic configuration of the elevation angle changing mechanism.
  • FIG. 12 is a diagram illustrating an attachment angle of the obstacle detection device included in the obstacle detection system according to the third embodiment.
  • FIG. 13 is a functional block diagram showing the internal configuration of the obstacle detection system according to the third embodiment, wherein (a) shows the obstacle detection system mounted on the manned dump, and (b) shows the autonomous traveling dump. Shows the obstacle detection system installed in
  • the obstacle detection system includes an elevation angle changing mechanism for changing the elevation angle of the upper radar 112.
  • the elevation angle changing mechanism includes a base plate 154 for attaching the upper radar 112, a hinge 151 attached to one end of the base plate 154, and the base plate in the vertical direction with the hinge 151 as a fulcrum. And a hinge drive device 152 formed of a stepping motor as a drive device to be rotated.
  • the elevation angle ⁇ of the upper radar 112 can be changed to a desired angle by adjusting the number of pulses output from the hinge drive control device 160.
  • the position of the detection range of the upper radar 112 can be further distant by changing the irradiation range 132 of the upper radar 112 upward with respect to the region indicated by the broken line. Further, when the upper radar 112 detects the detected object, the elevation angle is changed and the detection beam is scanned in the height direction, whereby the height of the detected object can be detected in more detail.
  • the upper radar 112 detects even a small vehicle having a small size depending on the detection distance, and the determination processing unit 121 is a large dump. There is a possibility of misunderstanding. Even in such a case, for example, information such as a gradient map in the conveyance path in the mine is held in advance, and the elevation angle of the upper radar 112 is adjusted according to the degree of gradient of the conveyance path in front of the mine. Can be avoided.
  • the hinge drive control device 160 stores drive control unit 161 that outputs a control signal for the hinge drive device 152, and map information of the conveyance path on which the dump truck 110 travels.
  • a map information storage unit 162 is included.
  • the hinge drive control device 160 is configured to include hardware including a calculation / control device such as a CPU, a storage device such as a ROM, a RAM, and an HDD, and software executed by the detection processing device 120, and these cooperate. Thus, the function of the hinge drive control device 160 is realized.
  • the drive control unit 161 is electrically connected to the map information storage unit 162 and the position acquisition device 170. Then, the drive control unit 161 acquires the current position information of the dump 100 from the position acquisition device 170, refers to the map information (position coordinates and road gradient are described) in the map information storage unit 162, and currently travels.
  • the slope of the road surface is read, and according to the slope, the opening degree of the hinge 151 is calculated so that the elevation angle becomes larger when the climbing gradient is large, and the elevation angle is made smaller when the climbing gradient is gentler.
  • the opening degree of the hinge 151 is calculated as follows. Then, the drive control unit 161 outputs an instruction signal (number of pulses) for changing the opening degree of the hinge 151 according to the calculated value to the hinge drive device 152.
  • the influence of the road surface gradient on the detection accuracy of the height of the detected object can be further reduced by actively changing the elevation angle of the upper radar according to the gradient. .
  • FIG. 14 is a flowchart showing a process flow of the obstacle detection system according to another embodiment.
  • the detection result of the lower radar includes another detection point different from the latest detection point (S1401 / In step (Yes), the process returns to step S603, and a grouping process is performed after searching for a detection point closest to the dump (S604). This process is repeated until there is no ungrouped detection point from the detection result of the lower radar (S1401 / No), and the processes of steps S605 and S606 are executed.
  • step S606 when the detection result of the upper radar includes another detection point different from the latest detection point (S1402 / Yes), the process returns to step S605, and the next detection point closest to the dump is selected. After the search, grouping processing is performed (S606). This process is repeated until there is no detection point that is not grouped from the detection result of the upper radar (S1402 / No).
  • step S607 it is determined whether or not there is an upper detection point group in which the difference in detection distance is equal to or greater than a specified value for all lower detection point groups. If there is (S607 / Yes), it is determined as a large vehicle (S608), and if not (S607 / No), it is determined as a small vehicle (S609). Thereby, discrimination of a large vehicle or a small vehicle can be performed for all detected objects detected by the lower radar and the upper radar. Note that by adding the above steps S1401 and S1402 to the process of FIG. 10, it is possible to specify the vehicle type for all detected objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

 鉱山内において大型車両と小型車両とが混在して走行する際に、両者を区別して検出する。鉱山用運搬車両に第一障害物検知装置及び第二障害物検知装置を設置する。各障害物検知装置は、それぞれの検知方向が水平面内において同一方向を向くように設置されると共に、第一障害物検知装置111は、小型車両を検知できる高さに設置され、第二障害物検知装置112は、小型車両は検知せずに大型車両を検知できる高さに設置される。検出処理装置120は第一障害物検知装置111及び第二障害物検知装置112の検知結果を基に被検知体が小型車両か大型車両かを判定する。

Description

障害物検出システム及び運搬車両
 本発明は、障害物検出システム及び運搬車両であって、特に鉱山内を走行する運搬車両における周辺障害物の監視技術に関する。
 鉱山内を走行する大型のダンプトラック(以下「ダンプ」と略記する)は、一般的なトラックやバスに比べて格段に大きな車幅(たとえば9m程度)と車高(たとえば7m程度)を有している。また、ダンプの運転者が居るキャブは、ダンプの前部にあるアッパデッキ上に設けられているため、運転者から比較的近距離にある小型車両が視野の死角に入って確認しづらかったり、前方車両の高さの違いから前方車両までの距離感の把握が困難になったりすることがある。そこで、鉱山用ダンプにレーダを搭載して障害物を検出する技術が提案されている。
 上記技術の一例として、特許文献1には、検知範囲や特性の異なる複数のレーダをダンプに搭載し、これらのレーダを用いて同一の一点を測定してキャリブレーションを行い、距離測定の精度を向上させる構成が開示されている。
米国特許出願公開第2010/0076708号明細書
 鉱山では、管理用のパトロールカーや散水車などの小型車両と、ダンプなどの大型車両とが搬送路上に混在して走行することがある。ダンプは、管制制御の下、駐機場、積込場、放土場を予め決められた順序及び制限速度に従って走行するので、ダンプ同士、特に同一の進行方向に向かって走行中のダンプ同士の干渉リスクは概して高くない。
 これに対し、小型車両は安全監督者等が搭乗し、車両周囲や搬送路の安全確認をするためにダンプに接近する方向に走行することがあるので、ダンプの走行方向と小型車両の走行方向とが不一致となることがある。更に、小型車両とダンプとは、旋回性能、制動性能、加速性能などの運動性能が異なるので両者の挙動は異なる。加えて小型車両は管制制御の対象になっていないことがあるので、小型車両とダンプとの干渉リスクは、ダンプ同士の干渉のリスクに比べて大きくなる傾向がある。そのため、小型車両をダンプから区別して検出したいという要望がある。
 この点について特許文献1は、特性が異なる複数のレーダを用いて障害物、例えば前方車両までの距離データを得る際の測定精度を向上させることができるものの、大型車両と小型車両とを区別して検出することについては考慮されておらず、上記要望に応えることができない。
 本発明は上記実情に鑑みてなされたものであって、鉱山内において大型車両と小型車両とが混在して走行する際に、両者を区別して検出する障害物検出システム及び運搬車両を提供することを目的とする。
 本発明は、鉱山用の運搬車両に搭載される障害物検出システムであって、前記運搬車両に設置され、被検知体までの距離を計測する第一障害物検知装置と、前記被検知体までの距離を計測する第二障害物検知装置であって、前記第一障害物検知装置の設置位置よりも前記運搬車両における高い位置に設置される前記第二障害物検知装置と、前記第一障害物検知装置及び前記第二障害物検知装置の検知結果に基づいて、前記被検知体が相対的に車体が小さい小型車両であるか、相対的に車体が大きい大型車両であるかを判定する判定処理部と、前記判定結果を外部出力する出力処理部と、を備え、前記第一障害物検知装置及び前記第二障害物検知装置は、それぞれの検知方向が水平面内において同一方向を向くように、かつ、前記大型車両及び前記小型車両を区別して判定することを所望する前記運搬車両からの判定対象距離範囲内において前記第一障害物検知装置の検知範囲及び前記第二障害物検知装置の検知範囲が鉛直面内において重ならないように高さを変えて前記運搬車両に設置され、前記判定処理部は、前記第一障害物検知装置が前記被検知体を検知した検知地点を基準として同一車両とみなせる許容範囲内において前記第二障害物検知装置も前記被検知体を検知した場合には、前記被検知体は前記大型車両であると判定し、前記第一障害物検知装置が前記被検知体を検知した地点を基準とする前記許容範囲内において前記第二障害物検知装置が前記被検知体を検知していない場合には、前記被検知体は前記小型車両であると判定する、ことを特徴とする。
 上記障害物検出システムによれば、判定対象距離範囲内において、第一障害物検知装置及び第二障害物検知装置の各検知範囲は鉛直面内、即ち高さ方向において重ならないので、第一障害物検知装置のみが被検知体を検知した場合には、被検知体の高さは、第二障害物検知装置の検出範囲の高さよりも低いといえる。そこで判定処理部は、被検知体を小型車両であると判定することができる。一方、第一障害物検知装置及び第二障害物検知装置が共に被検知体を検知した際には、被検知体の高さは第一障害物検知装置の検出範囲の高さから第二障害検知装置の検出範囲の高さまであるといえるので、判定処理部は被検知体を大型車両であると判定することができる。これにより、大型車両と小型車両とを区別して判定することができる。そして出力処理部が判定結果を外部出力することにより、小型車両及び大型車両に応じた運搬車両の動作を行うことが可能となる。
 また、本発明は上記構成において、前記第二障害物検知装置が水平面に対して仰角を有して前記運搬車両に設置される、ことを特徴とする。
 これにより、第一障害物検知装置及び第二障害物検知装置の設置位置の高さを変えるだけの場合に比べて、さらに確実かつ簡易に第二障害物検知装置の検知範囲が第一障害物検知装置の検知範囲と重ならないように、第二障害物検知装置を設置することができる。
 また、本発明は上記構成において、前記第二障害物検知装置は、検知ビームを照射するとともに、前記被検知体にあたって生じる反射波を受信して前記被検知体との間の距離を測定するセンサにより構成され、前記第二障害物検知装置の前記検知ビームは上下方向に照射幅を有し、前記第二障害物検知装置は、前記検知ビームの下限照射ラインが水平面に対して平行となる前記仰角を有して前記運搬車両に設置される、ことを特徴とする。
 これにより、上下方向に照射幅を有する検知ビームを用いた第二障害物検知装置であっても、検知ビームの下限照射ラインが第一障害物検知装置の検知範囲に重ならないように設置することができる。
 また、本発明は上記構成において、前記第二障害物検知装置の前記仰角を変更する仰角変更機構と、前記仰角を変更機構に対する仰角変更指示信号を出力する駆動制御装置と、を更に備える、ことを特徴とする。
 これにより、第二障害物検知装置の仰角を能動的に変更することができる。よって、例えば道路勾配に応じて仰角を大きくすることで登り勾配ではより遠方に第二障害物検知装置の検知範囲を位置させることができ、検知精度に対する検知時の環境の影響を低減させることができる。
 また、本発明は上記構成において、前記被検知体として検知する対象となる車両の車種及び車高を関連付けた車種情報を格納する車種情報記憶部を更に備え、前記判定処理部は、前記第一障害物検知装置及び前記第二障害物検知装置の検知結果と前記車種情報とを比較して、前記被検知体の車種を判定する、ことを特徴とする。
 これにより、小型車両及び大型車両の区別だけではなく車種も判定できるので、車種に応じた運搬車両の動作制御を行うことができる。例えば、小型車両に四輪駆動車を用いたパトロールカー及び散水車が含まれる場合、パトロールカーの方が散水車よりも運動性能が高く急停車・急旋回をする可能性もあるので、より早めに運搬車両が干渉回避動作の準備を開始するといった対応をとることも可能になる。
 また本発明は、鉱山内を走行する運搬車両であって、第一位置に設けられ、被検知体までの距離を計測する第一障害物検知装置と、前記第一位置より高い第二位置に設けられ、前記被検知体までの距離を計測する第二障害物検知装置と、を備え、前記第一障害物検知装置及び前記第二障害物検知装置は、それぞれの検知方向が水平面内において同一方向を向くように設置され、前記第一位置は、前記被検知体としての小型車両と大型車両のうちの前記小型車両を検出可能な位置であり、前記第二位置は、前記大型車両のみを検出可能な位置である、ことを特徴とする。
 これにより、複数の障害物検知装置を用いて運搬車両の周辺に位置する被検知体を検出する際に、各障害物検知装置の設置位置の高さが異なることを利用して、被検知体の高さの判定が容易に行える。そして、この高さを用いて被検知体が小型車両か大型車両かを区別することができる。
 本発明によれば、鉱山内において大型車両と小型車両とが混在して走行する際に、両者を区別して検出する障害物検出システム及び運搬車両を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態に係る障害物検出システムを搭載したダンプの概略構成を示す図 下側レーダ及び上側レーダが共に被検知体を検知している状態を示す図 下側レーダのみが被検知体を検知している状態を示す図 本実施形態に係る障害物検出システムの内部構成を示す機能ブロック図であって、(a)は有人ダンプに搭載される障害物検出システムを示し、(b)は自律走行ダンプに搭載される障害物検出システムを示す。 グルーピング処理の一例を示す図であって、(a)は水平面上における被検知体の位置を示し、(b)は鉛直面内における被検知体の位置を示す。 第一実施形態に係る障害物検出システムの処理の流れを示すフローチャート ダンプ正面に複数組の障害物検知装置を設置した状態を示すダンプの上面図 第二実施形態に係る障害物検出システムの内部構成を示す機能ブロック図であって、(a)は有人ダンプに搭載される障害物検出システムを示し、(b)は自律走行ダンプに搭載される障害物検出システムを示す。 車種情報記憶部に記憶される車種情報を示すテーブル。 第二実施形態に係る障害物検出システムの処理の流れを示すフローチャート 仰角変更機構の概略構成を示す図。 第三実施形態に係る障害物検出システムに含まれる障害物検知装置の取り付け角度を示す図 第三実施形態に係る障害物検出システムの内部構成を示す機能ブロック図であって、(a)は有人ダンプに搭載される障害物検出システムを示し、(b)は自律走行ダンプに搭載される障害物検出システムを示す。本発明の実施形態である障害物検出装置のレーダ配置を示す図 その他の実施形態に係る障害物検出システムの処理の流れを示すフローチャート
 以下、本発明の実施の形態を図面を用いて説明する。以下、図面を参照して本発明の実施形態について説明する。以下の実施の形態においては、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明する。以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。なお、以下の実施の形態において、その構成要素(処理ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須ではない。
 また、以下の実施の形態における各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路その他のハードウェアとして実現しても良い。また、後述する各構成、機能、処理部、処理手段等は、コンピュータ上で実行されるプログラムとして実現しても良い。すなわち、ソフトウェアとして実現しても良い。各構成、機能、処理部、処理手段等を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記憶装置、ICカード、SDカード、DVD等の記憶媒体に格納することができる。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一または関連する符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 <第一実施形態>
 第一実施形態は、複数の障害物検知装置を一組にしてダンプトラックの前方に高さを変えて取り付け、これらの障害物検知装置の検知結果を基に被検知体が小型車両であるか大型車両であるかを判定する実施形態である。以下、図1を参照して、本発明の第一実施形態について説明する。図1は本発明の実施形態に係る障害物検出システムを搭載したダンプの概略構成を示す図である。
 図1に示す鉱山用ダンプ(以下「ダンプ」と略記する。大型車両に相当)100は、一般的なトラックやバスに比べて格段に大きな車幅(たとえば9m程度)と車高(たとえば7m程度)を有している。一方、鉱山で管理用などに良く用いられている四輪駆動車などの軽車両(小型車両に相当)の車高はおおよそ2m弱である。従って、ダンプの車高は、小型車両の車高に対して数倍の違いがある。鉱山ではこのように車高が大きく異なる車両が混在して走行しているため、ダンプ100に小型車両を検知するための障害物検出システムが搭載されている。
 より詳しくは、ダンプ100には、障害物検出システムに含まれる複数の障害物検知装置111、112と、これらの障害物検知装置111、112の検知結果に基づいて、被検知体の検出処理を行う検出処理装置120と、が備えられる。複数の障害物検知装置111、112は、各障害物検知装置111、112の検知方向が水平面内において同一方向(本実施形態では前方)に向けられ、ダンプ100の上下方向の異なる位置に鉛直線状に並べて設置される。そして、顕出処理装置120はこれら二つ障害物検知装置111、112を組にし、これらを協働させて被検知体の大きさを検知する。 
 本実施形態では、上記障害物検知装置111、112としてミリ波レーダ装置を例に挙げて説明するが、ミリ波レーダ装置に限らず、障害物検知装置の周囲にある被検知体までの距離を測定できる障害物検知装置であれば、その種類を問わない。以下の説明では、ダンプ100の低い位置に設置された障害物検知装置111を下側レーダ111と称し、ダンプ100の高い位置に設置された障害物検知装置112を上側レーダ112と称する。
 下側レーダ111は、走行面から2m前後の高さ、即ち小型車両の車高と同程度の高さに設置される。下側レーダ111から照射される検知レーダは、地面近くに照射される。よって、下側レーダ111の照射範囲(検知範囲)131は、地面近く、より詳しくは走行面から高さ2m近くに設定される。 
 一方、上側レーダ112は、レーダの照射範囲(検知範囲)132に小型車両が含まれない高さに設置される。本実施形態では、ダンプ100の車両前部の構造物101、例えばラジエータグリルや固定枠などを含むラジエータアッセンブリの下端部に下側レーダ111を、上端部に上側レーダ112を設置する。すなわち下側レーダ111及び上側レーダ112は、ラジエータアッセンブリを挟んで鉛直線上に並べて設置される。ラジエータグリルや固定枠などを含むラジエータアッセンブリの上端部は、走行面から5m前後の高さになるので、上側レーダ112も走行面から5m前後の高さに設置される。それゆえ図1のように車両前部の構造物101の上端に上側レーダ112を設置すると、上側レーダ112の照射範囲132は、走行面を基準として比較的高い位置に設けられる。この高さは、小型車両の上端部よりも高い位置になるので、照射範囲132には小型車両が含まれない。
 よって、下側レーダ111から上側レーダ112の方向に順にレーダの被検知体検知距離(以下「検知距離」と略記する)を確認していけば、被検知体の高さは、被検知体が検知されなくなった上側レーダの設置高さ未満であるという判定できる。そこで、検出処理装置120は、下型レーダ111及び上側レーダ112が共に同一車両とみなせる検知距離範囲(以下「許容範囲」という)内において被検知体を検出すると大型車両であると判定し、下側レーダ111のみが許容範囲内において被検知体を検知すると小型車両であると判定する。
 図2及び図3を参照して下側レーダ111及び上側レーダ112のレーダの照射状態と被検知体の大きさ(高さ)との関係について説明する。図2は、下側レーダ及び上側レーダが共に被検知体を検知している状態を示す図である。図3は、下側レーダのみが被検知体を検知している状態を示す図である。
 図2に示すように、被検知体200が自車両(ダンプ100)と同程度に大きい車両の場合、下側レーダ111及び上側レーダ112は共に被検知体を検知する。
 一方、図3のように被検知体300が小型車両である場合は、下側レーダ111のレーダ照射範囲131に被検知体300が含まれるが、上側のレーダ112のレーダ照射範囲132に被検知体300は含まれない。従って検出処理装置120は、下側レーダ111のみが被検知体300を検出していることから被検知体300の大きさ(高さ)を、走行面から上側レーダ112の照射範囲131の高さ未満と判定することができる。この場合は被検知体が小型車両であると判定できる。
 上側レーダ112及び下側レーダ111は、高さを変えてダンプ100に取り付けられるが、上側レーダ112から照射される検知ビームの下限照射ラインが水平面に対してほぼ平行となるように、上側レーダ112に仰角を持たせてダンプ100に取り付けてもよい。下側レーダ111及び上側レーダ112としてミリ波レーダ装置を用いる場合、電波(検知ビーム)を発して被検知体を検知するため、電波の指向性の広がりによって上下方向への検知幅を有する。検知ビームの上下の検知幅が広くなってしまうと、上側レーダ112の検知範囲と下側レーダの検知範囲とが上下方向(高さ方向)において重なる範囲が生じることがある。すると、重なる範囲で検知された被検知体の高さを、上側レーダ112の検知の有無を用いて大型車両か小型車両かに弁別することが難しくなる。
 そこで、検知ビームの上下方向の検知幅は、水平面内におけるダンプの位置を基準として被検知体を検知したい所望の検知距離範囲(以下「判定対象距離範囲」という)内において、上側レーダ112及び下側レーダ111の検知範囲が重ならないように設定されることが望ましい。ここでいう判定対象距離範囲とは、例えば運搬車両が被検知体を検知してから干渉回避動作を開始すると干渉を回避できる程度に近く、また被検知体を検知しても回避動作の要否を判定することが全く不要な程度には遠くはない程度であり、運搬車両の速度や制動距離等を考慮して決めることができる。
 ミリ波レーダの検知幅の一例として、例えば水平面に対して±4度程度の角度範囲でレーダアンテナの利得が大きいように設計されてもよい。この場合、ミリ波レーダは、主に上下±4度程度の角度範囲からなる検知範囲を有することになる。
 また、レーザスキャナのように光学式のセンサと異なり、電波を用いるセンサでは、レーダの上下方向の検知幅はある角度を持つことになるため、上側のレーダの照射範囲132が遠方に行くに従って上下幅が広くなっていき、最終的には下側のレーダの照射範囲131と重複する恐れがある。
 そこで、上側のレーダ112を上下の検知角度幅を上限として仰角を持つように配置することにより、下方の被検知体の検知を抑制する。好ましくは、一組の障害物検知装置の内の一番下側のレーダよりも上方に設置される全てのレーダは、仰角を持たせて設置されることが望ましい。
 さらに好ましくは、上側レーダ112の検知ビーム幅の下限角が水平になるような仰角を持つように配置する。上記の例では例えば上側レーダ112を上方に4度傾けて配置すると、上側レーダ112の検知ビーム下限は水平面と平行となり、上側レーダ112の照射範囲132は水平面より下側へは弱くしか照射されないため、被検知他の検知範囲を明確に限定することが可能になる。
 以上のように上側レーダが仰角を持たせてダンプに設置されることにより、被検知体の大きさの分離が容易になり、より遠方までの広範囲の領域で被検知体の大きさの検知が可能になるという効果がある。
 図1乃至図3では、上側レーダ112に仰角を持たせてダンプ100に取り付けた状態を示すが、上側レーダ112及び下側レーダ111を共に水平方向に向けても、高低差及び検知幅を調整することで、高さ方向に検知範囲の重なり範囲が生じないようにすることができる。
 次に図4を参照して、本実施形態に係る障害物検出システム110の内部構成について説明する。図4は、本実施形態に係る障害物検出システムの内部構成を示す機能ブロック図であって、(a)は有人ダンプに搭載される障害物検出システムを示し、(b)は自律走行ダンプに搭載される障害物検出システムを示す。
 図4の(a)、(b)に示すように、障害物検出システム110は、検出処理装置120と、下側レーダ111及び上側レーダ112とを含む。検出処理装置120は、下側レーダ111及び上側レーダ112の検知結果を基に、被検知体の検出及びその被検知体の大きさ(高さ)を判定する判定処理部121と、判定処理部121の判定結果を外部出力するための処理を行う出力処理部122とを含む。検出処理装置120は、CPU(Central Processing Unit)等の演算・制御装置、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)等の記憶装置を含むハードウェアと、検出処理装置120により実行されるソフトウェアとを含んで構成され、これらが協働することで検出処理装置120の機能が実現される。
 ダンプ100がオペレータの運転操作に従って走行する有人ダンプである場合には、図4の(a)に示すように、出力処理部122は視覚でオペレータに対して判定結果を通知するモニタ123や、音声でオペレータに対して判定結果を通知する警告音発生装置124に対し判定結果を出力する処理を行う。図4では説明の便宜のため、モニタ123、警告音発生装置124の両方を図示しているが、どちらか一方だけを備えてもよい。
 ダンプ100が無線ネットワークを介して通信接続された管制装置からの指示に従って自律走行する自律走行ダンプである場合には、図4の(b)に示すように、出力処理部122は、ダンプ100に搭載された無線装置125を経由して管制装置に対して判定結果を示す検知情報を送信する処理を行う。更に、出力処理部122は、自律走行ダンプに備えられた車両制御装置126に対して判定結果を出力し、車両制御装置126が判定結果を参照して自律走行ダンプに備えらえた制動装置(不図示)を駆動制御してもよい。これにより、管制装置の管制制御の対象とならない小型車両との干渉回避動作を、検出処理装置120からの出力結果を用いて実行することが可能となる。
 次に図5を参照して、本実施形態に係る障害物検出システム110の処理内容について説明する。図5はグルーピング処理の一例を示す図であって、(a)は水平面上における被検知体の位置を示し、(b)は鉛直面内における被検知体の位置を示す。図6は、障害物検出システムの処理の流れを示すフローチャートである。
 まず、図5を参照して、検出処理装置120における大型車両と小型車両との判定処理について説明する。以下の説明において、下側レーダ111又は上側レーダ112のそれぞれが被検知体を検知した位置を検知地点という。また、図5の(a)、(b)において、○は下側レーダ111が検知した検知地点を示し、△は上側レーダ112が検知した検知地点を示す。更に図5の(a)、(b)のうち、符号501は下側レーダ111が検出した検知地点のうち、検知距離が最小となる地点(以下「最近検知地点」という)を示す。
 判定処理部121は、最近検知地点を基準とし、同一車両と見做せる距離範囲(以下「許容範囲」という)内にある検知地点を、一つのグループとしてまとめるグルーピング処理を行う。この許容範囲は、被検知体の形状や自車両の走行中の車体の揺れなどに起因して生じる検知距離誤差を吸収することで、異なる検知地点を同一車両を検知したと見做すための距離範囲である。図中のGRL_1は、最近検知地点501を基準として生成された検知地点のグループを示す。また図中のGRL_2は、GRL_1に含まれない検知地点の内、検知距離が短い検知地点502を基準として生成されたグループを示す。
 同様に図中のGRH_1は、上側レーダ112の検知地点の内、最近検知地点を基準として生成されたグループを示す。
 図5の(a)に示すように水平面上においてGRL_1に相当する検知距離において上側レーダ112は被検知体を検知していない。従って、図5の(b)に示すようにGRL_1内の検知地点が示す検知距離d1では、高さ方向の検知結果は下側レーダ111のレーダ照射範囲(検知範囲)だけである。従って、この場合、被検知体の高さは上側レーダ112の照射範囲の高さ未満である。検知距離d1における上側レーダ112の照射範囲は、レーダの上下角度から幾何学的に演算して求められることもできるが、上側レーダ112が検知できない被検知体の高さは、上側レーダ112の設置位置の高さ未満とみなして処理を簡略化してもよい。この場合、GRL_1は、車高5m未満の被検知体と判定できる。そして車高5m以上を大型車両、5m未満を小型車両と弁別するという基準を設けることで、判定処理部121は、GRL_1の被検知体を小型車両と判定することができる。
 図5の(a)においてGRL_2と同一車両と見做せる許容範囲内において、上側レーダ112はGRH_1で示される被検知体を検知している。この場合、図5の(b)に示すように被検知体の高さは、上側レーダ112の設置位置高さ以上ある。従って、判定処理部121は、被検知体を大型車両と判定する。
 次に図6の各ステップ順に沿って、第一実施形態に係る障害物検出システムの処理の流れについて説明する。
 ダンプ100のエンジンが始動すると、下側レーダ111及び上側レーダ112が被検出体の距離計測処理を開始する(S601)。下側レーダ111及び上側レーダ112のそれぞれの検知結果は、検出処理装置120の判定処理部121に出力される。
 判定処理部121は、下側レーダ111及び上側レーダ112から検知結果を取得すると(S602/Yes)、下側レーダ111の検知結果のうち、最近検知地点を検索する(S603)。
 次いで判定処理部121は、最近検知地点を基準とし、同一車両と見做せる許容範囲内にある検知地点を、一つのグループとしてまとめる(S604)。
 判定処理部121は、上側レーダ112についても、最近検知地点を検索し(S605)、許容範囲の検知地点のグルーピングを行う(S606)。なお、本実施形態では、ステップS603、S604の後にステップS605、ステップS606を実行すると説明したが、ステップS605、ステップS606の後にステップS603、S604を実行してもよい。また、ステップS603、S605の最近検知地点の検索を実行した後(ステップS603、S605の順序は問わない)、ステップS604、S606のグルーピング処理を実行していもよい(ステップS604、S606の順序は問わない)。
 次に判定処理部121は、下側レーダ111の最近検知地点を基準とする検知地点グループ(下側検知地点グループ)と、上側レーダ112の最近検知地点を基準とする検知地点グループ(上側検知地点グループ)との差が規定値以上であるかを判定する(S607)。規定値以上、即ち上側検知地点グループが遠方にあれば(S607/Yes)、上側検知地点グループが示す被検知体は、下側検知地点グループとは別体の被検知体であるか、もしくは当該高さでは検知されなかったこととなる。よって、判定処理部121は、被検知体の高さが上側レーダ112の設置高未満である、即ち被検知体は小型車両と判定する(S608)。出力処理部122は、この判定結果を外部出力する。
 一方、上側検知地点グループ及び下側検知地点グループの差が規定値以内であれば(S607/No)、下側レーダ111及び上側レーダ112の双方で被検知体を検知したこと意味するので、判定処理部121は、被検知体の高さを自車両と同程度の高さを持つもの、即ち大型車両であると判定する(S609)。出力処理部122は、この判定結果を外部出力する。その後、ステップS601へ戻り、再度下側レーダ111及び上側レーダ112による被検知体までの距離測定を行う。そして、新たな検知結果に対して上述の処理が実行される。この一連の処理は、ダンプ100のエンジンが停止するまで繰り返される。
 本実施形態によれば、複数の障害物検出装置を、水平面内において検知範囲を同じ向きに向かせると共に、検知範囲の高さが小型車両と大型車両との高さの区別がつくようにダンプに設置し、両障害物検知装置の検知結果を基に小型車両及び大型車両を弁別して判定するので、ダンプとは挙動が異なる小型車両を検出することができる。これにより、小型車両に対する干渉回避動作を行うことができ、鉱山内において小型車両と大型車両とが混走する際の安全性を向上させることができる。
 上記第一実施形態では、一組のレーダをダンプの前面における車幅方向中央部に備えたが、ダンプの正面前方に車幅方向に間隔を空けて複数組のレーダを配置してカーブの先にある障害物など、車両正面以外にある障害物も検出できるようにしてもよい。図7を参照して、上記他例について説明する。図7は、ダンプ正面に複数組の障害物検知装置を設置した状態を示すダンプの上面図である。
 図7に示すダンプ100は、ダンプ前面の車幅方向中央に中央上側レーダ701(この下に設置される下側レーダは不図示)を、ダンプ前面の右端部に右上側レーダ702、ダンプ前面の左端部に左上側レーダ703(右上側レーダ702、左上側レーダ703の下に設置される各下側レーダは不図示)を備える。符号731、732、733は、中央上側レーダ701、右上側レーダ702、及び左上側レーダ703の各検知範囲を示す。そして、各レーダの組について先の図6の処理を繰り返せば良い。
 ダンプ前面の左右端部それぞれに一対のレーダを設置することで、レーダの照射範囲732、733を追加でき、より広範囲を検知できる。
<第二実施形態>
 第二実施形態は、障害物検知装置の検知結果を基に被検知体の車種を判定する実施形態である。なお、第二実施形態において、第一実施形態と同様の構成及び処理ステップには、第一実施形態の説明で用いた符号と同じ符号を付して重複説明を省略する。
 図8は、第二実施形態に係る障害物検出システムの内部構成を示す機能ブロック図であって、(a)は有人ダンプに搭載される障害物検出システムを示し、(b)は自律走行ダンプに搭載される障害物検出システムを示す。
 第二実施形態に係る障害物検出システム110aは、第一実施形態に係る障害物検出システム110の構成に加え、被検知体の候補となる車両の車種及び車高を対応付けた車種情報を記憶する車種情報記憶部127を備える。図9を参照して車種情報の一例について説明する。図9は、車種情報記憶部に記憶される車種情報を示すテーブルである。
 図9に示す車種テーブル900には、3つの車種と各車種の車高とが関連づけて記憶される。車種1は、例えば航則車に用いられる車種で車高h1は2m未満の値であるとする。車種2は、例えば散水車であり車高h2は2m以上5m未満の値であるとする。車種3は、例えば大型ダンプトラックを用いた運搬車両であり、車高h3は5m以上の値であるとする。判定処理部121は、この車種テーブル900を用いて被検知体の車種を判定する。以下、図10を参照して、第二実施形態に係る被検知体の判定処理について説明する。図10は、第二実施形態に係る障害物検出システムの処理の流れを示すフローチャートである。
 第二実施形態においても第一実施形態のステップS601乃至ステップS606までの処理を行う。続いて判定処理部121は、ステップS604で生成した下側検知地点グループ及びステップS606で生成した上側検知地点グループの順に検知結果を高さ方向に走査して、被検知体の車高を算出する(S1001)。そして判定処理部121は車種テーブル900と算出した車高とを照合し、被検知体の車種を特定する(S1002)。出力処理部122は特定結果を外部出力する。
 本実施形態によれば、小型車両及び大型車両の区別だけでなく車種を判定できる。これにより、同じ小型車両であっても車種によって異なる運動特性に応じた対応を、運搬車両が実行することが可能となる。例えば、小型車両に四輪駆動車を用いたパトロールカー及び散水車が含まれる場合、パトロールカーの方が散水車よりも運動性能が高く急停車・急旋回をする可能性もあるので、より早めに運搬車両が干渉回避動作の準備を開始するといった対応をとることも可能になる。
 <第三実施形態>
 第三実施形態は、上側レーダの取り付け角度(仰角の角度)を変更可能に取り付ける実施形態である。以下、図11乃至図13を参照して第三実施形態について説明する。図11は、仰角変更機構の概略構成を示す図である。図12は、第三実施形態に係る障害物検出システムに含まれる障害物検知装置の取り付け角度を示す図である。図13は、第三実施形態に係る障害物検出システムの内部構成を示す機能ブロック図であって、(a)は有人ダンプに搭載される障害物検出システムを示し、(b)は自律走行ダンプに搭載される障害物検出システムを示す。
 第三実施形態に係る障害物検出システムでは、上側レーダ112の仰角を変更するための仰角変更機構を含む。この仰角変更機構は、図11に示すように、上側レーダ112を取り付けるためのベース板154と、このベース板154の一端に取り付けられるヒンジ151と、このヒンジ151を支点としてベース板を上下方向に回動させる駆動装置としてのステッピングモータからなるヒンジ駆動装置152と、を有している。上側レーダ112の仰角θは、ヒンジ駆動制御装置160から出力されるパルス数を調整することで、所望の角度に変更することができる。これにより、上側レーダ112の照射範囲132は、破線で示した領域に対して上向きに変えることで、上側レーダ112の検知範囲の位置をより遠方に位置させることができる。また、上側レーダ112が被検知体を検知した際に仰角を変化させて高さ方向に検知ビームを走査させることにより、被検知体の高さをより詳細に検知することができる。
 図12に示すように、ダンプ100bの前方に登り勾配路がある場合、検知距離によってはサイズの小さい小型車両であっても上側レーダ112が検知してしまい、判定処理部121が大型のダンプと誤認してしまう可能性がある。このような場合においても、例えば鉱山内の搬送路における勾配地図のような情報を予め持っておき、前方の搬送路の勾配の度合いによって上側レーダ112の仰角を調整することで、上記の問題を回避できる。
 次に図13を参照してヒンジ駆動制御装置160の内部構成について説明する。図13の(a)、(b)に示すようにヒンジ駆動制御装置160は、ヒンジ駆動装置152に対する制御信号を出力する駆動制御部161、及びダンプ110が走行する搬送路の地図情報を格納する地図情報記憶部162を含む。ヒンジ駆動制御装置160は、CPU等の演算・制御装置、ROMやRAM、HDD等の記憶装置を含むハードウェアと、検出処理装置120により実行されるソフトウェアとを含んで構成され、これらが協働することでヒンジ駆動制御装置160の機能が実現される。
 駆動制御部161は、地図情報記憶部162及び位置取得装置170に電気的に接続される。そして、駆動制御部161は位置取得装置170からダンプ100の現在位置情報を取得し、地図情報記憶部162の地図情報(位置座標や道路勾配が記載されている)を参照し、現在走行している路面の勾配を読取り、その勾配に応じ、登り勾配が大きいときは仰角がより大きな角度になるようにヒンジ151の開度を算出し、登り勾配がよりゆるやかなときは仰角がより小さな角度になるようにヒンジ151の開度を算出する。そして、駆動制御部161は、その算出値に応じてヒンジ151の開度を変更する指示信号(パルス数)をヒンジ駆動装置152に対して出力する。
 以上のように本実施形態によれば、上側レーダの仰角を勾配に応じて能動的に可変することにより、被検知体の高さの検出精度に対する路面の勾配の影響をより低減することができる。その結果、路面の勾配に関わらず的確に大きさの分離が容易になり、勾配路においても小型車両をより的確に検出することができる。
 以上、本発明を実施するための実施の形態について説明したが、本発明の具体的な構成は上記各実施の形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、上記実施形態では下側レーダ及び上側レーダの最近検知地点を基準とする下側検知地点グループ及び上側検知地点グループの比較のみを行うことで、ダンプに最も近い被検知体についてのみ大型車両又は小型車両の弁別(第一実施形態)、または車種の特定(第二実施形態)を行ったが、下側レーダ及び上側レーダに含まれるすべての検知地点についてのグルーピングを行い、これらを基に、すなわち、下側レーダ及び上側レーダが検知したすべての被検知体を対象として大型車両又は小型車両の弁別、または車種の特定を行ってもよい。この処理例について図13を参照して説明する。図14は、その他の実施形態に係る障害物検出システムの処理の流れを示すフローチャートである。
 図14に示すように、既述のステップS601からステップS604までの処理を実行した後において、下側レーダの検知結果に最近検知地点とは異なる他の検知地点が含まれている場合(S1401/Yes)には、ステップS603へ戻り、次にダンプから近い検知地点を検索してからグルーピング処理を行う(S604)。この処理を、下側レーダの検知結果からグルーピングされていない検知地点がなくなるまで繰り返し(S1401/No)、ステップS605、S606の処理を実行する。
 ステップS606の処理後において、上側レーダの検知結果に最近検知地点とは異なる他の検知地点が含まれている場合(S1402/Yes)には、ステップS605へ戻り、次にダンプから近い検知地点を検索してからグルーピング処理を行う(S606)。この処理を、上側レーダの検知結果からグルーピングされていない検知地点がなくなるまで繰り返す(S1402/No)。
 ステップS607の判定処理において、全ての下側検知地点グループについて検知距離の差が規定値以上となる上側検知地点グループの有無を判定する。あれば(S607/Yes)大型車両と判定し(S608)、なければ(S607/No)小型車両と判定する(S609)。これにより、下側レーダ及び上側レーダが検知したすべての被検知体についての大型車両又は小型車両の弁別が行える。なお、上記ステップS1401、S1402を図10の処理に追加することですべての被検知体に対する車種特定も行える。
100 ダンプ
111 下側レーダ
112 上側レーダ
131 下側レーダの照射範囲
132 上側レーダの照射範囲
200 前方のダンプ(大型車両)
300 前方の小型車両

Claims (6)

  1.  鉱山用の運搬車両に搭載される障害物検出システムであって、
     前記運搬車両に設置され、被検知体までの距離を計測する第一障害物検知装置と、
     前記被検知体までの距離を計測する第二障害物検知装置であって、前記第一障害物検知装置の設置位置よりも前記運搬車両における高い位置に設置される前記第二障害物検知装置と、
     前記第一障害物検知装置及び前記第二障害物検知装置の検知結果に基づいて、前記被検知体が相対的に車体が小さい小型車両であるか、相対的に車体が大きい大型車両であるかを判定する判定処理部と、
     前記判定結果を外部出力する出力処理部と、を備え、
     前記第一障害物検知装置及び前記第二障害物検知装置は、それぞれの検知方向が水平面内において同一方向を向くように、かつ、前記大型車両及び前記小型車両を区別して判定することを所望する前記運搬車両からの判定対象距離範囲内において前記第一障害物検知装置の検知範囲及び前記第二障害物検知装置の検知範囲が鉛直面内において重ならないように高さを変えて前記運搬車両に設置され、
     前記判定処理部は、前記第一障害物検知装置が前記被検知体を検知した検知地点を基準として同一車両とみなせる許容範囲内において前記第二障害物検知装置も前記被検知体を検知した場合には、前記被検知体は前記大型車両であると判定し、前記第一障害物検知装置が前記被検知体を検知した地点を基準とする前記許容範囲内において前記第二障害物検知装置が前記被検知体を検知していない場合には、前記被検知体は前記小型車両であると判定する、
     ことを特徴とする障害物検出システム。
  2.  前記第二障害物検知装置が水平面に対して仰角を有して前記運搬車両に設置される、
     ことを特徴とする請求項1に記載の障害物検出システム。
  3.  前記第二障害物検知装置は、検知ビームを照射するとともに、前記被検知体にあたって生じる反射波を受信して前記被検知体との間の距離を測定するセンサにより構成され、
     前記第二障害物検知装置の前記検知ビームは上下方向に照射幅を有し、前記第二障害物検知装置は、前記検知ビームの下限照射ラインが水平面に対して平行となる前記仰角を有して前記運搬車両に設置される、
     ことを特徴とする請求項2に記載の障害物検出システム。
  4.  前記第二障害物検知装置の前記仰角を変更する仰角変更機構と、
     前記仰角を変更機構に対する仰角変更指示信号を出力する駆動制御装置と、
    を更に備える、
     ことを特徴とする請求項2に記載の障害物検出システム。
  5.  前記被検知体として検知する対象となる車両の車種及び車高を関連付けた車種情報を格納する車種情報記憶部を更に備え、
     前記判定処理部は、前記第一障害物検知装置及び前記第二障害物検知装置の検知結果と前記車種情報とを比較して、前記被検知体の車種を判定する、
     ことを特徴とする請求項1に記載の障害物検出システム。
  6.  鉱山内を走行する運搬車両であって、
     第一位置に設けられ、被検知体までの距離を計測する第一障害物検知装置と、
     前記第一位置より高い第二位置に設けられ、前記被検知体までの距離を計測する第二障害物検知装置と、を備え、
     前記第一障害物検知装置及び前記第二障害物検知装置は、それぞれの検知方向が水平面内において同一方向を向くように設置され、
     前記第一位置は、前記被検知体としての小型車両と大型車両のうちの前記小型車両を検出可能な位置であり、
     前記第二位置は、前記大型車両のみを検出可能な位置である、
     ことを特徴とする運搬車両。
PCT/JP2015/056264 2014-09-04 2015-03-03 障害物検出システム及び運搬車両 WO2016035357A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15837828.1A EP3190576B1 (en) 2014-09-04 2015-03-03 Obstacle detection system and transportation vehicle
US15/329,337 US10613218B2 (en) 2014-09-04 2015-03-03 Obstacle detection system and transportation vehicle
CN201580019283.7A CN106165001B (zh) 2014-09-04 2015-03-03 障碍物检测系统以及搬运车辆
CA2956865A CA2956865C (en) 2014-09-04 2015-03-03 Obstacle detection system and transportation vehicle
AU2015310310A AU2015310310B2 (en) 2014-09-04 2015-03-03 Obstacle detection system and transportation vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180459 2014-09-04
JP2014180459A JP6393123B2 (ja) 2014-09-04 2014-09-04 障害物検出システム及び運搬車両

Publications (1)

Publication Number Publication Date
WO2016035357A1 true WO2016035357A1 (ja) 2016-03-10

Family

ID=55439432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056264 WO2016035357A1 (ja) 2014-09-04 2015-03-03 障害物検出システム及び運搬車両

Country Status (7)

Country Link
US (1) US10613218B2 (ja)
EP (1) EP3190576B1 (ja)
JP (1) JP6393123B2 (ja)
CN (1) CN106165001B (ja)
AU (1) AU2015310310B2 (ja)
CA (1) CA2956865C (ja)
WO (1) WO2016035357A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649987B1 (ko) * 2015-04-13 2016-08-23 주식회사 만도 장착 각도 판별 장치 및 그 판별 방법
WO2018014879A1 (zh) * 2016-07-21 2018-01-25 苏州宝时得电动工具有限公司 自动识别前方物体的自移动设备及其识别方法
US20190204438A1 (en) * 2016-08-31 2019-07-04 Pioneer Corporation Control device, measuring device, control method, and program
JP6599835B2 (ja) * 2016-09-23 2019-10-30 日立建機株式会社 鉱山用作業機械、障害物判別装置、及び障害物判別方法
JP6815833B2 (ja) * 2016-11-01 2021-01-20 日立建機株式会社 車両識別システム
CN108321866B (zh) * 2017-01-16 2020-10-09 浙江国自机器人技术有限公司 一种移动机器人自主充电装置
DE102017203838B4 (de) * 2017-03-08 2022-03-17 Audi Ag Verfahren und System zur Umfelderfassung
JP2019100853A (ja) * 2017-12-01 2019-06-24 パイオニア株式会社 制御装置、検知装置、制御方法、プログラム及び記憶媒体
JP7244220B2 (ja) * 2018-06-13 2023-03-22 株式会社デンソーテン レーダ装置および物標データ出力方法
JP6625267B1 (ja) * 2018-06-22 2019-12-25 三菱電機株式会社 センサ制御装置、車両、センシング方法およびセンサ制御プログラム
US11320830B2 (en) 2019-10-28 2022-05-03 Deere & Company Probabilistic decision support for obstacle detection and classification in a working area
EP3961255A1 (en) * 2020-08-28 2022-03-02 Aptiv Technologies Limited Driver assistance system for a vehicle, vehicle and a driver assistance method implementable by the system
US11768289B2 (en) 2021-05-24 2023-09-26 Caterpillar Paving Products Inc. Work machine with LiDAR having reduced false object detection
DE112022003611T5 (de) * 2021-09-27 2024-08-14 Hitachi Astemo, Ltd. Trägerfahrzeug-totwinkel-überwachungssystem und trägerfahrzeug-totwinkel-überwachungsverfahren
CN117111049B (zh) * 2023-10-23 2024-01-30 成都瑞达物联科技有限公司 一种etc通道车辆存在检测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11161900A (ja) * 1997-11-28 1999-06-18 Fuji Hensokuki Co Ltd 駐車場における車両判別装置及び車両分配方法
JP2013196051A (ja) * 2012-03-15 2013-09-30 Komatsu Ltd 鉱山機械の運行管理システム及び鉱山機械の運行管理方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716833A (en) * 1971-12-02 1973-02-13 Sperry Rand Corp Vehicle height clearance indicating apparatus
JP3212218B2 (ja) * 1994-05-26 2001-09-25 三菱電機株式会社 車両用障害物検出装置
US5587929A (en) * 1994-09-02 1996-12-24 Caterpillar Inc. System and method for tracking objects using a detection system
US6055042A (en) * 1997-12-16 2000-04-25 Caterpillar Inc. Method and apparatus for detecting obstacles using multiple sensors for range selective detection
US6268803B1 (en) * 1998-08-06 2001-07-31 Altra Technologies Incorporated System and method of avoiding collisions
JP2001221620A (ja) * 2000-02-10 2001-08-17 Nippon Hodo Co Ltd 構造物表面の光走査方法
DE102004021561A1 (de) * 2004-05-03 2005-12-08 Daimlerchrysler Ag Objekterkennungssystem für ein Kraftfahrzeug
US7877209B2 (en) * 2006-09-26 2011-01-25 Harris Steven M Radar collison warning system for rooftop mounted cargo
US8170787B2 (en) * 2008-04-15 2012-05-01 Caterpillar Inc. Vehicle collision avoidance system
US8280621B2 (en) * 2008-04-15 2012-10-02 Caterpillar Inc. Vehicle collision avoidance system
US9279882B2 (en) 2008-09-19 2016-03-08 Caterpillar Inc. Machine sensor calibration system
JP5138665B2 (ja) * 2009-12-10 2013-02-06 日立建機株式会社 ダンプ車両の転倒防止装置
US8688332B2 (en) * 2011-04-20 2014-04-01 Caterpillar Inc. Management system incorporating performance and detection data
JP5851715B2 (ja) * 2011-05-12 2016-02-03 三菱重工業株式会社 自律走行装置及び自律走行方法並びにそのプログラム
JP2012252675A (ja) * 2011-06-07 2012-12-20 Komatsu Ltd ダンプトラック
JP5550695B2 (ja) * 2012-09-21 2014-07-16 株式会社小松製作所 作業車両用周辺監視システム及び作業車両
JP2016070772A (ja) * 2014-09-30 2016-05-09 富士通テン株式会社 レーダ装置、車両制御システム、および、信号処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11161900A (ja) * 1997-11-28 1999-06-18 Fuji Hensokuki Co Ltd 駐車場における車両判別装置及び車両分配方法
JP2013196051A (ja) * 2012-03-15 2013-09-30 Komatsu Ltd 鉱山機械の運行管理システム及び鉱山機械の運行管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190576A4 *

Also Published As

Publication number Publication date
CA2956865A1 (en) 2016-03-10
AU2015310310B2 (en) 2018-05-10
CA2956865C (en) 2021-07-27
AU2015310310A1 (en) 2017-02-23
CN106165001B (zh) 2019-07-05
JP6393123B2 (ja) 2018-09-19
EP3190576A1 (en) 2017-07-12
CN106165001A (zh) 2016-11-23
US20170229019A1 (en) 2017-08-10
EP3190576A4 (en) 2018-05-02
JP2016053915A (ja) 2016-04-14
US10613218B2 (en) 2020-04-07
EP3190576B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP6393123B2 (ja) 障害物検出システム及び運搬車両
EP3086990B1 (en) Method and system for driver assistance for a vehicle
JP3865121B2 (ja) 車両の障害物検出装置
US11280897B2 (en) Radar field of view extensions
US20200108825A1 (en) Collision avoidance apparatus and collision avoidance method
US11250276B2 (en) Object height determination for automated vehicle steering control system
US10656265B2 (en) Mining work machine
CN103569111A (zh) 用于机动车的安全装置
WO2016121688A1 (ja) 運搬用車両の障害物検出装置
US10946791B2 (en) Out-of-vehicle notification device
US7557907B2 (en) Object-detection device for vehicle
WO2018216066A1 (ja) 車載装置、走行支援方法および走行支援プログラム
US20240174274A1 (en) Obstacle detection for a rail vehicle
JP6668472B2 (ja) 物体分類を有する動力車両の周辺領域をキャプチャーする方法、制御装置、運転者支援システム、及び動力車両
US11198437B2 (en) Method and apparatus for threat zone assessment
US8035548B2 (en) Evaluation method, particularly for a driver assistance system of a motor vehicle, for object detection using a radar sensor
JP7180777B2 (ja) 運転制御システム
JP2023064792A (ja) 車両の走行制御処理システム
JP6267430B2 (ja) 移動体の環境地図生成制御装置、移動体、及び移動体の環境地図生成方法
WO2019186716A1 (ja) 車載装置、情報処理方法及び情報処理プログラム
JP2015056123A (ja) 移動体の環境地図生成制御装置、移動体、及び移動体の環境地図生成方法
US11117573B2 (en) Method and apparatus for object identification using non-contact chemical sensor
US12131550B1 (en) Methods and apparatus for validating sensor data
JP2018072235A (ja) 車両識別システム
KR20240069836A (ko) 자율주행 물체의 주행을 제어하는 라이다 장치 및 이를 이용한 자율주행 물체의 주행을 제어하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2956865

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015837828

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015310310

Country of ref document: AU

Date of ref document: 20150303

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE