WO2016033936A1 - 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统 - Google Patents

一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统 Download PDF

Info

Publication number
WO2016033936A1
WO2016033936A1 PCT/CN2015/071945 CN2015071945W WO2016033936A1 WO 2016033936 A1 WO2016033936 A1 WO 2016033936A1 CN 2015071945 W CN2015071945 W CN 2015071945W WO 2016033936 A1 WO2016033936 A1 WO 2016033936A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
wheel
ground
vehicle
parameters
Prior art date
Application number
PCT/CN2015/071945
Other languages
English (en)
French (fr)
Inventor
吕光俊
Original Assignee
深圳市圳天元科技开发有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市圳天元科技开发有限责任公司 filed Critical 深圳市圳天元科技开发有限责任公司
Publication of WO2016033936A1 publication Critical patent/WO2016033936A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/013Wheels

Definitions

  • the invention relates to the technical field of automobile maintenance and detection, in particular to four-wheel positioning.
  • the vehicle suspension changes greatly after lifting, and the current four-wheel aligner has a large data deviation.
  • the camera When using two-column and small-scutter lift positioning, the camera needs to automatically track the lift while real-time testing and displaying the output positioning parameters.
  • the current 3D four-wheel aligner does not solve this problem.
  • the object of the present invention is to solve the above problems, and to provide a four-wheel positioning method and a locator system which can be used for two-column and small shear lifts, and two-column and small-screw lifts than large scissor lifts.
  • the 4-post lift for the four-wheel aligner is much lower in cost, and the corner plate and the side-slip system which are necessary for the current four-wheel positioning can be omitted, because the wheel is in a free state when the positioning is adjusted, and the corner plate is not required.
  • the side slip system eliminates the adjustment stress, which can save equipment investment in the four-wheel positioning of the maintenance plant, and the economic effect is obvious.
  • the four wheel aligner system shown in Fig. 4 is an example of the present invention. Mainly by wheel clamp 1 mounted on the wheel, reflective target 2 fixed on the wheel clamp, camera and light source 3, beam 4, column 5, beam lifting mechanism 6, lifting and image data transmission The control board 7, the computer and the display system 8 are composed.
  • the present invention adopts a method of first measuring the spatial coordinates of the camera coordinate system of the reflection center of the reflection target 2 fixed on the wheel clamp, and the space under the four camera coordinate systems.
  • the coordinate establishes the body space coordinate system and obtains the compensation amount, so that the positioning angle parameter can be accurately measured even if the four ground points that are in contact with the four tires are not in one plane. details as follows:
  • P1, P2, P3, and P4 are the reflection plane center points of the reflection target 2, It is the spatial coordinate of the camera coordinate system that reflects the center point of the reflection plane of the target 2.
  • the body space coordinate system OXYZ is established by the four spatial points, and the origin coordinates are
  • the X-axis direction vector is Y-axis direction vector is The Z-axis direction vector is
  • Nxc3 (xc3+xc4-xc1-xc2)/2
  • Nzc3 (zc3+zc4-zc1-zc2)/2
  • the Y-axis direction vector Ny is the cross product of the vector Nz and Ntmp:
  • the X-axis direction vector Nx is the cross product of the vectors Ny and Nz:
  • the positioning angle parameters are obtained on the ground test, and the test results are recorded (cab angle C 10 -C 40 , camber compensation amount ⁇ c1 - ⁇ c4 , toe angle T 10 -T 40 , toe angle compensation amount ⁇ T1 - ⁇ T4 ), and the rotation and translation matrix of the ground body coordinate system to the camera coordinate system.
  • the coordinates of the vehicle body coordinate system of the target are tracked in real time, and compared with the coordinates of the initial ground body coordinate system to calculate the fixed camera.
  • the moving distance of the beam is as follows:
  • the rotation matrix is Rx0 and the translation matrix Tx0
  • the coordinate origin O c0 the rotation matrix of the lift real-time rising process is Rx and the translation matrix Tx
  • the coordinate origin O c the target real-time camera coordinates P1c, P2c, P3c, P4c , the beam moving distance ⁇ M , then:
  • the system sends a command to the beam lifting mechanism 7 in real time, and the beam lifting mechanism 7 executes an instruction to track the lifting beam of the lifting machine in real time.
  • ⁇ T1 ⁇ T1 + T 1 ⁇ 0 - T 10
  • ⁇ T3 ⁇ T3 + T 3 ⁇ 0 - T 30
  • the positioning angle parameters (the camber angle C 1 ⁇ -C 4 ⁇ , the toe angle T 1 ⁇ -T 4 ⁇ ) are measured in real time, and the positioning angle with the compensation amount is displayed (the camber angle C 1 -C 4 ) , toe angle T 1 -T 4 ).
  • T 1 T 1 ⁇ + ⁇ T1
  • T 2 T 2 ⁇ + ⁇ T2
  • T 3 T 3 ⁇ + ⁇ T3
  • T 4 T 4 ⁇ + ⁇ T4
  • the compensated positioning angle (cavity angle C 1 -C 4 , toe angle T 1 -T 4 ) although the tire is in a suspended state, but with the tire with the ground or large scissor lift and four wheel alignment special lift
  • the measurement results after the table top contact are consistent.
  • the locator system of the present invention can be fixedly installed, or can be made into a mobile type for positioning by a plurality of lift stations.
  • Figure 1 is a schematic diagram of the principle of a 2D four wheel aligner tilt sensor.
  • Figure 2 is a schematic illustration of the light being blocked by the 2D four wheel aligner during lift adjustment.
  • Figure 3 is a schematic view of four ground points in contact with four tires in one plane.
  • Figure 4 is a schematic illustration of a stationary mounting system of the present invention.
  • Figure 5 is a flow chart of the present invention.
  • Figure 6 is a diagram showing an example of a mobile embodiment of another embodiment of the present invention.

Abstract

一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统,该方法是,可用于配备两柱或小剪举升机的情况进行车辆四轮定位,在地面测试得到车辆初始定位参数及定位补偿数据,举升后修正定位补偿数据,车辆调整过程中实时测试定位参数,并显示输出经过补偿的定位参数。该定位仪系统是,由装于车轮上的轮夹(1),固定在轮夹(1)上的反射标靶(2),摄像机及光源(3),横梁(4),立柱(5),横梁升降机构(6),升降及数据传输控制板(7)组成,系统在实时测试并显示输出定位参数的同时可以自动跟踪举升机升降装于横梁(4)上的摄像机,可以在地面测试汽车定位参数,并补偿地面不平误差,可以在举升后车轮处于悬浮自由状态时,修正补偿参数,显示输出修正后的定位参数,系统可以整体移动,对多工位进行定位检测。

Description

一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统 技术领域
本发明涉及汽车维修、检测技术领域,尤其涉及四轮定位。
背景技术
目前四轮定位(无论是使用2D还是3D定位仪)普遍对举升机要求较高,需要大型剪式举升机或四轮定位仪专用四柱举升机。其原因是使用两柱和小剪举升机定位时,需要在地面测试,并举升后调试定位角度。而目前的定位仪还存在以下缺点:
使用2D四轮定位仪时,由于测量外倾角的倾角传感器基于重力加速度方向,当地面倾斜或高低不平时,测量结果不准,如图1所示。
使用2D四轮定位仪时,当需要用举升后调试定位角度时,由于光线被挡,无法测试,如图2所示。
虽然部分3D四轮定位仪,可以在倾斜平面上准确测试定位角度参数,但若与4个轮胎接触的4个地面点不在一个平面内仍会出现误差,如图3所示。
使用两柱和小剪举升机定位时,举升后车辆悬架发生较大变化,使用目前的四轮定位仪,数据偏差较大。
使用两柱和小剪举升机定位时,需要在实时测试并显示输出定位参数的同时,使摄像机自动跟踪举升机,目前的3D四轮定位仪没有解决好这一问题。
发明内容
本发明的目的在于解决上述存在的问题,提供一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统,两柱和小剪举升机比大型剪式举升机和四轮定位仪专用4柱举升机成本低很多,同时可省掉目前四轮定位必用的转角盘及侧滑系统,因为本发明在定位调整时车轮是处于悬空自由状态,不需要转角盘及侧滑系统消除调整应力,可节省维修厂汽车四轮定位的设备投资,经济效果明显。
如图4所示的四轮定位仪系统,是本发明的1个实例。主要由装于车轮上的轮夹1,固定在轮夹上的反射标靶2,摄像机及光源3,横梁4,立柱5,横梁升降机构6,升降及图像数据传输 控制板7,电脑及显示系统8组成。
在地面测试时,本发明采用了一种方法,首先测量4个固定在轮夹上的反射标靶2的反射平面中心点的摄像机坐标系下的空间坐标,以4个摄像机坐标系下的空间坐标建立车身空间坐标系,并求出补偿量,这样即使与4个轮胎接触的4个地面点不在一个平面内仍能准确测量定位角参数。具体如下:
如图5所示,P1、P2、P3、P4是反射标靶2的反射平面中心点,
Figure PCTCN2015071945-appb-000001
Figure PCTCN2015071945-appb-000002
是反射标靶2的反射平面中心点的摄像机坐标系下的空间坐标。通过这4个空间点建立车身空间坐标系OXYZ,其原点坐标为
Figure PCTCN2015071945-appb-000003
X轴方向向量为
Figure PCTCN2015071945-appb-000004
Y轴方向向量为
Figure PCTCN2015071945-appb-000005
Z轴方向向量为
Figure PCTCN2015071945-appb-000006
原点坐标0c:
xc0=(xc1+xc2+xc3+xc4)/4
yc0=(yc1+yc2+yc3+yc4)/4
zc0=(zc1+zc2+zc3+zc4)/4
Z轴方向向量Nz:
nxc3=(xc3+xc4-xc1-xc2)/2
nyc3=(yc3+yc4-yc1-yc2)/2
nzc3=(zc3+zc4-zc1-zc2)/2
引入中间向量Ntmp(xct,yct,zct):
xct=(xc2+xc4-xc1-xc3)/2
yct=(yc2+yc4-yc1-yc3)/2
zct=(zc2+zc4-zc1-zc3)/2
Y轴方向向量Ny为向量Nz与Ntmp的叉乘:
Ny=Nz×Ntmp
X轴方向向量Nx为向量Ny与Nz的叉乘:
Nx=Ny×Nz
计算车身坐标系到相机坐标系的旋转矩阵Rx及平移矩阵Tx:
Figure PCTCN2015071945-appb-000007
Figure PCTCN2015071945-appb-000008
计算P1、P2、P3、P4的车身坐标系坐标
Figure PCTCN2015071945-appb-000009
P1=Rx-1×P1c-0c
P2=Rx-1×P2c-0c
P3=Rx-1×P3c-0c
P4=Rx-1×P4c-0c
左前轮外倾角补偿量:ΔC1=tan-1(y1/x1)
右前轮外倾角补偿量:ΔC2=tan-1(y2/x2)
左后轮外倾角补偿量:ΔC3=tan-1(y3/x3)
右后轮外倾角补偿量:ΔC4=tan-1(y4/x4)
左前轮前束角补偿量:ΔT1=tan-1(z1/x1)
右前轮前束角补偿量:ΔT2=tan-1(z2/x2
左后轮前束角补偿量:ΔT3=tan-1(z3/x3)
右后轮前束角补偿量:ΔT4=tan-1(z4/x4)
在地面测试得到定位角参数,并记录测试结果(外倾角C10-C40,外倾角补偿量Δc1c4,前束角T10-T40,前束角补偿量ΔT1T4),及地面车身坐标系到相机坐标系的旋转及平移矩阵,举升机上升过程中,实时跟踪计算标靶的车身坐标系坐标,并与初始的地面车身坐标系坐标比较,计算固定相机的横梁移动距离,具体如下:
设地面时旋转矩阵为Rx0及平移矩阵Tx0,坐标原点Oc0,举升机实时上升过程的旋转矩阵为Rx及平移矩阵Tx,坐标原点Oc,标靶实时相机坐标P1c、P2c、P3c、P4c、横梁移动距离ΔM,则有:
Figure PCTCN2015071945-appb-000010
系统根据上述计算得到的ΔM,实时发出指令到横梁升降机构7,横梁升降机构7执行指令实时跟踪举升机升降横梁。
当举升到调整高度停稳后(用两柱和小剪举升机,这时候车轮处于悬空状态),首先测试并记录此状态定位角参数(外倾角C1□0-C4□0,前束角T1□0-T4□0),修正补偿量:
左前轮外倾角补偿量:ΔC1=ΔC1+C1□0-C10
右前轮外倾角补偿量:ΔC2=ΔC2+C2□0-C20
左后轮外倾角补偿量:ΔC3=ΔC3+C3□0-C30
右后轮外倾角补偿量:ΔC4=ΔC4+C4□0-C40
左前轮前束角补偿量:ΔT1=ΔT1+T1□0-T10
右前轮前束角补偿量:ΔT2=ΔT2+T2□0-T20
左后轮前束角补偿量:ΔT3=ΔT3+T3□0-T30
右后轮前束角补偿量:ΔT4=ΔT4+T4□0-T40
开始定位角调整后,实时测量定位角参数(外倾角C1□-C4□,前束角T1□-T4□),显示加上补偿量的定位角(外倾角C1-C4,前束角T1-T4)。
左前轮外倾角:C1=C1□C1
右前轮外倾角:C2=C2□C2
左后轮外倾角:C3=C3□C3
右后轮外倾角:C4=C4□C4
左前轮前束角:T1=T1□T1
右前轮前束角:T2=T2□T2
左后轮前束角:T3=T3□T3
右后轮前束角:T4=T4□T4
经过补偿后的定位角(外倾角C1-C4,前束角T1-T4)虽然轮胎处于悬空状态,但与轮胎跟地面或大型剪式举升机及四轮定位专用举升机台面接触后的测量结果一致。
采用本发明的定位仪系统可固定式安装,也可做成移动式为多个举升机工位进行定位。
图1是2D四轮定位仪倾角传感器原理示意图。
图2是2D四轮定位仪在举升调整时光线被挡的一个示意图。
图3是4个轮胎接触的4个地面点不在一个平面内示意图。
图4是本发明的固定式安装系统示意图。
图5是本发明的流程图。
图6是本发明的另一实施方式,移动式实例图。

Claims (14)

  1. 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统,其特征是,本四轮定位方法可用于配备两柱或小剪举升机的情况。
  2. 如权利要求1所述的四轮定位方法,其特征是,在地面测试得到车辆初始定位参数及定位补偿数据。
  3. 如权利要求1所述的四轮定位方法,其特征是,在举升后修正定位补偿数据。
  4. 如权利要求1所述的四轮定位方法,其特征是,车辆调整过程中实时测试定位参数,并显示输出经过补偿的定位参数。
  5. 如权利要求2所述的地面测试,其特征是,根据4个车轮与地面的接触点,拟合建立了一个车身平面。
  6. 如权利要求2所述的地面测试,其特征是,建立了一个虚拟的地面车身坐标系。
  7. 如权利要求6所述的虚拟的地面车身坐标系,其特征是,坐标系的Z轴与车身中线重合,Y轴与车身平面垂直。
  8. 如权利要求2所述的定位补偿数据,其特征是,测试4个车轮的空间坐标,变换到虚拟的地面车身坐标系上得到。
  9. 如权利要求3所述的举升后修正定位补偿数据,其特征是,在举升后且4个车轮完全离开地面处于自由状态时,测试4个车轮的状态,并与地面测试参数比较。
  10. 如权利要求1所述的定位仪系统主要由装于车轮上的轮夹,固定在轮夹上的反射标靶,摄像机及光源,横梁,立柱,横梁升降机构,升降及图像数据传输控制板,电脑及显示系统组成。
  11. 如权利要求1所述的定位仪系统,其特征是,在实时测试并显示输出定位参数的同时可以自动跟踪举升机升降装于横梁上的摄像机。
  12. 如权利要求1所述的定位仪系统,其特征是,可以在地面测试汽车定位参数,并补偿地面不平误差。
  13. 如权利要求1所述的定位仪系统,其特征是,可以在举升后车轮处于悬浮自由状态时,修正补偿参数,显示输出修正后的定位参数。
  14. 如权利要求1所述的定位仪系统,其特征是,可以整体移动,对多工位进行定位检测。
PCT/CN2015/071945 2014-09-01 2015-01-30 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统 WO2016033936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410451853.7 2014-09-01
CN201410451853.7A CN104236926B (zh) 2014-09-01 2014-09-01 一种可使用于两柱或小剪举升机的四轮定位方法及定位仪系统

Publications (1)

Publication Number Publication Date
WO2016033936A1 true WO2016033936A1 (zh) 2016-03-10

Family

ID=52225444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071945 WO2016033936A1 (zh) 2014-09-01 2015-01-30 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统

Country Status (2)

Country Link
CN (1) CN104236926B (zh)
WO (1) WO2016033936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720152A (zh) * 2022-04-18 2022-07-08 烟台开发区海德科技有限公司 四轮定位及adas一体式检测标定系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236926B (zh) * 2014-09-01 2018-07-17 深圳市圳天元科技开发有限责任公司 一种可使用于两柱或小剪举升机的四轮定位方法及定位仪系统
CN111006613B (zh) * 2019-10-09 2021-05-04 山东正能汽车检测装备有限公司 一种激光扫描车辆车轮车桥定位仪
CN215338924U (zh) * 2021-07-07 2021-12-28 深圳市道通科技股份有限公司 一种标定支架

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073425A1 (en) * 2007-09-18 2009-03-19 Snap-On Incorporated Integrated circuit image sensor for wheel alignment systems
CN201916656U (zh) * 2010-12-27 2011-08-03 北京科基中意软件开发有限公司 计算机控制的数码摄像3d四轮定位仪摄像头升降装置
CN102749210A (zh) * 2012-07-03 2012-10-24 深圳市元征科技股份有限公司 三维四轮定位仪测量方法
CN202533260U (zh) * 2012-03-07 2012-11-14 李志伟 四轮定位系统中的汽车举升机状态自动追踪装置
CN202869829U (zh) * 2012-07-03 2013-04-10 深圳市元征科技股份有限公司 三维四轮定位仪
CN103196678A (zh) * 2013-03-26 2013-07-10 北京嘉悦和汽车科技有限公司 基于dsp的四轮定位仪输入图像实时校正装置和方法
CN103954458A (zh) * 2014-04-28 2014-07-30 王晓 一种非接触式四轮定位仪及其检测方法
CN104236926A (zh) * 2014-09-01 2014-12-24 深圳市圳天元科技开发有限责任公司 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100587445C (zh) * 2006-05-29 2010-02-03 深圳市元征科技股份有限公司 汽车车轮定位检测方法及系统
CN202533261U (zh) * 2012-03-07 2012-11-14 李志伟 具有多个显示器的四轮定位系统
CN202814714U (zh) * 2012-05-18 2013-03-20 朱迪文 一种不需要推车的3d四轮定位仪
CN202869830U (zh) * 2012-07-03 2013-04-10 深圳市元征科技股份有限公司 具有推车偏心补偿的二维四轮定位仪
CN102735456A (zh) * 2012-07-05 2012-10-17 烟台高易电子科技有限公司 小标靶3d汽车四轮定位仪
CN103852266B (zh) * 2012-12-04 2016-12-21 李志伟 双三维八标靶四轮定位系统
CN202994479U (zh) * 2012-12-10 2013-06-12 上海一成汽车检测设备科技有限公司 自动3d四轮定位仪
CN203178080U (zh) * 2012-12-25 2013-09-04 上海一成汽车检测设备科技有限公司 举升机一体化汽车四轮定位4d测量系统
KR101286096B1 (ko) * 2013-02-01 2013-07-15 조이엠(주) 타원 시각 특성에 기반한 자동차의 휠 정렬 검사방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073425A1 (en) * 2007-09-18 2009-03-19 Snap-On Incorporated Integrated circuit image sensor for wheel alignment systems
CN201916656U (zh) * 2010-12-27 2011-08-03 北京科基中意软件开发有限公司 计算机控制的数码摄像3d四轮定位仪摄像头升降装置
CN202533260U (zh) * 2012-03-07 2012-11-14 李志伟 四轮定位系统中的汽车举升机状态自动追踪装置
CN102749210A (zh) * 2012-07-03 2012-10-24 深圳市元征科技股份有限公司 三维四轮定位仪测量方法
CN202869829U (zh) * 2012-07-03 2013-04-10 深圳市元征科技股份有限公司 三维四轮定位仪
CN103196678A (zh) * 2013-03-26 2013-07-10 北京嘉悦和汽车科技有限公司 基于dsp的四轮定位仪输入图像实时校正装置和方法
CN103954458A (zh) * 2014-04-28 2014-07-30 王晓 一种非接触式四轮定位仪及其检测方法
CN104236926A (zh) * 2014-09-01 2014-12-24 深圳市圳天元科技开发有限责任公司 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720152A (zh) * 2022-04-18 2022-07-08 烟台开发区海德科技有限公司 四轮定位及adas一体式检测标定系统及方法
CN114720152B (zh) * 2022-04-18 2023-08-04 烟台大学 四轮定位及adas一体式检测标定系统及方法

Also Published As

Publication number Publication date
CN104236926B (zh) 2018-07-17
CN104236926A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2016033936A1 (zh) 一种可使用于两柱和小剪举升机的四轮定位方法及定位仪系统
US7453559B2 (en) Vehicle lift reference system for movable machine-vision alignment system sensors
US8069576B2 (en) Vehicle wheel alignment measuring method and apparatus
EP3472555B1 (en) Vehicle wheel alignment method and system
US8166664B2 (en) Method of aligning arm reference system of a multiple-arm measurement machine
CN112639403A (zh) 使用驱动方向计算具有提高精度和无停止定位的机动车辆对准器
US7702126B2 (en) Vehicle lift measurement system
CN110542376A (zh) 一种用于定位adas标定目标板放置位置的装置和定位方法
EP3997415A1 (en) Vehicle alignment and sensor calibration system
CN102735456A (zh) 小标靶3d汽车四轮定位仪
EP2979060B1 (en) Wheel alignment apparatus and method for vehicles having electro-mechanical power steering
CN106767445A (zh) 一种测量车轴偏斜角度和平移偏置尺寸的装置及方法
KR20210110858A (ko) 차량 센서 보정을 위한 로봇 타겟 정렬
KR101094313B1 (ko) 로봇 tcp와 lvs 사이의 캘리브레이션 방법 및 캘리브레이션 지그
TWI616268B (zh) 控制多軸件平台設備的設備及方法
CN105115451A (zh) 用于测量电梯导轨精度的检测装置及测量方法
US10184792B2 (en) Device and method for measuring and determining relevant parameters for the adjustment of the directions of travel of two steerable axles of a vehicle in relation to each other
JP2006276007A (ja) ホイールアライメント方法及び測定用ホイール
JP2017030945A (ja) 搬送車への移載データのティーチング方法とティーチングシステム
JP6614059B2 (ja) 四輪車両用のホイルアライメント計測装置における計測センサの校正装置
JP4646042B2 (ja) 自動車の車輪アライメント測定方法
KR102098466B1 (ko) 간격 보정 방법
JP4646041B2 (ja) 自動車の車輪アライメント測定方法及びその装置
CN202648959U (zh) 小标靶3d汽车四轮定位仪
KR20170059179A (ko) 레이저 포인터를 이용한 용접 로봇의 위치 및 자세 세팅방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838637

Country of ref document: EP

Kind code of ref document: A1