WO2016031443A1 - タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法 - Google Patents

タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法 Download PDF

Info

Publication number
WO2016031443A1
WO2016031443A1 PCT/JP2015/070897 JP2015070897W WO2016031443A1 WO 2016031443 A1 WO2016031443 A1 WO 2016031443A1 JP 2015070897 W JP2015070897 W JP 2015070897W WO 2016031443 A1 WO2016031443 A1 WO 2016031443A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
drum
spindle shaft
uniformity
rotation
Prior art date
Application number
PCT/JP2015/070897
Other languages
English (en)
French (fr)
Inventor
英人 藤原
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to DE112015003909.0T priority Critical patent/DE112015003909B4/de
Priority to CN201580046332.6A priority patent/CN106662495B/zh
Priority to US15/504,366 priority patent/US10281361B2/en
Publication of WO2016031443A1 publication Critical patent/WO2016031443A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C25/00Apparatus or tools adapted for mounting, removing or inspecting tyres
    • B60C25/002Inspecting tyres
    • B60C25/007Inspecting tyres outside surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks

Definitions

  • the present invention relates to a tire uniformity test technique, and more particularly to a tire uniformity test technique that can improve the measurement accuracy of lateral force variation (LFV) and conicity of a tire. is there.
  • LUV lateral force variation
  • a tire test for measuring the uniformity (uniformity) of a tire after production and determining the quality of the tire.
  • the uniformity of a tire for a passenger car is measured by a spindle shaft that rotates while holding the tire, a load drum having an outer peripheral surface (hereinafter sometimes simply referred to as “drum”), and the drum.
  • a pressing mechanism that rotatably supports the tire mounted on the spindle shaft so as to press the tire against the outer peripheral surface of the drum; and a pressing mechanism that relatively moves the drum and the spindle shaft; and the tire seated on the rim.
  • a tire uniformity testing machine (hereinafter also referred to simply as a tire testing machine) having a pneumatic circuit for supplying compressed air supplied from a factory air source after adjusting the pressure of the compressed air. The procedure is as follows.
  • the rim divided into the upper and lower sides sandwiches the tire flowing from the upstream of the inspection line.
  • the pneumatic circuit inflates the tire in a short time and fixes it to the rim, and then maintains the internal pressure of the tire at the test pressure.
  • the pressing mechanism presses the outer peripheral surface of the drum in the forward direction against the tire having the internal pressure held at the test pressure as described above.
  • the uniformity of the tire during the forward rotation is measured.
  • the spindle shaft passes through the temporarily stopped state to reversely rotate the tire, and the tire uniformity at the time of the reverse rotation is also measured.
  • the tire uniformity measurement method when the tire stops rotating in a state where a constant pressure is applied to the tire, that is, the load drum and the tire are in contact with each other, the tire uniformity is caused by the pressure of the load drum.
  • the tire dents later become residual dents. Since it takes time until the residual dent is restored to the original state, if the uniformity is measured with the residual dent remaining, the residual dent may greatly affect the accuracy of the measurement.
  • Patent Document 1 One technique for solving this problem is, for example, the technique disclosed in Patent Document 1.
  • Patent Document 1 when a load drum is pressed against a tread surface of a tire and rotated in a predetermined direction, and then the load drum is reversed, the tire tread surface is contacted with the load drum (simulated road surface). It is proposed to measure the tire uniformity with high accuracy without causing deformation of the tire, by separating the tire and the load drum from being separated from each other. Yes.
  • Patent Document 1 in measuring the tire uniformity at the time of reverse rotation of the tire, how to link the operation of reversing the rotation direction of the tire and the operation of separating the tire and the load drum are coordinated. Is not described in detail.
  • a power source such as a motor is applied to the load drum for the reversal. Which increases the cost of the device.
  • the rotation direction of the tire is reversed (reverse rotation) while the load drum keeps rotating in the same direction (forward rotation) due to inertia.
  • the tire uniformity in particular, the lateral force variation (LFV) and the conicity of the tire can be accurately obtained immediately after switching from the forward rotation to the reverse rotation of the tire.
  • An object is to provide a tire uniformity testing machine and a tire uniformity measuring method.
  • the provided tire uniformity testing machine is a tire uniformity testing machine, which is capable of rotating forward and backward with the tire while holding the tire, the spindle shaft, and the tire held by the spindle shaft.
  • a pressing mechanism for moving the spindle shaft and the drum relative to each other so that a tread surface of the tire mounted on the spindle shaft can be pressed against an outer peripheral surface of the drum; Based on the force generated in the drum during the rotation and the reverse rotation, the forward rotation and the reverse rotation
  • a uniformity measuring unit for measuring a uniformity of the tire, a rotation direction and a rotation speed of the spindle shaft, and a relative position between the spindle shaft and the drum, and the spindle shaft driving device and the drum mechanism.
  • a control device to be operated is configured to cause the spindle shaft and the drum to move away from each other when the rotation direction of the spindle shaft is reversed between the forward rotation direction and the reverse rotation direction.
  • the control device is configured to cause the spindle shaft and the drum to move away from each other when the rotation direction of the spindle shaft is reversed between the forward rotation direction and the reverse rotation direction.
  • a tire uniformity measuring method provided includes a spindle shaft capable of rotating forward and backward together with the tire while holding the tire, and a spindle rotating forward and backward the spindle shaft and the tire held by the spindle shaft.
  • a shaft driving device a drum having an outer peripheral surface capable of being pressed against the tread surface of the tire, and the drum is rotatably supported around a central axis of the outer peripheral surface and is mounted on the spindle shaft
  • FIG. 4 is an enlarged view of a central portion of FIG. 3, and is a diagram illustrating an operation pattern of a spindle shaft and a drum when a tire under uniformity measurement is switched from forward rotation to reverse rotation.
  • FIG. 1 and 2 show the tire uniformity testing machine 1 according to the above-described embodiment, and the “vertical direction” of the testing machine 1 in the following description corresponds to the vertical direction of the paper surface of FIG. Corresponds to the horizontal direction of the paper.
  • the tire uniformity testing machine 1 (hereinafter, also simply referred to as a tire testing machine) is a tire uniformity characteristic of the tire T that has risen to the product, in particular, variation in the longitudinal force of the tire T (Radial Force Variation: RFV), The lateral force fluctuation (Lateral Force Variation: LFV) and conicity (lateral force always generated in a constant direction regardless of the traveling (rotating) direction of the tire T) are evaluated as product inspection.
  • RFV Random Force Variation
  • LFV Lateral Force Variation
  • conicity lateral force always generated in a constant direction regardless of the traveling (rotating) direction of the tire T
  • the tire testing machine 1 includes a base 14, a spindle shaft 3 that can rotate forward and backward together with the tire T while holding the tire T to be subjected to uniformity measurement via a pair of upper and lower rims 4,
  • a frame body 2 which is installed on a base 14 and rotatably supports the spindle shaft 3, and the spindle shaft 3 and the tire T held by the pair of rims 4 are rotated forward and backward.
  • a spindle shaft rotating motor 5 constituting a spindle shaft driving device to be driven, a drum (load drum) 8 having a simulated road surface 8a which is an outer peripheral surface capable of being pressed against the tread surface of the tire T, and the base 14
  • the drum 8 is installed above and supports the drum 8 rotatably around the central axis of the simulated road surface 8a, and is mounted on the spindle shaft 3 via the pair of rims 4.
  • a pressing mechanism 7 for relatively moving the spindle shaft 3 and the drum 8 so that the tread surface of the tire T can be pressed against the simulated road surface 8a of the drum 8;
  • a uniformity measuring unit (not shown) for measuring uniformity, a pneumatic circuit 11, and a control device 12 are provided.
  • the pneumatic circuit 11 supplies compressed air generated by an air supply source (not shown) to the inside of the tire T, or discharges compressed air from the inside of the tire T to the outside such as the atmosphere. Adjust the air pressure.
  • the frame body 2 has a cylindrical shape and is arranged on the base 14 so that its axis is directed vertically, and the spindle shaft 3 is projected upward from the upper end of the frame body 2.
  • the spindle shaft 3 is held.
  • the spindle shaft 3 is attached to the frame main body 2 so as to be rotatable around the vertical axis via a bearing portion provided in the frame main body 2.
  • the spindle shaft rotation motor 5 is disposed in the vicinity of the spindle shaft 3, and a timing belt 6 is stretched between the output shaft of the spindle shaft rotation motor 5 and the spindle shaft 3.
  • the timing belt 6 transmits the driving force generated by the spindle shaft rotation motor 5 to the spindle shaft 3 to rotate the spindle shaft 3.
  • the pair of rims 4 is provided in a portion of the spindle shaft 3 that protrudes upward from the upper end of the main body frame 2, and the spindle shaft 3 holds the tire T via the pair of rims 4.
  • the drum 8 and the pressing mechanism 7 are arranged so as to be positioned on the side of the tire T held by the spindle shaft 3 via the pair of rims 4, and the simulated road surface of the drum 8 is provided. The tread surface of the tire T can come into contact with 8a.
  • the pressing mechanism 7 is supported by the base 14 so as to hold the drum 8 so as to be rotatable about a vertical axis and to be slidable in a horizontal direction parallel to the radial direction of the tire T.
  • the pressing mechanism 7 moves the drum 8 in the horizontal direction, that is, moves the drum 8 relative to the spindle shaft 3 that holds the tire T, so that the tread surface of the tire T is moved. It is possible to press the simulated road surface 8a of the drum 8.
  • the drum transfer motor 10 and the spindle shaft rotation motor 5 are each composed of a servo motor.
  • the control device 12 transmits and receives a signal between the control device 12 and the drum transfer motor 10 so that a distance between the rotation shaft of the drum 8 and the spindle shaft 3 (that is, the rotation center shaft of the tire T) is increased. It is possible to control the distance between the shafts, that is, to control the relative position between the spindle shaft 3 and the drum 8, and to exchange the tire T by transmitting and receiving signals between the control device 12 and the spindle shaft rotating motor 5. Control of rotation of the spindle shaft 3 that is rotatably held, that is, rotation drive control is possible.
  • the control device 12 rotates the tire T forward, then decelerates the forward rotation to instantaneously set the rotation speed of the tire T to 0, and further reversely rotates the tire T.
  • the operation of the shaft rotation motor 5 is controlled. Further, when the control device 12 shifts the rotation of the tire T from the normal rotation to the reverse rotation, the control device 12 separates the drum 8 from the tire T, and after the rotation of the tire T shifts to the reverse rotation, the drum 8
  • the operation of the pressing mechanism 7 is controlled so that the load 8 is applied to the tire T by advancing 8.
  • the uniformity during forward rotation is measured.
  • the pair of rims 4 divided in the vertical direction sandwich the tire T flowing from the upstream of the inspection line.
  • the spindle shaft 3 can hold the tire T via the pair of rims 4.
  • the pneumatic circuit 11 inflates the held tire T in a short time, and further adjusts the internal pressure of the tire T to the test pressure.
  • the control device 12 operates the spindle shaft rotation motor 5 so as to rotate the tire T having the internal pressure adjusted to the test pressure as described above, and presses the drum 8 against the tire T so that the drum 8 is moved to “
  • the pressing mechanism 7 is actuated so as to “forwardly rotate”.
  • the uniformity measuring unit includes a load detector (load cell) for measuring the force generated on the drum 8 at this time. By this measurement, the uniformity (RFV, LFV, etc.) of the tire T that rotates forward is measured. After the uniformity measurement in the forward rotation is thus completed, the control device 12 operates the pressing mechanism 7 so as to separate the drum 8 from the tire T, and rotates the spindle shaft so as to “reversely rotate” the tire T.
  • the operation of the motor 5 is controlled, and the operation of the pressing mechanism 7 is controlled so as to press the simulated road surface 8a of the drum 8 against the tire T rotating in the reverse direction in this way.
  • the load detector measures the force generated on the drum 8 at this time, thereby making it possible to measure the uniformity (RFV, LFV, etc.) of the tire T during reverse rotation. Conicity and the like are measured from the measurement results obtained during forward rotation and reverse rotation.
  • the tire testing machine 1 has a feature of performing “synchronization of the rotation direction switching operation of the spindle shaft 3 and the separation operation of the drum 8”. This feature makes it possible to accurately determine the tire uniformity, particularly, the lateral force fluctuation (LFV) and the conicity immediately after switching from the forward rotation to the reverse rotation of the tire.
  • LUV lateral force fluctuation
  • the rotational speed of the tire T (spindle shaft 3) is set to 0 ( Zero), that is, a tire reload synchronization method will be described with reference to the drawings.
  • the control device 12 rotates the rotation direction of the tire T from the normal rotation to the reverse rotation, the timing at which the rotation speed of the spindle shaft 3 becomes 0 (zero) (the timing at which the rotation stops instantaneously), The timing at which the tread surface of the tire T is separated from the simulated road surface 8a of the drum 8 (the timing at which the tread surface is not in contact) is synchronized. Specifically, from the state where the tread surface of the tire T and the simulated road surface 8a of the drum 8 are in contact with each other, the drum 8 is gradually retracted from the tread surface, and the rotation of the spindle shaft 3 is decelerated accordingly.
  • the spindle shaft rotation motor 5 and the pressing member are pressed so that the rotational speed of the spindle shaft 3 is zero.
  • the operation of the mechanism 7 is controlled.
  • the controller 12 controls the spindle shaft 3 so that the rotational speed of the spindle shaft 3 becomes 0 (zero) in a state where no load is applied to the drum 8 (that is, a state where zero load is applied).
  • the relative movement of the drum 8 with respect to the rotation of the spindle shaft 3 is synchronized.
  • FIG. 3 is a diagram showing an operation pattern of the spindle shaft 3 and the drum 8.
  • the solid line L1 indicates the position (mm) of the drum 8
  • the solid line L2 indicates the moving speed (mm / s) of the drum 8
  • the solid line L3 indicates the rotational speed (deg / s) of the spindle shaft 3
  • the solid line L4 indicates the load (N) applied to the drum 8.
  • the control device 12 moves or advances the drum 8 in a direction approaching the spindle shaft 3, and moves the simulated road surface 8 a of the drum 8 to the tire T. Touch the tread surface (0 to 2 seconds in FIG. 3).
  • the forward speed of the drum 8 at this time is ⁇ 50 mm / s as shown by the solid line L2.
  • the drum 8 approaches the spindle shaft 3 until the distance between the simulated road surface 8a of the drum 8 and the axis center of the spindle shaft 3 decreases from about 330 mm to about 295 mm.
  • the spindle shaft 3 is rotating forward at a speed of about 360 deg / s, as indicated by a solid line L3.
  • a load of about 5000 N is applied to the drum 8 as indicated by the solid line L4.
  • the uniformity measurement of the tire T during normal rotation is performed with the simulated road surface 8a of the drum 8 in contact with the tread surface of the tire T (2 to 6 seconds in FIG. 3).
  • the moving speed of the drum 8 is 0 mm / s as indicated by the solid line L2.
  • the distance between the simulated road surface 8a of the drum 8 and the axis center of the spindle shaft 3 during this measurement is about 295 mm
  • the rotation speed of the spindle shaft 3 is about 360 deg / s
  • the load acting on the drum 8 is About 5000N.
  • control device 12 moves the drum 8 in a direction away from the spindle shaft 3, that is, retracts the simulated road surface 8 a of the drum 8 away from the tread surface of the tire T. (6-7 seconds in FIG. 3).
  • the speed of retraction of the drum 8 at this time is 50 mm / s as shown by the solid line L2.
  • the distance between the simulated road surface 8a of the drum 8 and the axis center of the spindle shaft 3 increases from about 295 mm to about 330 mm, while the rotation of the spindle shaft 3 increases from the speed of about 360 deg / s.
  • the vehicle decelerates, and the rotation stops momentarily as indicated by the solid line L3 when about 7 seconds have elapsed from the start of the deceleration.
  • no load is applied to the drum 8 as indicated by the solid line L4.
  • the control device 12 moves or advances the drum 8 in a direction in which the drum 8 approaches the spindle shaft 3, and the simulated road surface 8 a of the drum 8 is moved to the tread surface of the tire T. (7 to 8 seconds in FIG. 3).
  • the speed of the predecessor of the drum 8 at this time is ⁇ 50 mm / s as shown by the solid line L2
  • the distance between the simulated road surface 8a of the drum 8 and the axis center of the spindle shaft 3 is about 330 mm to about 295 mm as shown by the solid line L1. Decrease to.
  • the spindle shaft 3 is rotationally driven so as to reversely rotate at a speed of about 360 deg / s after the rotational speed instantaneously becomes 0 (zero) from the forward rotation. (Solid line c in FIG. 3).
  • a load of about 5000 N acts on the drum 8 as indicated by the solid line L4. is doing.
  • the uniformity measurement of the tire T during the reverse rotation is performed in a state where the simulated road surface 8a of the drum 8 is in contact with the tread surface of the tire T (8 to 11.5 seconds in FIG. 3).
  • the moving speed of the drum 8 is 0 mm / s as indicated by the solid line L2.
  • the distance between the simulated road surface 8a of the drum 8 and the axis center of the spindle shaft 3 at this measurement is about 295 mm
  • the reverse rotation speed of the spindle shaft 3 is about -360 deg / s, and acts on the drum 8.
  • the load is about 5000N.
  • FIG. 4 is an enlarged view of the central portion, that is, the gray scale portion of FIG. 3, and shows an operation pattern of the spindle shaft 3 and the drum 8 when the tire T during uniformity measurement is switched from forward rotation to reverse rotation.
  • the solid line L1 in FIG. 4 indicates the position (mm) of the drum 8
  • the solid line L2 indicates the moving speed (mm / s) of the drum 8
  • the solid line L3 indicates the rotational speed (deg / of the spindle shaft 3).
  • a solid line L4 indicates the load (N) applied to the drum 8.
  • the spindle shaft 3 starts decelerating when the drum 8 is retracted to a predetermined position as indicated by the solid line L1 (point X of the solid line L3).
  • the drum 8 moves backward at a constant speed as indicated by a solid line L2.
  • the retraction of the drum 8 starts to decelerate at the time of further retreat from the predetermined position (point Y of the solid line L2).
  • the movement of the drum 8 is instantaneously performed at a position where the tread surface of the tire T and the simulated road surface 8a of the drum 8 are not in contact with each other, specifically at a reload position corresponding to the point Z. Stop.
  • the load applied to the drum 8 decreases as the drum 8 moves backward at a constant speed.
  • the rotation of the spindle shaft 3 is stopped within a range where the load applied to the drum 8 is substantially zero (range M shown in FIG. 4), that is, the solid line L3 and the solid line L4 within the range M.
  • Drum deceleration required time T2 (s) Drum 8 moving speed at the start of deceleration (mm / s) ⁇ Drum 8 moving deceleration (mm / s 2 ) (2)
  • a constant drum speed reverse time T1 which is a time during which the drum 8 moves backward at a constant speed after the spindle shaft 3 starts decelerating, is obtained.
  • This drum constant speed reverse time T1 is given by the following equation (3).
  • Drum constant speed reverse time T1 (s) spindle axis deceleration required time T3 (s) ⁇ drum deceleration required time T2 (s) (3)
  • a drum constant speed moving distance ⁇ 1 which is a distance that the drum 8 moves in the drum constant speed reverse time T1 is obtained.
  • This drum constant speed moving distance ⁇ 1 is given by the following equation (4).
  • Drum constant speed moving distance ⁇ 1 (mm) Drum 8 moving speed (mm / s) ⁇ Drum constant speed reverse time T1 (s) (4)
  • a drum deceleration moving distance ⁇ 2 which is a distance that the drum 8 moves in the drum deceleration required time T2, is obtained.
  • the drum deceleration moving distance ⁇ 2 is given by the following equation (5).
  • Drum deceleration travel distance ⁇ 2 (mm) Drum 8 travel speed before deceleration start (mm / s) ⁇ Drum deceleration required time T2 (s) / 2 (5)
  • the spindle axis deceleration start drum position that is, the position of the drum 8 corresponding to the time point (X point) at which the spindle axis 3 should start deceleration can be accurately calculated.
  • the control of the movement position of the drum 8 (relative of the drum 8 with respect to the spindle shaft) is performed when measuring the tire uniformity during reverse rotation.
  • Position control and the control of the rotational speed of the spindle shaft 3, the timing at which the simulated road surface 8 a of the drum 8 is farthest from the tread surface of the tire T, and the rotation of the spindle shaft 3 (tire T) is zero.
  • a tire uniformity testing machine and a tire uniformity measuring method capable of being provided are provided.
  • the provided tire uniformity testing machine is a tire uniformity testing machine, which is capable of rotating forward and backward with the tire while holding the tire, the spindle shaft, and the tire held by the spindle shaft.
  • a pressing mechanism for moving the spindle shaft and the drum relative to each other so that a tread surface of the tire mounted on the spindle shaft can be pressed against an outer peripheral surface of the drum; Based on the force generated in the drum during the rotation and the reverse rotation, the forward rotation and the reverse rotation
  • a uniformity measuring unit for measuring a uniformity of the tire, a rotation direction and a rotation speed of the spindle shaft, and a relative position between the spindle shaft and the drum, and the spindle shaft driving device and the drum mechanism.
  • a control device to be operated is configured to cause the spindle shaft and the drum to move away from each other when the rotation direction of the spindle shaft is reversed between the forward rotation direction and the reverse rotation direction.
  • the control device is configured to cause the spindle shaft and the drum to move away from each other when the rotation direction of the spindle shaft is reversed between the forward rotation direction and the reverse rotation direction.
  • the provided tire uniformity measuring method includes a spindle shaft that can be rotated forward and backward together with the tire while holding the tire, and the spindle shaft and the tire held by the spindle shaft are rotated forward and backward.
  • a spindle shaft driving device to be driven a drum having an outer peripheral surface capable of being pressed against the tread surface of the tire, and the drum is rotatably supported around the central axis of the outer peripheral surface and is mounted on the spindle shaft
  • Rotation drive control that measures the uniformity of the tire during rotation and reverse rotation, operates the spindle shaft drive device and the pressing mechanism, and controls the rotation direction and rotation speed of the spindle shaft And performing relative position control that is control of the relative position between the spindle shaft and the drum, and the rotational drive control and the relative position control are performed when the rotational direction of the spindle shaft is reversed.
  • the spindle shaft and the drum are moved relative to each other so that the spindle shaft and the drum are moved away from each other, so that the outer peripheral surface of the drum and the tread surface of the tire are not in contact with each other. Including setting the rotational speed to zero.
  • the method and apparatus may measure the uniformity when the measurement of the uniformity includes, for example, measuring at least one of a longitudinal force variation of the tire, a lateral force variation of the tire, and a conicity. This is particularly effective in improving accuracy.
  • the rotational drive control and the relative position control include synchronizing the timing at which the outer peripheral surface of the drum is farthest from the tread surface of the tire and the timing at which the rotational speed of the spindle shaft becomes zero. More preferable. The synchronization can more reliably prevent the rotation speed of the spindle shaft from becoming zero in a state where the outer peripheral surface of the drum and the tread surface of the tire are in contact with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Balance (AREA)
  • Tires In General (AREA)

Abstract

提供されるタイヤユニフォミティ試験機は、タイヤを保持しながら回転可能なスピンドル軸と、ドラムと、ドラムを回転自在に支持すると共に、ドラムとスピンドル軸との相対移動によりスピンドル軸に装着されたタイヤをドラムに押し当て可能とする押し当て機構と、正回転時および逆回転時のタイヤのユニフォミティを測定するユニフォミティ測定部と、制御装置とを有し、制御装置は、スピンドル軸の回転方向を逆転させる際に、スピンドル軸とドラムとを互いに遠ざけてドラムの外周面とタイヤのトレッド面とを非接触としている状態でスピンドル軸の回転速度が0となるように、スピンドル軸の回転駆動制御と、スピンドル軸とドラムとの相対位置の制御と、を行う。これにより、タイヤを逆転させた直後から精確なタイヤの横方向の力の変動及びコニシティを精度よく求めることができる。

Description

タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法
 本発明は、タイヤユニフォミティの試験技術に関するものであり、特に、タイヤの横方向の力の変動(Lateral Force Variation:LFV)及びコニシティの測定精度を向上させることのできるタイヤユニフォミティの試験技術に関するものである。
 従来、製品上がりのタイヤのユニフォミティ(均一性)などを計測して当該タイヤの良否を判定するタイヤ試験(ユニフォミティ試験)が行われている。例えば、乗用車用のタイヤのユニフォミティの計測は、タイヤを保持しながら回転するスピンドル軸と、外周面を有する負荷ドラム(以下、単に「ドラム」と称される場合がある。)と、前記ドラムを回転自在に支持すると共に、前記スピンドル軸に装着されたタイヤを前記ドラムの外周面に押し当てるように前記ドラムと前記スピンドル軸とを相対移動させる押し当て機構と、リム上に着座する前記タイヤに対して工場空気源から供給された圧縮空気を当該圧縮空気の圧力を調整してから供給する空気圧回路と、を有するタイヤユニフォミティ試験機(以下、単にタイヤ試験機と呼ぶこともある)を用いて以下のような手順で行われる。
 まず、上下に分割されたリムが、検査ラインの上流から流れてきたタイヤを挟み込む。次に空気圧回路が前記タイヤを短時間で膨らましリムに固定した後、タイヤの内圧をテスト圧に保持する。前記押し当て機構は、前記のようにしてテスト圧に保持された内圧を有するタイヤに前記ドラムの外周面を押し付けて正回転させる。この正回転時のタイヤのユニフォミティがまず計測される。その後、前記スピンドル軸は一旦停止した状態を通過してタイヤを逆回転させ、その逆回転時でのタイヤのユニフォミティも計測される。
 このタイヤユニフォミティの測定方法において、前記タイヤに一定の圧力が作用している状態、すなわち前記負荷ドラムとタイヤとが接触している状態、でタイヤの回転が停止すると、前記負荷ドラムの圧力により生じているタイヤの凹みが後に残留凹みとなる。この残留凹みが元の状態に復元するまでには時間がかかるため、当該残留凹みが残った状態でユニフォミティを測定すると、当該測定の精度に当該残留凹みが大きく影響する虞がある。
 この問題の解決方法の一つとして、例えば、特許文献1に開示されている技術などが挙げられる。特許文献1には、負荷ドラムをタイヤのトレッド面に圧着させて所定の方向へ回転させること、及び、その後、負荷ドラムを反転させる時に、タイヤのトレッド面を負荷ドラムの接触面(模擬路面)から離間させてタイヤと負荷ドラムとを非接触状態、すなわち離間状態、にすることと、を含み、これによりタイヤに変形を起させずに精度の高いタイヤユニフォミティを測定することが、提案されている。
 しかしながら、特許文献1には、前記タイヤの逆回転時のタイヤユニフォミティを計測するに際し、タイヤの回転方向を反転させる動作と、タイヤと負荷ドラムとを離間させる動作と、をどのように連携させるのかが詳細に記載されていない。また、特許文献1に開示されたタイヤユニフォミティの測定方法では、タイヤと負荷ドラムとが非接触である状態の時に負荷ドラムを反転させるので、その反転のために前記負荷ドラムにモータ等の動力源を設ける必要があり、このことが装置のコストを増加させる。タイヤの回転方向を反転させることで、負荷ドラムを反転させる場合には、負荷ドラムが慣性により同方向の回転(正回転)を維持し続けている状態で、タイヤの回転方向を反転(逆回転)させて、再びタイヤと負荷ドラムとを接触させるので、タイヤを保持しているリムとそのリムに当接しているタイヤの内径との間に「すべり」が生じる、つまり、タイヤとリムとの間に「ズレ」が発生する、虞がある。このように、タイヤとリムとの間にズレが発生した状態のままで、タイヤの逆回転時のユニフォミティを計測すると、LFVやコニシティを所望の精度にて測定することが困難になる。
特開平2-223843号公報
 本発明は、タイヤユニフォミティ計測において、タイヤ正回転時から逆回転時への切り換えを行った直後からタイヤユニフォミティ、特に、タイヤの横方向の力の変動(LFV)及びコニシティを精度よく求めることができるタイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法を提供することを目的とする。
 提供されるタイヤユニフォミティ試験機は、タイヤユニフォミティ試験機であって、タイヤを保持しながら当該タイヤとともに正回転及び逆回転することが可能なスピンドル軸と、前記スピンドル軸及びこれに保持される前記タイヤを正回転及び逆回転させるスピンドル軸駆動装置と、前記タイヤのトレッド面に押し当てられることが可能な外周面をもつドラムと、前記ドラムを前記外周面の中心軸回りに回転自在に支持すると共に、前記スピンドル軸に装着された前記タイヤのトレッド面を前記ドラムの外周面に押し当てることが可能となるように前記スピンドル軸と前記ドラムとを相対移動させる押し当て機構と、前記タイヤが前記正回転及び前記逆回転しているときに前記ドラムに発生する力に基いて当該正回転時および当該逆回転時の前記タイヤのユニフォミティを測定するユニフォミティ測定部と、前記スピンドル軸の回転方向と回転速度、および前記スピンドル軸と前記ドラムとの相対位置をそれぞれ制御するように前記スピンドル軸駆動装置及び前記ドラム機構を作動させる制御装置と、を備える。前記制御装置は、前記スピンドル軸の回転方向を前記正回転の方向と前記逆回転の方向との間で逆転させる際に前記スピンドル軸と前記ドラムとを互いに遠ざけるように当該スピンドル軸と当該ドラムとを相対移動させることにより、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度が0となるように、前記スピンドル軸の回転駆動及び前記スピンドル軸と前記ドラムとの相対位置を制御する。
 提供されるタイヤユニフォミティ測定方法は、タイヤを保持しながら当該タイヤとともに正回転及び逆回転することが可能なスピンドル軸と、前記スピンドル軸及びこれに保持される前記タイヤを正回転及び逆回転させるスピンドル軸駆動装置と、前記タイヤのトレッド面に押し当てられることが可能な外周面をもつドラムと、前記ドラムを前記外周面の中心軸回りに回転自在に支持すると共に、前記スピンドル軸に装着された前記タイヤのトレッド面を前記ドラムの外周面に押し当てることが可能となるように前記スピンドル軸と前記ドラムとを相対移動させる押し当て機構と、を有するタイヤユニフォミティ試験機を用意することと、前記タイヤが前記正回転及び前記逆回転しているときに前記ドラムに発生する力に基いて当該正回転時及び当該逆回転時の前記タイヤのユニフォミティの測定を行うことと、前記スピンドル軸駆動装置及び前記押し当て機構を作動させるとともに、前記スピンドル軸の回転方向と回転速度の制御である回転駆動制御と、前記スピンドル軸と前記ドラムとの相対位置の制御である相対位置制御と、を行うことと、を含み、当該回転駆動制御及び当該相対位置制御は、前記スピンドル軸の回転方向を逆転させる際に前記スピンドル軸と前記ドラムとを互いに遠ざけるように当該スピンドル軸と当該ドラムとを相対移動させることにより、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度を0とすることを含む。
本発明の実施の形態にかかるタイヤユニフォミティ試験機の一部断面正面図である。 前記タイヤユニフォミティ試験機の平面図である。 前記タイヤユニフォミティ試験機に含まれるスピンドル軸及びドラムの動作パターンを示した図である。 図3の中央部分を拡大した図であって、ユニフォミティ測定中のタイヤを正回転から逆回転へと切り換えたときのスピンドル軸及びドラムの動作パターンを示した図である。
 本発明の実施の形態にかかるタイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法を、図面に基づき説明する。図1及び図2は、前記実施の形態に係るタイヤユニフォミティ試験機1を示し、以下の説明における当該試験機1の「上下方向」は図1の紙面の上下方向に相当し、「前後方向」は当該紙面の左右方向に相当する。
 前記タイヤユニフォミティ試験機1(以下、単にタイヤ試験機と呼ぶこともある)は、製品上がりのタイヤTのタイヤユニフォミティ特性、特に、タイヤTの縦方向の力の変動(Radial Force Variation:RFV)、タイヤTの横方向の力の変動(Lateral Force Variation:LFV)及びコニシティ(タイヤTの進行(回転)方向に関係なく、常に一定方向に発生する横力)を製品検査として評価するものである。
 前記タイヤ試験機1は、基台14と、上下一対のリム4を介してユニフォミティ測定対象のタイヤTを保持しながら当該タイヤTとともに正回転及び逆回転することが可能なスピンドル軸3と、前記基台14上に設置されて前記スピンドル軸3を回転可能に支持するフレーム本体2と、前記スピンドル軸3及びこれに前記一対のリム4を介して保持される前記タイヤTを正回転及び逆回転させるスピンドル軸駆動装置を構成するスピンドル軸回転モータ5と、前記タイヤTのトレッド面に押し当てられることが可能な外周面である模擬路面8aをもつドラム(負荷ドラム)8と、前記基台14上に設置され、前記ドラム8を前記模擬路面8aの中心軸回りに回転自在に支持すると共に、前記スピンドル軸3に前記一対のリム4を介して装着された前記タイヤTの前記トレッド面を前記ドラム8の前記模擬路面8aに押し当てることが可能となるように前記スピンドル軸3と前記ドラム8とを相対移動させる押し当て機構7と、タイヤTのユニフォミティを測定するユニフォミティ測定部(図示せず)と、空気圧回路11と、制御装置12と、を有している。
 前記空気圧回路11は、空気供給源(図示せず)で発生した圧縮空気をタイヤT内部に供給したり、タイヤT内部から圧縮空気を大気などの外部に排出したりして、タイヤT内の空気圧を調整する。
 前記フレーム本体2は、円筒状をなし、その軸心が上下を向くように前記基台14上に配置されるとともに、前記スピンドル軸3が前記フレーム本体2の上端から上方へ突出するように当該スピンドル軸3を保持する。具体的に、スピンドル軸3は、前記フレーム本体2内に設けられた軸受部を介して上下軸回りに回転自在となるように当該フレーム本体2に取り付けられている。前記スピンドル軸回転モータ5は、前記スピンドル軸3の近傍に配置され、当該スピンドル軸回転モータ5の出力軸と前記スピンドル軸3とにタイミングベルト6が掛け渡されている。タイミングベルト6は、前記スピンドル軸回転モータ5が生成する駆動力をスピンドル軸3に伝達して当該スピンドル軸3を回転させる。
 前記一対のリム4は、前記スピンドル軸3のうち前記本体フレーム2の上端から上方に突出する部分に設けられ、前記スピンドル軸3は当該一対のリム4を介して前記タイヤTを保持する。前記ドラム8及び前記押し当て機構7は、前記一対のリム4を介して前記スピンドル軸3に保持される前記タイヤTの側方に位置するように配備されていて、当該ドラム8の前記模擬路面8aに前記タイヤTのトレッド面が接触することが可能である。
 前記押し当て機構7は、前記ドラム8を上下方向の軸回りに回転可能に保持するとともに、前記タイヤTの半径方向と平行な水平方向にスライド可能となるように前記基台14に支持されるドラム保持部15と、前記基台14に固定され、前記ドラム保持部15及びこれに保持される前記ドラム8を前記水平方向に移動させるスクリュジャッキ9と、前記スクリュジャッキ9を駆動するドラム移送モータ10と、を有する。前記押し当て機構7は、前記水平方向に前記ドラム8を移動させる、すなわち前記タイヤTを保持する前記スピンドル軸3に対して前記ドラム8を相対移動させる、ことにより、前記タイヤTのトレッド面に前記ドラム8の模擬路面8aを押し当てることが、可能である。
 前記ドラム移送モータ10及び前記スピンドル軸回転モータ5は、それぞれサーボモータからなる。前記制御装置12は、当該制御装置12と前記ドラム移送モータ10との間での信号の授受により、前記ドラム8の回転軸と前記スピンドル軸3(すなわちタイヤTの回転中心軸)との距離である軸間距離の制御、つまりスピンドル軸3とドラム8との相対位置制御が可能であるとともに、当該制御装置12と前記スピンドル軸回転モータ5との間での信号の授受により、前記タイヤTを回転自在に保持している前記スピンドル軸3の回転の制御すなわち回転駆動制御が可能である。
 前記制御装置12は、前記タイヤTを正回転させ、その後、当該正回転を減速させて当該タイヤTの回転速度を瞬間的に0にし、さらには前記タイヤTを逆回転させるように、前記スピンドル軸回転モータ5の作動を制御する。また、制御装置12は、前記タイヤTの回転を前記正回転から前記逆回転に移行させる際に、前記ドラム8をタイヤTから離間させ、当該タイヤTの回転が逆回転に移行した後に前記ドラム8を前進させて負荷荷重をタイヤTに与えるように、前記押し当て機構7の作動を制御する。
 次に、上記したタイヤ試験機1を用いて、タイヤユニフォミティを計測する手順を説明する。
 まず、正回転時のユニフォミティの計測が行われる。この計測にあたり、上下に分割された前記一対のリム4が、検査ラインの上流から流れてきたタイヤTを挟み込む。これにより、スピンドル軸3は当該一対のリム4を介して前記タイヤTを保持することができる。空気圧回路11は、保持されたタイヤTを短時間で膨らませ、さらには当該タイヤTの内圧をテスト圧に調整する。
 制御装置12は、前記のようにテスト圧に調整された内圧をもつタイヤTを正回転させるように前記スピンドル軸回転モータ5を作動させ、このタイヤTにドラム8を押付けて当該ドラム8を「正回転」させるように、前記押し当て機構7を作動させる。ユニフォミティ測定部は、このときドラム8に発生する力を計測する荷重検出器(ロードセル)等を含む。この計測により、正回転するタイヤTのユニフォミティ(RFVやLFVなど)が測定される。このようにして正回転でのユニフォミティ測定が終わった後、制御装置12はドラム8をタイヤTから離間させるように押し当て機構7を作動させ、タイヤTを「逆回転」させるようにスピンドル軸回転モータ5の作動を制御し、このようにして逆回転しているタイヤTにドラム8の模擬路面8aを押付けるように前記押し当て機構7の作動を制御する。前記荷重検出器(ロードセル)はこの時にドラム8に発生する力を計測することにより、逆回転時のタイヤTのユニフォミティ(RFVやLFVなど)の測定を可能にする。このようにして得られた正回転時と逆回転時の測定結果より、コニシティなどが測定される。
 上記した構成に加え、前記タイヤ試験機1は、「スピンドル軸3の回転方向の切換動作とドラム8の離間動作の同期」を行う特徴を有する。この特徴は、タイヤ正回転時から逆回転時への切り換えを行った直後からタイヤユニフォミティ、特に、タイヤの横方向の力の変動(LFV)及びコニシティを精度よく求めることを可能にする。この特徴、すなわち、逆回転時のユニフォミティを計測する際に、タイヤTのトレッド面とドラム8の模擬路面8aとが非接触となる状態において、タイヤT(スピンドル軸3)の回転速度を0(ゼロ)とする方法、すなわちタイヤリロードの同期方法について、図を基に述べる。
 具体的に、制御装置12は、タイヤTの回転方向を正回転から逆回転させる際に、スピンドル軸3の回転速度が0(ゼロ)になるタイミング(回転が瞬間的に停止するタイミング)と、タイヤTのトレッド面がドラム8の模擬路面8aから離間するタイミング(非接触となるタイミング)とを同調させる。具体的には、タイヤTのトレッド面とドラム8の模擬路面8aとが接触した状態から、徐々にドラム8をトレッド面から後退させ、これにしたがって、スピンドル軸3の回転を減速させ、タイヤTのトレッド面とドラム8の模擬路面8aとが完全に離れた非接触状態となったときに、スピンドル軸3の回転速度を0(ゼロ)にするように、前記スピンドル軸回転モータ5及び押し当て機構7の作動を制御する。言い換えると、制御装置12は、ドラム8に荷重がかかっていない状態(つまりゼロの荷重が作用している状態)において、スピンドル軸3の回転速度が0(ゼロ)となるように、スピンドル軸3に対するドラム8の相対移動とスピンドル軸3の回転とを同期させる。
 次に、ドラム8に荷重がかかっていない状態において、スピンドル軸3の回転が停止するように同期させる方法、すなわちドラムリロードの同期方法について、図を基に詳細に説明する。
 まず、ドラムリロードの同期方法についての説明をする前に、図3を参照して、正回転時及び逆回転時におけるユニフォミティ測定工程について、述べる。
 図3は、スピンドル軸3及びドラム8の動作パターンを示した図である。図3において実線L1はドラム8の位置(mm)を示し、実線L2はドラム8の移動速度(mm/s)を示し、実線L3はスピンドル軸3の回転速度(deg/s)を示し、実線L4はドラム8にかかる荷重(N)を示している。
 タイヤTがスピンドル軸3にリム4を介して保持された状態で、制御装置12は、ドラム8をスピンドル軸3に近づく向きに移動すなわち前進させて、当該ドラム8の模擬路面8aをタイヤTのトレッド面に接触させる(図3中の0~2秒間)。このときのドラム8の前進速度は、実線L2に示すように-50mm/sである。この移動速度で、実線L1に示すように、ドラム8の模擬路面8aとスピンドル軸3の軸中心の距離が約330mmから約295mmに減少するまでドラム8がスピンドル軸3に近づく。一方、スピンドル軸3は、実線L3に示すように、約360deg/sの速度で正回転している。このようにドラム8がスピンドル軸3に近づいて当該ドラム8の模擬路面8aがタイヤTのトレッド面に押し当てられることにより、実線L4に示すように当該ドラム8には約5000Nの荷重がかかる。
 このようにドラム8の模擬路面8aがタイヤTのトレッド面に接触した状態で、正回転時のタイヤTのユニフォミティ測定が行われる(図3中の2~6秒間)。このとき、ドラム8は、前進が完了した位置に留まっているので、実線L2に示すように当該ドラム8の移動速度は0mm/sである。前記のように、この測定時のドラム8の模擬路面8aとスピンドル軸3の軸中心の距離は約295mm、スピンドル軸3の正回転の回転速度は約360deg/s、ドラム8に作用する荷重は約5000Nである。
 次に、逆回転時のユニフォミティ測定を行うために、制御装置12は、ドラム8をスピンドル軸3から離れる向きに移動すなわち後退させて、ドラム8の模擬路面8aをタイヤTのトレッド面から離間させる(図3中の6~7秒間)。
  このときのドラム8の後退の速度は、実線L2に示すように50mm/sである。実線L1に示すように、ドラム8の模擬路面8aとスピンドル軸3の軸中心の距離は、約295mmから約330mmまで増大する一方、スピンドル軸3の回転は、前記の約360deg/sの速度から減速し、当該減速の開始から約7秒経過したあたりで実線L3に示すように回転が一瞬停止する。このとき、ドラム8がスピンドル軸3に保持されたタイヤTから離れているので、実線L4に示すようにドラム8には荷重がかかっていない。
 続いて、逆回転時のユニフォミティ測定を行うために、制御装置12はドラム8を当該ドラム8がスピンドル軸3に近づく向きに移動すなわち前進させて、ドラム8の模擬路面8aをタイヤTのトレッド面に接触させる(図3中の7~8秒間)。このときのドラム8の前身の速度は実線L2に示すように-50mm/sであり、実線L1に示すようにドラム8の模擬路面8aとスピンドル軸3の軸中心の距離は約330mmから約295mmまで減少する。一方、スピンドル軸3は、実線L3に示すように、その回転速度が正回転から瞬間的に0(ゼロ)になった後、約360deg/sの速度で逆回転するように、回転駆動される(図3中の実線c)。このとき、ドラム8がスピンドル軸3に近づいて当該ドラム8の模擬路面8aがタイヤTのトレッド面に押し当てられているので、実線L4に示すように当該ドラム8には約5000Nの荷重が作用している。
 このように、ドラム8の模擬路面8aがタイヤTのトレッド面に接触した状態で、逆回転時のタイヤTのユニフォミティ測定が行われる(図3中の8~11.5秒間)。このとき、ドラム8は、前進が完了した位置に留まっているので、実線L2に示すように当該ドラム8の移動速度は0mm/sである。また、前記のように、この測定時のドラム8の模擬路面8aとスピンドル軸3の軸中心の距離は約295mm、スピンドル軸3の逆回転の速度は約-360deg/s、ドラム8に作用する荷重は約5000Nである。
 次に、図4を参照して、タイヤリロードの同期方法について、詳細に述べる。
 図4は、図3の中央部分すなわちグレースケール部分を拡大した図であって、ユニフォミティ測定中のタイヤTを正回転から逆回転へと切り換えたときのスピンドル軸3及びドラム8の動作パターンを示した図である。図3と同様に、図4の実線L1はドラム8の位置(mm)を示し、実線L2はドラム8の移動速度(mm/s)を示し、実線L3はスピンドル軸3の回転速度(deg/s)を示し、実線L4はドラム8にかかる荷重(N)を示している。
 図4を参照すると、スピンドル軸3は、実線L1に示すようにドラム8が所定位置まで後退した時点で減速を開始する(実線L3の点X)。このときドラム8は実線L2に示すように一定速度で後退している。ドラム8の後退は、前記所定位置よりさらに後退した時点(実線L2の点Y)で減速し始める。このドラム8の移動は、実線L1に示すように、タイヤTのトレッド面とドラム8の模擬路面8aとが非接触の状態となる位置、具体的には点Zに相当するリロード位置で、一瞬停止する。一方、実線L4に示すように、ドラム8にかかる荷重は、ドラム8が一定速度で後退するのに伴い、減少する。
 ここで、スピンドル軸3の逆転のタイミングにタイヤリロードを同期させるにあたっては、図4において、ドラム8が後退して瞬間的に停止する時点(点Zの時点)、すなわち実線L4で示されるドラム8にかかる荷重が0(ゼロ)となる点N(点Zを通る垂線(破線)と実線L4との交点)を、スピンドル軸3の回転速度を示す実線L3が通過するように、つまり、前記点Nと、実線L3において回転速度が0となる点と、が一致するように、スピンドル軸3の減速を開始する時期が設定される。つまり、ドラム8にかかる荷重が実質上0(ゼロ)となる範囲(図4に示される範囲M)内でスピンドル軸3の回転が停止する、すなわち、前記範囲M内で実線L3と実線L4とが交わるようにスピンドル軸3の回転駆動制御を行うことにより、タイヤリロードの同期が達成される。
 次に、当該ドラムリロードの同期に必要とされる、スピンドル軸3の減速を開始すべき時点(点X)でのドラム8の位置であるスピンドル軸減速開始ドラム位置を算出する方法を以下に示す。
(i)スピンドル軸3が減速を開始した時点Xから停止時点Nに至るまでに要するスピンドル軸減速所要時間T3(図4)を求める。このスピンドル軸減速所要時間T3は次式(1)により与えられる。
 スピンドル軸減速所要時間T3(s)=減速開始時のスピンドル軸3の回転速度(deg/s)÷スピンドル軸3の減速度(deg/s)…(1)
(ii)ドラム8の移動の減速を開始した時点Yから当該移動が停止するまでに要するドラム減速所要時間T2を求める。このドラム減速所要時間T2は次式(2)により与えられる。 
 ドラム減速所要時間T2(s)=減速開始時のドラム8の移動速度(mm/s)÷ドラム8の移動減速度(mm/s)…(2)
(iii)スピンドル軸3の減速が開始された後にドラム8が一定速度で後退する時間であるドラム一定速後退時間T1を求める。このドラム一定速後退時間T1は次式(3)により与えられる。
 ドラム一定速後退時間T1(s)=スピンドル軸減速所要時間T3(s)-ドラム減速所要時間T2(s)…(3)
(iv)前記ドラム一定速後退時間T1において前記ドラム8が移動する距離であるドラム一定速移動距離δ1を求める。このドラム一定速移動距離δ1は次式(4)により与えられる。
 ドラム一定速移動距離δ1(mm)=ドラム8の移動速度(mm/s)×ドラム一定速後退時間T1(s)…(4)
(v)前記ドラム減速所要時間T2において前記ドラム8が移動する距離であるドラム減速移動距離δ2を求める。このドラム減速移動距離δ2は次式(5)により与えられる。 
 ドラム減速移動距離δ2(mm)=ドラム8の減速開始前の移動速度(mm/s)×ドラム減速所要時間T2(s)÷2…(5)
(vi)スピンドル軸3が減速を開始すべき時点Xにおけるドラム8の位置と前記リロード位置との間の距離であるスピンドル軸減速ドラム距離δ3を計算する。このスピンドル軸減速ドラム距離δ3は次式(6)により与えられる。 
 スピンドル軸減速ドラム距離δ3(mm)=ドラム一定速移動距離δ1(mm)+ドラム減速移動距離δ2(mm)…(6)
(vii)スピンドル軸3が減速を開始すべき時点Xでの前記ドラム8の位置、つまり、前記スピンドル軸減速開始ドラム位置を計算する。 このスピンドル軸減速開始ドラム位置は、次式(7)により与えられる。
 スピンドル軸減速開始ドラム位置(mm)=ドラム8のリロード位置(mm)-スピンドル軸減速ドラム距離δ3(mm)…(7)
 以上の算出過程を経ることで、正確にスピンドル軸減速開始ドラム位置、つまりスピンドル軸3の減速を開始すべき時点(X点)に対応するドラム8の位置を算出することができる。 
 以上述べたように、本発明のタイヤユニフォミティ試験機1及びタイヤユニフォミティ測定方法によれば、逆回転時のタイヤユニフォミティ測定を行う際に、ドラム8の移動位置の制御(スピンドル軸に対するドラム8の相対位置の制御)と、スピンドル軸3の回転速度の制御と、の組み合わせによって、ドラム8の模擬路面8aがタイヤTのトレッド面から最も離れるタイミングと、スピンドル軸3(タイヤT)の回転が0となるときのタイミングを同期させることができる。このことは、タイヤTとドラム8の模擬路面8aが非接触状態になったとき、慣性で回転し続けているドラム8に残っている回転運動エネルギーと、タイヤTがドラム8に再接触した後にドラム8が持つ回転運動エネルギーと、の差を最小にすることを可能にし、また、タイヤTとドラム8が再接触する時にタイヤTがドラム8から受ける回転運動エネルギーを最小にすることができる。さらに、タイヤTとドラム8が再接触する時のタイヤTとリム4の「ズレ」を最小限に抑えることができ、これにより、LFVやコニシティの計測精度を向上させることが可能となる。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。例えば、ドラムの外周面(前記実施の形態では模擬路面8a)がタイヤのトレッド面から最も離れるタイミングと、スピンドル軸の回転が0となるときのタイミングと、は完全に一致していなくてもよい。少なくとも、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度が0となる程度に、スピンドル軸の回転速度の変化とスピンドル軸に対するドラムの相対位置とをシンクロナイズすることにより、前記ドラムの外周面と前記タイヤのトレッド面とが接触した状態でスピンドル軸の回転方向が逆転することによる不都合を回避することが可能である。
 また、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
 以上のように、タイヤユニフォミティ計測において、タイヤ正回転時から逆回転時への切り換えを行った直後からタイヤユニフォミティ、特に、タイヤの横方向の力の変動(LFV)及びコニシティを精度よく求めることができるタイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法が、提供される。
 提供されるタイヤユニフォミティ試験機は、タイヤユニフォミティ試験機であって、タイヤを保持しながら当該タイヤとともに正回転及び逆回転することが可能なスピンドル軸と、前記スピンドル軸及びこれに保持される前記タイヤを正回転及び逆回転させるスピンドル軸駆動装置と、前記タイヤのトレッド面に押し当てられることが可能な外周面をもつドラムと、前記ドラムを前記外周面の中心軸回りに回転自在に支持すると共に、前記スピンドル軸に装着された前記タイヤのトレッド面を前記ドラムの外周面に押し当てることが可能となるように前記スピンドル軸と前記ドラムとを相対移動させる押し当て機構と、前記タイヤが前記正回転及び前記逆回転しているときに前記ドラムに発生する力に基いて当該正回転時および当該逆回転時の前記タイヤのユニフォミティを測定するユニフォミティ測定部と、前記スピンドル軸の回転方向と回転速度、および前記スピンドル軸と前記ドラムとの相対位置をそれぞれ制御するように前記スピンドル軸駆動装置及び前記ドラム機構を作動させる制御装置と、を備える。前記制御装置は、前記スピンドル軸の回転方向を前記正回転の方向と前記逆回転の方向との間で逆転させる際に前記スピンドル軸と前記ドラムとを互いに遠ざけるように当該スピンドル軸と当該ドラムとを相対移動させることにより、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度が0となるように、前記スピンドル軸の回転駆動及び前記スピンドル軸と前記ドラムとの相対位置を制御する。
 また、提供されるタイヤユニフォミティ測定方法は、タイヤを保持しながら当該タイヤとともに正回転及び逆回転することが可能なスピンドル軸と、前記スピンドル軸及びこれに保持される前記タイヤを正回転及び逆回転させるスピンドル軸駆動装置と、前記タイヤのトレッド面に押し当てられることが可能な外周面をもつドラムと、前記ドラムを前記外周面の中心軸回りに回転自在に支持すると共に、前記スピンドル軸に装着された前記タイヤのトレッド面を前記ドラムの外周面に押し当てることが可能となるように前記スピンドル軸と前記ドラムとを相対移動させる押し当て機構と、を有するタイヤユニフォミティ試験機を用意することと、前記タイヤが前記正回転及び前記逆回転しているときに前記ドラムに発生する力に基いて当該正回転時及び当該逆回転時の前記タイヤのユニフォミティの測定を行うことと、前記スピンドル軸駆動装置及び前記押し当て機構を作動させるとともに、前記スピンドル軸の回転方向と回転速度の制御である回転駆動制御と、前記スピンドル軸と前記ドラムとの相対位置の制御である相対位置制御と、を行うことと、を含み、当該回転駆動制御及び当該相対位置制御は、前記スピンドル軸の回転方向を逆転させる際に前記スピンドル軸と前記ドラムとを互いに遠ざけるように当該スピンドル軸と当該ドラムとを相対移動させることにより、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度を0とすることを含む。
 前記方法及び装置によれば、スピンドル軸の回転駆動制御と、スピンドル軸とドラムとの相対位置の制御と、の組み合わせにより、前記タイヤに一定の圧力が作用している状態、すなわち前記負荷ドラムとタイヤとが接触している状態、でタイヤの回転が停止することによる残留凹みの発生を防ぎ、これにより、当該残留凹みが残った状態でユニフォミティを測定することによる当該測定の精度の低下を防ぐことができる。
 前記方法及び装置は、前記ユニフォミティの測定が、例えば、前記タイヤの縦方向の力の変動、前記タイヤの横方向の力の変動及びコニシティのうちの少なくとも1つの測定を含む場合に、その測定の精度を向上させるにあたって特に有効である。
 また、前記回転駆動制御及び前記相対位置制御は、前記ドラムの外周面が前記タイヤのトレッド面から最も離れるタイミングと、前記スピンドル軸の回転速度が0となるタイミングとを同期させることを含むのが、より好ましい。当該同期は、前記ドラムの外周面と前記タイヤのトレッド面とが接触した状態でスピンドル軸の回転速度が0となることを、より確実に防ぐことができる。

Claims (6)

  1.  タイヤユニフォミティ試験機であって、
     タイヤを保持しながら当該タイヤとともに正回転及び逆回転することが可能なスピンドル軸と、
     前記スピンドル軸及びこれに保持される前記タイヤを正回転及び逆回転させるスピンドル軸駆動装置と、
     前記タイヤのトレッド面に押し当てられることが可能な外周面をもつドラムと、
     前記ドラムを前記外周面の中心軸回りに回転自在に支持すると共に、前記スピンドル軸に装着された前記タイヤのトレッド面を前記ドラムの外周面に押し当てることが可能となるように前記スピンドル軸と前記ドラムとを相対移動させる押し当て機構と、
     前記タイヤが前記正回転及び前記逆回転しているときに前記ドラムに発生する力に基いて当該正回転時および当該逆回転時の前記タイヤのユニフォミティを測定するユニフォミティ測定部と、
     前記スピンドル軸の回転方向と回転速度、および前記スピンドル軸と前記ドラムとの相対位置をそれぞれ制御するように前記スピンドル軸駆動装置及び前記ドラム機構を作動させる制御装置と、を備え、
     前記制御装置は、前記スピンドル軸の回転方向を前記正回転の方向と前記逆回転の方向との間で逆転させる際に前記スピンドル軸と前記ドラムとを互いに遠ざけるように当該スピンドル軸と当該ドラムとを相対移動させることにより、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度が0となるように、前記スピンドル軸の回転駆動及び前記スピンドル軸と前記ドラムとの相対位置を制御する、タイヤユニフォミティ試験機。
  2.  請求項1に記載のタイヤユニフォミティ試験機であって、前記ユニフォミティ測定部は、前記タイヤの縦方向の力の変動、前記タイヤの横方向の力の変動及びコニシティのうちの少なくとも1つを測定する、タイヤユニフォミティ試験機。
  3.  請求項1に記載のタイヤユニフォミティ試験機であって、前記制御装置は、前記ドラムの外周面が前記タイヤのトレッド面から最も離れるタイミングと、前記スピンドル軸の回転速度が0となるタイミングとを同期させる、タイヤユニフォミティ試験機。
  4.  タイヤのユニフォミティを試験するための方法であって、
     前記タイヤを保持しながら当該タイヤとともに正回転及び逆回転することが可能なスピンドル軸と、前記スピンドル軸及びこれに保持される前記タイヤを正回転及び逆回転させるスピンドル軸駆動装置と、前記タイヤのトレッド面に押し当てられることが可能な外周面をもつドラムと、前記ドラムを前記外周面の中心軸回りに回転自在に支持すると共に、前記スピンドル軸に装着された前記タイヤのトレッド面を前記ドラムの外周面に押し当てることが可能となるように前記スピンドル軸と前記ドラムとを相対移動させる押し当て機構と、を有するタイヤユニフォミティ試験機を用意することと、
     前記タイヤが前記正回転及び前記逆回転しているときに前記ドラムに発生する力に基いて当該正回転時及び当該逆回転時の前記タイヤのユニフォミティの測定を行うことと、
     前記スピンドル軸駆動装置及び前記押し当て機構を作動させるとともに、前記スピンドル軸の回転方向と回転速度の制御である回転駆動制御と、前記スピンドル軸と前記ドラムとの相対位置の制御である相対位置制御と、を行うことと、を含み、当該回転駆動制御及び当該相対位置制御は、前記スピンドル軸の回転方向を逆転させる際に前記スピンドル軸と前記ドラムとを互いに遠ざけるように当該スピンドル軸と当該ドラムとを相対移動させることにより、前記ドラムの外周面と前記タイヤのトレッド面とが非接触である状態において前記スピンドル軸の回転速度を0とすることを含む、タイヤユニフォミティ測定方法。
  5.  請求項4に記載のタイヤユニフォミティ測定方法であって、前記ユニフォミティの測定は、前記タイヤの縦方向の力の変動、前記タイヤの横方向の力の変動及びコニシティのうちの少なくとも1つの測定を含む、タイヤユニフォミティ測定方法。
  6.  請求項4に記載のタイヤユニフォミティ測定方法であって、前記回転駆動制御及び前記相対位置制御は、前記ドラムの外周面が前記タイヤのトレッド面から最も離れるタイミングと、前記スピンドル軸の回転速度が0となるタイミングとを同期させることを含む、タイヤユニフォミティ測定方法。

     
PCT/JP2015/070897 2014-08-27 2015-07-23 タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法 WO2016031443A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015003909.0T DE112015003909B4 (de) 2014-08-27 2015-07-23 Reifenuniformitätstester und Reifenuniformitätsmessverfahren
CN201580046332.6A CN106662495B (zh) 2014-08-27 2015-07-23 轮胎均匀性试验机及轮胎均匀性测定方法
US15/504,366 US10281361B2 (en) 2014-08-27 2015-07-23 Tire uniformity tester and tire uniformity measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172694 2014-08-27
JP2014172694A JP6282198B2 (ja) 2014-08-27 2014-08-27 タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法

Publications (1)

Publication Number Publication Date
WO2016031443A1 true WO2016031443A1 (ja) 2016-03-03

Family

ID=55399344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070897 WO2016031443A1 (ja) 2014-08-27 2015-07-23 タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法

Country Status (5)

Country Link
US (1) US10281361B2 (ja)
JP (1) JP6282198B2 (ja)
CN (1) CN106662495B (ja)
DE (1) DE112015003909B4 (ja)
WO (1) WO2016031443A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10337961B2 (en) * 2017-04-27 2019-07-02 Gm Global Technology Operations Llc. Method of analyzing radial force variation in a tire/wheel assembly
JP6735254B2 (ja) * 2017-06-21 2020-08-05 株式会社神戸製鋼所 タイヤの動負荷半径の算出装置及び算出方法
DE102017217816A1 (de) * 2017-10-06 2019-04-11 Zf Friedrichshafen Ag Lauftrommelanordnung für einen Prüfstand sowie Prüfstand mit der Lauftrommelanordnung
CN108195701B (zh) * 2017-12-26 2020-04-24 重庆程顺汽车配件制造有限公司 轮胎磨损测试装置及其制造方法
CN108414254B (zh) * 2018-02-26 2020-03-31 中国科学院力学研究所 一种复现列车车轮多边形化的模拟方法及设备
WO2021070410A1 (ja) * 2019-10-08 2021-04-15 株式会社エー・アンド・デイ タイヤ試験装置
CN112985849B (zh) * 2021-04-01 2024-05-14 中信戴卡股份有限公司 一种用于汽车底盘模拟路试的疲劳试验设备
CN113790907A (zh) * 2021-09-24 2021-12-14 上海宏信设备工程有限公司 一种多功能轮胎及平台控制器检测设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223843A (ja) * 1989-02-23 1990-09-06 Yokohama Rubber Co Ltd:The タイヤユニフオミテイーの測定方法
JP2009527744A (ja) * 2006-02-23 2009-07-30 ザクター ゲーエムベーハー タイヤをテストする方法
JP2013083477A (ja) * 2011-10-06 2013-05-09 Kobe Steel Ltd タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915684B2 (en) * 2002-04-22 2005-07-12 Illinois Tool Works, Inc. Tire uniformity testing
JP4339048B2 (ja) * 2003-08-25 2009-10-07 国際計測器株式会社 タイヤのユニフォーミティ計測方法及び装置、並びにタイヤ修正方法及び装置
JP4434915B2 (ja) * 2004-10-21 2010-03-17 株式会社ブリヂストン タイヤのユニフォミティ測定方法および装置
JP2006308320A (ja) * 2005-04-26 2006-11-09 Sumitomo Rubber Ind Ltd タイヤ複合測定装置
CN102227623B (zh) * 2008-11-28 2013-08-21 株式会社神户制钢所 轮胎检查装置的轮辋装配装置、磁铁安装方法、轮辋更换装置以及轮胎检查装置
WO2013051310A1 (ja) * 2011-10-06 2013-04-11 株式会社神戸製鋼所 タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
US8701479B2 (en) 2012-02-10 2014-04-22 Commercial Time Sharing Inc. System for characterizing tire uniformity machines and methods of using the characterizations
JP6282814B2 (ja) * 2013-07-23 2018-02-21 株式会社神戸製鋼所 タイヤ試験機
JP6412437B2 (ja) * 2014-05-12 2018-10-24 株式会社神戸製鋼所 タイヤの転がり抵抗予測手法およびタイヤの転がり抵抗予測装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223843A (ja) * 1989-02-23 1990-09-06 Yokohama Rubber Co Ltd:The タイヤユニフオミテイーの測定方法
JP2009527744A (ja) * 2006-02-23 2009-07-30 ザクター ゲーエムベーハー タイヤをテストする方法
JP2013083477A (ja) * 2011-10-06 2013-05-09 Kobe Steel Ltd タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法

Also Published As

Publication number Publication date
US20170234774A1 (en) 2017-08-17
CN106662495A (zh) 2017-05-10
DE112015003909B4 (de) 2023-02-09
DE112015003909T5 (de) 2017-05-11
JP2016048178A (ja) 2016-04-07
JP6282198B2 (ja) 2018-02-21
US10281361B2 (en) 2019-05-07
CN106662495B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2016031443A1 (ja) タイヤユニフォミティ試験機及びタイヤユニフォミティ測定方法
US9429498B2 (en) Tire testing machine
EP2361791B1 (en) Tyre changer and a method of measuring force variations acting between a peripheral surface of a wheel/tyre assembly and a roller
US9746396B2 (en) Tire transport method, tire transport and fastening apparatus, and tire inspection system
JP5997107B2 (ja) タイヤ試験機
CA2316274A1 (en) Snug fitting apparatus for tire assembly
JP2014512992A (ja) タイヤブランクを製造するためのストリップの位置決めツール
JP5955476B1 (ja) タイヤ検査システム
JP6386247B2 (ja) タイヤ試験機
MXPA04010529A (es) Mejoras en la prueba de la uniformidad del neumatico.
JP3602805B2 (ja) タイヤ組立体の馴染み加工装置
JP5758283B2 (ja) タイヤユニフォミティ測定の押圧荷重設定方法
JP5642040B2 (ja) タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
CN104296925A (zh) 用于表征轮胎匀度机的系统和使用该表征的方法
JPH1164174A (ja) タイヤ試験方法および装置
JPH0958231A (ja) タイヤ試験機
JPH07243947A (ja) タイヤユニフォミティ機のランナウト装置
US11243136B2 (en) Rotating body load measuring device
CN208860612U (zh) 零点精准刹擎定位装置
JPH0195835A (ja) リング状製品の成形方法及びその装置
JP5631290B2 (ja) タイヤユニフォミティ試験装置及びタイヤユニフォミティ試験方法
JPH09220773A (ja) サーボモーター駆動によるタイヤのバンド折り返し装置
JP2014226781A (ja) 台タイヤの製造方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003909

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836771

Country of ref document: EP

Kind code of ref document: A1