WO2016031209A1 - 異物検出装置 - Google Patents

異物検出装置 Download PDF

Info

Publication number
WO2016031209A1
WO2016031209A1 PCT/JP2015/004196 JP2015004196W WO2016031209A1 WO 2016031209 A1 WO2016031209 A1 WO 2016031209A1 JP 2015004196 W JP2015004196 W JP 2015004196W WO 2016031209 A1 WO2016031209 A1 WO 2016031209A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor coil
coil
unit
unit sensor
sensor
Prior art date
Application number
PCT/JP2015/004196
Other languages
English (en)
French (fr)
Inventor
和広 安達
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016544955A priority Critical patent/JP6551694B2/ja
Priority to EP15836895.1A priority patent/EP3197014B1/en
Priority to US15/507,098 priority patent/US10254427B2/en
Publication of WO2016031209A1 publication Critical patent/WO2016031209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/108Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils the emitter and the receiver coils or loops being uncoupled by positioning them perpendicularly to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Definitions

  • the present disclosure relates to a non-contact power supply that transmits electric power in a non-contact manner, and relates to a foreign object detection device that detects a foreign object that affects power transmission.
  • the non-contact power feeding system includes a power feeding device on the power feeding side and a power receiving device on the power receiving side, and transmits power using electromagnetic induction or magnetic resonance.
  • the non-contact power feeding system not only low power transmission used for a mobile phone or an electric toothbrush but also high power transmission used for charging an electric vehicle or the like is being studied.
  • the foreign material is a ferromagnetic material such as iron, heat may be generated due to hysteresis loss.
  • the non-contact power feeding system transmits high power, the amount of heat generated by the foreign matter increases.
  • a foreign object detection device has been proposed in a non-contact power supply system.
  • a method using a coil is known. This method utilizes the fact that an electromotive force is generated by electromagnetic induction when a coil is placed in a magnetic field that changes with time.
  • an electromotive force is generated by electromagnetic induction when a coil is placed in a magnetic field that changes with time.
  • a part of the magnetic flux avoids the foreign substance, so that the distribution of the magnetic flux density is different from that when there is no foreign substance.
  • the foreign substance is a ferromagnetic substance, the magnetic flux density passing through the foreign substance is increased, and in this case as well, the distribution of the magnetic flux density is different from that when there is no foreign substance.
  • the electromotive force by the electromagnetic induction of a coil also changes with the presence or absence of a foreign material.
  • the foreign object detection device detects a foreign object based on the electromotive force.
  • the coil of the foreign object detection device described in Patent Document 1 has many portions where conductors constituting the coil overlap. Therefore, the total extension of the conductors constituting the coil is also increased. If the total length of the conductor is long, the voltage drop of the coil also increases, and the foreign matter detection sensitivity of the non-contact power feeding system decreases.
  • the present invention solves the above-described problems of the prior art, and provides a foreign object detection device with high detection sensitivity.
  • the foreign matter detection device of the present disclosure is a foreign matter detection device including a set sensor coil and a determination device that detects a foreign matter according to a voltage of the set sensor coil, wherein the set sensor coil includes at least one sensor.
  • a plurality of unit sensor coils and a plurality of second winding directions that generate an electromotive force of a second code that attempts to flow a current in a second direction that is opposite to the first direction with respect to a change in the external magnetic field.
  • a unit sensor coil is electrically connected in series, and each of the plurality of unit sensor coils has a coil conductor that defines an outer shape of the unit sensor coil, and In the coil group, the coil conductors are continuously and electrically connected in series, and part or all of the coil conductors constituting the unit sensor coil in the first winding direction are unit sensors in the second winding direction. It is a part or all of the coil conductor that constitutes the coil.
  • FIG. 1 is an operation principle diagram of the foreign object detection device according to the first embodiment.
  • FIG. 2A is a basic configuration diagram of a main part of the foreign object detection device according to Embodiment 1.
  • FIG. 2B is a mapping diagram of the unit sensor coil of FIG. 2A.
  • 3A is a layout diagram of unit sensor coils of the foreign object detection device according to Embodiment 1.
  • FIG. 3B is a mapping diagram of the unit sensor coil of FIG. 3A.
  • FIG. 4A is an arrangement diagram of a first variation of the unit sensor coil of the foreign object detection device according to the first exemplary embodiment.
  • FIG. 4B is a mapping diagram of the unit sensor coil of FIG. 4A.
  • FIG. 5A is a layout diagram of a second variation of the unit sensor coil of the foreign object detection device according to the first exemplary embodiment.
  • FIG. 5B is a mapping diagram of the unit sensor coil of FIG. 5A.
  • FIG. 6 is a layout diagram of a third variation of the unit sensor coil of the foreign object detection device according to the first exemplary embodiment.
  • FIG. 7 is a layout diagram of a fourth variation of the unit sensor coil of the foreign object detection device according to the first exemplary embodiment.
  • FIG. 8 is a basic configuration diagram of a main part of the foreign object detection device according to the second embodiment.
  • FIG. 9 is a mapping diagram of the first variation of the foreign object detection device according to the second exemplary embodiment.
  • FIG. 10 is a conceptual diagram of a unit sensor coil of the foreign object detection device according to the third exemplary embodiment.
  • FIG. 11 is an explanatory diagram of a rectangular unit V0 reduction coil in Reference Example 1.
  • FIG. 12 is an explanatory diagram of a circular unit V0 reduction coil in Reference Example 1.
  • FIG. 13 is a diagram illustrating the positional relationship between the unit V0 reduction coil and the foreign matter in Reference Example 1.
  • FIG. 14 is a diagram showing sensitivity evaluation in Reference Example 1.
  • FIG. 15 is an explanatory diagram of a low sensitivity region of the unit sensor coil in Reference Example 2.
  • FIG. 16 is an explanatory diagram of two rectangular multi-sensor coils in Reference Example 2.
  • FIG. 17 is an explanatory diagram of three rectangular multi-sensor coils in Reference Example 2.
  • FIG. 11 is an explanatory diagram of a rectangular unit V0 reduction coil in Reference Example 1.
  • FIG. 12 is an explanatory diagram of a circular unit V0 reduction coil in Reference Example 1.
  • FIG. 13 is a diagram
  • FIG. 18 is an explanatory diagram of three circular multi-sensor coils in Reference Example 2.
  • FIG. 19 is a measurement diagram of magnetic flux change of the non-contact power feeding device in Reference Example 3.
  • FIG. 20 is a conceptual diagram of a sensor coil group in Reference Example 4.
  • FIG. 21 is another conceptual diagram of the sensor coil group in Reference Example 4.
  • 22A is a diagram of a unit sensor coil before improvement in Reference Example 5.
  • FIG. 22B is a diagram of a unit sensor coil after improvement in Reference Example 5.
  • Embodiment 1 A foreign object detection apparatus according to Embodiment 1 will be described with reference to the drawings.
  • FIG. 1 is an operation principle diagram of the foreign object detection device according to the first embodiment.
  • the foreign object detection device 10 includes a set sensor coil 11 and a determination device 18.
  • the set sensor coil 11 has a plurality of unit sensor coils including a unit sensor coil 12 and a unit sensor coil 13.
  • the outer shapes of the unit sensor coil 12 and the unit sensor coil 13 are defined by a coil conductor 14.
  • the coil conductor 14 is continuously connected and electrically connected in series.
  • An assembly of unit sensor coils whose outer shape is defined by coil conductors 14 that are continuously connected and electrically connected in series is defined as a sensor coil group.
  • the unit sensor coil 12 and the unit sensor coil 13 generate an electromotive force by a change in an external magnetic field.
  • the determination device 18 determines the presence or absence of a foreign substance based on the electromotive force as the set sensor coil 11.
  • the external magnetic field 15 penetrates the unit sensor coil 12 and the unit sensor coil 13.
  • the external magnetic field 15 is assumed to be uniform in size and direction.
  • the external magnetic field 15 is assumed to increase in the direction of the arrow in FIG. It is assumed that the unit sensor coil 12 and the unit sensor coil 13 have the same shape and size.
  • an electromotive force is generated in the unit sensor coil 12 such that a current 16 in the first direction flows by electromagnetic induction.
  • the electromotive force generated in the unit sensor coil 12 is assumed to be the electromotive force of the first code.
  • the winding direction of the unit sensor coil that generates the electromotive force of the first code is referred to as the first winding direction.
  • an electromotive force is generated in the unit sensor coil 13 so as to flow a current 17 in the second direction opposite to the current 16 in the first direction due to electromagnetic induction.
  • the electromotive force generated in the unit sensor coil 13 is the electromotive force of the second code having the opposite sign to the electromotive force of the first code.
  • the winding direction of the unit sensor coil that generates the electromotive force of the second code is referred to as the second winding direction. Since the unit sensor coil 12 and the unit sensor coil 13 have the same shape and size, the electromotive force of the first code and the absolute value of the electromotive force of the second code are the same. Since the electromotive force generated in each of the unit sensor coil 12 and the unit sensor coil 13 is canceled, the electromotive force of the set sensor coil 11 is 0V.
  • the presence of the foreign matter 19 causes a bias in the distribution of the magnetic field, thereby causing a difference in the absolute value of the electromotive force generated in the unit sensor coil 12 and the unit sensor coil 13, so that the electromotive force of the set sensor coil 11 is 0. Is not.
  • the determination device 18 determines that a foreign object 19 exists.
  • the change in the magnetic field due to the presence of the foreign material 19 is very small.
  • the difference is significant, and it is difficult to distinguish between the change in electromotive force due to the presence of the foreign object 19 and the change in electromotive force due to noise.
  • the electromotive force when the foreign matter 19 is not present is 0 V, it becomes easy to detect a change in the electromotive force due to the presence of the foreign matter 19.
  • the foreign object detection device 10 shown in FIG. 1 cancels the electromotive force of the unit sensor coil 12 and the electromotive force of the unit sensor coil 13 when the foreign object 19 does not exist for the reasons described above.
  • the above is the operation principle of the foreign object detection device 10.
  • the foreign matter 19 is not present, it is difficult to completely set the electromotive force of the set sensor coil 11 to 0V.
  • a threshold value having a certain allowable width is set for 0V. The presence / absence of a foreign object is detected based on a threshold value.
  • the “sign” of the electromotive force of the first code and the electromotive force of the second code specifically means the sign of the voltage generated by electromagnetic induction.
  • the unit in which the positive / negative of the electromotive force of the other unit sensor coil generates the electromotive force of the first sign If it is the same as the sensor coil, the first code is used, and if it is different, the second code is used.
  • one unit sensor coil generates a positive electromotive force at a certain moment, it subsequently generates a negative electromotive force and then generates a positive electromotive force again.
  • the sign of the electromotive force is not fixed in the first place, and the “first sign” is not fixed as “positive” or is not fixed as “negative”.
  • the directions of the arrows of the current 16 in the first direction and the current 17 in the second direction shown in FIG. 1 change with time and are not fixed.
  • FIG. 2A is a basic configuration diagram of a main part of the foreign object detection device according to Embodiment 1
  • FIG. 2B is a mapping diagram of the unit sensor coil of FIG. 2A.
  • “a” indicates a unit sensor coil belonging to the first sensor coil group 20
  • “+” indicates a unit sensor coil in one winding direction.
  • “-” Indicates the unit sensor coil in the second winding direction. Accordingly, “a +” indicates a unit sensor coil in the first winding direction belonging to the first sensor coil group 20, and “a ⁇ ” indicates a unit sensor coil in the second winding direction belonging to the first sensor coil group 20.
  • the description of “a′-” will be described later.
  • FIG. 2 there is only one sensor coil group of the first sensor coil group 20. When there is only one sensor coil group, it also serves as a set sensor coil.
  • the first sensor coil group 20 includes a first Y-axis direction sensor coil group 21 and a second Y-axis direction sensor coil group 22 as a plurality of Y-axis direction sensor coil groups.
  • the first Y-axis direction sensor coil group 21 and the second Y-axis direction sensor coil group 22 are arranged side by side in the X-axis direction.
  • the first Y-axis direction sensor coil group 21 includes unit sensor coils 23 to 26 in the first winding direction.
  • the unit sensor coils 23 to 26 are arranged in the Y-axis direction as a whole and arranged alternately in the X-axis direction.
  • the second Y-axis direction sensor coil group 22 includes unit sensor coils 27 to 30.
  • the unit sensor coils 27 to 30 are arranged in the Y-axis direction as a whole and arranged alternately in the X-axis direction.
  • the first sensor coil group 20 includes a unit sensor coil 31 and a unit sensor coil 32 in addition to the first Y-axis direction sensor coil group 21 and the second Y-axis direction sensor coil group 22.
  • the coil conductor 39 is connected so as to continuously constitute the outer periphery of each Y-axis direction sensor coil group.
  • the coil conductor 39 defines the outer shape of each unit sensor coil.
  • the coil conductor 39 is continuously electrically connected in series. Except for the outermost periphery, the unit sensor coil in the first winding direction and the unit sensor coil in the second winding direction are adjacent to each other. One of the adjacent unit sensor coils is the first winding direction and the other is the second winding direction.
  • all or part of the coil conductor 39 constituting one unit sensor coil is all or part of the coil conductor 39 constituting the other unit sensor coil. That is, a part or all of the coil conductors 39 constituting the adjacent unit sensor coils are shared with each other. Therefore, the area where the coil conductor 39 overlaps is reduced, and the total extension of the coil conductor 39 can be shortened.
  • the region sandwiched between the unit sensor coil 23 and the unit sensor coil 25 does not constitute a closed loop, and therefore cannot constitute a unit sensor coil. This portion is the missing portion 33 of the unit sensor coil.
  • the region on the left side of the unit sensor coil 26 below the unit sensor coil 25 is a missing portion 34.
  • a region sandwiched between the unit sensor coil 23 and the unit sensor coil 27 is a missing portion 35.
  • a region on the right side of the unit sensor coil 27 and above the unit sensor coil 28 is a missing portion 37.
  • a region sandwiched between the unit sensor coil 28 and the unit sensor coil 30 is a missing portion 38.
  • the region sandwiched between the unit sensor coil 26 and the unit sensor coil 30 is also the missing portion 36 of the unit sensor coil.
  • the missing portion 36 cannot constitute a unit sensor coil because the electromotive forces of the two conductive wires existing on the lower side are in opposite directions.
  • the unit sensor coil in FIG. 2A is not a complete closed circuit, but an electromotive force similar to that of the closed circuit can be obtained by reducing the gap.
  • Missing parts 33 to 38 do not mean that no electromotive force is generated. Although these missing portions have a smaller absolute value of electromotive force than that of each unit sensor coil, both generate electromotive force of the second code. Therefore, these missing portions are considered to be incomplete coils in the second winding direction. “A′ ⁇ ” in FIG. 2B means that the missing portion is an incomplete coil in the second winding direction.
  • the number of unit sensor coils is not limited to that shown in FIG. 2A.
  • the size of the unit sensor coil may not be constant.
  • the outer shape of the unit sensor coil is not limited to a quadrangle.
  • the X axis and the Y axis are orthogonal coordinates, but may not be orthogonal if they are not parallel coordinate axes. Any coordinate system that intersects may be used.
  • the first sensor coil group 20 can cancel a part of the electromotive force of the first code and the electromotive force of the second code, but cannot cancel all of them, and the first sensor coil 20 has no foreign matter.
  • the electromotive force of the sensor coil group 20 cannot be zero.
  • FIG. 3A is a layout diagram of unit sensor coils of the foreign object detection device according to Embodiment 1
  • FIG. 3B is a mapping diagram of the unit sensor coils of FIG. 3A.
  • the set sensor coil 40 has a first sensor coil group 20 and a second sensor coil group 41.
  • the first sensor coil group 20 in FIG. 3A has the same configuration as the first sensor coil group 20 in FIG. 2A.
  • the second sensor coil group 41 has a plurality of unit sensor coils. Similar to the coil conductor 39, the coil conductor 42 has the following characteristics.
  • the coil conductor 42 defines the outer shape of the unit sensor coil.
  • the coil conductor 42 defines the outer shape of each unit sensor coil.
  • the coil conductor 42 is continuously electrically connected in series. Except for the outermost periphery, the unit sensor coil in the first winding direction and the unit sensor coil in the second winding direction are adjacent to each other.
  • One of the adjacent unit sensor coils is the first winding direction and the other is the second winding direction.
  • all or part of the coil conductor 42 constituting one unit sensor coil is all or part of the coil conductor 42 constituting the other unit sensor coil. That is, a part or all of the coil conductors 42 constituting the adjacent unit sensor coils are shared with each other. Therefore, the area where the coil conductors 42 overlap is reduced, and the total extension of the coil conductors 42 can be shortened.
  • the four unit sensor coils located in the central portion excluding the unit sensor coil located on the outermost peripheral portion of the set sensor coil 40 are both units of the first sensor coil group 20 and the second sensor coil group 41. This is the area where the sensor coil is located. Therefore, “a +” and “b +”, or “a ⁇ ” and “b ⁇ ” are obtained.
  • the electromotive force of the set sensor coil 40 is zero when the magnetic field distribution is uniform and there is no foreign matter. In further detailed examination, it is necessary to count the number of incomplete coils in the missing part. Since the number of “a′ ⁇ ” and “b ′ +” is the same as shown in FIG. 3B, the set sensor coil 40 shown in FIG. When there is no electromotive force, the electromotive force becomes zero.
  • the electromotive force of the set sensor coil 40 may be measured by electrically connecting the coil conductor 39 constituting the first sensor coil group 20 and the coil conductor 42 constituting the second sensor coil group 41 in series. Good. Alternatively, an operation may be performed in which the electromotive force of the coil conductor 39 and the electromotive force of the coil conductor 42 are obtained, and both voltages are added.
  • the coil conductor 39 and the coil conductor 42 may be electrically connected in parallel.
  • the X axis and the Y axis are orthogonal coordinates, but may not be orthogonal if they are not parallel coordinate axes. Any coordinate system that intersects may be used.
  • FIG. 4A is a layout diagram of a first variation of the unit sensor coil of the foreign object detection device according to Embodiment 1
  • FIG. 4B is a mapping diagram of the unit sensor coil of FIG. 4A.
  • the set sensor coil 50 includes a first sensor coil group 20 and a peripheral sensor coil group 51.
  • the first sensor coil group 20 is the same as the first sensor coil group 20 shown in FIGS. 2A and 3A.
  • peripheral unit sensor coils 52, 53, 54, 55, 56, and 57 are arranged in the missing portions 33, 34, 35, 36, 37, and 38 shown in FIG. 2B, respectively.
  • the peripheral unit sensor coil is arranged only in the missing part of the first sensor coil group 20, and in this respect, the unit sensor coil is arranged in addition to the missing part. Different from the two-sensor coil group 41.
  • the coil conductor 58 defines the outer shape of each peripheral unit sensor coil.
  • the peripheral sensor coil group 51 is a kind of sensor coil group.
  • Each peripheral unit sensor coil is also a kind of unit sensor coil.
  • P in FIG. 4B indicates a region of the peripheral unit sensor coil belonging to the peripheral sensor coil group 51. Other symbols are the same as those in FIG. 3B.
  • the peripheral unit sensor coil exists only in the second winding direction.
  • the number of unit sensor coils in the first winding direction is the same as the sum of the number of unit sensor coils and peripheral unit sensor coils in the second winding direction. Therefore, when no foreign matter is present and the magnetic field distribution is uniform, the electromotive force of the set sensor coil 50 is 0V.
  • the incomplete coil in the missing part of the first sensor coil group 20 and the incomplete coil in the missing part of the peripheral sensor coil group 51 have the same number and different signs. For this reason, even if the influence of the missing portion is taken into account, the set sensor coil 50 shown in FIG. 4A has an electromotive force of 0 when the magnetic field distribution is uniform and there is no foreign matter.
  • the X axis and the Y axis are orthogonal coordinates, but may not be orthogonal if they are not parallel coordinate axes. Any coordinate system that intersects may be used.
  • FIG. 5A is an arrangement diagram of a second variation of the unit sensor coil of the foreign object detection device according to Embodiment 1
  • FIG. 5B is a mapping diagram of the unit sensor coil of FIG. 5A.
  • symbol of a unit sensor coil is attached
  • symbol has shown the code
  • the sensor coil group since the sensor coil group is only the sensor coil group 60, the sensor coil group 60 also serves as a set sensor coil.
  • the sensor coil group 60 includes Y-axis direction sensor coil groups 61, 62, 63, 64, 65, 66, 67 and 68.
  • the Y-axis direction sensor coil group 61 includes a unit sensor coil 61a.
  • the Y-axis direction sensor coil group 62 includes unit sensor coils 62a, 62b, and 62c.
  • the Y-axis direction sensor coil group 63 includes unit sensor coils 63a, 63b, 63c, 63d, and 63e.
  • the Y-axis direction sensor coil group 64 includes unit sensor coils 64a, 64b, 64c, 64d, 64e, 64f, and 64g.
  • the Y-axis direction sensor coil group 65 includes unit sensor coils 65a, 65b, 65c, 65d, 65e, 65f, 65g, and 65h.
  • the Y-axis direction sensor coil group 66 includes unit sensor coils 66a, 66b, 66c, 66d, 66e, and 66f.
  • the Y-axis direction sensor coil group 67 includes unit sensor coils 67a, 67b, 67c, and 67d.
  • the Y-axis direction sensor coil group 68 includes unit sensor coils 68a and 68b.
  • Each Y-axis direction sensor coil group has one or more unit sensor coils in the first winding direction arranged in the Y-axis direction. These unit sensor coils in the first winding direction are continuously connected and electrically connected in series. Each Y-axis direction sensor coil group is arranged side by side in the X-axis direction. Each Y-axis direction sensor coil group is continuously and electrically connected in series with the adjacent Y-axis direction sensor coil group.
  • the coil conductor 69 defines the outer shape of these unit sensor coils in the first winding direction.
  • the coil conductor 69 is connected so as to continuously configure the outer periphery of each Y-axis direction sensor coil group.
  • the coil conductor 69 defines the outer shape of each unit sensor coil.
  • the coil conductor 69 is continuously electrically connected in series.
  • a unit sensor coil in the second winding direction is disposed between adjacent Y-axis direction sensor coil groups except for the outermost peripheral portion of the sensor coil group 60 that is a set sensor coil.
  • unit sensor coils 71 a and 71 b in the second winding direction are arranged between the Y-axis direction sensor coil group 62 and the Y-axis direction sensor coil group 63.
  • unit sensor coils 72a, 72b, 72c, and 72d in the second winding direction are arranged.
  • unit sensor coils 73a, 73b, 73c, 73d, 73e, and 73f in the second winding direction are arranged.
  • unit sensor coils 74a, 74b, 74c, 74d, and 74e in the second winding direction are arranged.
  • unit sensor coils 75a, 75b, and 75c in the second winding direction are arranged.
  • a unit sensor coil 76a in the second winding direction is disposed.
  • the unit sensor coil in the first winding direction and the unit sensor coil in the second winding direction are adjacent to each other.
  • One of the adjacent unit sensor coils is the first winding direction and the other is the second winding direction.
  • all or part of the coil conductor 69 constituting one unit sensor coil is all or part of the coil conductor 69 constituting the other unit sensor coil. That is, a part or all of the coil conductors 69 constituting the adjacent unit sensor coils are shared with each other. Therefore, the area where the coil conductor 69 overlaps is reduced, and the total extension of the coil conductor 69 can be shortened.
  • the number of unit sensor coils in the first winding direction constituting the sensor coil group 60 of this variation is different from the number of unit sensor coils in the second winding direction. Therefore, even if there is no foreign substance and the magnetic field distribution is uniform, the electromotive force of the sensor coil group 60 does not become 0V.
  • another sensor coil group different from the sensor coil group 60 such as the second sensor coil group 41 shown in FIG. 3A is added or shown in FIG. 4A.
  • a sensor coil group such as the peripheral sensor coil group 51 may be added.
  • the X axis and the Y axis are orthogonal coordinates, but may not be orthogonal if they are not parallel coordinate axes. Any coordinate system that intersects may be used.
  • FIG. 6 is a layout diagram of a third variation of the unit sensor coil of the foreign object detection device according to the first exemplary embodiment.
  • the sensor coil group 80 is also a set sensor coil.
  • the sensor coil group 80 includes unit sensor coils 81, 82, 83, and 84.
  • the coil conductor 85 defines the outer periphery of these unit sensor coils.
  • the coil conductor 85 is continuously electrically connected in series.
  • the unit sensor coil in the first winding direction and the unit sensor coil in the second winding direction are adjacent to each other.
  • One of the adjacent unit sensor coils is the first winding direction and the other is the second winding direction.
  • all or part of the coil conductor 85 constituting one unit sensor coil is all or part of the coil conductor 85 constituting the other unit sensor coil. That is, a part or all of the coil conductors 85 constituting the adjacent unit sensor coils are shared with each other. Therefore, the area where the coil conductor 85 overlaps is reduced, and the total extension of the coil conductor 85 can be shortened.
  • Each unit sensor coil has a hollow circular shape, so-called donut shape, except for the unit sensor coil 84 arranged at the center.
  • the unit sensor coil 84 arranged in the center is circular.
  • Each unit sensor coil is continuously electrically connected in series.
  • the sensor coil group 80 has a spiral shape, but its outer shape may be a polygon such as a quadrangle or a pentagon.
  • FIG. 7 is a layout diagram of a fourth variation of the unit sensor coil of the foreign object detection device according to the first exemplary embodiment.
  • the set sensor coil 90 has a first sensor coil group 91 and a peripheral sensor coil group 92.
  • the first sensor coil group 91 includes unit sensor coils 93, 94, 95, 96, 97, 98, 99, and 100 in the second winding direction.
  • the first sensor coil group 91 further includes unit sensor coils 101, 102, 103, 104, 105, and 106 in the first winding direction.
  • the peripheral sensor coil group 92 includes peripheral unit sensor coils 107 and 108. Peripheral unit sensor coils 107 and 108 are arranged in a missing portion generated in the outermost peripheral portion of first sensor coil group 91.
  • the coil conductor 109 defines the outer shape of each unit sensor coil.
  • the coil conductor 109 is continuously electrically connected in series. Except for the outermost periphery, the unit sensor coil in the first winding direction and the unit sensor coil in the second winding direction are adjacent to each other. One of the adjacent unit sensor coils is the first winding direction and the other is the second winding direction.
  • all or part of the coil conductor 109 constituting one unit sensor coil is all or part of the coil conductor 109 constituting the other unit sensor coil. That is, a part or all of the coil conductors 109 constituting the adjacent unit sensor coils are shared with each other. Therefore, the area where the coil conductor 109 overlaps is reduced, and the total extension of the coil conductor 109 can be shortened.
  • the coil conductor 110 defines the outer shape of each peripheral unit sensor coil.
  • the set sensor coil 90 shown in FIG. 7 has an electromotive force of 0 V in a magnetic field with no foreign matter and a uniform distribution. It is.
  • the lengths of the unit sensor coils constituting the set sensor coil 90 in FIG. 7 are equal in length in the radial direction, but are not limited thereto.
  • the unit sensor coils located in the peripheral part so that the area of each unit sensor coil is equal may be shortened in the radial direction.
  • the width of the unit sensor coil in the radial direction may be determined so that the absolute value of the electromotive force of the unit sensor coil is approximately the same when no foreign matter is present. The same applies to the third variation of the unit sensor coil of the foreign object detection device shown in FIG.
  • This variation is divided into four in the angular direction, but is not limited to this.
  • the magnetic field distribution is uniform and the electromotive force of the set sensor coil when there is no foreign object is 0 V.
  • the size and direction may be different.
  • the electromotive force of the set sensor coil may not be 0V.
  • the sensitivity as the foreign object detection device can be improved.
  • one unit sensor coil and the adjacent unit sensor coil have the current in the first direction or both in the second direction with respect to the actual change in the magnetic field.
  • Direction Such a phenomenon occurs in the vicinity of the boundary where the directions of the magnetic fields are opposite to each other.
  • the current generated in the unit sensor coil adjacent to the actual magnetic field is in the first direction.
  • the other is in the second direction. Therefore, as a whole, at least a part of the electromotive force is canceled out, and the sensitivity of the foreign object detection device is improved.
  • the electromotive force of the set sensor coil can be adjusted according to the area and number of each unit sensor coil for the non-uniform magnetic field distribution including the case where the direction of the magnetic field is reversed.
  • the electromotive force may not be 0 V even when the area of each unit sensor coil varies. Also in this case, since at least a part of the electromotive force of the unit sensor coil in the first winding direction and the electromotive force of the unit sensor coil in the second winding direction are offset, the sensitivity as the foreign object detection device can be improved.
  • each sensor coil group may be electrically connected in series in order to obtain the electromotive force of the set sensor coil. They may be electrically connected in parallel. Or you may obtain
  • the coil conductors of the foreign object detection device according to Embodiment 1 do not intersect at the part that defines the outer shape of the unit sensor coil.
  • FIG. 8 is a basic configuration diagram of a main part of the foreign object detection device according to the second embodiment.
  • FIG. 8 is a perspective view.
  • the foreign object detection device 127 includes a set sensor coil group 120, a switch 125, and a determination device 126.
  • the set sensor coil group 120 includes a first set sensor coil 121, a second set sensor coil 122, a third set sensor coil 123, and a fourth set sensor coil 124.
  • the switch 125 selectively drives the first set sensor coil 121, the second set sensor coil 122, the third set sensor coil 123, and the fourth set sensor coil 124.
  • the determination device 126 has the same function as the determination device 18 of the first embodiment.
  • the first set sensor coil 121, the second set sensor coil 122, the third set sensor coil 123, and the fourth set sensor coil 124 have the same configuration as the sensor coil group 60 shown in FIG. 5A.
  • the second set sensor coil 122 is arranged to be offset from the first set sensor coil 121 in the vertical direction and the horizontal direction in FIG.
  • the third set sensor coil 123 is also offset with respect to the second set sensor coil 122
  • the fourth set sensor coil 124 is also offset with respect to the third set sensor coil 123 in the vertical and horizontal directions in FIG. Yes.
  • the foreign object detection device of the first embodiment cannot detect a foreign object when there is a foreign object on the coil conductor that defines the outer shape of each unit sensor coil of the set sensor coil. Further, even when a foreign object exists across both the unit sensor coil in the first winding direction and the unit sensor coil in the second winding direction, the foreign object cannot be detected or the detection output is lowered.
  • the foreign object detection device 127 can detect the second set sensor coil 122, the third set sensor coil 123, and the fourth set sensor coil even if the foreign object cannot be detected when the first set sensor coil 121 is driven. It is intended to detect at least one of 124. Depending on the shape and location of the foreign matter, there may be cases where it cannot be detected yet, but the possibility that it cannot be detected can be reduced compared to the case where there is only one sensor coil group.
  • the number of set sensor coils is not limited to four, and may be two or more. It is considered that the greater the number of set sensor coils, the less likely it is that foreign matter cannot be detected. However, if the number is too large, the wiring of coil conductors becomes complicated. Considering this point, a well-balanced number may be set.
  • the first set sensor coil 121, the second set sensor coil 122, the third set sensor coil 123, and the fourth set sensor coil 124 are offset every length obtained by dividing the size of the unit sensor coil into four equal parts. However, the offset amount may not be equally divided.
  • the first set sensor coil 121, the second set sensor coil 122, the third set sensor coil 123, and the fourth set sensor coil 124 are all units in the first winding direction as in the sensor coil group 60 shown in FIG. 5A.
  • the number of sensor coils and the number of unit sensor coils in the second winding direction are different.
  • each set sensor coil is newly added with a sensor coil group like the second sensor coil group 41 in FIG. 3A and the peripheral sensor coil group 51 in FIG. 4A.
  • the number of unit sensor coils in the first winding direction can be made equal to the number of unit sensor coils in the second winding direction.
  • FIG. 9 is a mapping diagram of the first variation of the foreign object detection apparatus according to the second embodiment.
  • the difference from the foreign object detection device 127 of FIG. 8 is the arrangement of the set sensor coil and the unit sensor coil.
  • the set sensor coil group 130 has four sensor coil groups.
  • the unit sensor coils 131, 132, 133, and 134 belong to the first sensor coil group, and are arranged in a region denoted by “a” in FIG.
  • the unit sensor coils 135, 136, 137, and 138 belong to the second sensor coil group, and are arranged in a region denoted by “b” in FIG.
  • Unit sensor coils 139, 140, 141, and 142 belong to the third sensor coil group, and are arranged in a region marked with “c” in FIG.
  • the unit sensor coils 143, 144, 145, and 146 belong to the fourth sensor coil group, and are arranged in a region denoted by “d” in FIG.
  • the unit sensor coils belonging to each sensor coil group are continuously electrically connected in series.
  • Each sensor coil group is selectively driven.
  • the reason for selectively driving is the same as that of the foreign object detection device 127 shown in FIG.
  • the first embodiment may be applied to the foreign object detection device according to the second embodiment.
  • FIG. 10 is a conceptual diagram of a unit sensor coil of the foreign object detection device according to the third exemplary embodiment.
  • the unit sensor coil 150 has a coil conductor 151 and switches 155, 156 and 157.
  • the coil conductor 151 includes a reference conductor 152, a first adjustment conductor 153, and a second adjustment conductor 154.
  • the reference conductor 152 is located on the outermost periphery of the unit sensor coil 150.
  • the first adjustment conductor 153 and the second adjustment conductor 154 are positioned so as to shortcut the reference conductor 152.
  • the switch 155 is located in the reference conductor 152.
  • the switch 156 is located between the reference conductor 152 and the first adjustment conductor 153.
  • the switch 157 is located between the reference conductor 152 and the second adjustment conductor 154.
  • the closed loop formed by the reference conductor 152 and the first adjustment conductor 153 By closing the switch 156 and opening the switches 155 and 157, the closed loop formed by the reference conductor 152 and the first adjustment conductor 153 generates an electromotive force due to a change in the external magnetic field as a unit sensor coil. At this time, since the area of the closed loop is reduced, the absolute value of the electromotive force is also reduced.
  • the closed loop formed by the reference conductor 152 and the second adjustment conductor 154 By closing the switch 157 and opening the switches 155 and 156, the closed loop formed by the reference conductor 152 and the second adjustment conductor 154 generates an electromotive force due to a change in the external magnetic field as a unit sensor coil. At this time, since the area of the closed loop is further reduced, the absolute value of the electromotive force is further reduced.
  • the unit sensor coil 150 of the present embodiment can adjust the electromotive force by changing the area.
  • the unit sensor coil 150 of the present embodiment can be applied to the foreign object detection device of the first embodiment or the second embodiment.
  • the unit sensor coil 150 of the present embodiment is applied.
  • the electromotive force of the set sensor coil can be adjusted.
  • the unit sensor coil 150 of the present embodiment may be applied to all unit sensors in the set sensor coil, but may be applied to only some of the unit sensor coils. Switching of the reference conductor 152, the first adjustment conductor 153, and the second adjustment conductor 154 is performed by three switches, but is not limited to this.
  • the third embodiment may be applied to the first and second embodiments.
  • the shape of the unit sensor coil is not limited to a rectangle or a circle, and may be another polygon, an ellipse, a sector, or other shapes.
  • the foreign matter detection device In the foreign matter detection device according to the first to third embodiments, at least a part of the electromotive force of the unit sensor coil in the first winding direction and the electromotive force of the unit sensor coil is canceled in the second winding direction.
  • the current flowing through the coil conductor can be reduced. As a result, loss due to current flow is reduced, and electric efficiency is good.
  • the coil conductor can be made thin, the generation of eddy currents generated in the coil conductor by an external magnetic field can be suppressed, eddy current loss can be reduced, and the amount of heat generated in the coil conductor can be reduced.
  • a group of unit sensor coils is defined as a sensor coil array.
  • a plurality of unit sensor coils belonging to one sensor coil array may not be defined by a single coil conductor, and may be defined by a plurality of coil conductors. Since it is a lump, it is an assembly of continuous unit sensor coils.
  • the area of the sensor coil array is divided, one unit sensor coil group formed by the division is formed, and the output voltage V0 is minimized by using this as one unit.
  • This unit sensor coil group will be referred to as a unit V0 reduction coil.
  • FIG. 11 is an explanatory diagram of a rectangular unit V0 reduction coil in Reference Example 1.
  • the sensor coil array 210 is composed of a plurality of unit V0 reduction coils 212, and the unit V0 reduction coil 212 is composed of four unit sensor coils 211a to 211d. More specifically, the unit V0 reduction coil 212 includes two unit sensor coils 211a, 211b, 211c, and 211d in total, two in the X direction and two in the Y direction. By combining the electromotive forces of the four unit sensor coils, the output voltage V0 of the unit V0 reduction coil 212 is reduced.
  • the unit V0 reduction coil 212 is repeatedly arranged in the X direction and is also repeatedly arranged in the Y direction so as to fill the sensor coil array. In FIG. 11, only the upper left unit V0 reduction coil 212 is shown.
  • the number of unit sensor coils constituting the unit V0 reduction coil 212 may be any number, and the number of unit sensor coils in the X direction and the number of unit sensor coils in the Y direction may be any number.
  • the output voltage V0 may be reduced in each unit sensor coil group in the Y direction.
  • the electromotive forces of the unit sensor coils 211a and 211c are canceled out.
  • the electromotive forces of the unit sensor coils 211b and 211d are offset.
  • FIG. 12 is an explanatory diagram of the circular unit V0 reduction coil in Reference Example 1.
  • This reference example is suitable for spiral power receiving coils.
  • the sensor coil array 220 includes a plurality of unit V0 reduction coils 222.
  • the unit V0 reduction coil 222 includes four unit sensor coils 221a, 221b, 221c, and 221d.
  • the sign and size of the electromotive force are adjusted so that the sum of the electromotive forces of the four unit sensor coils 221a to 221d constituting the unit V0 reduction coil 222 is reduced so that the electromotive force of the unit V0 reduction coil 222 is reduced.
  • the electromotive forces of the unit sensor coils 221a and 221d have a positive sign and the same magnitude
  • the electromotive forces of the unit sensor coils 221c and 221b have a negative sign and the same magnitude
  • the unit sensor coils 221a to 221d The electromotive force of the unit V0 reduction coil 222 is reduced.
  • the unit V0 reduction coil 222 has a donut shape, and is divided into four with the diameters in the X direction and the Y direction as a boundary to form four unit sensor coils.
  • a plurality of unit V0 reduction coils 222 are arranged so as to fill the sensor coil array 220 while increasing the diameter. In FIG. 12, only one unit V0 reduction coil 222 is shown.
  • the unit V0 reduction coil at the center of the sensor coil array 220 is not a donut shape but a circular shape with no gap in the center in order to fill the entire region.
  • any number of donut-shaped unit V0 reduction coils 222 may be divided. Further, the radial width of the unit V0 reduction coil 222 may not be constant. That is, the radial width of the unit sensor coil may not be constant.
  • the width in the radial direction of the unit sensor coil becomes shorter as the distance from the center portion increases.
  • the detection sensitivity may deteriorate.
  • FIG. 13 is a diagram illustrating the positional relationship between the unit V0 reduction coil and the foreign matter in Reference Example 1.
  • FIG. 14 is a diagram showing sensitivity evaluation in Reference Example 1. A method for improving the dependence of the size and location of the foreign matter on the foreign matter detection sensitivity in the unit V0 reduction coil composed of a square unit sensor coil will be described with reference to FIGS.
  • the foreign object arrangement 231 shown in FIG. 13 shows four arrangement places of the rod-like foreign substance 234.
  • the first arrangement, the second arrangement, the third arrangement, and the fourth arrangement are shown as being shifted in the Y direction for easy understanding, but actually the Y direction has the same coordinates.
  • the position is shifted only in the X direction.
  • the length of the foreign material 234 is the same as the length of the unit V0 reduction coil 235 in the X direction.
  • the unit V0 reduction coil 235 includes four unit sensor coils 236 in the X direction and one in the Y direction.
  • the sign of the unit sensor coil 236 represents the sign of an electromotive force at a certain moment.
  • the number of positive and negative unit sensor coils 236 is the same.
  • the code pattern 232 shows three first patterns, a second pattern, and a third pattern in which two unit V0 reduction coils 235 are arranged in the X direction and the code arrangement of the unit sensor coil 236 is changed.
  • FIG. 14 shows a result of relatively evaluating the sensitivity of foreign object detection in the combination of the first to fourth arrangements of the foreign substance 234 and the first to third patterns of the code arrangement of the unit sensor coil 236. Indicates.
  • the first pattern to the third pattern will be described.
  • the unit sensor coils 236 constituting the unit V0 reduction coil 235 are arranged such that two of the positive unit sensor coils 236 are adjacent to each other and two of the negative unit sensor coils 236 are adjacent to each other.
  • the unit sensor coils 236 of the two unit V0 reduction coils 235 have the same code arrangement.
  • the left unit V0 reduction coil 235 is the same as the first pattern.
  • the code arrangement of the right unit V0 reduction coil 235 and the code arrangement of the left unit V0 reduction coil 235 have a relationship of mirror inversion in the X direction with respect to the boundary between the two unit V0 reduction coils 235.
  • the third pattern is arranged so that the signs of the adjacent unit sensor coils 236 included in the left unit V0 reduction coil 235 are different from each other, and the left unit V0 reduction coil 235 is similar to the second pattern.
  • the codes are arranged in the form of mirror inversion.
  • the electromotive force of the unit sensor coil 236 existing at the place where the foreign object 234 is disposed changes.
  • the sensitivity is relatively evaluated by the sign and the number of unit sensor coils 236 whose electromotive force changes.
  • the sum of the electromotive forces of the positive and negative unit sensor coils 236 in which the electromotive force changes when there is no foreign object is zero.
  • the difference between the number of plus and minus signs is 1 or more, the sensitivity is good, and when it is 0, the sensitivity is bad, and the mark is poor.
  • the unit sensor coil 236 where the foreign matter is present has the same number of plus and minus signs, so the number of signs is zero. It is difficult to detect “x”.
  • the second pattern is “ ⁇ ” only for the first array, and “ ⁇ ” for the second to fourth arrays.
  • the first array and the third array are “x”, and the second array and the fourth array are “ ⁇ ”.
  • the overall evaluation of sensitivity evaluation shown in FIG. 14 is based on the evaluation results of the first array to the fourth array, and the first pattern with the lowest evaluation is “x” and the second pattern with the best evaluation is “ ⁇ ”. In addition, the third pattern, which is the middle, is set to “ ⁇ ”.
  • the second pattern is the best. That is, the unit sensor coil 236 constituting the unit V0 reduction coil 235 may be arranged so as to be mirror-reversed around the boundary between the adjacent unit V0 reduction coils 235. According to this, it is possible to improve the sensitivity performance by probabilistically reducing the location of the foreign matter where the sensitivity of foreign matter detection deteriorates in the size and shape of a specific foreign matter.
  • the unit V0 reduction coil 235 is illustrated as having four unit sensor coils 236 in the X direction and one unit sensor coil 236 in the Y direction. Any number may be used, and the same effect can be obtained by applying the above method. If there are two or more unit sensor coils 236 in the Y direction, the unit sensor coil 236 may be arranged so that the mirror is inverted in the Y direction around the boundary between the unit V0 reduction coils 235 adjacent in the Y direction. Good. The effect is the same at this time.
  • the outputs of a plurality of sensor coil arrays are detected.
  • a plurality of sensor coil arrays may be electrically connected in series or electrically in parallel. You may connect to.
  • FIG. 15 is an explanatory diagram of a low sensitivity region of the unit sensor coil in Reference Example 2.
  • FIG. 15 shows a set sensor coil 240 constituted by a square unit sensor coil, a low sensitivity region 242 in which the sensitivity of foreign object detection is reduced, and a unit sensor coil 241 focused on for explanation.
  • Adjacent unit sensor coils have electromotive forces opposite to each other, and their signs plus and minus at a certain moment are shown in the figure.
  • the electromotive force of the unit sensor coil 241 is positive, and the signs of adjacent unit sensor coils are all negative. All the conductive wires which are all four sides constituting the unit sensor coil 241 to be noticed are all in the low sensitivity region 242. In other words, the case where the sign of the electromotive force of the adjacent unit sensor coil is reversed is the same, so when arranging unit sensor coils side by side with no gap in this way, all sides except for the sides of the surrounding unit sensor coils are arranged. Sensitivity to detect foreign objects on the top is low.
  • FIG. 16 is an explanatory diagram of two rectangular multi-sensor coils in Reference Example 2.
  • FIG. 16 uses two unit sensor coils of set sensor coils 251 and 252 each composed of three unit sensor coils in the X direction and three unit sensor coils in the Y direction, and is shifted from each other in the X direction and the Y direction. Two arranged multi-sensor coils 250 are shown.
  • both of the set sensor coils 251 and 252 are formed of a square unit sensor coil having a side length “a”, and both are arranged to be shifted from each other by a / 2 in the X direction and the Y direction.
  • the set sensor coils 251 and 252 have the same configuration as the set sensor coil 240 shown in FIG.
  • the area of the low sensitivity region can be reduced by using a plurality of set sensor coils. Even if a low sensitivity region exists in a certain set sensor coil, it is based on the idea that a foreign object can be detected by another set sensor coil.
  • the unit sensor coil 253 at the center of the set sensor coil 251 is hatched.
  • the low sensitivity region 254 exists in a state of dots on each of the four sides.
  • a place other than the low sensitivity region 254 can be detected because it is not a low sensitivity region for other unit sensor coils.
  • the low sensitivity region 254 is on the side of the unit sensor coil 253 belonging to the set sensor coil 251 and on the side of the unit sensor coil belonging to the set sensor coil 252, the two sides intersect with each other.
  • the shape of the low sensitivity region is a region close to a point or a circle. The same applies to other unit sensor coils.
  • the size of the low sensitivity region can be significantly reduced in the low sensitivity region 254 of the multi sensor coil 250 as compared to the set sensor coil 240 that is not of the multi sensor coil system.
  • FIG. 17 is an explanatory diagram of three rectangular multi-sensor coils in Reference Example 2.
  • FIG. 17 shows a multi-sensor coil 260 composed of three set sensor coils 261, 262 and 263.
  • the shape of each set sensor coil is the same as that of FIG.
  • the three set sensor coils 261, 262 and 263 are shifted by equally dividing the length a of the side of the unit sensor coil into three.
  • the unit sensor coil 264 at the center of the set sensor coil 261 is hatched.
  • the unit sensor coil 264 there is no low sensitivity region on all sides. This is because there are no overlapping portions on all sides of the set sensor coils 261, 262 and 263. That is, if a multi-sensor coil is formed by three set sensor coils, the low sensitivity region on the side of the unit sensor coil can be eliminated. The same applies to the case of four or more set sensor coils.
  • the side of the unit sensor coil is equally divided and the set sensor coils are shifted from each other.
  • the present invention is not limited to this.
  • the X direction and the Y direction are shifted by the same distance, but may be different distances, or may be shifted only in the X direction or only in the Y direction.
  • the effect of minimizing the low sensitivity region can be obtained by the multi-sensor coil method.
  • the multi-sensor coil method can be applied to a circular or donut-shaped sensor coil to reduce the area of the low sensitivity region and to eliminate it.
  • FIG. 18 is an explanatory diagram of three circular multi-sensor coils in Reference Example 2.
  • FIG. 18 is a reference example of a multi-sensor coil 270 formed by using three set sensor coils 271, 272, and 273 formed of circular and donut-shaped unit sensor coils.
  • the multi-sensor coil 270 of FIG. 18 is suitable for a power receiving device of a non-contact power feeding system having a spiral coil.
  • a round point is given to the intersection of the radial direction and the circumferential direction in the same set sensor coil.
  • the set sensor coil 271 is indicated by a solid line
  • the set sensor coil 272 is indicated by a one-dot chain line
  • the set sensor coil 273 is indicated by a broken line.
  • Each of the three set sensor coils 271, 272, and 273 has a straight line extending outward from the center of the circle to form a donut-shaped closed unit sensor coil.
  • the unit sensor coil 274 belonging to the set sensor coil 271 to be noticed is located in the middle of the three unit sensor coils constituting the set sensor coil 271. In the entire region of the side forming the unit sensor coil 274, the other two set sensor coils 271 and 272 are not formed at the same overlapping portion. In other words, there is no low sensitivity area.
  • the multi-sensor coil composed of the square unit sensor coils described above, even in the case of a circular or donut shape, if the multi-sensor coil is composed of three or more set sensor coils, It is possible to eliminate the low sensitivity region.
  • Foreign object detection is performed before the start of power supply, during power supply, and after the end of power supply.
  • the foreign object detection performed during power feeding may be performed constantly or at intermittent timing. If the foreign object detection cycle is made too short, an increase in power consumption becomes a problem, and a cycle time that does not cause a problem is required.
  • the temperature rise time of the foreign object is determined by the magnitude and frequency of the external magnetic field at the position of the foreign object and the material and shape of the foreign object.
  • the disadvantage due to the presence of foreign matter is temperature rise, and in the case of EV application, if the rise time is short, it is on the order of several seconds, so foreign matter detection must be performed at a period of at least several seconds. In order to cope with the temperature rise with a margin, it is desirable to detect foreign matter at a period of about 1 ms.
  • FIG. 19 is a magnetic flux change measurement waveform diagram of the non-contact power feeding device in Reference Example 3.
  • FIG. 19 shows a change in the magnetic field generated by the power receiving coil of several kW and 100 kHz as an induced electromotive force waveform 280 obtained by measuring the induced electromotive force using the search coil.
  • the high frequency noise 282 is noise of several tens of MHz or more due to switching of the inverter circuit and the rectifier circuit of the power receiving coil.
  • a period in which the induced electromotive force reaches a peak is an electromotive force peak period 283.
  • the search coil used for measurement is the same as the sensor coil in principle, and is affected by the same noise as the high-frequency noise 282 when it receives high-frequency electromagnetic noise. As a result, noise is superimposed on the electromotive force of the sensor coil and voltage fluctuation occurs. As a result, erroneous detection occurs. Further, in order to avoid erroneous detection, there is a problem that the sensitivity performance of foreign object detection must be lowered as a result.
  • the foreign object detection may be performed at the timing of the electromotive force peak period 283 where the magnetic flux change is maximized.
  • the timing information may be obtained from the inverter drive timing information of the primary side device, for example.
  • the current may be detected by detecting the current of the power receiving coil and detecting that the current becomes zero.
  • a search coil for detecting a magnetic field generated by the power receiving coil may be provided to obtain the timing of the electromotive force peak period 283. At this time, the search coil may be formed on the sensor coil array substrate.
  • the search coil may be used, and the timing may be obtained by measuring the external magnetic field change using the sensor coil.
  • This reference example can be applied to the foreign matter detection apparatus described in the first to third embodiments.
  • FIG. 20 is a conceptual diagram of the sensor coil group in Reference Example 4
  • FIG. 21 is another conceptual diagram of the sensor coil group in Reference Example 4.
  • “+” indicates that the unit coil sensor located at that location is in the first winding direction
  • “ ⁇ ” indicates the second winding direction if the unit coil sensor is located at that location. It is shown that.
  • the sensor coil group 300 includes a plurality of unit sensor coils 301.
  • the coil conductor 302 defines the outer shape of each unit sensor coil 301 and is continuously and electrically connected in series.
  • Each unit sensor coil 301 has a coil conductor 302 wound twice. In this way, the unit sensor coil may be wound twice.
  • the number of windings is not limited to two and may be three or more.
  • the circuit for measuring the electromotive force is connected to the end of the coil conductor 302 below the page. Therefore, the unit sensor coil below the paper surface is electrically close to the circuit for measuring the electromotive force, and the unit sensor coil above the paper surface is far.
  • the sensor coil group 310 includes a plurality of unit sensor coils 311.
  • the coil conductor 312 defines the outer shape of each unit sensor coil 311 and is continuously and electrically connected in series.
  • the sensor coil group 310 is wound twice. In this way, the sensor coil group may be wound twice as a unit. Further, the set sensor coil may be wound twice as a unit. Of course, the number of windings is not limited to two, but may be three or more.
  • the circuit for measuring the electromotive force is connected to the end of the coil conductor 312 below the page. Therefore, the unit sensor coil below the paper surface is electrically close to the circuit for measuring the electromotive force, and the unit sensor coil above the paper surface is far.
  • the electromotive force signal transmission time when foreign matter is present is shorter.
  • the sensor coil group is large and the number of windings is large, the coil conductor length becomes long, the voltage of the electromotive force signal is delayed due to the presence of foreign matter, and as a result, the electromotive force value becomes small and the detection sensitivity becomes small. descend. Therefore, when the coil conductor is 10 m or longer, it is preferable to wind a plurality of turns in the sensor coil group unit or the set sensor coil unit shown in FIG. When the length of the coil conductor is relatively short, it may be wound a plurality of times for each unit sensor coil.
  • Reference Example 4 The technique described in Reference Example 4 can be applied to Embodiments 1 to 3 and Reference Examples 1 to 3.
  • FIG. 22A is a diagram of the unit sensor coil before improvement in Reference Example 5
  • FIG. 22B is a diagram of the unit sensor coil after improvement in Reference Example 5.
  • the set sensor coil 285 has a plurality of unit sensor coils. As part thereof, there are unit sensor coils 286, 287, 288, and 289. These unit sensor coils are wound a plurality of times.
  • the outer shape of the set sensor coil 285 is defined by a coil conductor 291.
  • the unit sensor coil 286 is adjacent to the unit sensor coils 287, 288, and 289 on the left and right sides and the lower side of the drawing. Therefore, portions of the coil conductor 291 adjacent to the unit sensor coils 287, 288, and 289 also serve as the coil conductors of these unit sensor coils. However, the coil conductor 291 on the upper side in FIG. 22A has no adjacent unit sensor coil. This region is a single conductor area 290 of the coil conductor 291.
  • the set sensor coil 292 shown in FIG. 22B is one form that solves this problem.
  • the set sensor coil 292 has a plurality of unit sensor coils. As part thereof, there are a unit sensor coil 293, unit sensor coils 294, 295, and 296. These unit sensor coils are wound a plurality of times.
  • the unit sensor coil 293 has an outer shape defined by a coil conductor 298.
  • a portion where no adjacent unit sensor coil exists in the set sensor coil 292 is defined as a single conductor area 297 of the coil conductor 298.
  • the withstand voltage between the wirings can be increased by increasing the interval between the windings of the coil conductor 298.
  • the withstand voltage of the winding becomes a problem. Therefore, in the unit sensor coil in this region, if the interval between the windings on the side where the unit sensor coil does not exist is increased Good.
  • Reference Example 5 The technique described in Reference Example 5 can be applied to Embodiments 1 to 3 and Reference Examples 1 to 4.
  • the foreign object detection device of the present disclosure is not limited to the first to third embodiments. Another embodiment realized by combining arbitrary components in the first to third embodiments, and various modifications conceivable by those skilled in the art without departing from the spirit of the present invention. The modified examples and various devices incorporating the foreign object detection device according to the above embodiment are also included in the present invention.
  • the foreign object detection device of the present invention can be applied to a foreign object detection device of a non-contact power feeding system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

 本開示の異物検出装置(10)は、セットセンサコイル(11)と、セットセンサコイル(11)の電圧に応じて異物(19)を検出する判定装置(18)とを備え、セットセンサコイル(11)が有する第1センサコイル群(20)は、第1巻き方向のユニットセンサコイル(23~30)と、第1巻き方向と逆の方向の第2巻き方向のユニットセンサコイル(31)およびユニットセンサコイル(32)とが電気的に直列接続されており、各ユニットセンサコイルは、当該ユニットセンサコイルの外形を規定するコイル導体(39)を有し、コイル導体(39)は連続的にかつ電気的に直列に接続され、第1巻き方向のユニットセンサコイルを構成する前記コイル導体(39)の一部または全部は、第2巻き方向のユニットセンサコイルを構成する前記コイル導体(39)の一部または全部である。

Description

異物検出装置
 本開示は、非接触で電力を伝える非接触給電に関し、電力を伝える際に影響を及ぼす異物を検出する異物検出装置に関する。
 電力を非接触で供給する技術は非接触給電と呼ばれている。非接触給電システムは、一例として、給電側に給電装置を、受電側に受電装置を設け、電磁誘導または磁気共鳴を利用して電力を送電する。非接触給電システムは、携帯電話や電動歯ブラシなどに利用される低電力の送電だけでなく、電気自動車の充電などに利用される高電力の送電も検討されている。
 給電装置と受電装置との間に金属などの導電体の異物が存在すると、異物に渦電流が発生し、異物が発熱する恐れが生じる。異物が鉄などの強磁性体の場合には、ヒステリシス損により発熱を生じるおそれもある。特に、非接触給電システムが高電力を送電する場合には、異物の発熱量が大きくなってしまう。
 そこで、非接触給電システムにおいて、異物検出装置が提案されている。異物検出装置の一例として、コイルを用いる方法が知られている。この方法は、時間により変化する磁界中にコイルを配置すると電磁誘導により起電力が生じることを利用している。異物が存在し、この異物に渦電流が流れると、磁束の一部が異物を避けるので、異物がないときに比べて磁束密度の分布が異なる。異物が強磁性体の場合には、異物を通る磁束密度が増すので、この場合も異物がないときに比べて磁束密度の分布が異なる。このように、コイルを貫く磁界は、異物の有無によって変化するので、コイルの電磁誘導による起電力も異物の有無によって変化する。異物検出装置はこの起電力に基づいて異物の検出を行なう。
 複数のコイルを有し、そして、異物がないときに、隣接する2つのコイルを流れる誘導電流が互いに逆向きである異物検出装置が知られている。非接触給電システムの送電に用いる磁界を利用して異物検出を行なう異物検出装置も知られている(特許文献1参照)。
特開2012-249401号公報
 しかしながら、特許文献1に記載の異物検出装置のコイルは、コイルを構成する導体が重複する部分が多い。従って、コイルを構成する導体の総延長も長くなる。導体の総延長が長いと、コイルの電圧降下も大きくなり、非接触給電システムの異物検出感度を低下させてしまう。
 本発明は、上記従来技術の課題を解決するものであり、検出感度が高い異物検出装置を提供する。
 本開示の異物検出装置は、セットセンサコイルと、前記セットセンサコイルの電圧に応じて異物を検出する判定装置と、を備えた異物検出装置であって、前記セットセンサコイルは、少なくとも一つのセンサコイル群を有し、前記少なくとも一つのセンサコイル群は、磁界分布が均一な外部磁界の変化に対し第1方向へ電流を流そうとする第1符号の起電力を発生させる第1巻き方向の複数のユニットセンサコイルと、前記外部磁界の変化に対し前記第1方向と逆の方向である第2方向へ電流を流そうとする第2符号の起電力を発生させる第2巻き方向の複数のユニットセンサコイルとが電気的に直列接続されており、前記複数のユニットセンサコイルのそれぞれは、当該ユニットセンサコイルの外形を規定するコイル導体を有し、前記センサコイル群において、前記コイル導体は連続的にかつ電気的に直列に接続され、前記第1巻き方向のユニットセンサコイルを構成する前記コイル導体の一部または全部は、前記第2巻き方向のユニットセンサコイルを構成する前記コイル導体の一部または全部である。
 本発明によれば、異物の検出感度が高い異物検出装置を提供することが可能となる。
図1は、実施の形態1に係る異物検出装置の動作原理図である。 図2Aは、実施の形態1に係る異物検出装置の主要部の基本構成図である。 図2Bは、図2Aのユニットセンサコイルのマッピング図である。 図3Aは、実施の形態1に係る異物検出装置のユニットセンサコイルの配置図である。 図3Bは、図3Aのユニットセンサコイルのマッピング図である。 図4Aは、実施の形態1に係る異物検出装置のユニットセンサコイルの第1バリエーションの配置図である。 図4Bは、図4Aのユニットセンサコイルのマッピング図である。 図5Aは、実施の形態1に係る異物検出装置のユニットセンサコイルの第2バリエーションの配置図である。 図5Bは、図5Aのユニットセンサコイルのマッピング図である。 図6は、実施の形態1に係る異物検出装置のユニットセンサコイルの第3バリエーションの配置図である。 図7は、実施の形態1に係る異物検出装置のユニットセンサコイルの第4バリエーションの配置図である。 図8は、実施の形態2に係る異物検出装置の主要部の基本構成図である。 図9は、実施の形態2に係る異物検出装置の第1バリエーションのマッピング図である。 図10は、実施の形態3に係る異物検出装置のユニットセンサコイルの概念図である。 図11は、参考例1における四角形のユニットV0低減コイルの説明図である。 図12は、参考例1における円形ユニットV0低減コイルの説明図である。 図13は、参考例1におけるユニットV0低減コイルと異物との位置関係を説明する図である。 図14は、参考例1における感度評価を示す図である。 図15は、参考例2におけるユニットセンサコイルの低感度領域の説明図である。 図16は、参考例2における2個の四角形マルチセンサコイルの説明図である。 図17は、参考例2における3個の四角形マルチセンサコイルの説明図である。 図18は、参考例2における3個の円形マルチセンサコイルの説明図である。 図19は、参考例3における非接給電装置の磁束変化計測波形図である。 図20は、参考例4におけるセンサコイル群の概念図である。 図21は、参考例4におけるセンサコイル群の別の概念図である。 図22Aは、参考例5における改良前のユニットセンサコイルの図である。 図22Bは、参考例5における改良後のユニットセンサコイルの図である。
 以下に、本開示の実施の形態について図面を参照しながら説明する。なお、本発明は以下の実施の形態に限定されるものではない。
 (実施の形態1)
 実施の形態1に係る異物検出装置について図面を用いて説明する。
 図1は、実施の形態1に係る異物検出装置の動作原理図である。異物検出装置10は、セットセンサコイル11と、判定装置18とを有する。セットセンサコイル11は、ユニットセンサコイル12およびユニットセンサコイル13の複数のユニットセンサコイルを有する。ユニットセンサコイル12およびユニットセンサコイル13は、コイル導体14によってその外形が規定されている。コイル導体14は、連続的に接続され、かつ電気的に直列に接続されている。連続的に接続されかつ電気的に直列に接続されているコイル導体14により外形が規定されるユニットセンサコイルの集合体を、センサコイル群と定義する。図1においては、センサコイル群は1個であるのでセットセンサコイル11と同じとなる。ユニットセンサコイル12およびユニットセンサコイル13は、外部の磁界の変化により起電力を発生させる。判定装置18は、セットセンサコイル11としての起電力により異物の有無を判定する。
 以下、図1の異物検出装置10の動作原理を説明する。まず、異物19が存在しない場合について説明する。
 外部磁界15が、ユニットセンサコイル12およびユニットセンサコイル13を貫いているとする。外部磁界15は、大きさおよび方向が一様であるとする。外部磁界15は、図1の矢印の方向に磁界が増加しているとする。ユニットセンサコイル12およびユニットセンサコイル13は、形状および大きさが同じであるとする。
 このとき、ユニットセンサコイル12には、電磁誘導により第1方向への電流16を流すような起電力が発生する。このユニットセンサコイル12に生じる起電力は、第1符号の起電力であるとする。そして、この第1符号の起電力を生じるユニットセンサコイルの巻き方向を、第1巻き方向と呼ぶことにする。同様に、ユニットセンサコイル13には電磁誘導により第1方向への電流16とは逆方向の第2方向への電流17を流すような起電力が発生する。このユニットセンサコイル13に生じる起電力は、第1符号の起電力とは逆の符号の第2符号の起電力である。そして、この第2符号の起電力を生じるユニットセンサコイルの巻き方向を第2巻き方向と呼ぶことにする。ユニットセンサコイル12およびユニットセンサコイル13は、形状および大きさが同じであるので、第1符号の起電力と第2符号の起電力の絶対値とは同じとなる。ユニットセンサコイル12およびユニットセンサコイル13のそれぞれに生じた起電力は相殺されるので、セットセンサコイル11の起電力は0Vとなる。
 次に、異物19が存在する場合について考える。異物19は、ユニットセンサコイル12を貫く磁束上にあるとする。このとき、異物19が鉄などの強磁性体でヒステリシス損が生じた場合には、この影響によりユニットセンサコイル12を貫く磁束はユニットセンサコイル13を貫く磁束よりも大きくなる。異物19が導電体の場合には、異物19内部で渦電流が発生し、この渦電流による磁界の影響を受けて、ユニットセンサコイル12を貫く外部からの磁束はユニットセンサコイル13を貫く外部からの磁束はよりも小さくなる。このように異物19が存在することにより磁界の分布に偏りが生じ、これによってユニットセンサコイル12およびユニットセンサコイル13に生じる起電力の絶対値に差が生じ、セットセンサコイル11の起電力が0ではなくなる。セットセンサコイル11の起電力が0ではなくなったときに判定装置18は異物19が存在すると判断する。
 給電システムが発生する磁界に比べると、異物19が存在することによる磁界の変化は非常に小さい。特に、電気自動車などの高電力を送電する場合は、その差が顕著であり、異物19が存在することによる起電力の変化と、ノイズによる起電力の変化の違いを見分けることが困難になる場合もある。しかし、異物19が存在しないときの起電力が0Vであると、異物19の存在による起電力の変化を検出することが容易になる。図1に示す異物検出装置10は、上記のような理由により、異物19が存在しないときに、ユニットセンサコイル12の起電力とユニットセンサコイル13の起電力とが相殺されるようにしている。
 以上が異物検出装置10の動作原理である。なお、異物19が存在しないときに、セットセンサコイル11の起電力を完全に0Vにすることは困難であり、現実には0Vに対し、ある程度の許容幅を持たせた閾値を設定し、この閾値を基準にして異物の有無を検出する。
 なお、第1符号の起電力および第2符号の起電力の「符号」とは、具体的には電磁誘導により生じる電圧の符号を意味している。ここでは、ある瞬間に、ある1つのユニットセンサコイルが第1符号の起電力発生させているとき、他のユニットセンサコイルの起電力の正負がこの第1符号の起電力を発生させているユニットセンサコイルと同じであれば第1符号とし、異なっていれば第2符号としている。一般に、ある一つのユニットセンサコイルは、ある瞬間において正の起電力を発生させても、その後に負の起電力を発生させ、その後に再び正の起電力を発生させる。従って、そもそも起電力の正負の符号は固定されるものではなく、「第1符号」は「正」と固定されるものでもなく、または「負」と固定されるものではない。同様に、図1に示す第1方向への電流16および第2方向への電流17の矢印の向きも時間経過と共に変化し、固定されない。
 図2Aは、実施の形態1に係る異物検出装置の主要部の基本構成図であり、図2Bは、図2Aのユニットセンサコイルのマッピング図である。なお、図2Bの「a」は、第1センサコイル群20に属するユニットセンサコイルであることを示し、「+」は、1巻き方向のユニットセンサコイルであることを示している。「-」は、第2巻き方向のユニットセンサコイルを示している。従って、「a+」は、第1センサコイル群20に属する第1巻き方向のユニットセンサコイルを示し、「a-」は、第1センサコイル群20に属する第2巻き方向のユニットセンサコイルを示す。なお、「a’-」の説明は、後述する。
 図2において、センサコイル群は、第1センサコイル群20の1個だけである。センサコイル群が1個のみの場合にはセットセンサコイルを兼ねる。
 第1センサコイル群20は、複数のY軸方向センサコイル群として第1Y軸方向センサコイル群21および第2Y軸方向センサコイル群22を有する。第1Y軸方向センサコイル群21および第2Y軸方向センサコイル群22は、X軸方向に並んで配置されている。第1Y軸方向センサコイル群21は、第1巻き方向のユニットセンサコイル23~26を有する。ユニットセンサコイル23~26は、全体としてY軸方向に配置され、かつX軸方向に互い違いになるように配置されている。
 第2Y軸方向センサコイル群22は、ユニットセンサコイル27~30を有する。ユニットセンサコイル27~30は、全体としてY軸方向に配置され、かつX軸方向に互い違いになるように配置されている。
 互いに隣接する第1Y軸方向センサコイル群21および第2Y軸方向センサコイル群22の間には、第2巻き方向のユニットセンサコイル31およびユニットセンサコイル32が配置されている。第1センサコイル群20は、第1Y軸方向センサコイル群21および第2Y軸方向センサコイル群22の他に、ユニットセンサコイル31およびユニットセンサコイル32も含む。
 コイル導体39は、各Y軸方向センサコイル群の外周を連続的に構成するように接続されている。コイル導体39は、各ユニットセンサコイルの外形を規定する。コイル導体39は、連続的に電気的に直列に接続されている。最外周を除いて、第1巻き方向のユニットセンサコイルと第2巻き方向のユニットセンサコイルとは隣り合っている。隣り合っているユニットセンサコイルは、一方が第1巻き方向で他方が第2巻き方向である。隣り合っているユニットセンサコイルは、一方のユニットセンサコイルを構成するコイル導体39の全部または一部が、他方のユニットセンサコイルを構成するコイル導体39の全部または一部である。即ち、隣接するユニットセンサコイルを構成するコイル導体39の一部または全部は、互いに共有している。従って、コイル導体39が重複する領域が少なくなり、コイル導体39の総延長を短くすることができる。
 ユニットセンサコイル23およびユニットセンサコイル25に挟まれた領域は、閉ループを構成しないのでユニットセンサコイルを構成できない。この部分はユニットセンサコイルの欠落部33である。同様に、ユニットセンサコイル25の下側でユニットセンサコイル26の左側の領域は、欠落部34である。また、ユニットセンサコイル23およびユニットセンサコイル27に挟まれた領域は、欠落部35である。また、ユニットセンサコイル27の右側でユニットセンサコイル28の上側の領域は、欠落部37である。また、ユニットセンサコイル28およびユニットセンサコイル30に挟まれた領域は、欠落部38である。さらに、ユニットセンサコイル26およびユニットセンサコイル30に挟まれた領域も、ユニットセンサコイルの欠落部36である。欠落部36は、下側に存在する2本の導線の起電力が逆方向になるため、ユニットセンサコイルを構成できない。勿論、図2Aにおけるユニットセンサコイルは、完全な閉回路ではないが、隙間を小さくすることで閉回路と同様の起電力を得ることができる。
 欠落部33~38は、起電力を全く生じない訳ではない。これらの欠落部は、各ユニットセンサコイルに比較すると起電力の絶対値は小さいが、いずれも第2符号の起電力を発生させる。従って、これらの欠落部は、第2巻き方向の不完全なコイルであると考えられる。図2Bにおける「a’-」は、欠落部において、第2巻き方向の不完全なコイルであることを意味している。
 なお、ユニットセンサコイルの個数は、図2Aの個数に限られない。ユニットセンサコイルの大きさも一定でなくてもよい。ユニットセンサコイルの外形形状は四角形に限定されない。図2Aにおいて、X軸とY軸とは直交座標であるが、平行な座標軸でなければ、直交しなくてもよい。交差する座標系であればよい。
 図2Bに示すように、第1巻き方向のユニットセンサコイルの方が、第2巻き方向のユニットセンサコイルよりも多い。従って、第1センサコイル群20としては第1符号の起電力および第2符号の起電力の一部は相殺することはできるが、全てを相殺することはできず、異物がないときに第1センサコイル群20の起電力を0にすることはできない。
 図3Aは、実施の形態1に係る異物検出装置のユニットセンサコイルの配置図であり、図3Bは、図3Aのユニットセンサコイルのマッピング図である。
 セットセンサコイル40は、第1センサコイル群20と第2センサコイル群41とを有する。図3Aの第1センサコイル群20は図2Aの第1センサコイル群20と同じ構成である。
 図3Aおよび図3Bにおいて、「a」は、第1センサコイル群20に属するユニットセンサコイルであることを示し、「b」は、第2センサコイル群41に属するユニットセンサコイルであることを示す。「+」、「-」、および「’」は、図2と同様の意味を示す。「a+」、「a-」、「a’-」、「b+」、「b-」、および「b’+」も図2の使用方法を準用する。
 第2センサコイル群41は、複数のユニットセンサコイルを有する。コイル導体42は、コイル導体39と同様に以下の特徴を備える。コイル導体42は、ユニットセンサコイルの外形を規定する。コイル導体42は、各ユニットセンサコイルの外形を規定する。コイル導体42は、連続的に電気的に直列に接続されている。最外周を除いて、第1巻き方向のユニットセンサコイルと第2巻き方向のユニットセンサコイルとは隣り合っている。隣り合っているユニットセンサコイルは、一方が第1巻き方向で他方が第2巻き方向である。隣り合っているユニットセンサコイルは、一方のユニットセンサコイルを構成するコイル導体42の全部または一部が、他方のユニットセンサコイルを構成するコイル導体42の全部または一部となっている。即ち、隣接するユニットセンサコイルを構成するコイル導体42の一部または全部は、互いに共有している。従って、コイル導体42が重複する領域が少なくなり、コイル導体42の総延長を短くすることができる。
 ここで、セットセンサコイル40の最外周部に位置するユニットセンサコイルを除いた中央部に位置する4箇所のユニットセンサコイルは、第1センサコイル群20および第2センサコイル群41の両方のユニットセンサコイルが位置する領域である。従って、「a+」かつ「b+」、または「a-」かつ「b-」となる。
 図3Aにおいて、第1巻き方向のユニットセンサコイルと、第2巻き方向のユニットセンサコイルとの数が等しくなり、磁界分布が均一で異物がないときにはセットセンサコイル40の起電力が0となる。さらに詳細に検討を進める場合には、欠落部における不完全なコイルの数も数える必要がある。図3Bに示すように「a’-」および「b’+」の個数は同じであるので、欠落部の影響を考慮したときにも図3Aに示すセットセンサコイル40は磁界分布が均一で異物がないときには起電力が0となる。
 なお、セットセンサコイル40の起電力は、第1センサコイル群20を構成するコイル導体39および第2センサコイル群41を構成するコイル導体42を電気的に直列に接続して、測定してもよい。または、コイル導体39の起電力とコイル導体42の起電力とをそれぞれ求めて、両方の電圧を加算する演算を行なってもよい。コイル導体39とコイル導体42とを電気的に並列に接続してもよい。図3Aにおいて、X軸とY軸とは直交座標であるが、平行な座標軸でなければ、直交しなくてもよい。交差する座標系であればよい。
 図4Aは、実施の形態1に係る異物検出装置のユニットセンサコイルの第1バリエーションの配置図であり、図4Bは、図4Aのユニットセンサコイルのマッピング図である。
 セットセンサコイル50は、第1センサコイル群20およびペリフェラルセンサコイル群51を有する。第1センサコイル群20は、図2Aおよび図3Aに示す第1センサコイル群20と同じである。ペリフェラルセンサコイル群51は、図2Bに示す欠落部33、34、35、36、37、および38に、それぞれペリフェラルユニットセンサコイル52、53、54、55、56、および57を配置している。ペリフェラルセンサコイル群51は、第1センサコイル群20の欠落部のみにペリフェラルユニットセンサコイルを配置しており、この点で、欠落部以外にもユニットセンサコイルを配置させている図3Aに示す第2センサコイル群41と相違する。
 コイル導体58は、各ペリフェラルユニットセンサコイルの外形を規定する。
 なお、ペリフェラルセンサコイル群51は、センサコイル群の一種である。また各ペリフェラルユニットセンサコイルもユニットセンサコイルの一種である。
 図4Bにおける「p」は、ペリフェラルセンサコイル群51に属するペリフェラルユニットセンサコイルの領域であることを示している。他の符号は、図3Bと同様である。ペリフェラルユニットセンサコイルは、第2巻き方向のみ存在している。図4Bに示すように、第1巻き方向のユニットセンサコイルの個数と、第2巻き方向のユニットセンサコイルおよびペリフェラルユニットセンサコイルの個数の和とは同一である。従って、異物が存在せず、磁界分布が一様であるときには、セットセンサコイル50の起電力は0Vになる。第1センサコイル群20の欠落部における不完全なコイルと、ペリフェラルセンサコイル群51の欠落部における不完全なコイルとは、個数が同じで互いに符号が異なる。このため、欠落部の影響を考慮しても、図4Aに示すセットセンサコイル50は磁界分布が均一で異物がないときには起電力が0となる。
 なお、図4Aにおいて、X軸とY軸とは直交座標であるが、平行な座標軸でなければ、直交しなくてもよい。交差する座標系であればよい。
 図5Aは、実施の形態1に係る異物検出装置のユニットセンサコイルの第2バリエーションの配置図であり、図5Bは、図5Aのユニットセンサコイルのマッピング図である。ユニットセンサコイルの符号は、図5Bに付している。図5Bにおいて、各符号は、ユニットセンサコイルの符号と巻き方向とを示している。例えば、「61a+」とは、第1巻き方向のユニットセンサコイル61aを示している。
 図5Aにおいて、センサコイル群としてはセンサコイル群60だけであるので、センサコイル群60は、セットセンサコイルを兼ねる。
 センサコイル群60は、Y軸方向センサコイル群61、62、63、64、65、66、67および68を有する。
 Y軸方向センサコイル群61は、ユニットセンサコイル61aを有する。Y軸方向センサコイル群62は、ユニットセンサコイル62a、62b、および62cを有する。Y軸方向センサコイル群63は、ユニットセンサコイル63a、63b、63c、63d、および63eを有する。Y軸方向センサコイル群64は、ユニットセンサコイル64a、64b、64c、64d、64e、64f、および64gを有する。Y軸方向センサコイル群65は、ユニットセンサコイル65a、65b、65c、65d、65e、65f、65g、および65hを有する。Y軸方向センサコイル群66は、ユニットセンサコイル66a、66b、66c、66d、66e、および66fを有する。Y軸方向センサコイル群67は、ユニットセンサコイル67a、67b、67c、および67dを有する。Y軸方向センサコイル群68は、ユニットセンサコイル68aおよび68bを有する。
 各Y軸方向センサコイル群は、Y軸方向に配列された第1巻き方向のユニットセンサコイルを一つまたは複数有している。これらの第1巻き方向のユニットセンサコイルは、連続的に接続され、かつ電気的に直列に接続されている。各Y軸方向センサコイル群は、X軸方向に並んで配置されている。各Y軸方向センサコイル群は、隣り合うY軸方向センサコイル群と連続的にかつ電気的に直列に接続されている。
 コイル導体69は、これらの第1巻き方向のユニットセンサコイルの外形を規定している。コイル導体69は、各Y軸方向センサコイル群の外周を連続的に構成するように接続されている。コイル導体69は、各ユニットセンサコイルの外形を規定する。コイル導体69は、連続的に電気的に直列に接続されている。
 セットセンサコイルであるセンサコイル群60の最外周部を除いて、隣り合うY軸方向センサコイル群の間には第2巻き方向のユニットセンサコイルが配置されている。具体的には、Y軸方向センサコイル群62とY軸方向センサコイル群63との間には、第2巻き方向のユニットセンサコイル71aおよび71bが配置されている。Y軸方向センサコイル群63とY軸方向センサコイル群64との間には、第2巻き方向のユニットセンサコイル72a、72b、72c、および72dが配置されている。Y軸方向センサコイル群64とY軸方向センサコイル群65との間には、第2巻き方向のユニットセンサコイル73a、73b、73c、73d、73e、および73fが配置されている。Y軸方向センサコイル群65とY軸方向センサコイル群66との間には、第2巻き方向のユニットセンサコイル74a、74b、74c、74d、および74eが配置されている。Y軸方向センサコイル群66とY軸方向センサコイル群67との間には、第2巻き方向のユニットセンサコイル75a、75b、75cが配置されている。Y軸方向センサコイル群67とY軸方向センサコイル群68との間には、第2巻き方向のユニットセンサコイル76aが配置されている。
 最外周を除いて、第1巻き方向のユニットセンサコイルと第2巻き方向のユニットセンサコイルとは隣り合っている。隣り合っているユニットセンサコイルは、一方が第1巻き方向で他方が第2巻き方向である。隣り合っているユニットセンサコイルは、一方のユニットセンサコイルを構成するコイル導体69の全部または一部が、他方のユニットセンサコイルを構成するコイル導体69の全部または一部である。即ち、隣接するユニットセンサコイルを構成するコイル導体69の一部または全部は、互いに共有している。従って、コイル導体69が重複する領域が少なくなり、コイル導体69の総延長を短くすることができる。
 図5Bに示すとおり、本バリエーションのセンサコイル群60を構成する第1巻き方向のユニットセンサコイルは、第2巻き方向のユニットセンサコイルと個数が異なる。従って、異物が存在せず、磁界分布が一様であっても、センサコイル群60を起電力は0Vにならない。
 セットセンサコイルとして起電力を0Vにするためには、図3Aに示した第2センサコイル群41のようなセンサコイル群60とは異なる別のセンサコイル群を付加するか、図4Aに示したペリフェラルセンサコイル群51のようなセンサコイル群を付加すればよい。
 なお、図5Aにおいて、X軸とY軸とは直交座標であるが、平行な座標軸でなければ、直交しなくてもよい。交差する座標系であればよい。
 図6は、実施の形態1に係る異物検出装置のユニットセンサコイルの第3バリエーションの配置図である。
 センサコイル群80は、セットセンサコイルでもある。センサコイル群80は、ユニットセンサコイル81、82、83、および84を有する。コイル導体85は、これらのユニットセンサコイルの外周を規定する。コイル導体85は、連続的に電気的に直列に接続されている。
 第1巻き方向のユニットセンサコイルと第2巻き方向のユニットセンサコイルとは隣り合っている。隣り合っているユニットセンサコイルは、一方が第1巻き方向で他方が第2巻き方向である。隣り合っているユニットセンサコイルは、一方のユニットセンサコイルを構成するコイル導体85の全部または一部が、他方のユニットセンサコイルを構成するコイル導体85の全部または一部である。即ち、隣接するユニットセンサコイルを構成するコイル導体85の一部または全部は、互いに共有している。従って、コイル導体85が重複する領域が少なくなり、コイル導体85の総延長を短くすることができる。
 各ユニットセンサコイルは、中央に配置されたユニットセンサコイル84を除いて中空円形、所謂ドーナッツ形状である。中央に配置されたユニットセンサコイル84は円形である。各ユニットセンサコイルは連続的に電気的に直列に接続されている。
 図6において、センサコイル群80はスパイラル形状であるが、その外形は四角形や五角形などの多角形であってもよい。
 図7は、実施の形態1に係る異物検出装置のユニットセンサコイルの第4バリエーションの配置図である。
 セットセンサコイル90は、第1センサコイル群91およびペリフェラルセンサコイル群92を有する。第1センサコイル群91は、第2巻き方向のユニットセンサコイル93、94、95、96、97、98、99、および100を有する。第1センサコイル群91は、さらに、第1巻き方向のユニットセンサコイル101、102、103、104、105、および106を有する。ペリフェラルセンサコイル群92は、ペリフェラルユニットセンサコイル107および108を有する。ペリフェラルユニットセンサコイル107および108は、第1センサコイル群91の最外周部に生じる欠落部に配置されている。
 コイル導体109は、各ユニットセンサコイルの外形を規定する。コイル導体109は、連続的に電気的に直列に接続されている。最外周を除いて、第1巻き方向のユニットセンサコイルと第2巻き方向のユニットセンサコイルとは隣り合っている。隣り合っているユニットセンサコイルは、一方が第1巻き方向で他方が第2巻き方向である。隣り合っているユニットセンサコイルは、一方のユニットセンサコイルを構成するコイル導体109の全部または一部が、他方のユニットセンサコイルを構成するコイル導体109の全部または一部である。即ち、隣接するユニットセンサコイルを構成するコイル導体109の一部または全部は、互いに共有している。従って、コイル導体109が重複する領域が少なくなり、コイル導体109の総延長を短くすることができる。
 コイル導体110は、各ペリフェラルユニットセンサコイルの外形を規定する。
 図7に示すセットセンサコイル90は、第1巻き方向のユニットセンサコイルの数と第2巻き方向のユニットセンサコイルの数とが等しいので、異物がなく分布が一様な磁界における起電力が0Vである。
 図7におけるセットセンサコイル90を構成する各ユニットセンサコイルの半径方向の長さはそれぞれ等しいが、これに限られるものではない。各ユニットセンサコイルの面積が等しくなるように周辺部に位置するユニットセンサコイルほど、半径方向の長さを短くしてもよい。ユニットセンサコイルの半径方向の幅は、異物が存在しないときにユニットセンサコイルの起電力の絶対値が同程度になるように定めてもよい。これらは、図6に示す異物検出装置のユニットセンサコイルの第3バリエーションにおいても同様である。
 本バリエーションは角度方向に4分割しているが、これに限定されない。
 なお、実施の形態1に係る異物検出装置は、磁界分布が均一であって、異物がないときのセットセンサコイルの起電力が0Vになるようにしているが、実際には磁界分布が均一ではなく大きさや方向が異なっている場合もあり得る。さらには、磁界の方向が逆方向になっている場所がある場合も有り得る。このような場合、セットセンサコイルの起電力が0Vにならないこともある。しかし、第1巻き方向のユニットセンサコイルの起電力および第2巻き方向のユニットセンサコイルの起電力の少なくとも一部が相殺されるので、異物検出装置としての感度を向上させることができる。磁界の方向が逆方向になっている境界部近傍においては、実際の磁界の変化に対し、一つのユニットセンサコイルと隣接するユニットセンサコイルとが、電流がいずれも第1方向またはいずれも第2方向となる。このような現象は、磁界の方向が互いに逆方向になっている境界部近傍に生じ、他の場所は実際の磁界に対しても隣接するユニットセンサコイルに生じる電流は、一方が第1方向であるとき他方が第2方向である。従って、全体としては、起電力の少なくとも一部を相殺しており、異物検出装置の感度を向上させている。
 磁界の向きが逆になる場合を含めて、磁界分布が不均一であることに対しては、各ユニットセンサコイルの面積や個数によりセットセンサコイルの起電力を調整することができる。
 なお、磁界分布が均一であっても各ユニットセンサコイルの面積にバラツキがある場合も起電力が0Vにはならないことがある。この場合も、第1巻き方向のユニットセンサコイルの起電力および第2巻き方向のユニットセンサコイルの起電力の少なくとも一部が相殺されるので、異物検出装置としての感度を向上させることができる。
 実施の形態1において、セットセンサコイルが複数のセンサコイル群を有している場合、セットセンサコイルの起電力を求めるために、各センサコイル群を電気的に直列に接続してもよいし、電気的に並列に接続してもよい。あるいは、センサコイル群毎に起電力を求め、それぞれの起電力を加算する演算を行なうことによって求めてもよい。
 なお、実施の形態1に係る異物検出装置のコイル導体は、ユニットセンサコイルの外形を規定する部分において交差はしていない。
 (実施の形態2)
 図8は、実施の形態2に係る異物検出装置の主要部の基本構成図である。なお、図8は透視図である。
 異物検出装置127は、セットセンサコイル群120、スイッチ125、および判定装置126を有する。セットセンサコイル群120は、第1セットセンサコイル121、第2セットセンサコイル122、第3セットセンサコイル123、および第4セットセンサコイル124を有する。
 スイッチ125は、第1セットセンサコイル121、第2セットセンサコイル122、第3セットセンサコイル123、および第4セットセンサコイル124を選択的に駆動させる。判定装置126は、実施の形態1の判定装置18と同じ機能を有する。
 第1セットセンサコイル121、第2セットセンサコイル122、第3セットセンサコイル123、および第4セットセンサコイル124は、図5Aに示すセンサコイル群60と同じ構成である。
 第2セットセンサコイル122は、第1セットセンサコイル121に対し、図8の紙面縦方向および横方向にオフセットして配置されている。第3セットセンサコイル123も第2セットセンサコイル122に対し、および第4セットセンサコイル124も第3セットセンサコイル123に対し、それぞれ図8の紙面縦方向および横方向にオフセットして配置されている。
 セットセンサコイル群を選択的に駆動させる理由は以下の通りである。
 実施の形態1の異物検出装置は、セットセンサコイルの各ユニットセンサコイルの外形を規定するコイル導体上に異物があった際には、異物の検出ができない。さらに、異物が第1巻き方向のユニットセンサコイルと第2巻き方向のユニットセンサコイルの両方にまたがって存在するときも異物の検出ができないか、検出出力が低下してしまう。本実施の形態に係る異物検出装置127は、第1セットセンサコイル121を駆動したときには検出できない異物であっても、第2セットセンサコイル122、第3セットセンサコイル123、および第4セットセンサコイル124の少なくとも1つで検出することを目的としている。異物の形状や存在場所によってはそれでも検出できない場合が生じうるが、センサコイル群が1つの場合に比べて検出できない可能性を低減することができる。
 なお、セットセンサコイルの数は、4個に限られなく、2個以上であればよい。セットセンサコイルの数は多いほど、異物を検出できない可能性が減ると考えられるが、多すぎるとコイル導体の配線が複雑になってしまう。この点を考え、バランスのよい個数を設定すればよい。
 図8において、第1セットセンサコイル121、第2セットセンサコイル122、第3セットセンサコイル123、および第4セットセンサコイル124は、ユニットセンサコイルの大きさを4等分した長さ毎にオフセットして配置されているが、オフセット量は等分でなくてもよい。
 第1セットセンサコイル121、第2セットセンサコイル122、第3セットセンサコイル123、および第4セットセンサコイル124は、図5Aに示すセンサコイル群60と同様に、何れも第1巻き方向のユニットセンサコイルの個数と第2巻き方向のユニットセンサコイルの個数とが異なる。各セットセンサコイルは、図5Aのセンサコイル群60のときと同様に図3Aの第2センサコイル群41および図4Aのペリフェラルセンサコイル群51のように、新たにセンサコイル群を付加することで第1巻き方向のユニットセンサコイルの個数と第2巻き方向のユニットセンサコイルの個数とを等しくすることができる。
 図9は、実施の形態2に係る異物検出装置の第1バリエーションのマッピング図である。図8の異物検出装置127との違いは、セットセンサコイルおよびユニットセンサコイルの配置である。
 セットセンサコイル群130は、4つのセンサコイル群を有する。ユニットセンサコイル131、132、133、および134は、第1センサコイル群に属し、図9においては「a」を付した領域に配置されている。ユニットセンサコイル135、136、137、および138は、第2センサコイル群に属し、図9においては「b」を付した領域に配置されている。ユニットセンサコイル139、140、141、および142は、第3センサコイル群に属し、図9においては「c」を付した領域に配置されている。ユニットセンサコイル143、144、145、および146は、第4センサコイル群に属し、図9においては「d」を付した領域に配置されている。
 各センサコイル群に属するユニットセンサコイルは、連続的に電気的に直列に接続されている。
 各センサコイル群は、選択的に駆動される。選択的に駆動する理由は、図8に示す異物検出装置127と同様である。
 なお、実施の形態2における異物検出装置には、実施の形態1を適用してもよい。
 (実施の形態3)
 図10は、実施の形態3に係る異物検出装置のユニットセンサコイルの概念図である。
 ユニットセンサコイル150は、コイル導体151と、スイッチ155、156および157とを有する。コイル導体151は、基準導体152、第1調整導体153、および第2調整導体154を有する。基準導体152は、ユニットセンサコイル150の最外周に位置している。第1調整導体153および第2調整導体154は、基準導体152をショートカットするように位置している。スイッチ155は、基準導体152内に位置している。スイッチ156は、基準導体152と第1調整導体153との間に位置している。スイッチ157は、基準導体152と第2調整導体154との間に位置している。
 スイッチ155を閉じ(即ち「オン」し)、スイッチ156および157を開く(即ち「オフ」する)ことによって、基準導体152が作る閉ループがユニットセンサコイルとして外部磁界変化による起電力を発生させる。
 スイッチ156を閉じ、スイッチ155および157を開くことによって、基準導体152と第1調整導体153とが作る閉ループがユニットセンサコイルとして外部磁界変化による起電力を発生させる。このとき、閉ループの面積が減少するので起電力の絶対値も減少する。
 スイッチ157を閉じ、スイッチ155および156を開くことによって、基準導体152と第2調整導体154とが作る閉ループがユニットセンサコイルとして外部磁界変化による起電力を発生させる。このとき、閉ループの面積がさらに減少するので起電力の絶対値もさらに減少する。
 このように、本実施の形態のユニットセンサコイル150は、面積を変えることで起電力の調整をすることができる。本実施の形態のユニットセンサコイル150は、実施の形態1または実施の形態2の異物検出装置に適用できる。実施の形態1または実施の形態2の異物検出装置において、異物が存在しないときのセットセンサコイルの起電力を0Vにすることができない場合には、本実施の形態のユニットセンサコイル150を適用することでセットセンサコイルの起電力の調整ができる。本実施の形態のユニットセンサコイル150は、セットセンサコイル内の全てのユニットセンサに適用してもよいが、一部のユニットセンサコイルのみに適用してもよい。基準導体152、第1調整導体153、および第2調整導体154の切替は、3個のスイッチで行なったが、これに限られるものではない。
 なお、実施の形態3は、実施の形態1、2に適用してもよい。
 なお、実施の形態1~3に共通して、ユニットセンサコイルの形状は、長方形や円形に限定されず、他の多角形、楕円形、扇形、その他の形状であってもよい。
 また、実施の形態1~3の異物検出装置は、異物有無の判定は起電力による変動電圧の値を評価することによって行うため、必ずしも電流を流す必要はない。
 実施の形態1~3の異物検出装置は、第1巻き方向のユニットセンサコイルの起電力および第2巻き方向にユニットセンサコイルの起電力の少なくとも一部が相殺されるので、異物が存在するときにコイル導体に流れる電流を少なくすることができる。これにより、電流が流れることによる損失が小さくなり、電気効率がよい。さらに、流れる電流が小さいのでコイル導体を細くすることができ、外部磁界によってコイル導体に生じる渦電流の発生を抑制でき、渦電流損を低下させ、コイル導体における発熱量を低減できる。
 (参考例1)
 ユニットセンサコイルの数が多いときに、セットセンサコイル全体の起電力、即ち、出力電圧V0を最小にするように、ユニットセンサコイルの最適な形状、配置および符号を考えるのは困難な場合がある。
 ここで、一塊のユニットセンサコイルの集合体をセンサコイルアレーと定義する。一つのセンサコイルアレーに属する複数のユニットセンサコイルは、一つのコイル導体で外形が規定されなくてもよく、複数のコイル導体で外形が規定されてもよい。一塊であるので、連続したユニットセンサコイルの集合体である。
 出力電圧V0を最小にするために、センサコイルアレーの領域を分割し、その分割してできた一つのユニットセンサコイル群を作り、これを一つの単位として、出力電圧V0を最小化するように形状、配置および符号を決めて、そのユニットセンサコイル群を反復して配置することでセンサコイルアレーを容易に作成する方法がある。このユニットセンサコイル群を、ユニットV0低減コイルと呼ぶことにする。
 図11は、参考例1における四角形のユニットV0低減コイルの説明図である。
 センサコイルアレー210は、複数のユニットV0低減コイル212で構成され、ユニットV0低減コイル212は、4個のユニットセンサコイル211a~211dで構成されている。より具体的には、ユニットV0低減コイル212は、X方向に2個、Y方向に2個、つまり計4個のユニットセンサコイル211a、211b、211c、および211dからなる。この4つのユニットセンサコイルのそれぞれの起電力を組合せることで、ユニットV0低減コイル212の出力電圧V0を低減するようする。
 ユニットV0低減コイル212を、センサコイルアレーを埋め尽くすように、X方向に繰り返し配置し、またY方向にも繰り返し配置する。なお、図11においては、最も左上のユニットV0低減コイル212のみを図示している。
 こうすることで、ユニットV0低減コイル212の起電力と同様に、センサコイルアレー210の出力電圧V0を低減することが容易にできる。
 ここで、ユニットV0低減コイル212を構成するユニットセンサコイルの数は何個でもよく、X方向のユニットセンサコイルの数も、Y方向のユニットセンサコイルの数も何個でもよい。
 また、それぞれのY方向のユニットセンサコイル群において、出力電圧V0を低減するようにしてもよい。例えば、ユニットセンサコイル211aおよび211cの起電力が相殺されるようにする。また、ユニットセンサコイル211bおよび211dの起電力が相殺されるようにする。
 また、それぞれのX方向のユニットセンサコイル群についても同様にする。こうすることで、センサコイルアレーの出力電圧V0を低減する設計が更に容易になる。
 図12は、参考例1における円形ユニットV0低減コイルの説明図である。
 この参考例は、スパイラル型の電力受電コイルに適している。
 センサコイルアレー220は、複数のユニットV0低減コイル222で構成されている。ユニットV0低減コイル222は、4個のユニットセンサコイル221a、221b、221c、および221dで構成されている。
 ユニットV0低減コイル222の起電力が小さくなるように、ユニットV0低減コイル222を構成する4個のユニットセンサコイル221a~221dの起電力の和を小さくするように起電力の符号と大きさを調整する。例えば、ユニットセンサコイル221aおよび221dの起電力が正の符号であり同じ大きさを持ち、ユニットセンサコイル221cおよび221bの起電力が負の符号であり同じ大きさを持ち、ユニットセンサコイル221a~221dを繋ぎ合わせることで、ユニットV0低減コイル222の起電力を小さくする。
 ユニットV0低減コイル222はドーナツ形状であり、これをX方向とY方向の直径を境界として4分割して4個のユニットセンサコイルを形成している。
 ユニットV0低減コイル222は、直径を拡大しながら、センサコイルアレー220を埋め尽くすように、複数配置されている。図12においては、一つのユニットV0低減コイル222のみ図示している。
 センサコイルアレー220の中心部のユニットV0低減コイルは、全ての領域を埋め尽くすために、ドーナツ形状ではなく、中心に隙間のない円形状である。
 なお、ドーナツ形状のユニットV0低減コイル222を分割する数はいくらでもよい。また、ユニットV0低減コイル222の半径方向の幅は一定でなくてもよい。つまり、ユニットセンサコイルの半径方向の幅は一定でなくてもよい。
 例えば、各々のユニットセンサコイルの面積を同じにするときは、中心部から遠い程、ユニットセンサコイルの半径方向の幅は短くなる。
 また、XY平面に平行な面に磁界を発生させるスパイラルコイルがある場合には、Z方向の磁界がゼロになる場所が存在し、その等高線は円形である。この等高線が隣接するユニットV0低減コイル222の円周方向の境界線は、この等高線と一致させると、起電力を0Vに近づけることができる。
 ここで、ユニットV0低減コイルと同程度の大きさの異物が存在する場合には、検出感度が悪化する場合がある。
 図13は、参考例1におけるユニットV0低減コイルと異物との位置関係を説明する図である。図14は、参考例1における感度評価を示す図である。図13および図14を用いて、四角形のユニットセンサコイルで構成されるユニットV0低減コイルにおいて、異物検出感度に対する異物の大きさおよび場所の依存性を改善する方法について説明する。
 図13に示す異物配置231は、棒状の異物234の4箇所の配置場所を示している。第1配置、第2配置、第3配置、および第4配置は、図13においては、分りやすくするためにY方向にもずれた配置で図示しているが、実際にはY方向は同じ座標位置であり、X方向にのみずれている。異物234の長さは、ユニットV0低減コイル235のX方向の長さと同じである。
 ユニットV0低減コイル235は、X方向に4個、Y方向に1個のユニットセンサコイル236で構成されている。ユニットセンサコイル236の符号は、ある瞬間の起電力の符号を表す。各々のユニットV0低減コイル235に於いて、プラスおよびマイナスのユニットセンサコイル236は同数になっている。
 符号パターン232は、2個のユニットV0低減コイル235をX方向に配列させ、ユニットセンサコイル236の符号配列を変化させた3つの第1パターン、第2パターン、および第3パターンを示す。
 図14は、異物234の第1配置~第4配置と、ユニットセンサコイル236の符号配列の第1パターン~第3パターンとの組合せにおける、異物検出の感度の良さを、相対的に評価した結果を示す。
 第1パターン~第3パターンについて説明する。
 第1パターンは、ユニットV0低減コイル235を構成するユニットセンサコイル236の符号が、プラスのユニットセンサコイル236の2個が隣り合わせとなり、マイナスのユニットセンサコイル236の2個が隣り合わせとなるように配置されており、かつ2個のユニットV0低減コイル235のユニットセンサコイル236の符号配列は同じである。
 第2パターンは、左側のユニットV0低減コイル235が第1パターンと同じである。右側のユニットV0低減コイル235の符号配列と、左側のユニットV0低減コイル235の符号配列とは、2つのユニットV0低減コイル235の境界に対して、X方向にミラー反転した関係となっている。
 第3パターンは、左側のユニットV0低減コイル235が有する隣接するユニットセンサコイル236の符号が互いに異なる符合になるように配置されており、左側のユニットV0低減コイル235は、第2パターンと同様にミラー反転の形で符号を配列している。
 異物234が配置される場所に存在するユニットセンサコイル236の起電力は変化する。2つのユニットV0低減コイル235において、起電力が変化するユニットセンサコイル236の符号および個数によって感度を相対的に評価する。
 異物がないときに起電力が変化するプラスとマイナスのユニットセンサコイル236の起電力の和はゼロになると仮定する。プラスとマイナスの符号の差が大きい程、異物検出の感度が高いと考える。プラスとマイナスの符号の数の差が1個以上は感度良し「○」とし、0個の場合は感度悪し「×」とする。
 以下、図14を用いて説明する。
 第1パターンは、異物の第1配列~第4配列の全てにおいて、異物が存在する場所のユニットセンサコイル236は、プラスとマイナスの符号の数が一致するため、符合の数はゼロとなり、異物を検出するのは困難である「×」となる。
 第2パターンは、第1配列のみ「×」、第2配列~4配列は「○」になる。
 第3パターンは、第1配列および第3配列が「×」、第2配列および第4配列が「○」になる。
 図14に示す感度評価の総合評価は、以上の第1配列~第4配列の評価結果を踏まえ、最も評価が低い第1パターンを「×」に、最も評価が良い第2パターンを「○」に、その中間である第3パターンを「△」にした。
 結果から分かるように、第2パターンが最もよい。つまり、ユニットV0低減コイル235を構成するユニットセンサコイル236の配置は、隣接するユニットV0低減コイル235の境界を中心にミラー反転する形で配置すればよい。これによれば、ある特定の異物の大きさや形状において異物検出の感度が悪くなる異物の場所を確率的に低減することで、感度性能を向上させることができる。
 なお、参考例1では、ユニットV0低減コイル235はX方向に4個、Y方向に1個のユニットセンサコイル236で構成される場合を例示したが、これに限らず、X方向およびY方向はそれぞれ何個であってもよく、上記の方法を適用することで同様の効果を得ることができる。Y方向のユニットセンサコイル236が2個以上の場合は、Y方向に隣接するユニットV0低減コイル235の境界を中心に、Y方向にミラー反転する形で、ユニットセンサコイル236の符号を配置すればよい。このときも効果は同じである。
 なお、参考例1において、複数のセンサコイルアレーの出力を検出することになるが、具体的な方法として、複数のセンサコイルアレーを電気的に直列に接続してもよいし、電気的に並列に接続してもよい。
 (参考例2)
 隣接するユニットセンサコイルの起電力が逆向きである場合、その境界となる導線の上部に存在する異物の検出感度は低下する。境界を跨いで存在する異物は、両方のユニットセンサコイルの起電力を変化させ、そのとき、一方のユニットセンサコイルの起電力が変化する符号と、他方の起電力が変化する符号はプラスマイナスが逆符合になるため、両方の和の起電力は小さくなるためである。
 この課題を克服する手段として、複数のセットセンサコイルをX方向とY方向にずらして配置する方法を説明する。
 図15は、参考例2におけるユニットセンサコイルの低感度領域の説明図である。
 図15には、四角形のユニットセンサコイルで構成されるセットセンサコイル240と、異物検出の感度が低下する低感度領域242と、説明のために注目するユニットセンサコイル241とを示す。隣接するユニットセンサコイルは、互いに逆向きの起電力を持ち、ある瞬間のその符号プラスおよびマイナスを図に示している。
 ユニットセンサコイル241の起電力はプラスであり、隣接するユニットセンサコイルの符号は全てマイナスである。注目するユニットセンサコイル241を構成する4つの全ての辺である導線は全て、低感度領域242となっている。つまり、隣接するユニットセンサコイルの起電力の符号が逆の場合は同様であるので、このようにユニットセンサコイルを隙間なく並べて配置する場合は、周辺のユニットセンサコイルの辺を除き、全ての辺の上の異物を検出する感度は低くなる。
 図16は、参考例2における2個の四角形マルチセンサコイルの説明図である。図16は、X方向に3個およびY方向に3個のユニットセンサコイルでそれぞれ構成されるセットセンサコイル251および252の2つのユニットセンサコイルを使用し、互いに、X方向およびY方向にずらして配置した2マルチのマルチセンサコイル250を示す。
 図16では、セットセンサコイル251および252は共に、辺の長さaを持つ正方形のユニットセンサコイルで構成されており、X方向およびY方向に、共にa/2互いにずらして配置している。セットセンサコイル251および252は、共に図15に示すセットセンサコイル240と同様の構成である。
 マルチセンサコイル方式の場合は、複数のセットセンサコイルを使用することで、低感度領域の面積を減少できる。あるセットセンサコイルにおいて、低感度領域が存在しても、そこを他のセットセンサコイルによって異物を検出することが可能になるという考えに基づいている。
 図16において、セットセンサコイル251の中心にあるユニットセンサコイル253には、ハッチングを施している。ユニットセンサコイル253に注目すると、低感度領域254は、4つの各辺に点の状態で存在する。4つの各辺に於いて、低感度領域254以外の場所は、他のユニットセンサコイルにとっては低感度領域ではないため検出することができる。低感度領域254は、セットセンサコイル251に属するユニットセンサコイル253の辺上にあり、かつ、セットセンサコイル252に属するユニットセンサコイルの辺上にあり、2つの辺は交差していることから、低感度領域の形は点もしくは円形に近い領域になる。他のユニットセンサコイルに於いても同様である。
 マルチセンサコイル方式でないセットセンサコイル240と比べると、マルチセンサコイル250の低感度領域254は、低感度領域の大きさは大幅に低減できることが分かる。
 図17は、参考例2における3個の四角形マルチセンサコイルの説明図である。図17は、3つのセットセンサコイル261、262および263によって構成されるマルチセンサコイル260を示している。それぞれのセットセンサコイルの形状は、図16のものと同じである。3つのセットセンサコイル261、262および263は、互いにユニットセンサコイルの辺の長さaを均等に3分割してずらしている。
 図17において、セットセンサコイル261の中心にあるユニットセンサコイル264にハッチングを施している。ユニットセンサコイル264に注目すると、全ての辺において、低感度領域は存在しない。セットセンサコイル261、262および263の全ての辺において、重なる箇所が存在しないからである。つまり、3つのセットセンサコイルによってマルチセンサコイルを構成すればユニットセンサコイルの辺の上の低感度領域を皆無にすることができる。4つ以上のセットセンサコイルの場合でも同様である。
 図16および図17の参考例では、ユニットセンサコイルの辺を均等分して、セットセンサコイルを互いにずらしているが、これに限らず、均等分でなくてもよい。
 また、参考例は、X方向とY方向を同じ距離ずらしているが異なる距離でもよく、また、X方向のみもしくはY方向のみにずらしてもよい。
 検出するべき異物の場所や、外部磁界の分布形状を考慮して、マルチセンサコイル方式によって低感度領域の最小化という効果を得ることができる。
 マルチセンサコイル方式は、円形、ドーナツ形状のセンサコイルにも適用して低感度領域の面積を低減でき、また皆無にすることができる。
 図18は、参考例2における3個の円形マルチセンサコイルの説明図である。
 図18は、円形、ドーナツ形状のユニットセンサコイルで構成される3つのセットセンサコイル271、272および273を使って形成したマルチセンサコイル270の参考例である。この図18のマルチセンサコイル270は、非接触給電システムの受電装置がスパイラル型コイルのものに適している。図18において、理解しやすくするために、同じセットセンサコイルにおける半径方向と円周方向の交点に丸い点を付けている。さらに、見やすくするために、セットセンサコイル271は実線で、セットセンサコイル272は一点鎖線で、セットセンサコイル273は破線で、それぞれ記載している。
 3つのセットセンサコイル271、272および273は、それぞれ、ドーナツ形状の閉じたユニットセンサコイルを形成するために円の中心から外に向かった直線がある。注目するセットセンサコイル271に属するユニットセンサコイル274は、セットセンサコイル271を構成する3つのユニットセンサコイルの中間に位置するものである。ユニットセンサコイル274を形成する辺の全ての領域において、他の2つのセットセンサコイル271および272も同時に重なる部分は形成されない。つまり低感度領域は皆無である。
 前述の四角形のユニットセンサコイルで構成されるマルチセンサコイルの場合と同様に、円形、ドーナツ形状の場合でも同様に、3個以上のセットセンサコイルによってマルチセンサコイルを構成すれば、辺上異物の低感度領域を無くすことが可能である。
 なお、参考例2で説明した技術は、実施の形態1から実施の形態3に記載の異物検出装置に適用できる。
 (参考例3)
 以下、検出回路を使って、異物検出を行うタイミングについて説明する。
 異物検出は、給電の開始前、給電中、および給電終了後に行う。給電中に行う異物検出は、常時行っても良いし、間欠的なタイミングで行ってもよい。異物検出の周期を短くしすぎると消費電力の増加が問題になるため、問題にならない程度の周期時間が必要である。
 一方、異物が存在した場合、異物の温度上昇時間は、異物の場所の外部磁界の大きさと周波数、異物の材質と形状などで決まる。異物存在による短所は温度上昇であり、EV応用の場合、上昇時間が短い場合は数秒のオーダーであるため、少なくとも数秒未満の周期で異物検出を行う必要がある。余裕をもって温度上昇に対応するために、1ms程度の周期で異物検出を行うのが望ましい。
 次に、外部磁界の影響を回避する方法として、異物検出を行う周期内のタイミングについて説明する。
 図19は、参考例3における非接給電装置の磁束変化計測波形図である。
 図19に、数kW、100kHzの電力受電コイルが発生する磁界変化を、サーチコイルを使って誘導起電力を計測した誘導起電力波形280として示す。
 電力受電コイルには正弦波電流が流れており、これが作る磁界の変化による誘導起電力281は、正弦波の形をしている。高周波ノイズ282は、電力受電コイルのインバータ回路と整流回路のスイッチングによる数10MHz以上のノイズである。誘導起電力がピークになる期間が起電力ピーク期間283である。
 計測に使用したサーチコイルは、原理的にセンサコイルと同じであり、高周波の電磁ノイズを受けると高周波ノイズ282と同様のノイズの影響を受ける。その結果、センサコイルの起電力にノイズが重畳され電圧変動が起こる。その結果、誤検出が発生する。また、誤検出を避けるために、結果的に、異物検出の感度性能を低下させなければならない課題がある。
 そこで、高周波ノイズ282の発生期間を避けるタイミングで異物検出を行えば、高周波ノイズを回避できる。また、電力受電コイルが発生する磁界を利用してセンサコイルを駆動させる場合は、磁束変化が最大になる起電力ピーク期間283のタイミングで異物検出を行うとよい。
 タイミングの情報は、例えば、一次側装置のインバータ駆動タイミングの情報から得てもよい。
 また、電力受電コイル電流がゼロになるときが、磁界変化が最大になるときなので、電力受電コイルの電流を検出し、電流がゼロになるのを検出してタイミングを得てもよい。また、電力受電コイルが発生する磁界を検出するサーチコイルを設けて、起電力ピーク期間283のタイミングを得てもよい。このときサーチコイルは、センサコイルアレー基板に形成してもよい。
 また、サーチコイルは使用せず、センサコイルを利用して外部磁界変化を計測しタイミングを得るようにしてもよい。
 電力受電コイルの電流を検出してタイミングを得るときは、一次側と二次側の両方の電流と位相の情報を元に、異物検出を行うセンサコイルアレーが配置されている場所の磁束を演算によって求め、磁束変化が最大になるタイミングを計算によって求めてもよい。
 本参考例は、実施の形態1~3に記載の異物検出装置に適用できる。
 (参考例4)
 異物検出装置の感度を向上させる方法の一つとして、センサコイル群の出力を上げる方法がある。以下、その具体的方法の一例について説明する。
 図20は、参考例4におけるセンサコイル群の概念図であり、図21は、参考例4におけるセンサコイル群の別の概念図である。図中の「+」はその場所に位置するユニットコイルセンサが第1巻き方向であることを示し、「-」はその場所にユニットコイルセンサが位置していたのならば第2巻き方向になることを示している。
 図20において、センサコイル群300は、複数のユニットセンサコイル301を有している。コイル導体302はそれぞれのユニットセンサコイル301の外形を規定しており、連続的に、電気的に直列に接続されている。それぞれのユニットセンサコイル301は、コイル導体302が2重に巻かれている。このようにユニットセンサコイル単位で2重に巻いてもよい。勿論、巻き数は2回に限られるものではなく、3回以上の巻いてもよい。起電力を測定する回路は紙面下方のコイル導体302の端部に接続される。従って、紙面の下方のユニットセンサコイルは起電力を測定する回路に電気的に近く、紙面上方のユニットセンサコイルは遠い。
 図21において、センサコイル群310は、複数のユニットセンサコイル311を有している。コイル導体312は、それぞれのユニットセンサコイル311の外形を規定しており、連続的に、電気的に直列に接続されている。センサコイル群310は2重に巻かれている。このようにセンサコイル群を単位として2重に巻いてもよい。さらには、セットセンサコイルを単位として2重に巻いてもよい。勿論、巻き数は2回に限られるものではなく、3回以上巻いてもよい。起電力を測定する回路は紙面下方のコイル導体312の端部に接続される。従って、紙面の下方のユニットセンサコイルは起電力を測定する回路に電気的に近く、紙面上方のユニットセンサコイルは遠い。
 ユニットセンサコイルを単位として複数回巻くよりも、センサコイル群またはセットセンサコイル単位で複数回巻くほうが、異物が存在するときの起電力の信号伝達時間が短いので好ましい。センサコイル群が大きく、巻き回数が多い場合、コイル導体の長さが長くなり、異物が存在することによる起電力の信号の電圧が遅れ、結果的に起電力の値が小さくなり、検出感度が低下する。従って、コイル導体が10m以上になる場合には、図21に示すセンサコイル群単位、あるいはセットセンサコイル単位で複数回巻くのが好ましい。コイル導体の長さが比較的短いときには、ユニットセンサコイル単位で複数回巻いてもよい。
 参考例4に記載の技術は、実施の形態1~3および参考例1~3に適用することができる。
 (参考例5)
 複数の巻線のユニットセンサコイルにおいて、隣接するユニットセンサコイルが存在しない辺の電圧は大きくなり耐圧が問題になる。この課題を解決する方法を説明する。
 図22Aは、参考例5における改良前のユニットセンサコイルの図であり、図22Bは、参考例5における改良後のユニットセンサコイルの図である。
 図22Aにおいて、セットセンサコイル285は、複数のユニットセンサコイルを有している。その一部として、ユニットセンサコイル286、287、288、および289が存在している。これらのユニットセンサコイルは、コイルが複数回巻かれている。セットセンサコイル285は、コイル導体291によって外形が規定されている。図22Aにおいて、ユニットセンサコイル286は、紙面の左右および下側に、それぞれユニットセンサコイル287、288、および289が隣接している。従って、コイル導体291において、ユニットセンサコイル287、288、および289と隣接する部分は、これらのユニットセンサコイルのコイル導体を兼ねている。しかし、図22Aの紙面上側のコイル導体291は、隣接するユニットセンサコイルが存在しない。この領域がコイル導体291の単独導体エリア290である。
 隣接するユニットセンサコイルが存在する、言い換えると2つのユニットセンサコイルの境界に位置するコイル導体291の辺の電圧は、2つのユニットセンサコイルの起電力によって低減される。しかし、コイル導体291において単独導体エリア290の電圧は、隣に別のユニットセンサコイルが存在しないので、大きくなる。
 図22Bに示すセットセンサコイル292は、この課題を解決する一形態である。図22Bにおいて、セットセンサコイル292は、複数のユニットセンサコイルを有している。その一部として、ユニットセンサコイル293、ユニットセンサコイル294、295、および296が存在している。これらのユニットセンサコイルは、コイルが複数回巻かれている。ユニットセンサコイル293は、コイル導体298によって外形が規定されている。図22Bにおいても、図22Aと同様に、セットセンサコイル292において隣接するユニットセンサコイルが存在しない部分を、コイル導体298の単独導体エリア297とする。
 単独導体エリア297では、コイル導体298の巻線の間隔を大きくすることで配線間の耐圧を上げることができる。
 特に、外部磁界が大きい領域に配置するユニットセンサコイルにおいて、巻線の耐圧は問題になるため、この領域のユニットセンサコイルにおいて、隣にユニットセンサコイルが存在しない辺の巻線の間隔を大きくするとよい。
 参考例5に記載の技術は、実施の形態1~3、参考例1~4に適用できる。
 (その他の実施の形態)
 なお、本開示の異物検出装置は、実施の形態1~3に限定されるものではない。実施の形態1~3における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の趣旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記実施の形態に係る異物検出装置を内蔵した各種機器も本発明に含まれる。
 本発明の異物検出装置は、非接触給電システムの異物検出装置に適用できる。
 10、127  異物検出装置
 11、40、50、90、240、251、252、261~263、271~273、285、292  セットセンサコイル
 12、13、23~32、61a、62a、62b、62c、63a、63b、63c、63d、63e、64a、64b、64c、64d、64e、64f、64g、65a、65b、65c、65d、65e、65f、65g、65h、66a、66b、66c、66d、66e、66f、67a、67b、67c、67d、68a、68b、71a、71b、72a、72b、72c、72d、73a、73b、73c、73d、73e、73f、74a、74b、74c、74d、74e、75a、75b、75c、76a、81~84、93~106、131~146、150、211a、211b、211c、211d、221a、221b、221c、221d、236、241、253、264、274、286~289、293~296、301、311  ユニットセンサコイル
 14、39、42、58、69、85、109、110、151、291、298、302、312  コイル導体
 15  外部磁界
 16  第1方向への電流
 17  第2方向への電流
 18、126  判定装置
 19、234  異物
 20、91  第1センサコイル群
 21  第1Y軸方向センサコイル群
 22  第2Y軸方向センサコイル群
 33、34、35、36、37、38  欠落部
 41  第2センサコイル群
 51、92  ペリフェラルセンサコイル群
 52~57、107、108  ペリフェラルユニットセンサコイル
 60、80、300、310  センサコイル群
 61~68  Y軸方向センサコイル群
 120、130  セットセンサコイル群
 121  第1セットセンサコイル
 122  第2セットセンサコイル
 123  第3セットセンサコイル
 124  第4セットセンサコイル
 125、155、156、157  スイッチ
 152  基準導体
 153  第1調整導体
 154  第2調整導体
 210、220  センサコイルアレー
 212、222、235  ユニットV0低減コイル
 231  異物配置
 232  符号パターン
 242、254  低感度領域
 250、260、270  マルチセンサコイル
 280  誘導起電力波形
 281  誘導起電力
 282  高周波ノイズ
 283  起電力ピーク期間
 290、297  単独導体エリア

Claims (14)

  1.  セットセンサコイルと、前記セットセンサコイルの電圧に応じて異物を検出する判定装置と、を備えた異物検出装置であって、
     前記セットセンサコイルは、少なくとも一つのセンサコイル群を有し、
     前記少なくとも一つのセンサコイル群は、磁界分布が均一な外部磁界の変化に対し第1方向へ電流を流そうとする第1符号の起電力を発生させる第1巻き方向の複数のユニットセンサコイルと、前記外部磁界の変化に対し前記第1方向と逆の方向である第2方向へ電流を流そうとする第2符号の起電力を発生させる第2巻き方向の複数のユニットセンサコイルとが電気的に直列接続されており、
     前記複数のユニットセンサコイルのそれぞれは、当該ユニットセンサコイルの外形を規定するコイル導体を有し、
     前記センサコイル群において、前記コイル導体は連続的にかつ電気的に直列に接続され、前記第1巻き方向のユニットセンサコイルを構成する前記コイル導体の一部または全部は、前記第2巻き方向のユニットセンサコイルを構成する前記コイル導体の一部または全部である
     異物検出装置。
  2.  前記セットセンサコイルは、複数のセンサコイル群を有する
     請求項1に記載の異物検出装置。
  3.  前記複数のセンサコイル群は、電気的に直列に接続されている
     請求項2に記載の異物検出装置。
  4.  前記判定装置は、前記複数のセンサコイル群のそれぞれの起電力を個別に求めて演算することにより、前記セットセンサコイルの電圧を求める
     請求項2に記載の異物検出装置。
  5.  前記第1巻き方向の複数のユニットセンサコイルの面積の和と、前期第2巻き方向の複数のユニットセンサコイルの面積の和とは等しい
     請求項2に記載の異物検出装置。
  6.  前記複数のセンサコイル群は、
     第1センサコイル群と、
     ペリフェラルセンサコイル群とを備え、
     前記第1センサコイル群は、
     前記第1巻き方向の複数のユニットセンサコイルと、
     前記第2巻き方向の複数のユニットセンサコイルとを有し、
     前記ペリフェラルセンサコイル群は、
     前記第1巻き方向の1または複数のペリフェラルユニットセンサコイル、および、前記第2巻き方向の1または複数のペリフェラルユニットセンサコイルの少なくともいずれかを有し、
     前記1または複数のペリフェラルユニットセンサコイルは、前記セットセンサコイルの最外周部で前記複数のユニットセンサコイルが欠落した領域に配置されている
     請求項2に記載の異物検出装置。
  7.  前記センサコイル群は、
     前記第1巻き方向のユニットセンサコイルがY軸の方向に1または複数配置されたY軸方向センサコイル群を複数有し、
     前記複数配置されたY軸方向センサコイル群は、前記Y軸と交差するX軸の方向に並んで配置され、
     前記1または複数配置されたY軸方向センサコイル群の少なくとも一つは、複数の前記ユニットセンサコイルを有し、
     前記コイル導体は、前記Y軸方向センサコイル群の外周を連続的に構成するように電気的に直列に接続され、
     隣り合う2個の前記Y軸方向センサコイル群を構成する前記コイル導体は、連続的にかつ電気的に直列に接続されている
     請求項1に記載の異物検出装置。
  8.  前記Y軸方向センサコイル群は、前記第1巻き方向のユニットセンサコイルがY軸方向に互い違いに配置されている
     請求項7に記載の異物検出装置。
  9.  セットセンサコイルと、前記セットセンサコイルの電圧に応じて異物を検出する判定装置と、を備えた異物検出装置であって、
     前記セットセンサコイルは、複数のセンサコイル群を有し、
     前記センサコイル群は、外部磁界の変化に対し第1方向へ電流を流そうとする第1符号の起電力を発生させる第1巻き方向、および、前記外部磁界の変化に対し前記第1方向と逆の方向である第2方向へ電流を流そうとする第2符号の起電力を発生させる第2巻き方向の少なくとも一方の巻き方向の複数のユニットセンサコイルを有し、
     前記複数のユニットセンサコイルのそれぞれは、当該ユニットセンサコイルの外形を規定するコイル導体を有し、
     前記複数のセンサコイル群のそれぞれにおいて、前記コイル導体は連続的にかつ電気的に直列に接続されている
     異物検出装置。
  10.  前記複数のセンサコイル群のうちの一のセンサコイル群の前記コイル導体は、他のセンサコイル群の前記コイル導体と離間している
     請求項9に記載の異物検出装置。
  11.  前記複数のセンサコイル群のうちの一のセンサコイル群の前記コイル導体は、他のセンサコイル群の前記コイル導体とずれた場所に位置する
     請求項9に記載の異物検出装置。
  12.  前記第1巻き方向のユニットセンサコイルを構成する導体の一部または全部は、前記第2巻き方向のユニットセンサコイルを構成する導体の一部または全部である
     請求項11に記載の異物検出装置。
  13.  さらに、
     前記複数のセンサコイル群のうちから、駆動させるセンサコイル群を選択するスイッチを有する
     請求項9~12のいずれか1項に記載の異物検出装置。
  14.  前記スイッチにより同時に駆動されるセンサコイル群は2以上であり、当該2以上のセンサコイル群のそれぞれに含まれる前記複数のユニットセンサコイルの前記第1巻き方向および前記第2巻き方向の数が等しい
     請求項13に記載の異物検出装置。
PCT/JP2015/004196 2014-08-28 2015-08-21 異物検出装置 WO2016031209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016544955A JP6551694B2 (ja) 2014-08-28 2015-08-21 異物検出装置
EP15836895.1A EP3197014B1 (en) 2014-08-28 2015-08-21 Foreign object detection device
US15/507,098 US10254427B2 (en) 2014-08-28 2015-08-21 Foreign object detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-173667 2014-08-28
JP2014173667 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031209A1 true WO2016031209A1 (ja) 2016-03-03

Family

ID=55399125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004196 WO2016031209A1 (ja) 2014-08-28 2015-08-21 異物検出装置

Country Status (4)

Country Link
US (1) US10254427B2 (ja)
EP (1) EP3197014B1 (ja)
JP (1) JP6551694B2 (ja)
WO (1) WO2016031209A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018065452A1 (de) * 2016-10-07 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Maschenwerk und vorrichtung zur objekterkennung in einem magnetfeld, verfahren zur herstellung des maschenwerks und induktive ladeeinheit
JP2018105776A (ja) * 2016-12-27 2018-07-05 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
WO2018123767A1 (ja) * 2016-12-27 2018-07-05 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
CN109843635A (zh) * 2016-10-07 2019-06-04 宝马股份公司 用于车辆的感应式充电单元
JP2020521131A (ja) * 2017-05-23 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag 異物検出器、異物検出システム、異物検出器の使用、および異物検出方法
WO2024106148A1 (ja) * 2022-11-16 2024-05-23 オムロン株式会社 異物検知装置及びコイル装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249783B1 (en) * 2015-01-19 2022-02-09 IHI Corporation Power transmission system, foreign matter detection device, and coil device
AU2017203411A1 (en) * 2016-06-01 2017-12-21 Strata Products Worldwide, Llc Method and apparatus for identifying when an idividual is in proximity to an object
US10128697B1 (en) * 2017-05-01 2018-11-13 Hevo, Inc. Detecting and deterring foreign objects and living objects at wireless charging stations
US10320241B2 (en) * 2017-05-17 2019-06-11 Apple Inc. Wireless charging system with object recognition
RU2735380C1 (ru) * 2017-08-25 2020-10-30 Иннова Патент Гмбх Индуктивный сенсор
WO2019219208A1 (en) * 2018-05-18 2019-11-21 Tdk Corporation Foreign object detector, wireless power transmission system comprising a foreign object detector and method of detecting a foreign object
CN109143382B (zh) * 2018-06-19 2020-12-08 华为技术有限公司 一种检测线圈、检测装置及检测系统
US11605985B2 (en) * 2019-08-20 2023-03-14 Apple Inc. Wireless power system with object detection
US11824373B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with parallel coil molecule configuration
US11824372B2 (en) * 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with puzzled antenna molecules
US11831175B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with antenna molecules
US11831173B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with series coil molecule configuration
US11862991B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and in-coil tuning
US11824371B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and repeater filter
US11848566B2 (en) 2021-11-03 2023-12-19 Nucurrent, Inc. Dual communications demodulation of a wireless power transmission system having an internal repeater
US11962337B2 (en) 2021-11-03 2024-04-16 Nucurrent, Inc. Communications demodulation in wireless power transmission system having an internal repeater
US11862984B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power receiver with repeater for enhanced power harvesting
US11831177B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmitter with internal repeater and enhanced uniformity
US11831176B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transfer systems with substantial uniformity over a large area
US12027880B2 (en) 2021-11-03 2024-07-02 Nucurrent, Inc. Wireless power transfer from mouse pad to mouse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161998A (ja) * 1989-11-21 1991-07-11 Kosuke Harada 平面コイル
JP2012249401A (ja) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd 非接触給電装置
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
JP2014126512A (ja) * 2012-12-27 2014-07-07 Denso Corp 金属物体検知装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605153B2 (ja) * 2010-10-15 2014-10-15 ソニー株式会社 給電装置、給電方法および給電システム
JP5967989B2 (ja) * 2012-03-14 2016-08-10 ソニー株式会社 検知装置、受電装置、送電装置及び非接触給電システム
DE102012108671A1 (de) 2012-09-17 2014-05-28 Paul Vahle Gmbh & Co. Kg Metall-Fremdkörper-Erkennungssystem für induktive Energieübertragungssysteme
WO2014103222A1 (ja) 2012-12-27 2014-07-03 株式会社デンソー 金属物体検知装置
DE102013010695B4 (de) 2013-02-11 2022-09-29 Sew-Eurodrive Gmbh & Co Kg Vorrichtung mit Wicklungsanordnung und Anordnung, insbesondere Ladestation, zur berührungslosen Energieübertragung an ein Elektro-Fahrzeug, mit einer Wicklungsanordnung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161998A (ja) * 1989-11-21 1991-07-11 Kosuke Harada 平面コイル
JP2012249401A (ja) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd 非接触給電装置
JP2013192391A (ja) * 2012-03-14 2013-09-26 Sony Corp 検知装置、受電装置、送電装置及び非接触給電システム
JP2014126512A (ja) * 2012-12-27 2014-07-07 Denso Corp 金属物体検知装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791214A (zh) * 2016-10-07 2019-05-21 宝马股份公司 用于在磁场中进行物体识别的网络和装置、用于制造网络的方法和感应式充电单元
US11667205B2 (en) 2016-10-07 2023-06-06 Bayerische Motoren Werke Aktiengesellschaft Inductive charging unit for a vehicle
US10933757B2 (en) 2016-10-07 2021-03-02 Bayerische Motoren Werke Aktiengesellschaft Meshwork and device for detecting an object in a magnetic field, method for producing the meshwork, and inductive charging unit
WO2018065452A1 (de) * 2016-10-07 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Maschenwerk und vorrichtung zur objekterkennung in einem magnetfeld, verfahren zur herstellung des maschenwerks und induktive ladeeinheit
CN109843635A (zh) * 2016-10-07 2019-06-04 宝马股份公司 用于车辆的感应式充电单元
WO2018123766A1 (ja) * 2016-12-27 2018-07-05 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP2018107944A (ja) * 2016-12-27 2018-07-05 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
WO2018123767A1 (ja) * 2016-12-27 2018-07-05 Tdk株式会社 ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP2018105776A (ja) * 2016-12-27 2018-07-05 Tdk株式会社 金属異物検出装置、ワイヤレス給電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP2020521131A (ja) * 2017-05-23 2020-07-16 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag 異物検出器、異物検出システム、異物検出器の使用、および異物検出方法
US11101704B2 (en) 2017-05-23 2021-08-24 Tdk Electronics Ag Foreign object detector, foreign object detection system, use of a foreign object detector, and method of detecting a foreign object
JP7018076B2 (ja) 2017-05-23 2022-02-09 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフト 異物検出器、異物検出システム、異物検出器の使用、および異物検出方法
WO2024106148A1 (ja) * 2022-11-16 2024-05-23 オムロン株式会社 異物検知装置及びコイル装置

Also Published As

Publication number Publication date
JP6551694B2 (ja) 2019-07-31
US20170248726A1 (en) 2017-08-31
JPWO2016031209A1 (ja) 2017-06-22
EP3197014A1 (en) 2017-07-26
US10254427B2 (en) 2019-04-09
EP3197014A4 (en) 2017-09-20
EP3197014B1 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2016031209A1 (ja) 異物検出装置
EP3214728B1 (en) Foreign matter detection device
JP6741985B2 (ja) 異物検出装置、無線送電装置、及び無線電力伝送システム
CN102680567B (zh) 涡流探测器
US20160282500A1 (en) Sensor and method for foreign object detection in induction electric charger
JP5904251B2 (ja) コイルユニットおよび非接触電力伝送装置
JP6030782B2 (ja) 磁場センサシステム
CN105379061A (zh) 用于检测感应充电器中的外来物体的方法和装置
US20180372812A1 (en) Equilibrium-type magnetic field detection device
CN104280600B (zh) 检测器和电压变换器
JP2009204342A (ja) 渦電流式試料測定方法と渦電流センサ
KR20170045288A (ko) 포지션 센서
JP5347619B2 (ja) 非接触給電装置及び電気自動車
JP6395942B2 (ja) 位置センサー
CN103217481A (zh) 一种应用磁致伸缩的磁声成像探头
JP2008203240A (ja) 電磁インピーダンスセンサとそれを用いた乗員保護システム
JP6258880B2 (ja) ロータリスケール
CN104280697A (zh) 用于磁传感器装置或磁致动器的微技术构件及其制造方法
JP2020537152A5 (ja)
JP6847517B2 (ja) 誘導検出型ロータリエンコーダ
JP2015122818A (ja) 非接触給電装置
CN110455913B (zh) 一种并联型平面涡流传感器
KR100818684B1 (ko) 인덕티브 센서의 제어방법
JP2016103779A (ja) 電子装置
CN113008434A (zh) 一种用于残余应力检测的正交差分式柔性电磁传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544955

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015836895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836895

Country of ref document: EP

Ref document number: 15507098

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE