WO2016031184A1 - 自動利得制御方法及び自動利得制御回路 - Google Patents

自動利得制御方法及び自動利得制御回路 Download PDF

Info

Publication number
WO2016031184A1
WO2016031184A1 PCT/JP2015/004141 JP2015004141W WO2016031184A1 WO 2016031184 A1 WO2016031184 A1 WO 2016031184A1 JP 2015004141 W JP2015004141 W JP 2015004141W WO 2016031184 A1 WO2016031184 A1 WO 2016031184A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
digital
frequency
circuit
Prior art date
Application number
PCT/JP2015/004141
Other languages
English (en)
French (fr)
Inventor
河上 聡子
進 熊谷
Original Assignee
Necスペーステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necスペーステクノロジー株式会社 filed Critical Necスペーステクノロジー株式会社
Priority to JP2016544938A priority Critical patent/JP6386566B2/ja
Priority to US15/503,073 priority patent/US10039066B2/en
Priority to EP15835327.6A priority patent/EP3188364A4/en
Publication of WO2016031184A1 publication Critical patent/WO2016031184A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • H04B1/0017Digital filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2628Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]

Definitions

  • the present invention relates to an automatic gain control method and an automatic gain control circuit used in a wireless communication device or the like.
  • the fluctuation range of the intensity of the received signal input via the antenna is large.
  • the apparatus is configured to receive a weak signal, receiving an excessive signal causes adverse effects such as distortion. Therefore, an automatic gain control (AGC) circuit that controls the gain in signal amplification based on fluctuations in signal intensity and suppresses fluctuations in intensity and supplies an input signal to a subsequent circuit is used. ing.
  • AGC automatic gain control
  • FIG. 6 shows a configuration of a general radio frequency (RF) front end provided in a receiver in the related art.
  • the RF front end amplifies the signal received by the antenna 11 and converts it into a digital signal, and has an automatic gain control function.
  • a low noise amplifier (LNA) 12 for amplifying a received signal is connected to the antenna 11.
  • the output of the LNA 12 is supplied to a band-pass filter (BPF: band-pass filter) 14 that passes only a signal in a desired frequency band through an amplifier circuit 13.
  • BPF band-pass filter
  • a signal having a desired frequency that has passed through the BPF 14 is then amplified by a variable gain amplifier 15 and converted into a digital signal by an analog-to-digital converter (ADC) 16.
  • ADC analog-to-digital converter
  • the converted digital signal is supplied to, for example, a digital signal processing unit of the receiver.
  • the variable gain amplifier 15 is an amplifier whose gain changes according to the control signal, and the control signal is, for example, a voltage signal.
  • a control circuit 17 is provided for generating a control signal. The control circuit 17 generates a control signal based on the signal strength detected by the ADC 16 so that the signal level input to the ADC 16 becomes constant by reducing the gain of the variable gain amplifier 15 when the signal strength is high. This is supplied to the variable gain amplifier 15.
  • the variable gain amplifier 15 and the control circuit 17 constitute an automatic gain control circuit.
  • the automatic gain control circuit does not limit the gain in the variable gain amplifier 15 when the intensity of the signal detected on the output side of the variable gain amplifier 15 is below a certain threshold value.
  • the variable gain amplifier when the intensity of a signal detected on the output side of the variable gain amplifier 15 is not more than a certain threshold value, the variable gain amplifier is generally operated at the maximum gain. is there.
  • the thermal noise of the LNA 12 is dominant in the input signal to the variable gain amplifier 15. Therefore, when the input signal to the ADC 16 obtained by amplifying such an input voltage with the variable gain amplifier 15 is represented by the frequency distribution of the signal voltage when the signal is integrated, as shown in FIG. A close distribution is shown. In such a case, the ADC 16 having a small bit number such as 2 bits is used. In the case of using an ADC of 2 bits or more, a signal that saturates the ADC is allowed to be input to the ADC 16. ADC saturation means that an input signal that exceeds the dynamic range of the ADC is input to the ADC.
  • the threshold of automatic gain control is about 30% of the entire input signal distribution represented by a normal distribution. It is set to be outside the dynamic range of the ADC 16. Examples of signals that are weakly received by direct spread spectrum spread modulation include GPS signals received from GPS (Global Positioning System) satellites.
  • a disturbance with a sharp frequency spectrum may be input by overlapping a weak but weak signal.
  • the result of the automatic gain control is that the signal at the point [A] in FIG. 6, that is, the input signal of the ADC 16 has a sufficient level of the received signal as the desired signal. Included.
  • the thermal noise of the LNA 12 is dominant in the input signal of the variable gain amplifier 15, but here, since the signal subjected to spread spectrum modulation is used as the received signal, the level of the received signal is relative to the noise power. If the ratio is greater than or equal to the ratio, a desired result can be obtained by digitally processing the output digital signal from the ADC 16.
  • Patent Document 1 discloses a technique for preventing the influence of disturbance input superimposed on a weak received signal in a wide band.
  • Patent Document 1 discloses that an ADC provided in a subsequent stage of a variable gain amplifier is prevented from being saturated by an interference wave.
  • Patent Document 1 discloses that a variable frequency band limiting filter functioning as a notch filter is provided in front of a variable gain amplifier, and the frequency of the interference wave is removed by the filter by detecting the frequency of the interference wave. .
  • Patent Document 2 a technique for reducing the influence of an interference wave from a channel adjacent to a desired wave is disclosed in Patent Document 2.
  • Patent Document 2 a narrow-band analog bandpass filter to which an output signal from a variable gain amplifier is supplied is provided, and this filter is set so that the frequency of the disturbing wave is outside the passband. It is disclosed that automatic gain control is performed based on the above.
  • Patent Document 3 a variable band digital filter tuned to a desired wave is provided after the ADC, and the output of the variable gain amplifier is supplied to the ADC to convert it into a digital signal. Based on the amplitude of the digital signal, a variable gain is obtained. Controlling the gain of the amplifier is disclosed.
  • Patent Document 3 discloses that the band pass characteristic of a band variable digital filter is controlled to reduce the influence of an interference wave.
  • Patent Document 4 discloses that desired signal power and interference signal power are obtained by filtering from a signal after quadrature detection, and automatic gain control is performed by a variable gain amplifier following only the desired signal power.
  • Patent Document 1 The method described in Patent Document 1 as a method for reducing the influence of disturbance input when a disturbance input overlaps a weak received signal with a wide band is a variable frequency functioning as a notch filter provided in the preceding stage of a variable gain amplifier.
  • a band limiting filter is used.
  • this filter is an analog filter, and it is difficult to accurately control the filter so as to obtain a desired filter characteristic, and there is a problem that the circuit scale becomes large.
  • An object of the present invention is an automatic gain control method using a variable gain amplifier that amplifies a received signal, which can reduce the circuit scale and that is superposed on a frequency band of a received signal that is a desired signal.
  • An object of the present invention is to provide an automatic gain control method capable of reducing the influence of input.
  • Another object of the present invention is an automatic gain control circuit having a variable gain amplifier for amplifying a received signal, having a small circuit scale, and a disturbance input for superimposing within a frequency band of a received signal which is a desired signal. It is an object of the present invention to provide an automatic gain control circuit capable of reducing the influence of the above.
  • an automatic gain control method in a receiver having a variable gain amplifier to which a received signal is input and an analog / digital converter connected to the output of the variable gain amplifier is provided within a frequency band of the received signal. Selecting a frequency having a lower signal level output from the analog / digital converter than the other frequencies in the plurality of frequencies, and selecting the frequency at the output of the analog / digital converter Determining the gain in the variable gain amplifier based on the signal strength of the component.
  • an automatic gain control method in a receiver having a variable gain amplifier to which a received signal is input and an analog / digital converter connected to the output of the variable gain amplifier is provided. Selecting a frequency band that deviates from the frequency of the disturbance input superimposed on the received signal, and the gain of the variable gain amplifier based on the signal strength of the component of the selected frequency band at the output of the analog / digital converter. Determining.
  • an automatic gain control circuit including a variable gain amplifier for receiving a received signal and supplying an output of the variable gain amplifier to an analog / digital converter is provided.
  • a frequency selection circuit that selects a signal within a frequency band of the received signal that is narrower than this frequency band, and generates a control signal for the variable gain amplifier based on the strength of the signal selected by the frequency selection circuit A control signal generation circuit.
  • the present invention it is possible to perform automatic gain control based on the signal intensity of the selected frequency component by selecting a frequency that is not affected by the disturbance input from the frequency band of the received signal. Therefore, it is possible to reduce the influence of disturbance input superimposed on the frequency band of the received signal, and to obtain an effect that signal processing at a high signal level can be performed on the received signal.
  • FIG. 5 is a diagram for explaining the operation of the circuit shown in FIG. 4. It is a circuit diagram which shows the structure of a general RF front end. It is a figure explaining the level setting in automatic gain control.
  • FIG. 1 shows an automatic gain control circuit in a basic embodiment.
  • This automatic gain control circuit is preferably used in a receiver that amplifies a received signal that is an analog signal and then converts the amplified signal into a digital signal by an analog / digital converter (ADC).
  • ADC analog / digital converter
  • the received signal which is a desired signal is, for example, a wideband signal modulated by spread spectrum modulation, and has a frequency band of several MHz, for example.
  • the automatic gain control circuit includes a variable gain amplifier 15 that receives a received signal and amplifies the received signal.
  • the output of the variable gain amplifier 15 is supplied to an ADC 16 that converts the received signal into a digital signal.
  • the digital signal output from the ADC 16 is supplied to, for example, a signal processing unit provided in the receiver.
  • the gain in the variable gain amplifier 15 is controlled by a control signal.
  • the automatic gain control circuit generates a control signal in accordance with the output of the ADC 16 and performs automatic gain control.
  • the automatic gain control circuit includes a frequency selection circuit 18 that is connected to the output of the ADC 16 and selects a signal within a frequency band of the received signal that is narrower than this frequency band.
  • the automatic gain control circuit also includes a control signal generation circuit 19 that generates a control signal for the variable gain amplifier 15 based on the intensity of the signal selected by the frequency selection circuit 18.
  • the frequency selection circuit 18 selects a frequency having a lower signal level output from the ADC 16 than a plurality of other frequencies in the frequency band of the received signal.
  • the frequency selection circuit 18 extracts from the output of the ADC 16 a component in the frequency range that is not affected by the disturbance. . This is because automatic gain control is performed by generating a control signal to the variable gain amplifier 15 on the basis of the signal intensity of the extracted component. Therefore, as the frequency selection circuit 18, a circuit that selects a frequency band that deviates from the frequency of the disturbance input superimposed on the received signal from the frequency band of the received signal can be used.
  • a digital filter can be used for the frequency selection circuit 18 as described later.
  • the digital filter has a pass band that is narrower than the frequency band of the received signal.
  • the pass band of the digital filter is set to a frequency at which the level at the output of the ADC 16 is relatively low.
  • the pass band of the digital filter is set to a band out of the frequency of the disturbance input in the frequency band of the received signal.
  • the control signal generation circuit 19 When such a frequency selection circuit 18 is used, the influence of disturbance input is not exerted at the frequency selected by the frequency selection circuit 18. As a result, the control signal generation circuit 19 generates a control signal for the variable gain amplifier 16 based on the received signal and a noise component that does not depend on the frequency, such as thermal noise, without depending on the magnitude of the disturbance.
  • being independent of frequency means that it is substantially independent of frequency within the frequency band of the received signal.
  • the gain of the variable gain amplifier 15 since the magnitude of the disturbance is not reflected in the automatic gain control, the gain of the variable gain amplifier 15 becomes larger than when performing the automatic gain control reflecting the magnitude of the disturbance, and as a result, The ADC 16 is likely to be saturated.
  • the ADC 16 is used while allowing saturation as described above. Therefore, when the disturbance is superimposed on the frequency band of the received signal, the magnitude of the disturbance is automatically gained. Even if it is not reflected in the control, there is no adverse effect on the subsequent signal processing. Rather, since the level of the received signal component can be kept high at the input of the ADC 16, the received signal obscured by noise such as thermal noise can be handled more appropriately in the subsequent signal processing. Degradation of machine functions and performance can be prevented. Specifically, assuming that the received signal is a signal by spread spectrum modulation, the automatic gain control circuit of the present embodiment reverses the received signal even if there is a significant disturbance superimposed on the received signal. Diffusion can be performed reliably.
  • circuit adjustment is unnecessary and a more stable automatic gain control operation can be realized.
  • circuit scale can be reduced as compared with the case where an analog filter is used.
  • FIG. 2 shows an example of an RF (high frequency) front end including an automatic gain control circuit according to an embodiment of the present invention.
  • the RF front end shown in FIG. 2 has an automatic gain control function, and processes a signal received by the antenna 11 and outputs it as a digital signal.
  • the received signal is, for example, a signal by direct spread spectrum spread modulation, and a representative signal is a GPS signal.
  • the RF front end shown in FIG. 2 includes an LNA (low noise amplifier) 12 connected to the antenna 11 and an amplifier circuit 13 provided at the output of the LNA 12. Yes.
  • LNA low noise amplifier
  • the RF front end includes a BPF (band pass filter) 14 that is provided at the output of the amplifier circuit 13 and passes only a signal in a desired frequency band, and a variable gain amplifier 15 to which the output of the BPF 14 is input.
  • the amplifier circuit 13 has a function of further amplifying the reception signal output from the LNA 12, but may further have a function of converting the frequency of the reception signal.
  • the signal supplied to the BPF 14 becomes a reception signal after frequency conversion.
  • the pass band of the BPF 14 is set corresponding to the frequency band of the received signal. If the received signal is a GPS signal, the pass band width of the BPF 14 is set to about 5 to 10 MHz, for example.
  • the signal output from the variable gain amplifier 15 whose gain changes according to the control signal is supplied to an ADC (analog / digital converter) 16 and converted into a digital signal.
  • the converted digital signal is supplied to, for example, a signal processing unit of a receiver including the RF front end.
  • ADC 16 for example, an ADC having a low bit number such as 2 bits is used.
  • a digital filter 21 to which a digital signal output from the ADC 16 is input, an amplitude detection circuit 22 that detects the amplitude of the output signal of the digital filter 21, and an amplitude detection circuit 22 A digital loop filter 23 to which an output is input, and a digital / analog converter (DAC: digital-) which converts a digital signal output from the digital loop filter 23 into an analog signal and supplies the analog signal to a variable gain amplifier 15 as a control signal which is a voltage signal. to-analog converter 24).
  • DAC digital-
  • the digital filter 21 has a narrower pass band than the pass band of the BPF 14, and the frequency of the pass band of the digital filter 21 is that of the digital filter 21 when considering the level for each frequency in the digital signal output from the ADC 16.
  • the passband is set to a frequency at which the level at the output of the ADC 16 is relatively low.
  • the pass band of the digital filter 21 is set to a band that deviates from the frequency of the disturbance input.
  • the variable gain amplifier 15, the digital filter 21, the amplitude detection circuit 22, the digital loop filter 23, and the DAC 24 constitute an automatic gain control circuit.
  • the received signal which is a desired signal has a distribution in which noise independent of frequency such as thermal noise caused by the LNA 12 in the previous stage overlaps.
  • the amplitude detected by the amplitude detection circuit 22 does not include the influence of the external input, and is the original received signal amplitude. It depends on.
  • the control signal obtained by supplying the output of the amplitude detection circuit 22 to the DAC 24 via the digital loop filter 23 and converting it into an analog signal is not affected by the disturbance input, and reflects the magnitude of the disturbance. Automatic gain control is not performed. Also in the circuit of the present embodiment, the reception signal buried in noise such as thermal noise can be more appropriately handled in the subsequent signal processing, similarly to the circuit shown in FIG. Performance degradation can be prevented.
  • the circuit shown in FIG. 2 does not require an analog filter for generating a control signal, and thus has an advantage that the circuit scale can be reduced.
  • the pass band of the digital filter 21 it is necessary to set the pass band of the digital filter 21 so as to deviate from the frequency of the disturbance input. If the frequency of the disturbance input is known, the setting of the digital filter 21 is easy, but if the frequency of the disturbance input is unknown or the frequency of the disturbance input fluctuates, the digital filter 21 having a fixed pass band. It is inappropriate to use. In such a case, the amplitude of the output of the digital filter 21 is detected by the amplitude detection circuit 22 while changing the center frequency using the digital filter 21 that makes the center frequency of the pass band variable. What is necessary is just to find the center frequency with the smallest amplitude and to set the pass band of the digital filter 21 by the center frequency.
  • a digital filter that makes the center frequency of the pass band variable tends to have a complicated circuit configuration.
  • the variable frequency digital filter that can be used in this embodiment, the one shown in FIG. 3 can be used. That is, as a variable frequency digital filter, an oscillation waveform generation circuit 27 that generates an oscillation waveform of a variable frequency as a digital signal, a multiplication circuit 28 that multiplies the output of the ADC 16 and the output of the oscillation waveform generation circuit 27, and the multiplication circuit 28 What consists of the digital low-pass filter 29 into which an output is input can be used.
  • the cutoff frequency of the digital low-pass filter 29 is set to a frequency converted from the pass bandwidth as the digital filter 21.
  • the cut-off frequency of the digital low-pass filter 29 may be matched with the pass bandwidth as the digital filter 21.
  • the oscillation waveform generated by the oscillation waveform generation circuit 27 is a sine wave, and the multiplication circuit 28 performs digital multiplication. If the result is supplied to the digital low-pass filter 29, as a whole, it functions as a digital filter in which the center frequency of the pass band is determined by the frequency of the waveform generated by the oscillation waveform generation circuit 27. If the amplitude is detected by the amplitude detection circuit 22 while sweeping the frequency of the waveform generated by the oscillation waveform generation circuit 27 and the frequency sweep is stopped at the point where the amplitude is minimized, the ADC 16 outputs within the frequency band of the received signal. The frequency with the lowest signal level is selected.
  • FIG. 4 shows an example of the configuration of an RF front end including an automatic gain control circuit configured to supply the output of the ADC 16 in parallel to a plurality of digital filters.
  • the RF front end shown in FIG. 4 is provided with an LNA 12, an amplifier circuit 13, a BPF 14, a variable gain amplifier 15 and an ADC 16 in the same manner as the RF front end shown in FIG. 2, and the output of the ADC 16 is in a receiver including this RF front end.
  • n digital filters 21 are provided in which n is an integer of 2 or more and the output of the ADC 16 is input in parallel. n is typically an integer from 3 to 10.
  • the pass bands of these n digital filters 21 are all narrower than the pass band of the BPF 14, and their center frequencies are different from each other.
  • An amplitude detection circuit 22 is connected to the output of each digital filter 21 to detect the output of the corresponding digital filter 21.
  • a selection circuit 25 for inputting the amplitude detected by the n amplitude detection circuits is provided, and the selection circuit 25 selects and outputs the smallest one of the input amplitudes in a state where a disturbance is input.
  • the RF front end is provided with a digital loop filter 23 to which the output of the selection circuit 25 is input, and a DAC 24 that converts the output of the digital loop filter 23 into an analog signal and supplies it as a control signal to the variable gain amplifier 25.
  • the variable gain amplifier 15, n digital filters 21, n amplitude detection circuits 22, selection circuit 25, digital loop filter 23, and DAC 24 constitute an automatic gain control circuit.
  • the frequency band of the received signal has three bands, band 1, band 2, and band 3, as indicated by reference numeral 40 in the figure. It is divided into. These three bands correspond to the pass bands of the three digital filters 21, respectively.
  • a disturbance having a sharp frequency spectrum is input in the band 2 in the input signal distribution of the variable gain amplifier.
  • the frequency of the disturbance is a position close to band 1 in band 2.
  • the magnitude of the amplitude is band 2> band 1> band 3.
  • Reference numeral 41 in FIG. 5 indicates a signal distribution at the output of the digital filter 21 when a control signal for the variable gain amplifier 15 is generated based on the amplitude of the output of the digital filter 21 corresponding to the band 1. Yes.
  • reference numeral 42 indicates a signal distribution at the output of the digital filter 21 when a control signal for the variable gain amplifier 15 is generated based on the amplitude of the output of the digital filter 21 corresponding to the band 2.
  • Reference numeral 43 indicates a signal distribution at the output of the digital filter 21 when a control signal for the variable gain amplifier 15 is generated based on the amplitude of the output of the digital filter 21 corresponding to the band 3. When these signal distributions 41 to 43 are compared, the signal distribution 43 corresponding to the band 3 has the largest signal level.
  • the band 3 is least affected by the disturbance input among the bands 1 to 3.
  • the signal level is overwhelmingly small due to the influence of the disturbance included in the band 2. Therefore, if automatic gain control is performed based on the amplitude in band 2, the gain of variable gain amplifier 15 is reduced due to the influence of disturbance, and the reception level of the received signal, which is a desired signal, is reduced. Even if the disturbance frequency is in the band 2, the influence of the disturbance also affects the band 1 due to the frequency characteristics of the filter. It should be noted that the signal distributions 41 to 43 in FIG. 5 are obtained under different gains in the variable gain amplifier 15.
  • the amplitude of the output of the digital filter 21 corresponding to the band 3 is selected by the selection circuit 25 and supplied to the digital loop filter 23 to generate a control signal for the variable gain amplifier 15. To do.
  • the control signal is generated in this way, automatic gain control is performed without being affected by disturbance input.
  • the signal level of the received signal component in the signal input to the ADC 16 can be maintained high, so that subsequent signal processing can be performed more appropriately, and deterioration of the function and performance of the receiver can be prevented.
  • the digital filter 21 selected by the selection circuit 25 also changes following the change, and the band having the minimum amplitude is always selected. Therefore, even if there is a change in the frequency of the disturbance input, automatic gain control is always performed based on a signal in a band where the signal level of the received signal is high without being affected by the disturbance input.
  • Antenna Low noise amplifier (LNA) 13 Amplifier 14 Bandpass filter (BPF) 15 Variable Gain Amplifier 16 Analog / Digital Converter (ADC) 17 control circuit 18 frequency selection circuit 19 control signal generation circuit 21 digital filter 22 amplitude detection circuit 23 digital loop filter 24 digital / analog converter (DAC) 25 Selection Circuit 27 Oscillation Waveform Generation Circuit 28 Multiplication Circuit 29 Digital Low-Pass Filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Circuits Of Receivers In General (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

受信信号を増幅する可変利得増幅器を備える自動利得制御回路であって、回路規模が小型であって受信信号の周波数帯域内に重畳する外乱入力の影響を低減することができる自動利得制御回路を提供する。可変利得増幅器の出力をアナログ/デジタル変換器に供給する自動利得制御回路は、アナログ/デジタル変換器の出力に接続し、受信信号の周波数帯域内の、その周波数帯域よりも狭い帯域の信号を選択する周波数選択回路と、周波数選択回路が選択した信号の強度に基づいて可変利得増幅器に対する制御信号を生成する制御信号生成回路と、を有する。

Description

自動利得制御方法及び自動利得制御回路
 本発明は、無線通信装置などにおいて用いられる自動利得制御方法及び自動利得制御回路に関する。
 無線通信装置、特に受信機では、アンテナを介して入力する受信信号の強度の変動幅が大きい。微弱な信号を受信できるように装置を構成した場合、過大な信号を受信することによって、歪が生じるなどの悪影響が生じる。そこで、信号増幅での利得を信号強度の変動に基づいて制御することにより、強度の変動を抑制して入力信号を後段の回路に供給する自動利得制御(AGC:automatic gain control)回路が用いられている。
 図6は、関連技術において受信機に設けられる一般的な高周波(RF:radio frequency)フロントエンドの構成を示している。このRFフロントエンドは、アンテナ11で受信した信号を増幅してデジタル信号に変換するものであり、自動利得制御機能を備えるものである。アンテナ11に対し、受信信号を増幅する低雑音増幅器(LNA:low noise amplifier)12が接続している。LNA12の出力は、増幅回路13を介して、所望の周波数帯域の信号のみを通過させる帯域通過フィルタ(BPF:band-pass filter)14に供給される。BPF14を通過した所望の周波数の信号は、次に、可変利得増幅器15で増幅され、アナログ/デジタル変換器(ADC:analog-to-digital convertor)16によりデジタル信号に変換される。変換後のデジタル信号は、例えば、この受信機のデジタル信号処理部に供給される。可変利得増幅器15は、制御信号に応じて利得が変化する増幅器であって、制御信号は例えば電圧信号である。制御信号を発生するために制御回路17が設けられている。制御回路17は、ADC16で検出した信号強度に基づき、信号強度が大きいときに可変利得増幅器15の利得を低下させることによりADC16に入力する信号レベルが一定となるように、制御信号を発生して可変利得増幅器15に供給する。図6に示した構成では、可変利得増幅器15及び制御回路17によって、自動利得制御回路が構成されることになる。自動利得制御回路では、可変利得増幅器15の出力側で検出される信号の強度があるしきい値以下である場合には、可変利得増幅器15における利得の制限を行わない。自動利得制御回路では、可変利得増幅器15の出力側で検出される信号の強度があるしきい値以下である場合には、可変利得増幅器がその最大利得で動作するようにすることが一般的である。
 図6に示すRFフロントエンドにおいて、受信信号がスペクトラム拡散変調などによる広帯域で微弱な信号である場合、可変利得増幅器15への入力信号ではLNA12の熱雑音が支配的である。したがって、このような入力電圧を可変利得増幅器15で増幅して得られるADC16への入力信号は、信号を積分したときの信号電圧の頻度分布で表すと、図7に示すように、正規分布に近い分布を示す。またこのような場合、ADC16として、2ビットといった小さなビット数のものを使用する。2ビット以上のADCを使用する場合においては、そのADCが飽和するような信号がADC16に入力することを許容するようにする。ADCの飽和とは、ADCのダイナミックレンジの範囲を超える入力信号がADCに入力することをいう。
 図6に示すRFフロントエンドにおいて自動利得制御のしきい値は、受信信号が直接拡散スペクトラム拡散変調による信号である場合、正規分布で表される入力信号分布において、全体の約30%の部分がADC16のダイナミックレンジの範囲外となるように設定される。直接拡散スペクトラム拡散変調による信号であり、かつ微弱に受信される信号としては、例えば、GPS(全地球測位システム:Global Positioning System)衛星から受信されるGPS信号が挙げられる。
 広帯域であるが微弱な受信信号に重なって、鋭い周波数スペクトルを有する外乱が入力することがある。受信信号に重畳する外乱がない場合には、自動利得制御を行った結果、図6の点[A]での信号、すなわちADC16の入力信号には、所望の信号である受信信号が十分なレベルで含まれている。可変利得増幅器15の入力信号では、上述したようにLNA12の熱雑音が支配的であるが、ここではスペクトラム拡散変調された信号を受信信号としているので、受信信号のレベルがノイズ電力に対してある割合以上であれば、ADC16からの出力デジタル信号をデジタル信号処理することによって、所望の成果を得ることができる。
 一方、広帯域の受信信号に対して狭いスペクトルを有する外乱が重畳したときは、可変利得増幅器15の入力信号分布に対してピーク状の外乱入力が重なることとなり、この外乱入力が加わったことによって入力信号の総電力が増大する。したがって、自動利得制御によって可変利得増幅器15の利得は低下させられ、ADC16の入力信号分布における所望の信号帯域の受信レベルが低下することとなり、受信信号が劣化する。その結果、外乱入力は、このRFフロントエンドを備える受信機の機能や性能に悪影響を及ぼすことになる。
 広帯域で微弱な受信信号に重畳する外乱入力の影響を防ぐ手法が特許文献1に開示されている。特許文献1には、可変利得増幅器の後段に設けられたADCが妨害波によって飽和するのを防ぐことが開示されている。特許文献1には、可変利得増幅器の前段に、ノッチフィルタとして機能する可変周波数帯域制限フィルタを設け、妨害波の周波数を検出してフィルタにより妨害波の周波数成分を除去することが開示されている。
 また関連技術において希望波に隣接するチャネルからの妨害波の影響を低減する技術が特許文献2に開示されている。特許文献2には、可変利得増幅器からの出力信号が供給される狭帯域のアナログ帯域通過フィルタを設け、妨害波の周波数が通過帯域外となるようにこのフィルタを設定した上で、フィルタの出力に基づいて自動利得制御を行うことが開示されている。特許文献3には、ADCの後段に希望波に同調させた帯域可変デジタルフィルタを設け、可変利得増幅器の出力をADCに供給してデジタル信号に変換し、このデジタル信号の振幅に基づいて可変利得増幅器の利得を制御することが開示されている。また特許文献3には、帯域可変デジタルフィルタの帯域通過特性の制御を行い、妨害波の影響を低減することが開示されている。特許文献4には、直交検波後の信号からフィルタ処理により希望波電力と妨害波電力を求め、希望波電力のみに追従して可変利得増幅器による自動利得制御を行うことが開示されている。
実開平5-80053号公報 特開平5-327378号公報 特開2006-121146号公報 特開平11-195941号公報
 広帯域で微弱な受信信号に対して外乱入力が重なるときに外乱入力の影響を低減する方法として特許文献1に記載された方法は、可変利得増幅器の前段に設けられてノッチフィルタとして機能する可変周波数帯域制限フィルタを用いる。しかし、このフィルタはアナログフィルタであって所望のフィルタ特性を得るようにこのフィルタの正確な制御を行うことが困難であり、また、回路規模が大きくなる、という課題を有する。
 本発明の目的は、受信信号を増幅する可変利得増幅器を用いる自動利得制御方法であって、回路規模を小型にすることができるとともに、所望の信号である受信信号の周波数帯域内に重畳する外乱入力の影響を低減することができる自動利得制御方法を提供することにある。
 本発明の別の目的は、受信信号を増幅する可変利得増幅器を備える自動利得制御回路であって、回路規模が小型であって、所望の信号である受信信号の周波数帯域内に重畳する外乱入力の影響を低減することができる自動利得制御回路を提供することにある。
 本発明の例示態様によれば、受信信号が入力する可変利得増幅器と可変利得増幅器の出力に接続するアナログ/デジタル変換器とを有する受信機における自動利得制御方法は、受信信号の周波数帯域内の複数の周波数の中から、該複数の周波数の中の他の周波数よりもアナログ/デジタル変換器が出力する信号レベルが小さい周波数を選択することと、アナログ/デジタル変換器の出力における選択された周波数の成分の信号強度に基づいて可変利得増幅器における利得を決定することと、を有する。
 本発明の別の例示態様によれば、受信信号が入力する可変利得増幅器と可変利得増幅器の出力に接続するアナログ/デジタル変換器とを有する受信機における自動利得制御方法は、受信信号の周波数帯域の中から、受信信号に重畳する外乱入力の周波数から外れる周波数帯域を選択することと、アナログ/デジタル変換器の出力における選択された周波数帯域の成分の信号強度に基づいて可変利得増幅器における利得を決定することと、を有する。
 本発明のさらに別の例示態様によれば、受信信号が入力する可変利得増幅器を備え、可変利得増幅器の出力をアナログ/デジタル変換器に供給する自動利得制御回路は、アナログ/デジタル変換器の出力に接続し、受信信号の周波数帯域内の、この周波数帯域よりも狭い帯域の信号を選択する周波数選択回路と、周波数選択回路が選択した信号の強度に基づいて可変利得増幅器に対する制御信号を生成する制御信号生成回路と、を有する。
 本発明によれば、受信信号の周波数帯域の中から外乱入力の影響を受けない周波数を選択して選択された周波数の成分の信号強度に基づいて自動利得制御を行うことができるようになる。したがって、受信信号の周波数帯域内に重畳する外乱入力の影響を低減することができ、受信信号に関して高い信号レベルでの信号処理を行うことができるようになる、という効果が得られる。
本発明の基本的な実施の形態の自動利得制御回路を示すブロック図である。 本発明の実施の一形態の自動利得制御回路を備えるRFフロントエンドの構成を示す回路図である。 可変周波数デジタルフィルタの構成の一例を示す回路図である。 本発明の別の実施形態の自動利得制御回路を備えるRFフロントエンドの構成を示す回路図である。 図4に示す回路の動作を説明する図である。 一般的なRFフロントエンドの構成を示す回路図である。 自動利得制御におけるレベル設定を説明する図である。
 次に、本発明を実施するための形態について図面を参照して説明する。
 図1は、基本的な実施形態における自動利得制御回路を示している。この自動利得制御回路は、アナログ信号である受信信号を増幅したのちにアナログ/デジタル変換器(ADC)によってデジタル信号に変換する受信機などにおいて好ましく用いられるものである。所望の信号である受信信号は、一例として、スペクトラム拡散変調によって変調された広帯域の信号であり、例えば、数MHz幅の周波数帯域を有している。
 自動利得制御回路は、受信信号が入力してこれを増幅する可変利得増幅器15を備えており、可変利得増幅器15の出力は、受信信号をデジタル信号に変換するADC16に供給される。ADC16が出力するデジタル信号は、受信機に設けられた例えば信号処理部などに供給される。可変利得増幅器15での利得は制御信号によって制御される。この自動利得制御回路は、ADC16の出力に応じて制御信号を生成して自動利得制御を実施する。このために、自動利得制御回路は、ADC16の出力に接続し、受信信号の周波数帯域内の、この周波数帯域よりも狭い帯域の信号を選択する周波数選択回路18を備えている。また、自動利得制御回路は、周波数選択回路18が選択した信号の強度に基づいて可変利得増幅器15に対する制御信号を生成する制御信号生成回路19、を備えている。
 周波数選択回路18は、受信信号の周波数帯域内の複数の周波数の中から、これら複数の周波数の中の他の周波数よりもADC16が出力する信号レベルが小さい周波数を選択するものである。受信信号の周波数帯域内に、受信信号の周波数帯域に比べて鋭いスペクトルを有する外乱が重畳したときに、周波数選択回路18は、この外乱の影響を受けない周波数範囲の成分をADC16の出力から取り出す。これによって取り出された成分での信号強度に基づいて可変利得増幅器15への制御信号を生成して自動利得制御を行うためである。したがって、周波数選択回路18としては、受信信号の周波数帯域の中から、受信信号に重畳する外乱入力の周波数から外れる周波数帯域を選択するものを用いることができる。周波数選択回路18には、後述するように、例えば、デジタルフィルタを用いることができる。デジタルフィルタは、受信信号の周波数帯域よりも狭い通過帯域を有するものである。ADC16が出力するデジタル信号における周波数ごとのレベルを考えたときに、デジタルフィルタの通過帯域は、ADC16の出力におけるレベルが相対的に低い周波数に設定される。あるいはデジタルフィルタの通過帯域は、受信信号の周波数帯域のうち外乱入力の周波数から外れる帯域に設定される。
 このような周波数選択回路18を用いた場合には、周波数選択回路18によって選択された周波数では外乱入力の影響が及んでいない。その結果、制御信号発生回路19は、外乱の大きさに依存せずに、受信信号と熱雑音などの周波数に依存しないノイズ成分とに基づいて、可変利得増幅器16に対する制御信号を発生する。ここで周波数に依存しないとは、受信信号の周波数帯域の範囲内では実質的に周波数に依存しないことを意味する。本実施形態の回路では、外乱の大きさが自動利得制御に反映されないので、外乱の大きさを反映して自動利得制御を行う場合に比べて可変利得増幅器15の利得が大きくなり、その結果、ADC16が飽和しやすくなる。受信信号が例えばスペクトラム拡散変調によるものであるとすると、上述したように飽和することを許容してADC16を使用するので、受信信号の周波数帯域に外乱が重畳するときに外乱の大きさを自動利得制御に反映させなくても後段の信号処理への悪影響はない。むしろ、ADC16の入力において受信信号成分のレベルを高く維持することができるので、熱雑音などのノイズによって覆い隠された受信信号を後段の信号処理においてより適切に扱うことができるようになり、受信機の機能や性能の劣化が防ぐことができる。具体的には、受信信号がスペクトラム拡散変調による信号であるとすると、本実施形態の自動利得制御回路によれば、受信信号に重畳する有意な外乱がある場合であっても、受信信号の逆拡散を確実に行えるようになる。
 また本実施形態の回路では、周波数選択回路18において周波数選択のためにアナログフィルタを使用する必要がないので、回路調整が不要となってより安定した自動利得制御動作を実現することができる。また、アナログフィルタを用いる場合に比べ、回路規模を小さくすることができる。
 次に、自動利得制御回路の別の実施形態について説明する。図2は、本発明の実施の一形態の自動利得制御回路を備えるRF(高周波)フロントエンドの一例を示している。図2に示すRFフロントエンドは、自動利得制御機能を備え、アンテナ11で受信した信号を処理してデジタル信号として出力するものである。ここで受信信号は、例えば、直接拡散スペクトラム拡散変調による信号であり、その代表的なものとして、GPS信号が挙げられる。図6に示したRFフロントエンドと同様に、図2に示すRFフロントエンドは、アンテナ11に接続するLNA(低雑音増幅器)12と、LNA12の出力に設けられた増幅回路13と、を備えている。またRFフロントエンドは、増幅回路13の出力に設けられ所望の周波数帯域の信号のみを通過させるBPF(帯域通過フィルタ)14と、BPF14の出力が入力する可変利得増幅器15と、を備えている。増幅回路13は、LNA12が出力する受信信号をさらに増幅する機能を有するものであるが、さらに、受信信号を周波数変換する機能などを備えていてもよい。増幅回路13が周波数変換機能を有する場合には、BPF14に供給される信号は、周波数変換後の受信信号となる。BPF14の通過帯域は、受信信号の周波数帯域に対応して設定されており、受信信号がGPS信号であるとすれば、BPF14の通過帯域幅は例えば5~10MHz程度に設定される。
 制御信号に応じて利得が変化する可変利得増幅器15が出力する信号は、ADC(アナログ/デジタル変換器)16に供給されてデジタル信号に変換される。変換後のデジタル信号は、例えば、このRFフロントエンドを備える受信機の信号処理部に供給される。ADC16としては、例えば、2ビットといった低ビット数のADCが用いられる。このRFフロントエンドでは、制御信号を生成するために、ADC16が出力するデジタル信号が入力するデジタルフィルタ21と、デジタルフィルタ21の出力信号の振幅を検出する振幅検出回路22と、振幅検出回路22の出力が入力するデジタルループフィルタ23と、デジタルループフィルタ23が出力するデジタル信号をアナログ信号に変換して電圧信号である制御信号として可変利得増幅器15に供給するデジタル/アナログ変換器(DAC:digital-to-analog convertor)24とが設けられている。デジタルフィルタ21は、BPF14の通過帯域より狭い通過帯域を有するものであり、デジタルフィルタ21の通過帯域の周波数は、ADC16が出力するデジタル信号における周波数ごとのレベルを考えたときに、デジタルフィルタ21の通過帯域は、ADC16の出力におけるレベルが相対的に低い周波数に設定される。あるいは、デジタルフィルタ21の通過帯域は、受信信号の周波数帯域に重畳する外乱入力がある場合には、その外乱入力の周波数から外れる帯域に設定される。ここでは、可変利得増幅器15、デジタルフィルタ21、振幅検出回路22、デジタルループフィルタ23及びDAC24によって、自動利得制御回路が構成されている。
 ここで図2において符号31で示すように、可変利得増幅器15に入力する広帯域の受信信号に対して、鋭いスペクトルを有する外乱入力が重畳している場合を考える。ここでは微弱な受信信号を考えており、BPF14の通過帯域特性に応じ、可変利得増幅器15に入力する信号のうちの受信信号に関連する成分は、周波数に対して電力が正規分布に近い形状で分布しているものとする。デジタルフィルタ21の通過帯域は外乱入力の周波数を含まないように設定されており、これによりデジタルフィルタ21の出力信号の周波数分布は、図2において符号32に示すようになる。ここでは、所望の信号である受信信号に対し、前段のLNA12に起因する熱雑音などの周波数に依存しないノイズが重なった分布となっている。
 図示破線で示すようにデジタルフィルタ21の出力には外乱入力の周波数成分は含まれていないので、振幅検出回路22で検出される振幅は、外来入力の影響を含まないで本来の受信信号の振幅に依存したものとなる。その結果、振幅検出回路22の出力をデジタルループフィルタ23を介してDAC24に供給してアナログ信号に変換して得られる制御信号は、外乱入力の影響を受けないものとなり、外乱の大きさを反映しない自動利得制御が実行されることになる。本実施形態の回路においても、図1に示した回路と同様に、熱雑音などのノイズに埋もれた受信信号を後段の信号処理においてより適切に扱うことができるようになり、受信機の機能や性能の劣化が防ぐことができる。特に、受信信号がスペクトラム拡散変調による信号である場合には、受信信号に重畳する有意な外乱の存在下でも受信信号の逆拡散を確実に行えるようになる。また図2に示す回路は、制御信号発生のためにアナログフィルタを必要としないので、回路規模を小さくすることができるなどの利点を有する。
 図2に示した回路では、外乱入力の周波数から外れるようにデジタルフィルタ21の通過帯域を設定する必要がある。外乱入力の周波数が既知であればデジタルフィルタ21の設定も容易であるが、外乱入力の周波数が不明である、あるいは外乱入力の周波数が変動する場合には、固定した通過帯域を有するデジタルフィルタ21を用いることは不適切である。そのような場合には、通過帯域の中心周波数を可変とするデジタルフィルタ21を用い、中心周波数を変化させながら振幅検出回路22によりデジタルフィルタ21の出力の振幅を検出する。振幅が最小となる中心周波数を見出してデジタルフィルタ21の通過帯域をその中心周波数によって設定するようにすればよい。通過帯域の中心周波数を可変とするデジタルフィルタは、回路構成が複雑なものとなりがちである。本実施形態において用いることができる可変周波数デジタルフィルタの変形例として、図3に示すものを使用することができる。すなわち、可変周波数デジタルフィルタとして、デジタル信号として可変周波数の発振波形を発生する発振波形発生回路27と、ADC16の出力と発振波形発生回路27の出力とを乗算する乗算回路28と、乗算回路28の出力が入力するデジタル低域通過フィルタ29とからなるものを使用することができる。デジタル低域通過フィルタ29の遮断周波数は、デジタルフィルタ21としての通過帯域幅から換算した周波数に設定する。デジタル低域通過フィルタ29の遮断周波数は、デジタルフィルタ21としての通過帯域幅に一致させてもよい。発振波形発生回路27が発生する発振波形を正弦波とし、この乗算回路28においてデジタル乗算演算を行う。その結果をデジタル低域通過フィルタ29に供給させることとすれば、全体として、発振波形発生回路27が発生する波形の周波数によって通過帯域の中心周波数が決まるデジタルフィルタとして機能することになる。発振波形発生回路27が発生する波形の周波数を掃引しつつ振幅検出回路22において振幅を検出し、振幅が最小となる点で周波数掃引を停止すれば、受信信号の周波数帯域内で、ADC16が出力する信号レベルが最も小さい周波数を選択したことになる。
 図2に示した自動利得制御回路では、外乱入力の周波数が変化するたびにデジタルフィルタ21の振幅を検出してデジタルフィルタ21の通過帯域の中心周波数の再設定を行う必要がある。そこで、中心周波数が異なる複数のデジタルフィルタに対して並列にADC16の出力を供給し、これらの複数のデジタルフィルタの各々の出力の振幅を検出する。振幅が最小となるデジタルフィルタの出力を選択し、選択された出力の振幅に基づいて可変利得増幅器15に対する制御信号を生成することが考えられる。図4は、複数のデジタルフィルタに対して並列にADC16の出力を供給するようにした自動利得制御回路を備えるRFフロントエンドの構成の一例を示している。
 図4に示すRFフロントエンドでは、図2に示すRFフロントエンドと同様に、LNA12、増幅回路13、BPF14、可変利得増幅器15及びADC16が設けられ、ADC16の出力はこのRFフロントエンドを備える受信機内に設けられた信号処理部に供給される。また、nは2以上の整数であるとして、ADC16の出力が並列に入力するn個のデジタルフィルタ21が設けられている。nは、典型的には3から10までの整数である。これらn個のデジタルフィルタ21の通過帯域は、いずれもBPF14の通過帯域よりも狭く、かつその中心周波数は相互に異なっている。各デジタルフィルタ21の出力には振幅検出回路22が接続しており、対応するデジタルフィルタ21の出力を検出する。n個の振幅検出回路で検出された振幅が入力する選択回路25が設けられており、選択回路25は、外乱が入力している状態において入力した振幅のうち最小のものを選択して出力する。さらに、RFフロントエンドには、選択回路25の出力が入力するデジタルループフィルタ23と、デジタルループフィルタ23の出力をアナログ信号に変換して制御信号として可変利得増幅器25に供給するDAC24とが設けられている。可変利得増幅器15、n個のデジタルフィルタ21、n個の振幅検出回路22、選択回路25及びデジタルループフィルタ23及びDAC24によって、自動利得制御回路が構成されている。
 次に、図4に示すRFフロンエンドにおける自動利得制御回路の動作について、図5を用いて説明する。ここでは説明のためn=3として、3個のデジタルフィルタ21が設けられるものとする。
 3個のデジタルフィルタ21の通過帯域の中心周波数が相互に異なっていることにより、図において符号40で示すように、受信信号の周波数帯域は、帯域1、帯域2及び帯域3の3個の帯域に分割される。これらの3つの帯域はそれぞれ3個のデジタルフィルタ21の通過帯域に対応する。ここでは、可変利得増幅器の入力信号分布において、帯域2内に鋭い周波数スペクトルを有する外乱が入力したものとする。外乱の周波数は、帯域2内において帯域1に近い位置である。その結果、各デジタルフィルタ21の出力の振幅を検出すると、振幅の大きさは、帯域2>帯域1>帯域3となる。
 図5の符号41は、帯域1に対応するデジタルフィルタ21の出力の振幅に基づいて可変利得増幅器15に対する制御信号を生成したとしたときの、このデジタルフィルタ21の出力での信号分布を示している。同様に符号42は、帯域2に対応するデジタルフィルタ21の出力の振幅に基づいて可変利得増幅器15に対する制御信号を生成したとしたときの、このデジタルフィルタ21の出力での信号分布を示している。符号43は、帯域3に対応するデジタルフィルタ21の出力の振幅に基づいて可変利得増幅器15に対する制御信号を生成したとしたときの、このデジタルフィルタ21の出力での信号分布を示している。これら信号分布41~43を比較すると、信号レベルが最も大きいものは、帯域3に対応する信号分布43である。これは、帯域1から帯域3の中では帯域3が最も外乱入力の影響を受けにくいからである。一方、信号分布42では、帯域2に含まれる外乱の影響により、信号レベルが圧倒的に小さくなっている。したがって帯域2における振幅に基づいて自動利得制御を行ったとすると、外乱の影響によって可変利得増幅器15の利得が低下させられ、所望の信号である受信信号の受信レベルが低下する。なお、外乱の周波数が帯域2の中にあるとしても、フィルタの周波数特性から、帯域1にも外乱の影響が及んでいる。また、図5における信号分布41~43は、可変利得増幅器15における異なる利得の下で得られたものであることに注意する必要がある。
 そこで、図4及び図5に示した例では、帯域3に対応するデジタルフィルタ21の出力の振幅を選択回路25によって選択してデジタルループフィルタ23に供給し、可変利得増幅器15に対する制御信号を生成する。このようにして制御信号を生成すると、外乱入力の影響を受けることなく、自動利得制御が行われることとなる。その結果、ADC16に入力する信号における受信信号成分の信号レベルを高く維持できるので、後段の信号処理をより適切に行うことができ、受信機の機能や性能の劣化が防ぐことができる。またこの例では、外乱入力の周波数が変化したときに、それに追従して、選択回路25によって選択されるデジタルフィルタ21も変化し、常に振幅が最小である帯域が選択される。したがって、外乱入力の周波数の変化があったとしても、外乱入力の影響を受けることなく、常に、受信信号についての信号レベルが高い帯域の信号に基づいた自動利得制御が行われる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年8月25日に出願された日本出願特願2014-170187を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 11  アンテナ
 12  低雑音増幅器(LNA)
 13  増幅回路
 14  帯域通過フィルタ(BPF)
 15  可変利得増幅器
 16  アナログ/デジタル変換器(ADC)
 17  制御回路
 18  周波数選択回路
 19  制御信号生成回路
 21  デジタルフィルタ
 22  振幅検出回路
 23  デジタルループフィルタ
 24  デジタル/アナログ変換器(DAC)
 25  選択回路
 27  発振波形発生回路
 28  乗算回路
 29  デジタル低域通過フィルタ

Claims (16)

  1.  受信信号が入力する可変利得増幅器と前記可変利得増幅器の出力に接続するアナログ/デジタル変換器とを有する受信機における自動利得制御方法であって、
     前記受信信号の周波数帯域内の複数の周波数の中から、該複数の周波数の中の他の周波数よりも前記アナログ/デジタル変換器が出力する信号レベルが小さい周波数を選択することと、
     前記アナログ/デジタル変換器の出力における前記選択された周波数の成分の信号強度に基づいて前記可変利得増幅器における利得を決定することと、
     を有する方法。
  2.  前記選択することは、前記周波数帯域よりも狭い通過帯域を有するデジタルフィルタに前記アナログ/デジタル変換器の出力を供給することを有する、請求項1に記載の方法。
  3.  前記デジタルフィルタは中心周波数が可変であるデジタルフィルタであり、
     前記選択することは、前記中心周波数を変化させながら前記デジタルフィルタの出力の振幅を検出し、該振幅が最小となる中心周波数を選択することを有する、請求項2に記載の方法。
  4.  前記選択することは、前記周波数帯域を複数の帯域に分割し、帯域ごとの前記受信信号の振幅を検出して振幅が最小である帯域を選択することを有し、
     前記決定することは、前記選択された帯域での振幅に基づいて前記可変利得増幅器における利得を決定することを有する、請求項1に記載の方法。
  5.  前記帯域を選択することは、前記周波数帯域よりも狭い通過帯域をそれぞれ有し、前記周波数帯域内にあって相互に異なる中心周波数を有する複数のデジタルフィルタに前記アナログ/デジタル変換器の出力を供給することと、
     前記複数のデジタルフィルタの各々の出力の振幅を検出し、振幅が最小となるデジタルフィルタの出力を選択することと、
     を有する、請求項4に記載の方法。
  6.  受信信号が入力する可変利得増幅器と前記可変利得増幅器の出力に接続するアナログ/デジタル変換器とを有する受信機における自動利得制御方法であって、
     前記受信信号の周波数帯域の中から、前記受信信号に重畳する外乱入力の周波数から外れる周波数帯域を選択することと、
     前記アナログ/デジタル変換器の出力における前記選択された周波数帯域の成分の信号強度に基づいて前記可変利得増幅器における利得を決定することと、
     を有する方法。
  7.  前記選択することは、前記周波数帯域よりも狭い通過帯域を有するデジタルフィルタに前記アナログ/デジタル変換器の出力を供給することを有する、請求項6に記載の方法。
  8.  前記受信信号は、直接拡散スペクトラム拡散変調による信号である、請求項1乃至7のいずれか1項に記載の方法。
  9.  受信信号が入力する可変利得増幅器を備え、前記可変利得増幅器の出力をアナログ/デジタル変換器に供給する自動利得制御回路であって、
     前記アナログ/デジタル変換器の出力に接続し、前記受信信号の周波数帯域内の、該周波数帯域よりも狭い帯域の信号を選択する周波数選択回路と、
     前記周波数選択回路が選択した信号の強度に基づいて前記可変利得増幅器に対する制御信号を生成する制御信号生成回路と、
     を有する回路。
  10.  前記周波数選択回路は、前記アナログ/デジタル変換器の出力に接続し、前記周波数帯域よりも狭い通過帯域を有するデジタルフィルタである、請求項9に記載の回路。
  11.  前記通過帯域は、前記受信信号に重畳する外乱入力の周波数から外れる周波数帯域である、請求項10に記載の回路。
  12.  前記デジタルフィルタは、中心周波数が可変であるデジタルフィルタであり、
     前記中心周波数を変化させながら前記デジタルフィルタの出力の振幅を検出し、該振幅が最小となる中心周波数での前記デジタルフィルタの出力に基づいて前記制御信号を生成する、請求項10に記載の回路。
  13.  前記デジタルフィルタは、
     デジタル信号として可変周波数の発振波形を発生する発振波形発生回路と、
     前記アナログ/デジタル変換器の出力と前記発振波形発生回路の出力とを乗算する乗算回路と、
     前記乗算回路の出力が入力するデジタル低域通過フィルタと、
     を有する、請求項12に記載の回路。
  14.  前記制御信号生成回路は、
     前記デジタルフィルタの出力の振幅を検出する振幅検出回路と、
     前記振幅検出回路の出力が入力するデジタルループフィルタと、
     前記デジタルループフィルタの出力をアナログ信号に変換して前記制御信号として前記可変利得増幅器に供給するデジタル/アナログ変換器と、
     を有する、請求項9乃至13のいずれか1項に記載の回路。
  15.  前記周波数選択回路は、
     前記周波数帯域よりも狭い通過帯域をそれぞれ有し、中心周波数が相互に異なる複数のデジタルフィルタと、
     前記複数のデジタルフィルタの出力の振幅をそれぞれ検出する複数の振幅検出回路と、 前記複数の振幅検出回路で検出された振幅のうち最小のものを検出して出力する選択回路と、
     を有する、請求項9に記載の回路。
  16.  前記制御信号生成回路は、
     前記選択回路の出力が入力するデジタルループフィルタと、
     前記デジタルループフィルタの出力をアナログ信号に変換して前記制御信号として前記可変利得増幅器に供給するデジタル/アナログ変換器と、
     を有する、請求項15に記載の回路。
PCT/JP2015/004141 2014-08-25 2015-08-19 自動利得制御方法及び自動利得制御回路 WO2016031184A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016544938A JP6386566B2 (ja) 2014-08-25 2015-08-19 自動利得制御方法及び自動利得制御回路
US15/503,073 US10039066B2 (en) 2014-08-25 2015-08-19 Automatic gain control method and automatic gain control circuit
EP15835327.6A EP3188364A4 (en) 2014-08-25 2015-08-19 Automatic gain control method and automatic gain control circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-170187 2014-08-25
JP2014170187 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031184A1 true WO2016031184A1 (ja) 2016-03-03

Family

ID=55399100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004141 WO2016031184A1 (ja) 2014-08-25 2015-08-19 自動利得制御方法及び自動利得制御回路

Country Status (4)

Country Link
US (1) US10039066B2 (ja)
EP (1) EP3188364A4 (ja)
JP (1) JP6386566B2 (ja)
WO (1) WO2016031184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511191A (zh) * 2020-10-26 2021-03-16 青岛鼎信通讯股份有限公司 一种中压电力线信号采集自动增益控制装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282472B1 (ko) * 2017-09-11 2021-07-27 한화테크윈 주식회사 감시 시스템 및 그 동작 방법
CN112068105B (zh) * 2020-09-07 2023-09-08 浙江光珀智能科技有限公司 一种调频连续波激光雷达接收机信号频谱分析系统及方法
CN115001519B (zh) * 2022-07-07 2023-01-10 国机传感科技有限公司 一种传感信号接收系统及方法
US11824571B1 (en) 2022-07-07 2023-11-21 Sinomach Sensing Technology Co., Ltd. Sensing signal receiving system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294091A (ja) * 1996-04-25 1997-11-11 Saitama Nippon Denki Kk スペクトラム拡散通信方式agc回路
JP2004023508A (ja) * 2002-06-18 2004-01-22 Oki Electric Ind Co Ltd 自動利得制御回路
JP2012044456A (ja) * 2010-08-19 2012-03-01 Toshiba Corp 可変利得増幅器の利得制御装置及びその利得制御方法
WO2013008747A1 (ja) * 2011-07-08 2013-01-17 日本電気株式会社 受信装置及び利得制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580053U (ja) 1992-03-31 1993-10-29 横河電機株式会社 スペクトラム拡散通信方式の受信機
JPH05327378A (ja) 1992-05-22 1993-12-10 Toshiba Corp 無線通信装置の自動利得制御回路
JPH10322150A (ja) 1997-05-21 1998-12-04 Canon Inc スペクトラム拡散通信の受信装置および自動利得制御方法
JPH11195941A (ja) 1997-12-26 1999-07-21 Hitachi Denshi Ltd Agc回路
JP3770231B2 (ja) * 2002-04-16 2006-04-26 松下電器産業株式会社 高周波信号受信装置
JP2006121146A (ja) 2004-10-19 2006-05-11 Renesas Technology Corp 無線受信機のフィルタ制御方法および装置およびそれを用いた無線受信機用集積回路
US8243864B2 (en) * 2004-11-19 2012-08-14 Qualcomm, Incorporated Noise reduction filtering in a wireless communication system
WO2007099413A1 (en) * 2006-03-01 2007-09-07 Nokia Corporation Controlling a receiver to reduce influence by a predetermined interference
JP4887242B2 (ja) 2007-08-30 2012-02-29 オンセミコンダクター・トレーディング・リミテッド 中間周波数フィルタ帯域切替制御装置
EP2541783B1 (en) 2010-02-25 2020-11-04 Mitsubishi Electric Corporation Interference wave suppression device, relay device, relay system, and interference wave suppression method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294091A (ja) * 1996-04-25 1997-11-11 Saitama Nippon Denki Kk スペクトラム拡散通信方式agc回路
JP2004023508A (ja) * 2002-06-18 2004-01-22 Oki Electric Ind Co Ltd 自動利得制御回路
JP2012044456A (ja) * 2010-08-19 2012-03-01 Toshiba Corp 可変利得増幅器の利得制御装置及びその利得制御方法
WO2013008747A1 (ja) * 2011-07-08 2013-01-17 日本電気株式会社 受信装置及び利得制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188364A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511191A (zh) * 2020-10-26 2021-03-16 青岛鼎信通讯股份有限公司 一种中压电力线信号采集自动增益控制装置

Also Published As

Publication number Publication date
EP3188364A1 (en) 2017-07-05
US10039066B2 (en) 2018-07-31
EP3188364A4 (en) 2018-04-11
JPWO2016031184A1 (ja) 2017-05-25
JP6386566B2 (ja) 2018-09-05
US20170230921A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6386566B2 (ja) 自動利得制御方法及び自動利得制御回路
US9954560B2 (en) Adaptive/configurable intermediate frequency (IF) wireless receiver and bluetooth device using the same
KR100788638B1 (ko) 이미지 신호를 억제하는 로우 if 수신기 및 이미지 신호억제 방법
US7305216B2 (en) Transmitting and receiving arrangement with interference signal suppression control
JPWO2013008747A1 (ja) 受信装置及び利得制御方法
US8737449B2 (en) Frequency hopping receiver circuit
US9331636B2 (en) Time and amplitude alignment in envelope tracking amplification stage
US10320432B2 (en) Appliance for receiving radio frequency signals, usable in particular for the management of uplink signals
KR20050032810A (ko) 자동 이득 제어 루프를 위한 온도 보상 장치
JP4574687B2 (ja) Rf受信装置
JP2009063495A (ja) 衛星信号受信装置
JP2010166252A (ja) 受信機
JP5342121B2 (ja) 衛星信号受信装置
JP4869874B2 (ja) 高周波増幅器
US9548777B2 (en) Reception device and reception method
KR101040989B1 (ko) Gps 시스템에 있어서 안티-재밍을 위한 배열안테나의 이득 및 대역폭 조절 장치 및 방법
JP4893189B2 (ja) Fmチューナ
JP2008193442A (ja) 無線受信装置および無線受信方法
JP6452928B2 (ja) 自動利得制御装置
JP2004096404A (ja) 受信機及びその自動利得制御方法
JP2004304568A (ja) 受信回路およびこれを用いた移動無線受信機
JP6449683B2 (ja) 無線機の同調回路
JP2008016966A (ja) 歪補償増幅器
JP2010028475A (ja) マルチキャリア受信機
JP2010157836A (ja) 歪補償増幅装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15503073

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015835327

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835327

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE