WO2016031178A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016031178A1
WO2016031178A1 PCT/JP2015/004104 JP2015004104W WO2016031178A1 WO 2016031178 A1 WO2016031178 A1 WO 2016031178A1 JP 2015004104 W JP2015004104 W JP 2015004104W WO 2016031178 A1 WO2016031178 A1 WO 2016031178A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
oriented electrical
electrical steel
hot
Prior art date
Application number
PCT/JP2015/004104
Other languages
English (en)
French (fr)
Inventor
智幸 大久保
尾田 善彦
宏章 中島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/506,140 priority Critical patent/US20170274432A1/en
Priority to EP15836530.4A priority patent/EP3187611B1/en
Priority to KR1020177005193A priority patent/KR101921008B1/ko
Priority to BR112017003067-5A priority patent/BR112017003067B1/pt
Priority to MX2017002415A priority patent/MX2017002415A/es
Priority to CN201580044581.1A priority patent/CN106574346B/zh
Publication of WO2016031178A1 publication Critical patent/WO2016031178A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a non-oriented electrical steel sheet suitable for a core material of a motor that rotates at a relatively high speed, such as a HEV or EV drive motor, and a method for manufacturing the same.
  • Non-oriented electrical steel sheets are materials used as iron cores for motors and transformers, and low iron loss is required from the viewpoint of improving the efficiency of these electrical devices.
  • Increasing resistivity and thinning are effective in reducing iron loss, but increasing the resistivity has the problem of increasing alloy costs, and thinning increases the costs of rolling and annealing. Establishing a loss reduction technique is desired.
  • Patent Document 1 proposes a technique in which the surface roughness of a steel sheet before final finish annealing is set to an arithmetic average roughness Ra of 0.3 ⁇ m or less, and an alumina separator is used as an annealing separator.
  • Patent Documents 2 and 3 have been proposed as techniques for reducing the surface roughness of non-oriented electrical steel sheets.
  • Patent Document 2 describes a non-oriented electrical steel sheet that suppresses a decrease in the space factor by setting Ra on the steel sheet surface to 0.5 ⁇ m or less.
  • Patent Document 3 describes a non-oriented electrical steel sheet that includes 1.5% by mass or more and 20% by mass or less of Cr, and reduces the iron loss at high frequencies by setting Ra on the steel sheet surface to 0.5 ⁇ m or less.
  • JP 2009-228117 A Japanese Patent Laid-Open No. 2001-192788 JP 2001-279403 A
  • Patent Document 1 relates to a grain-oriented electrical steel sheet, and does not give any suggestion for reducing the iron loss of the non-oriented electrical steel sheet.
  • the technique described in patent document 2 is related with a non-oriented electrical steel plate, it aims at the improvement of a space factor, and does not intend reducing iron loss.
  • the technique proposed in Patent Document 3 is intended to reduce the high-frequency iron loss of the non-oriented electrical steel sheet, but it is required to further reduce the iron loss.
  • an object of the present invention is to provide a non-oriented electrical steel sheet in which iron loss is further reduced as compared with the prior art and a method for manufacturing the same.
  • the inventors of the present invention have made the following considerations on the influence of surface irregularities and have obtained a new idea for the control of surface roughness. That is, when the magnetic wall is moved by applying an external magnetic field to a steel plate having irregularities on the surface, the magnetostatic energy of the surface increases in accordance with the movement of the magnetic wall, and therefore the magnetic wall receives a restoring force.
  • This restoring force should be influenced not only by the depth of the unevenness but also by the wavelength of the unevenness. That is, when there are irregularities that change at a wavelength larger than the moving distance of the domain wall, the magnetostatic energy change is small even if the domain wall moves, so the restoring force received by the domain wall is small.
  • irregularities that is, fine irregularities
  • the grain size of the grain-oriented electrical steel sheet is about 10 mm and the magnetic domain width is about 1 mm, the moving distance of the domain wall is about 1 mm.
  • the grain size of the non-oriented electrical steel sheet is about 100 ⁇ m, and the magnetic domain width and the domain wall travel distance are as small as about 10 ⁇ m. Therefore, in order to reduce the iron loss of the non-oriented electrical steel sheet, it is necessary to evaluate the micro unevenness obtained by removing the long-wavelength side undulations at a cutoff wavelength of about several tens of ⁇ m, and to reduce the micro unevenness The present inventors considered. Hereinafter, this minute unevenness is also referred to as “micro roughness”.
  • Patent Document 1 describes the reduction of Ra on the steel sheet surface with respect to grain-oriented electrical steel sheets
  • Patent Documents 2 and 3 describe non-oriented electrical steel sheets.
  • the cutoff wavelength is unknown, and it does not focus on the micro roughness as described above.
  • the inventors of the present invention focused on the microroughness having a wavelength smaller than the moving distance of the domain wall, and the technical idea is fundamentally different from the prior art.
  • the hysteresis loss increases when the thickness of the non-oriented electrical steel sheet is less than 0.30 mm by a normal manufacturing method, and the micro roughness is reduced. Then, it was found that this increase in hysteresis loss was suppressed, and the present invention was completed.
  • the gist configuration of the present invention that solves the above problems is as follows. (1) In mass%, C: 0.05% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.03% to 3.0%, P: 0.2% or less, S: 0.005% or less, N: 0.005% or less, and O: 0.01% or less, And the balance has a component composition consisting of Fe and inevitable impurities,
  • the plate thickness is less than 0.30 mm,
  • the non-oriented electrical steel sheet of the present invention iron loss can be reduced without greatly restricting the steel components by reducing the micro roughness of the surface of the ground iron. Moreover, according to the manufacturing method of the non-oriented electrical steel sheet of the present invention, the non-oriented electrical steel sheet with reduced iron loss can be advantageously manufactured by reducing the micro roughness of the surface of the ground iron.
  • Non-oriented electrical steel sheet (Non-oriented electrical steel sheet)
  • % representing the content of each component element means “mass%”.
  • C 0.05% or less C can be used to increase the strength of steel. If the C content exceeds 0.05%, processing becomes difficult, so the upper limit of the C content is 0.05%. When not used for increasing the strength, it is preferable to reduce it to 0.005% or less in order to suppress magnetic aging.
  • Si 0.1% or more and 7.0% or less Si is effective to increase the specific resistance of steel and reduce iron loss by adding 0.1% or more. However, if added over 7.0%, the iron loss is worsened. Therefore, the range of Si content shall be 0.1% or more and 7.0% or less. From the viewpoint of the balance between iron loss and workability, a more preferable range is 1.0% or more and 5.0% or less.
  • Al 0.1% or more and 3.0% or less Al is added in an amount of 0.1% or more, thereby increasing the specific resistance of the steel and reducing the iron loss. However, if it exceeds 3.0%, casting becomes difficult. Therefore, the Al content is 0.1% or more and 3.0% or less. A more preferable range is 0.3% or more and 1.5% or less.
  • Mn 0.03% or more and 3.0% or less
  • Addition of 0.03% or more of Mn can prevent hot brittleness of steel. It also has the effect of increasing the specific resistance and reducing iron loss. If added over 3.0%, the iron loss increases, so the Mn content range is 0.03% to 3.0%. A more preferable range is 0.1% or more and 2.0% or less.
  • P 0.2% or less P can be used for strengthening steel. However, if added over 0.2%, the steel becomes brittle and processing becomes difficult. Therefore, the P content is 0.2% or less. A more preferable range is 0.01% or more and 0.1% or less.
  • S 0.005% or less
  • the upper limit of the S content is 0.005%.
  • a more preferable range is 0.003% or less.
  • N 0.005% or less
  • the upper limit of the N content is 0.005%.
  • a more preferable range is 0.003% or less.
  • O 0.01% or less
  • oxides increase and grain growth properties deteriorate. Therefore, the upper limit of the O content is 0.01%.
  • a more preferable range is 0.005% or less.
  • Sn, Sb 0.01% or more and 0.2% or less in total
  • Addition of 0.01% or more of Sn and Sb has the effect of reducing the [111] crystal grains of the recrystallized texture and improving the magnetic flux density.
  • finish annealing and strain relief annealing have the effect of preventing nitriding and oxidation and suppressing an increase in iron loss. Since the effect is saturated even if added over 0.2%, the range of Sn and Sb total content is 0.01% or more and 0.2% or less. A more preferable range is 0.02% or more and 0.1% or less.
  • Ca, Mg, REM 0.0005% or more and 0.010% or less in total Ca, Mg, REM is effective to coarsen sulfide and improve grain growth by adding 0.0005% or more. If added over 0.010%, the grain growth is worsened. Therefore, the total content of Ca, Mg, and REM should be 0.0005% or more and 0.010% or less. A more preferable range is 0.001% or more and 0.005% or less.
  • Cr 0.1% or more and 20% or less
  • Addition of 0.1% or more of Cr has the effect of increasing the specific resistance of steel and reducing iron loss. Since the hardness of the steel is small, it can be added in a large amount. However, if it exceeds 20%, decarburization becomes difficult, and carbides precipitate to deteriorate the iron loss. Therefore, the Cr content is 0.1% or more and 20% or less. A more preferable range is 1.0% or more and 10% or less.
  • Ti, Nb, V, Zr 0.01% or more and 1.0% or less in total Ti, Nb, V, Zr is a carbide / nitride forming element, and the strength of steel can be increased by adding 0.01% or more. Even if added over 1.0%, the effect is saturated, so the total content of Ti, Nb, V, Zr should be 0.01% or more and 1.0% or less. A more preferable range is 0.1% or more and 0.5% or less. When not used for increasing the strength, it is preferably reduced to 0.005% or less in order to improve grain growth.
  • the balance other than the above elements is Fe and inevitable impurities.
  • hysteresis loss can be reduced by reducing minute irregularities having a wavelength smaller than the moving distance of the domain wall.
  • a more preferable range is 0.1 ⁇ m or less.
  • the surface roughness is measured according to the contents described in JIS B0601, JIS B 0632, JIS B 0633, and JIS B 0651. Since the measurement is performed on the surface of the ground iron, when the coating is applied, it is removed with boiling alkali or the like.
  • the measuring instrument used for measuring the surface roughness is selected to be able to accurately detect the micro roughness having a wavelength of several ⁇ m or less.
  • a general stylus type surface roughness meter is unsuitable for detecting micro roughness because the radius of the tip of the stylus is several ⁇ m. Therefore, in the present invention, the arithmetic average roughness Ra is measured using a three-dimensional scanning electron microscope.
  • the reference length and the cutoff wavelength (cut-off value) ⁇ c are set to 20 ⁇ m.
  • the cut-off ratio ⁇ c / ⁇ s is not particularly specified, but is preferably set to 100 or more, and is measured as 100 in the present invention.
  • the measurement direction is the rolling direction and the direction perpendicular to the rolling direction, the measurement is performed three times, and the average value is used.
  • the macro roughness obtained with a general stylus type surface roughness meter is not particularly limited because it does not affect the magnetic characteristics.
  • the plate thickness is preferably 0.25 mm or less, more preferably 0.15 mm or less. Moreover, since manufacturing cost will become high when plate
  • Steel slabs may be produced from the molten steel adjusted to the above component composition by a normal ingot-bundling method or continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be produced by a direct casting method. Also good.
  • the steel slab is heated by a normal method and subjected to hot rolling to obtain a hot rolled steel sheet.
  • hot-rolled sheet steel is subjected to hot-rolled sheet annealing as necessary.
  • the purpose of hot-rolled sheet annealing is to prevent ridging and improve magnetic flux density, and can be omitted if not necessary.
  • the conditions are preferably 900 to 1100 ° C. ⁇ 1 to 300 seconds, and in the case of using a batch annealing facility, the conditions are preferably 700 to 900 ° C. ⁇ 10 to 600 min.
  • the hot-rolled steel sheet is pickled, and then cold-rolled twice or more with intermediate or intermediate annealing, and finished to a cold-rolled steel sheet with the final thickness.
  • the final thickness is less than 0.30 mm.
  • at least the final pass is preferably dry rolling. Thereby, the surface of a cold-rolled steel plate can be smoothed.
  • the arithmetic average roughness Ra may be 0.2 ⁇ m or less.
  • finish annealing is performed on the cold-rolled steel sheet.
  • the annealing atmosphere reducible it is preferable to control the PH 2 O / PH 2 to 0.05 or less by using a N 2 —H 2 mixed atmosphere containing 5% or more of the H 2 concentration and lowering the dew point.
  • the N 2 partial pressure in the furnace atmosphere is preferably 95% or less, more preferably 85% or less.
  • adding one or two of Sn and Sb to steel in a total amount of 0.01% or more and 0.2% or less is particularly effective in suppressing oxidation and nitriding.
  • the annealing conditions are preferably 700 to 1100 ° C. ⁇ 1 to 300 seconds. When emphasizing iron loss, the annealing temperature is raised, and when emphasizing strength, the annealing temperature may be lowered.
  • an insulating coating to the surface of the steel sheet to make a product sheet (non-oriented electrical steel sheet).
  • the insulating coating known ones can be used, and an inorganic coating, an organic coating, an inorganic-organic mixed coating, and the like can be properly used according to the purpose.
  • Example 1 C: 0.0022%, Si: 3.25%, Al: 0.60%, Mn: 0.27%, P: 0.02%, S: 0.0018%, N: 0.0021%, O: 0.0024%, Sn: 0.06%, the balance
  • a steel slab composed of Fe and inevitable impurities was melted, heated at 1130 ° C. for 30 minutes, and then hot-rolled to obtain a hot-rolled steel sheet.
  • This hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds and further cold-rolled to finish a cold-rolled steel sheet having a thickness of 0.15 to 0.30 mm.
  • the micro roughness of the surface iron surface of the product plate was changed.
  • the surface shape measurement of 100 ⁇ m ⁇ 100 ⁇ m was performed at an acceleration voltage of 5kV using 3D-SEM (ERA-8800FE) manufactured by Elionix, and cut off under the conditions described above.
  • Example 2 A steel slab containing the components shown in Table 1 and the balance consisting of Fe and inevitable impurities was melted, heated at 1100 ° C. for 30 minutes, and then hot-rolled to obtain a hot-rolled steel sheet.
  • This hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 980 ° C. ⁇ 30 sec and further cold-rolled to finish a cold-rolled steel sheet having a thickness of 0.15 mm.
  • the micro roughness of the surface iron surface of the product plate was changed.
  • the rolling temperature was 300 ° C.
  • the microroughness was changed.
  • the surface shape measurement of 100 ⁇ m ⁇ 100 ⁇ m was performed at an acceleration voltage of 5kV using 3D-SEM (ERA-8800FE) manufactured by Elionix, and cut off under the conditions described above.
  • the calculated average roughness Ra of the surface of the rolling roll in the final pass of the cold rolling was also measured by the same method.
  • Example 3 A steel slab containing the components shown in Table 2 and the balance consisting of Fe and inevitable impurities was melted and heated at 1100 ° C. for 30 minutes, followed by hot rolling to obtain a hot-rolled steel sheet.
  • This hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 1000 ° C. ⁇ 120 sec. No. 1 was cold-rolled to 0.15 mm, and No. 2 to 12 were cold-rolled to 0.17 mm. Chemical polishing was performed to 0.15 mm with an HF + H 2 O 2 aqueous solution to finish each cold-rolled steel sheet with a thickness of 0.15 mm.
  • the surface shape measurement of 100 ⁇ m ⁇ 100 ⁇ m was performed at an acceleration voltage of 5kV using 3D-SEM (ERA-8800FE) manufactured by Elionix, and cut off under the conditions described above.
  • iron loss can be reduced without greatly restricting the steel components by reducing the micro roughness of the surface of the ground iron. Since this effect is obtained on the principle different from the increase in specific resistance and thinning, it is possible to further reduce the iron loss by using in combination with these methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 本発明は、従来よりもさらに鉄損を低減した無方向性電磁鋼板を提供する。本発明の無方向性電磁鋼板は、質量%で、C:0.05%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.03%以上3.0%以下、P:0.2%以下、S:0.005%以下、N:0.005%以下、およびO:0.01%以下、を含有し、さらに任意で、Sn、Sb、Ca、Mg、REM、Cr、Ti、Nb、VおよびZrの1種または2種以上を所定量含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、板厚が0.30mm未満であって、カットオフ波長λc=20μmでの、地鉄表面の算術平均粗さRaが、0.2μm以下であることを特徴とする。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、HEVやEVの駆動モータなど、比較的高速で回転するモータの鉄心材料に好適な無方向性電磁鋼板およびその製造方法に関するものである。
 無方向性電磁鋼板は、モータやトランスの鉄心として使用される材料であり、これら電気機器の効率向上の観点から低鉄損が要求される。鉄損を低減するには固有抵抗の増加や薄板化が有効であるが、固有抵抗の増加には合金コストが、薄板化には圧延や焼鈍のコストが増加するという課題があり、新たな鉄損低減手法の確立が望まれている。
 固有抵抗の増加や薄板化以外の鉄損低減手法として、方向性電磁鋼板においては、フォルステライト被膜を除去し、表面を平滑化することで、ヒステリシス損が低減することが知られている。これは、表面の凹凸が減少して磁壁が動きやすくなることに起因する。特許文献1では最終仕上げ焼鈍前の鋼板の表面粗さを算術平均粗さRaで0.3μm以下とし、焼鈍分離剤としてアルミナ系の分離剤を用いる技術が提案されている。
 これに対して、無方向性電磁鋼板では表面粗さが鉄損に及ぼす影響は小さいと考えられている。無方向性電磁鋼板の表面粗さを低減する技術として、特許文献2,3が提案されている。特許文献2には、鋼板表面のRaを0.5μm以下とすることで、占積率の低下を抑制した無方向性電磁鋼板が記載されている。特許文献3には、Crを1.5質量%以上20質量%以下含み、鋼板表面のRaを0.5μm以下とすることで、高周波での鉄損を低減した無方向性電磁鋼板が記載されている。
特開2009-228117号公報 特開2001-192788号公報 特開2001-279403号公報
 しかしながら、特許文献1で提案された技術は、方向性電磁鋼板に関するものであり、無方向性電磁鋼板の鉄損を低減することに対して何らの示唆も与えない。また、特許文献2に記載された技術は、無方向性電磁鋼板に関するものであるが、占積率の改善を目的としたものであり、鉄損を低減することを意図していない。特許文献3で提案された技術は、無方向性電磁鋼板の高周波鉄損を低減することを意図するものであるが、より鉄損を低減することが求められている。
 本発明は、上記課題に鑑み、従来よりもさらに鉄損を低減した無方向性電磁鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、表面凹凸の影響について次のような考察を行い、表面粗さの制御について新たな着想を得た。すなわち、表面に凹凸がある鋼板に外部磁場を印加して磁壁を動かす場合、磁壁の移動に応じて表面の静磁エネルギーが増加するため、磁壁は復元力を受ける。この復元力は凹凸の深さだけでなく、凹凸の波長の影響も受けるはずである。すなわち、磁壁の移動距離よりも大きな波長で変化する凹凸がある場合、磁壁が動いても静磁エネルギーの変化が小さいので磁壁が受ける復元力が小さい。逆に、磁壁の移動距離よりも小さな波長で変化する凹凸(すなわち細かい凹凸)がある場合は、磁壁には大きな復元力が働くと考えられる。
 方向性電磁鋼板の結晶粒径は10mm程度、磁区幅は1mm程度であるから、磁壁の移動距離は1mm程度である。これに対し、無方向性電磁鋼板の結晶粒径は100μm程度であり、磁区幅も磁壁の移動距離も10μm程度と非常に小さい。したがって、無方向性電磁鋼板の鉄損を低減するためには、数十μm程度のカットオフ波長で長波長側のうねりを除去した微小凹凸を評価し、この微小凹凸を低減する必要があると、本発明者らは考えた。以下、この微小凹凸を「ミクロな粗さ」とも呼ぶ。
 特許文献1では方向性電磁鋼板について、特許文献2,3では無方向性電磁鋼板について、鋼板表面のRaを小さくすることが記載されている。しかし、カットオフ波長が不明であり、上記のようなミクロな粗さに着目したものではない。本発明者らが注目したのは、磁壁の移動距離よりも小さな波長のミクロな粗さであり、従来技術とは根本的に技術思想が異なる。
 上記着想に基づき、本発明者らが鋭意検討を行った結果、通常の製法で無方向性電磁鋼板の板厚を0.30mm未満とするとヒステリシス損が増加すること、また、ミクロな粗さを低減するとこのヒステリシス損の増加が抑制されることがわかり、本発明を完成するに至った。
 上記課題を解決する本発明の要旨構成は、以下のとおりである。
 (1)質量%で、
C:0.05%以下、
Si:0.1%以上7.0%以下、
Al:0.1%以上3.0%以下、
Mn:0.03%以上3.0%以下、
P:0.2%以下、
S:0.005%以下、
N:0.005%以下、および
O:0.01%以下、
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 板厚が0.30mm未満であって、
 カットオフ波長λc=20μmでの、地鉄表面の算術平均粗さRaが、0.2μm以下であることを特徴とする無方向性電磁鋼板。
 (2)前記成分組成が、質量%で、SnおよびSbの1種または2種を合計で0.01%以上0.2%以下含むことを特徴とする、上記(1)に記載の無方向性電磁鋼板。
 (3)前記成分組成が、質量%で、Ca、MgおよびREMの1種または2種以上を合計で0.0005%以上0.010%以下含むことを特徴とする、上記(1)または(2)に記載の無方向性電磁鋼板。
 (4)前記成分組成が、質量%で、Cr:0.1%以上20%以下を含むことを特徴とする、上記(1)~(3)のいずれか1項に記載の無方向性電磁鋼板。
 (5)前記成分組成が、質量%で、Ti、Nb、VおよびZrの1種または2種以上を合計で0.01%以上1.0%以下含むことを特徴とする、上記(1)~(4)のいずれか1項に記載の無方向性電磁鋼板。
 (6)上記(1)~(5)のいずれか1項に記載の成分組成を有する鋼スラブを加熱し、
 該鋼スラブを熱間圧延して熱延鋼板とし、
 該熱延鋼板に熱延板焼鈍を施すか施さず、
 前記熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、板厚0.30mm未満の冷延鋼板とし、
 該冷延鋼板に仕上げ焼鈍を施す無方向性電磁鋼板の製造方法であって、
 最後の冷間圧延の最終パスの圧延ロール表面の、カットオフ波長λc=20μmでの算術平均粗さRaを0.2μm以下とすることを特徴とする無方向性電磁鋼板の製造方法。
 本発明の無方向性電磁鋼板によれば、地鉄表面のミクロな粗さを低減したことによって、鋼成分に大きな制限を加えることなく、鉄損を低減できる。また、本発明の無方向性電磁鋼板の製造方法によれば、地鉄表面のミクロな粗さを低減して、鉄損を低減した無方向性電磁鋼板を有利に製造できる。
種々の板厚における、地鉄表面の算術平均粗さRa(カットオフ波長λc=20μm)と、ヒステリシス損Wh10/50との関係を示すグラフである。
 (無方向性電磁鋼板)
 以下、本発明の一実施形態による無方向性電磁鋼板について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、「質量%」を意味する。
 C:0.05%以下
 Cは鋼の強度アップに利用することができる。C含有量が0.05%を超えると、加工が困難になるため、C含有量の上限は0.05%とする。強度アップに利用しない場合は、磁気時効を抑制するために0.005%以下に低減することが好ましい。
 Si:0.1%以上7.0%以下
 Siは0.1%以上添加することで鋼の比抵抗を増加させ、鉄損を低減する効果がある。しかし、7.0%を超えて添加するとかえって鉄損が悪くなる。したがって、Si含有量の範囲は0.1%以上7.0%以下とする。鉄損と加工性のバランスの観点から、より好ましい範囲は1.0%以上5.0%以下である。
 Al:0.1%以上3.0%以下
 Alは0.1%以上添加することで鋼の比抵抗を増加させ、鉄損を低減する効果がある。しかし、3.0%を超えて添加すると鋳造が困難になる。したがって、Al含有量は0.1%以上3.0%以下とする。さらに好ましい範囲は0.3%以上1.5%以下である。
 Mn:0.03%以上3.0%以下
 Mnは0.03%以上添加することで鋼の熱間脆性を防止できる。また、比抵抗を増加させて鉄損を低減する効果もある。3.0%を超えて添加するとかえって鉄損が増加するため、Mn含有量の範囲は0.03%以上3.0%以下とする。より好ましい範囲は0.1%以上2.0%以下である。
 P:0.2%以下
 Pは鋼の強化に利用することができる。しかし、0.2%を超えて添加すると鋼が脆化して加工が困難になる。したがって、P含有量は0.2%以下とする。さらに好ましい範囲は0.01%以上0.1%以下である。
 S:0.005%以下
 S含有量が0.005%を超えると、MnS等の析出物が増加し、粒成長性が劣化する。したがって、S含有量の上限は0.005%とする。さらに好ましい範囲は0.003%以下である。
 N:0.005%以下
 N含有量が0.005%を超えると、AlN等の析出物が増加し、粒成長性が劣化する。したがって、N含有量の上限は0.005%とする。さらに好ましい範囲は0.003%以下である。
 O:0.01%以下
 O含有量が0.01%を超えると、酸化物が増加し、粒成長性が劣化する。したがって、O含有量の上限は0.01%とする。さらに好ましい範囲は0.005%以下である。
 上記成分に加えて、以下の成分を添加してもよい。
 Sn, Sb:合計で0.01%以上0.2%以下
 Sn, Sbは0.01%以上添加することで再結晶集合組織の[111]結晶粒を低減し、磁束密度を向上させる効果がある。また、仕上げ焼鈍や歪取り焼鈍で窒化・酸化を防ぎ、鉄損の増加を抑制する効果もある。0.2%を超えて添加しても効果が飽和するため、Sn, Sb合計含有量の範囲は0.01%以上0.2%以下とする。さらに好ましい範囲は0.02%以上0.1%以下である。
 Ca, Mg, REM:合計で0.0005%以上0.010%以下
 Ca, Mg, REMは0.0005%以上添加することで硫化物を粗大化させ、粒成長性を改善させる効果がある。0.010%を超えて添加するとかえって粒成長性が悪くなるため、Ca, Mg, REM合計含有量の範囲は0.0005%以上0.010%以下とする。さらに好ましい範囲は0.001%以上0.005%以下である。
 Cr:0.1%以上20%以下
 Crは0.1%以上添加することで鋼の比抵抗を増加させ、鉄損を低減する効果がある。鋼の硬度が小さいため多量に添加することができるが、20%を超えて添加すると脱炭が困難になり、炭化物が析出して鉄損を劣化させる。したがって、Cr含有量は0.1%以上20%以下とする。さらに好ましい範囲は1.0%以上10%以下である。
 Ti, Nb, V, Zr:合計で0.01%以上1.0%以下
 Ti, Nb, V, Zrは炭化物・窒化物形成元素であり、0.01%以上添加することで鋼の強度を上昇させることができる。1.0%を超えて添加しても効果が飽和するため、Ti, Nb, V,Zr合計含有量は0.01%以上1.0%以下とする。さらに好ましい範囲は0.1%以上0.5%以下である。強度上昇に利用しない場合は、粒成長性を改善するため0.005%以下に低減することが好ましい。
 上記した元素以外の残部は、Feおよび不可避的不純物である。
 本実施形態の無方向性電磁鋼板は、カットオフ波長λc=20μmでの、地鉄表面の算術平均粗さRaが、0.2μm以下であることが重要である。このように磁壁の移動距離よりも小さな波長の微小な凹凸を低減することにより、ヒステリシス損を低減できる。より好ましい範囲は0.1μm以下である。
 本発明において、表面粗さの測定は、JIS B 0601、JIS B 0632、JIS B 0633、JIS B 0651に記載の内容に準じて行う。測定は地鉄表面で行うため、コーティングが塗布されている場合は煮沸アルカリ等で除去する。表面粗さの測定に用いる測定機は、波長数μm以下のミクロな粗さを正確に検出できるものを選択する。一般的な触針式表面粗さ計は、触針先端の半径が数μmであるため、ミクロな粗さを検出するには不適当である。そこで、本発明では、3次元走査電子顕微鏡を用いて、算術平均粗さRaを測定する。ミクロな粗さを検出するため、基準長さおよびカットオフ波長(カットオフ値)λcは20μmとする。カットオフ比λc/λsは特に指定されないが、100以上とすることが望ましく、本発明においては100として測定するものとする。測定方向は圧延方向および圧延直角方向とし、それぞれ3回測定を行い、その平均値を用いる。
 これに対して、例えば一般的な触針式表面粗さ計で得られるマクロな粗さは、磁気特性に影響を与えないため、特に限定しない。占積率向上の観点からは、カットオフ波長λc=0.8mm、カットオフ比λc/λs=300で得られる、地鉄表面の算術平均粗さRaを0.5μm以下とすることが望ましい。
 本実施形態において、板厚は0.30mm未満とする。板厚が0.30mm未満の場合に、カットオフ波長λc=20μmでの、地鉄表面の算術平均粗さRaが、0.2μm以下であることによる鉄損の低減効果を得ることができるからである。板厚は、好ましくは0.25mm以下、より好ましくは0.15mm以下とする。また、板厚が0.05mm未満になると製造コストが高くなるため、0.05mm以上とすることが好ましい。
 (無方向性電磁鋼板の製造方法)
 次に、本発明の一実施形態による無方向性電磁鋼板の製造方法について説明する。上記の成分組成に調整した溶鋼から、通常の造塊-分塊法や連続鋳造法によって鋼スラブを製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
 ついで、鋼スラブは通常の方法で加熱して、熱間圧延に供し、熱延鋼板とする。
 ついで、必要に応じて熱延鋼板に熱延板焼鈍を施す。熱延板焼鈍の目的はリジング防止や磁束密度向上であり、必要ない場合には省略することもできる。連続焼鈍設備を用いる場合は900~1100℃×1~300sec、バッチ焼鈍設備を用いる場合は700~900℃×10~600minの条件とすることが好ましい。
 その後、熱延鋼板に酸洗を施してから、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚の冷延鋼板に仕上げる。最終板厚は0.30mm未満とする。
 地鉄表面のカットオフ波長λc=20μmでの算術平均粗さRaを0.2μm以下とする好適な方法は、最後の冷間圧延の最終パスの圧延ロールの表面粗さを調整することである。本実施形態では、最後の冷間圧延の最終パスの圧延ロール表面の算術平均粗さRaを、カットオフ波長λc=20μmで0.2μm以下とする。ロール表面を効率良く鋼に転写させるため、少なくとも最終パスはドライ圧延であることが好ましい。これにより、冷延鋼板の表面を平滑化することができる。なお、冷間圧延で地鉄表面を平滑化しない場合は、冷間圧延後または仕上げ焼鈍後に、化学研磨や電解研磨などの工程を追加して、地鉄表面のカットオフ波長λc=20μmでの算術平均粗さRaを0.2μm以下とすることでもよい。ただし、製造コストの観点から、冷間圧延時に地鉄表面を平滑化することが好ましい。
 最終冷間圧延の後、冷延鋼板に仕上げ焼鈍を施す。仕上げ焼鈍で鋼板表面が酸化・窒化すると磁気特性が大幅に劣化する。そこで、酸化を防止するために、焼鈍雰囲気を還元性とすることが好ましい。例えば、H2濃度を5%以上含有するN2-H2混合雰囲気を用い、露点を下げてPH2O/PH2を0.05以下に制御することが好ましい。窒化を防止するためには、炉内雰囲気のN2分圧を95%以下とすることが好ましく、より好ましい範囲は85%以下である。また、Sn, Sbの1種または2種を鋼に合計で0.01%以上0.2%以下添加することは、酸化・窒化の抑制に特に効果的である。焼鈍条件は700~1100℃×1~300secが好適である。鉄損を重視する場合は焼鈍温度を上げ、強度を重視する場合は焼鈍温度を下げればよい。
 仕上げ焼鈍後、必要に応じて鋼板表面に絶縁コーティングを施し、製品板(無方向性電磁鋼板)とする。絶縁コーティングは公知のものを用いることができ、無機コーティング、有機コーティング、無機-有機混合コーティングなどを目的に応じて使い分けることができる。
 その他の製造条件は、無方向性電磁鋼板の一般的な製造方法に従えばよい。
 (実施例1)
 C:0.0022%, Si:3.25%, Al:0.60%, Mn:0.27%, P:0.02%, S:0.0018%, N:0.0021%, O:0.0024%, Sn:0.06%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを溶製し、1130℃で30分間加熱したのち、熱間圧延を行い、熱延鋼板を得た。この熱延鋼板に、1000℃×30secの熱延板焼鈍を行い、さらに冷間圧延を行い、板厚0.15~0.30mmの冷延鋼板に仕上げた。得られた冷延鋼板にH2:N2=30:70、露点-50℃の雰囲気中で1000℃×10secの仕上げ焼鈍を行い、絶縁コーティングを塗布して製品板とした。
 ここで、冷間圧延の最終パスの圧延ロールの表面粗さを調整することで、製品板の地鉄表面のミクロな粗さを変更した。得られた製品板から280mm×30mmの試験片を採取し、エプスタイン試験で直流磁気測定を行いBm=1.0T、f=50Hzのヒステリシス損Wh10/50を測定した。また、煮沸アルカリで製品板の絶縁コーティングを除去したのち、エリオニクス製 3D-SEM(ERA-8800FE)を用い、加速電圧5kVで100μm×100μmの表面形状測定を行い、既述の条件で、カットオフ波長λc=20μmでの地鉄表面の算術平均粗さRaを測定した。結果を図1に示す。本発明を満たす範囲では、ヒステリシス損が低いという結果が得られた。なお、冷間圧延の最終パスの圧延ロール表面の、カットオフ波長λc=20μmでのRaを0.2μm以下とした場合に、地鉄表面の算術平均粗さRaが0.2μm以下となった。
 (実施例2)
 表1に示す成分を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを溶製し、1100℃で30分間加熱したのち、熱間圧延を行い、熱延鋼板を得た。この熱延鋼板に、980℃×30secの熱延板焼鈍を行い、さらに冷間圧延を行い、板厚0.15mmの冷延鋼板に仕上げた。得られた冷延鋼板にH2:N2=20:80、露点-40℃の雰囲気中で980℃×10secの仕上げ焼鈍を行い、絶縁コーティングを塗布して製品板とした。
 ここで、冷間圧延の最終パスの圧延ロールの表面粗さを調整し、ドライ圧延とすることで、製品板の地鉄表面のミクロな粗さを変更した。No.2については、圧延温度を300℃とし、さらにミクロな粗さを変化させた。得られた製品板から280mm×30mmの試験片を採取し、エプスタイン試験で直流磁気測定を行いBm=1.0T、f=400Hzのヒステリシス損Wh10/400を測定した。また、煮沸アルカリで製品板の絶縁コーティングを除去したのち、エリオニクス製 3D-SEM(ERA-8800FE)を用い、加速電圧5kVで100μm×100μmの表面形状測定を行い、既述の条件で、カットオフ波長λc=20μmでの地鉄表面の算術平均粗さRaを測定した。また、冷間圧延の最終パスの圧延ロールの表面の算出平均粗さRaも同様の方法で測定した。さらに、触針の先端半径:2μmの触針式粗度計(東京精密(株)製)を用い、走査速度:0.5mm/s、カットオフ波長:0.8mmで、地鉄表面の算出平均粗さRaを測定した。
 結果を表1に示す。本発明を満たす範囲では、ヒステリシス損が低いという結果が得られた。特に、カットオフ波長λc=0.8mmとした従来の一般的な測定手法により測定した、地鉄表面のRaが0.2μm以下の場合であっても、本発明が規定するカットオフ波長λc=20μmでのRaが0.2μm超えの場合には、ヒステリシス損が高いという結果であった。
Figure JPOXMLDOC01-appb-T000001
(実施例3)
 表2に示す成分を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを溶製し、1100℃で30分間加熱したのち、熱間圧延を行い、熱延鋼板を得た。この熱延鋼板に、1000℃×120secの熱延板焼鈍を行い、No.1については0.15mmまで冷間圧延を行い、No.2~12については0.17mmまで冷間圧延を行ったのち、HF+H2O2水溶液で0.15mmまで化学研磨を行い、それぞれ板厚0.15mmの冷延鋼板に仕上げた。得られた冷延鋼板にH2:N2=30:70、露点-50℃の雰囲気中で1000℃×30secの仕上げ焼鈍を行い、絶縁コーティングを塗布して製品板とした。
 得られた製品板から280mm×30mmの試験片を採取し、エプスタイン試験で直流磁気測定を行いBm=1.0T、f=400Hzのヒステリシス損Wh10/400を測定した。また、煮沸アルカリで製品板の絶縁コーティングを除去したのち、エリオニクス製 3D-SEM(ERA-8800FE)を用い、加速電圧5kVで100μm×100μmの表面形状測定を行い、既述の条件で、カットオフ波長λc=20μmでの地鉄表面の算術平均粗さRaを測定した。さらに、触針の先端半径:2μmの触針式粗度計(東京精密(株)製)を用い、走査速度:0.5mm/s、カットオフ波長:0.8mmで、地鉄表面の算出平均粗さRaを測定した。
 結果を表2に示す。化学研磨処理を行った場合、カットオフ波長λc=0.8mmとした従来の一般的な測定手法により測定した、地鉄表面のRaは0.2μm以上であったが、本発明が規定するカットオフ波長λc=20μmでのRaが0.2μm以下の場合には、ヒステリシス損が低いという結果であった。
Figure JPOXMLDOC01-appb-T000002
 本発明の無方向性電磁鋼板によれば、地鉄表面のミクロな粗さを低減したことによって、鋼成分に大きな制限を加えることなく、鉄損を低減できる。この効果は、固有抵抗の増加および薄板化とは異なる原理で得られるものであるため、これらの手法と併用することで、さらなる鉄損の低減が可能である。

Claims (6)

  1.  質量%で、
    C:0.05%以下、
    Si:0.1%以上7.0%以下、
    Al:0.1%以上3.0%以下、
    Mn:0.03%以上3.0%以下、
    P:0.2%以下、
    S:0.005%以下、
    N:0.005%以下、および
    O:0.01%以下、
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     板厚が0.30mm未満であって、
     カットオフ波長λc=20μmでの、地鉄表面の算術平均粗さRaが、0.2μm以下であることを特徴とする無方向性電磁鋼板。
  2.  前記成分組成が、質量%で、SnおよびSbの1種または2種を合計で0.01%以上0.2%以下含むことを特徴とする、請求項1に記載の無方向性電磁鋼板。
  3.  前記成分組成が、質量%で、Ca、MgおよびREMの1種または2種以上を合計で0.0005%以上0.010%以下含むことを特徴とする、請求項1または2に記載の無方向性電磁鋼板。
  4.  前記成分組成が、質量%で、Cr:0.1%以上20%以下を含むことを特徴とする、請求項1~3のいずれか1項に記載の無方向性電磁鋼板。
  5.  前記成分組成が、質量%で、Ti、Nb、VおよびZrの1種または2種以上を合計で0.01%以上1.0%以下含むことを特徴とする、請求項1~4のいずれか1項に記載の無方向性電磁鋼板。
  6.  請求項1~5のいずれか1項に記載の成分組成を有する鋼スラブを加熱し、
     該鋼スラブを熱間圧延して熱延鋼板とし、
     該熱延鋼板に熱延板焼鈍を施すか施さず、
     前記熱延鋼板に、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、板厚0.30mm未満の冷延鋼板とし、
     該冷延鋼板に仕上げ焼鈍を施す無方向性電磁鋼板の製造方法であって、
     最後の冷間圧延の最終パスの圧延ロール表面の、カットオフ波長λc=20μmでの算術平均粗さRaを0.2μm以下とすることを特徴とする無方向性電磁鋼板の製造方法。
PCT/JP2015/004104 2014-08-27 2015-08-18 無方向性電磁鋼板およびその製造方法 WO2016031178A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/506,140 US20170274432A1 (en) 2014-08-27 2015-08-18 Non-oriented electrical steel sheet and manufacturing method thereof
EP15836530.4A EP3187611B1 (en) 2014-08-27 2015-08-18 Non-oriented electrical steel sheet and manufacturing method thereof
KR1020177005193A KR101921008B1 (ko) 2014-08-27 2015-08-18 무방향성 전기 강판 및 그 제조 방법
BR112017003067-5A BR112017003067B1 (pt) 2014-08-27 2015-08-18 Chapa de aço elétrica não orientada e método de fabricação da mesma
MX2017002415A MX2017002415A (es) 2014-08-27 2015-08-18 Lamina de acero electrico de grano no orientado y metodo de fabricacion para la misma.
CN201580044581.1A CN106574346B (zh) 2014-08-27 2015-08-18 无方向性电磁钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172993A JP5975076B2 (ja) 2014-08-27 2014-08-27 無方向性電磁鋼板およびその製造方法
JP2014-172993 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031178A1 true WO2016031178A1 (ja) 2016-03-03

Family

ID=55399095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004104 WO2016031178A1 (ja) 2014-08-27 2015-08-18 無方向性電磁鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US20170274432A1 (ja)
EP (1) EP3187611B1 (ja)
JP (1) JP5975076B2 (ja)
KR (1) KR101921008B1 (ja)
CN (1) CN106574346B (ja)
BR (1) BR112017003067B1 (ja)
MX (1) MX2017002415A (ja)
TW (1) TWI572723B (ja)
WO (1) WO2016031178A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074282A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 전기강판용 열연강판의 제조방법
RU2731570C1 (ru) * 2016-12-28 2020-09-04 ДжФЕ СТИЛ КОРПОРЕЙШН Нетекстурированная электротехническая листовая сталь, демонстрирующая превосходную пригодность к переработке для вторичного использования
CN112424386A (zh) * 2018-07-18 2021-02-26 Posco公司 无取向电工钢板及其制造方法
WO2021210672A1 (ja) * 2020-04-16 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2023121200A1 (ko) * 2021-12-21 2023-06-29 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892231B1 (ko) * 2016-12-19 2018-08-27 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6903996B2 (ja) * 2017-03-28 2021-07-14 日本製鉄株式会社 無方向性電磁鋼板
WO2018207873A1 (ja) 2017-05-12 2018-11-15 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
BR112019019936B1 (pt) * 2017-06-02 2022-06-14 Nippon Steel Corporation Chapa de aço elétrico não orientado
US10991494B2 (en) 2017-06-02 2021-04-27 Nippon Steel Corporation Non-oriented electrical steel sheet
EP3633056B1 (en) * 2017-06-02 2023-02-22 Nippon Steel Corporation Non-oriented electrical steel sheet
KR102043289B1 (ko) * 2017-12-26 2019-11-12 주식회사 포스코 무방향성 전기강판 및 그 제조방법
EP3913092B1 (en) 2019-01-16 2024-04-10 Nippon Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
CN112430778A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种薄规格无取向电工钢板及其制造方法
CN114990448B (zh) * 2022-06-21 2023-07-07 湖南华菱涟源钢铁有限公司 无取向电工钢材及其制备方法
DE102022129242A1 (de) 2022-11-04 2024-05-08 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines nicht kornorientierten Elektrobands
DE102022129243A1 (de) 2022-11-04 2024-05-08 Thyssenkrupp Steel Europe Ag Nicht kornorientiertes metallisches Elektroband oder -blech sowie Verfahren zur Herstellung eines nicht kornorientierten Elektrobands

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293421A (ja) * 1998-04-10 1999-10-26 Nkk Corp 表面粗さの小さい高珪素鋼板およびその製造方法
JP2001295003A (ja) * 2000-04-11 2001-10-26 Nippon Steel Corp 異方性の小さく表面性状に優れる高周波用薄手無方向性電磁鋼板及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080450A (ja) * 1998-09-03 2000-03-21 Sumitomo Metal Ind Ltd 非正弦波励磁下での磁気特性および占積率が優れた無方向性電磁鋼板およびその製造法
JP3791226B2 (ja) * 1999-02-09 2006-06-28 住友金属工業株式会社 無方向性電磁鋼板とその製造方法
JP3490048B2 (ja) * 1999-08-30 2004-01-26 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JP2001073094A (ja) * 1999-08-31 2001-03-21 Sumitomo Metal Ind Ltd 電気自動車用無方向性電磁鋼板とその製造方法
JP2001073096A (ja) 1999-09-01 2001-03-21 Sumitomo Metal Ind Ltd パワーステアリングモータ用無方向性電磁鋼板およびその製造法
JP2001192788A (ja) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd 加工性の優れた無方向性電磁鋼板とその製造方法
JP2001279403A (ja) 2000-03-31 2001-10-10 Kawasaki Steel Corp 高周波磁気特性に優れる無方向性電磁鋼板
JP2001323347A (ja) * 2000-05-15 2001-11-22 Kawasaki Steel Corp 加工性、リサイクル性および歪み取り焼鈍後の磁気特性に優れた無方向性電磁鋼板
JP4265508B2 (ja) 2004-08-31 2009-05-20 住友金属工業株式会社 回転子用無方向性電磁鋼板およびその製造方法
JP5228563B2 (ja) * 2008-03-25 2013-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
PL2698441T3 (pl) * 2011-04-13 2021-01-25 Nippon Steel Corporation Blacha cienka z niezorientowanej stali elektrotechnicznej o dużej wytrzymałości
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
JP5974671B2 (ja) * 2011-11-09 2016-08-23 Jfeスチール株式会社 極薄電磁鋼板
KR101457839B1 (ko) * 2012-02-14 2014-11-04 신닛테츠스미킨 카부시키카이샤 무방향성 전자 강판
CN103834858B (zh) * 2012-11-23 2016-10-05 宝山钢铁股份有限公司 一种低铁损无取向硅钢的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293421A (ja) * 1998-04-10 1999-10-26 Nkk Corp 表面粗さの小さい高珪素鋼板およびその製造方法
JP2001295003A (ja) * 2000-04-11 2001-10-26 Nippon Steel Corp 異方性の小さく表面性状に優れる高周波用薄手無方向性電磁鋼板及びその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074282A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 전기강판용 열연강판의 제조방법
KR101879103B1 (ko) * 2016-12-23 2018-07-16 주식회사 포스코 전기강판용 열연강판의 제조방법
RU2731570C1 (ru) * 2016-12-28 2020-09-04 ДжФЕ СТИЛ КОРПОРЕЙШН Нетекстурированная электротехническая листовая сталь, демонстрирующая превосходную пригодность к переработке для вторичного использования
CN112424386A (zh) * 2018-07-18 2021-02-26 Posco公司 无取向电工钢板及其制造方法
WO2021210672A1 (ja) * 2020-04-16 2021-10-21 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP7001210B1 (ja) * 2020-04-16 2022-01-19 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
WO2023121200A1 (ko) * 2021-12-21 2023-06-29 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Also Published As

Publication number Publication date
MX2017002415A (es) 2017-05-23
US20170274432A1 (en) 2017-09-28
JP5975076B2 (ja) 2016-08-23
EP3187611B1 (en) 2019-01-09
EP3187611A4 (en) 2017-07-19
JP2016047942A (ja) 2016-04-07
KR20170036047A (ko) 2017-03-31
EP3187611A1 (en) 2017-07-05
TWI572723B (zh) 2017-03-01
BR112017003067B1 (pt) 2021-08-17
KR101921008B1 (ko) 2018-11-21
CN106574346B (zh) 2019-01-04
BR112017003067A2 (pt) 2017-11-21
CN106574346A (zh) 2017-04-19
TW201610179A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5975076B2 (ja) 無方向性電磁鋼板およびその製造方法
KR101421388B1 (ko) 방향성 전기 강판 및 그 제조 방법
KR101570017B1 (ko) 방향성 전기 강판 및 그 제조 방법
JP6194866B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
RU2718026C1 (ru) Горячекатаный стальной лист для листа из текстурированной электротехнической стали и способ его изготовления, и способ изготовления листа из текстурированной электротехнической стали
KR101498404B1 (ko) 방향성 전기 강판의 제조 방법
KR102062182B1 (ko) 방향성 전자 강판 및 그의 제조 방법
JP5896112B2 (ja) 方向性電磁鋼板とその製造方法および変圧器
CN108699621B (zh) 取向性电磁钢板的制造方法
KR101973305B1 (ko) 방향성 전자 강판 및 그 제조 방법
US10643770B2 (en) Grain-oriented electrical steel sheet
KR20160138253A (ko) 방향성 전기 강판의 제조 방법
JP5712667B2 (ja) 方向性電磁鋼板の製造方法
JP6443355B2 (ja) 方向性電磁鋼板の製造方法
JP3782273B2 (ja) 電磁鋼板
JP2003034820A (ja) 下地被膜を有しない、打ち抜き加工性の良好な方向性電磁鋼板の製造方法
JP2014173103A (ja) 方向性電磁鋼板の製造方法
JP6866901B2 (ja) 方向性電磁鋼板の製造方法
JP5200363B2 (ja) 方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177005193

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/002415

Country of ref document: MX

Ref document number: 15506140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017003067

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015836530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836530

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017003067

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170215