WO2016030929A1 - 冷却ロール及びその製造方法 - Google Patents

冷却ロール及びその製造方法 Download PDF

Info

Publication number
WO2016030929A1
WO2016030929A1 PCT/JP2014/004427 JP2014004427W WO2016030929A1 WO 2016030929 A1 WO2016030929 A1 WO 2016030929A1 JP 2014004427 W JP2014004427 W JP 2014004427W WO 2016030929 A1 WO2016030929 A1 WO 2016030929A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cylindrical body
roll
cooling roll
heat transfer
Prior art date
Application number
PCT/JP2014/004427
Other languages
English (en)
French (fr)
Inventor
智博 元村
賀昭 徳田
知史 小川
小林 智樹
Original Assignee
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ササクラ filed Critical 株式会社ササクラ
Priority to JP2016545091A priority Critical patent/JP6341489B2/ja
Priority to PCT/JP2014/004427 priority patent/WO2016030929A1/ja
Priority to CN201480081139.1A priority patent/CN107614734B/zh
Priority to KR1020177003269A priority patent/KR101895737B1/ko
Priority to TW104125510A priority patent/TWI627045B/zh
Publication of WO2016030929A1 publication Critical patent/WO2016030929A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits
    • F28D11/02Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F5/00Elements specially adapted for movement
    • F28F5/02Rotary drums or rollers

Definitions

  • the present invention relates to a cooling roll and a manufacturing method thereof, and more specifically, a manufacturing apparatus for various sheets such as synthetic resins and various films, a laminating apparatus used for laminating these various sheets and various films, and the like. It relates to the manufacturing method.
  • a base material 22 fed out from a supply roll 21 is a press roll 23 and a cooling roll 24. Between the press roll 23 and the cooling roll 24, the molten resin is allowed to flow down from the die 26 to form a film layer 28, and the cooling roll 24 cools the molten resin.
  • the laminated laminated paper 29 is manufactured by laminating the base material 22.
  • a working fluid heat carrier liquid
  • a cylinder in which a large number of cooling heat transfer tubes are disposed, and the cylinder is driven to rotate.
  • the structure which cools the surface of the said cylindrical body by repetition of evaporation and condensation of the working fluid in a body is disclosed.
  • a wick is stretched on the inner surface of the cylindrical body in which the working fluid is sealed so that the temperature can be made uniform so that it can be cooled uniformly.
  • the cooling roll as described above is required to further improve the cooling capacity, and an object of the present invention is to provide a cooling roll having an improved cooling capacity and a method for manufacturing the same.
  • a cooling roll according to the present invention includes a cylindrical body in which a plurality of cooling pipes through which a cooling fluid flows is disposed, and a working fluid that repeats evaporation and condensation is contained in the cylindrical body.
  • a metal film is formed on the inner peripheral surface of the cylindrical body.
  • the metal coating is preferably a thermal spray coating formed by thermal spraying.
  • the metal film is preferably an Al film.
  • the cooling roll of the present invention since a metal film such as an Al film is formed on the inner peripheral surface of the cylindrical body by thermal spraying or the like, the boiling heat transfer coefficient is applied to the inner peripheral surface of the cylindrical body as described later. Compared to the conventional example in which wicking is performed, it is possible to increase the cooling efficiency.
  • the manufacturing method of the cooling roll of the present invention includes a cylindrical body in which a plurality of cooling pipes through which a cooling fluid flows is disposed, and a cooling fluid in which a working fluid that repeats evaporation and condensation is enclosed in the cylindrical body
  • a metal film is formed on the inner peripheral surface of the cylindrical body by thermal spraying.
  • the metal coating is formed on the inner peripheral surface of the cylindrical body by thermal spraying, so that the boiling heat transfer coefficient is wicked on the inner peripheral surface of the cylindrical body as described later. Therefore, it is possible to increase the cooling efficiency as compared with the conventional example in which the above is applied.
  • the cooling efficiency of the cooling roll can be increased.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a partially enlarged sectional view of FIG. 2.
  • It is a schematic block diagram of the test device which simulated the cooling roll. It is a figure which shows the boiling heat transfer coefficient of the Example obtained by the testing apparatus of FIG. 4, and a comparative example.
  • It is a schematic block diagram of the test equipment using the roll for a test. It is a figure which shows the roll for a test of FIG. 6, and a heater.
  • It is a figure which shows the boiling heat transfer coefficient of the roll for a test of the Example obtained by the test installation of FIG. 6, and a comparative example.
  • It is a figure which shows the boiling heat transfer coefficient of the roll for a test of the Example obtained by the test installation of FIG. 6, and a comparative example.
  • It is the schematic of the manufacturing apparatus of laminated laminated paper.
  • FIG. 1 is a schematic longitudinal sectional view of a cooling roll according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line AA of FIG. 1
  • FIG. 3 is a partially enlarged sectional view of FIG. FIG.
  • the cooling roll 1 of this embodiment is, for example, a cooling roll used in the laminate manufacturing apparatus shown in FIG.
  • the cooling roll 1 includes a cylindrical body 2 with a relatively thin plate thickness and a hollow support shaft 3 that supports the cylindrical body 2. End plates 17 and 18 for sealing the inside of the cylindrical body 2 are fixed to both ends of the cylindrical body 2, and further, the inside of the cylindrical body 2 is sealed to the inside of the cylindrical body 2 from the end plates 17 and 18.
  • the face plates 4 and 5 are fixed.
  • the support shaft 3 passes through the centers of the both end plates 17 and 18 and the double-sided plates 4 and 5 in an airtight state, and both end portions 3a and 3b of the support shaft 3 protrude outward from the cylindrical body 2.
  • the cooling water inlet chamber 6 is defined by the inner face plate 4 and the outer end plate 17, and the cooling water supplied from one end 3 a of the hollow support shaft 3 is It is introduced into the entrance chamber 6 as indicated by the arrow.
  • a cooling water outlet chamber 7 is defined by an inner face plate 5 and an outer end plate 18, and this outlet chamber 7 is connected to the other end 3 b of the hollow support shaft 3. As shown by the arrows, a cooling water discharge path is configured.
  • a plurality of cooling pipes 8 extending in the axial direction of the cylindrical body 2 (left and right direction in FIG. 1) and communicating with the inlet chamber 6 and the outlet chamber 7, respectively, extend along the circumferential direction. It is installed side by side.
  • the cooling water introduced into the inlet chamber 6 from the one end 3 a of the support shaft 3 is distributed to each cooling pipe 8, and the cooling water flowing in each cooling pipe 8 flows from the outlet chamber 7 to the support shaft 3. It is configured to be discharged through the other end 3b.
  • the inside of the cylindrical body 2 defined by the double-sided plates 4 and 5 is in a reduced pressure state, and a working fluid as a working fluid that repeats evaporation and condensation such as alternative chlorofluorocarbon, naphthalene, and quinoline (see FIG. (Not shown) is enclosed.
  • a working fluid as a working fluid that repeats evaporation and condensation such as alternative chlorofluorocarbon, naphthalene, and quinoline (see FIG. (Not shown) is enclosed.
  • a metal film 9 is formed on the inner peripheral surface of the cylindrical body 2 instead of stretching a wick as in Patent Document 1 described above.
  • the metal coating 9 is preferably a thermal spray coating formed on the entire inner peripheral surface of the cylindrical body 2 by thermal spraying.
  • the thickness of the metal film 9 is preferably 1 mm or less, more preferably 500 ⁇ m or less, still more preferably 100 to 400 ⁇ m, and in this embodiment, about 250 ⁇ m. When this film thickness exceeds 1 mm, a sufficient improvement in heat transfer rate is not observed.
  • the material of the metal film 9 is not particularly limited as long as it is a metal or an alloy thereof, but Al, Al alloy, SUS, zinc or the like used as a thermal spray material is preferable.
  • the method of thermal spraying for forming the metal coating 9 is not particularly limited, and examples thereof include arc wire spraying.
  • the metal coating 9 of this embodiment is an Al thermal spray coating formed by arc wire spraying. is there.
  • the metal coating 9 is a thermal spray coating formed by thermal spraying, it has pores and can hold the working fluid in the pores. Therefore, the hydraulic fluid can be held in the pores of the metal film 9 on the inner peripheral surface of the cylindrical body 2, whereby the outer peripheral surface of the cylindrical body 2 can be cooled uniformly.
  • This porosity is preferably 3% or more, and more preferably 5% or more.
  • an Al metal film having a thickness of about 250 ⁇ m was formed on the surface of the test piece (boiling surface) by arc wire spraying as in the above embodiment.
  • the surface (boiling surface) of the test piece was subjected to wicking.
  • This wicking process is the same wicking process as that of the conventional cooling roll marketed by the applicant.
  • the boiling heat transfer coefficient of the test pieces of Examples and Comparative Examples was measured by a test apparatus that simulated a cooling roll shown in FIG.
  • 10 is a boiling vessel
  • 11 is a test piece
  • 12 is a condenser
  • 13 is a thermocouple for hydraulic fluid
  • 14 is a heater
  • 15 is a thermocouple for test strip
  • 16 is a hydraulic fluid.
  • the hydraulic fluid 16 was measured by the following procedure using an alternative freon of R-123.
  • the inside of the boiling vessel 10 is evacuated and 30 to 60 ml of the working fluid 16 is sealed. While the test piece 11 is heated from the back side by the heater 14 and the working liquid 16 is boiled and evaporated from the boiling surface of the test piece 11, the pressure in the boiling vessel 10 is increased to a positive pressure, and the upper portion of the boiling vessel 10 is The non-condensable gas accumulated in is removed and the inside of the boiling vessel 10 is sealed.
  • the depth of the working fluid 16 was about 15 mm in a boiling state.
  • the boiling heat transfer coefficient is the boiling heat transfer coefficient with respect to the heat flux (heat flux), and the temperature of the boiling surface of the test piece 11 was obtained from the temperature difference of the thermocouple 15 installed at each point.
  • the heat flux (heat flux) and the boiling heat transfer coefficient were determined using the following equations (1) and (2).
  • q is the heat flux [kcal / m 2 h]
  • V is the amount of cooling water “m 3 / h”
  • Cpw is the specific heat of cooling water [kcal / kg ° C.]
  • ⁇ w Cooling water density [kg / m 3 ]
  • Tw ′ cooling water outlet temperature [° C.]
  • Tw cooling water inlet temperature [° C.]
  • A is the boiling heat transfer area of hydraulic fluid [m 2 ]
  • hb is The boiling heat transfer coefficient [kcal / m 2 h ° C.] of the hydraulic fluid
  • Ts is the boiling surface temperature [° C.]
  • Tl is the hydraulic fluid temperature [° C.].
  • the boiling heat transfer coefficient of the test piece of the example exceeds the boiling heat transfer coefficient of the test piece of the comparative example.
  • test piece of the example in which an Al metal film was formed on the surface by arc wire spraying to a thickness of about 250 ⁇ m was subjected to the same wick processing on the surface as a conventional cooling roll marketed by the applicant. It can be seen that the boiling heat transfer coefficient is improved and the cooling efficiency is improved as compared with the comparative test piece.
  • cooling rolls of Examples and Comparative Examples were manufactured as test rolls, and the boiling heat transfer coefficient was measured for each cooling roll.
  • an Al metal film having a thickness of about 250 ⁇ m was formed on the inner peripheral surface of the cylindrical body by arc wire spraying as in the above embodiment.
  • the cooling roll of the comparative example was wicked on the inner peripheral surface of the cylindrical body. This wicking process is the same wicking process as that of the conventional cooling roll marketed by the applicant.
  • 30 is a test roll which is a cooling roll of an example or a comparative example
  • 31 and 32 are first and second thermometers for measuring the temperature of the inlet and outlet of cooling water to the test roll 30, respectively.
  • 33 is a flow meter for measuring the flow rate of the cooling water
  • 34 is a cooling water pump
  • 35 is a motor for rotationally driving the test roll 30
  • 37 to 41 are the surface temperatures of the test roll 30, and their axial directions (in FIG. 6). These are first to fifth surface thermometers that measure at different positions along the horizontal direction.
  • the test roll 30 is heated by a heater 36 shown in FIG.
  • the heater 36 and the motor 35 are controlled by a control panel 42 in FIG.
  • test roll 30 is rotated at 64 rpm by the motor 35, and the cooling water is circulated in the test roll 30 at a flow rate of 21.5 m 3 / h by the cooling water pump 34.
  • the outer surface of the test roll 30 is heated by 36. Thereafter, when the equilibrium state was reached, the inlet temperature and the outlet temperature of the cooling water were measured by the first and second thermometers 31 and 32, respectively.
  • the surface temperature of the test roll 30 was measured by the first to fifth surface thermometers 37 to 41, and the average value thereof was used.
  • the heat flux heat flux
  • the boiling heat transfer coefficient were determined using the following equations (3) to (7).
  • T 2 is the cooling water outlet temperature [° C.]
  • T 1 is the cooling water inlet temperature [° C.]
  • T 0 the average roll surface temperature [° C.]
  • U Overall heat transfer coefficient [kcal / m 2 h ° C.]
  • Ao is the heat transfer area of the roll outer surface [m 2 ]
  • Ai is the heat transfer area of the roll inner surface [m 2 ]
  • h is the boiling heat transfer coefficient [kcal / m
  • the overall heat transfer coefficient U was calculated by the above formulas (3) to (5), and the boiling heat transfer coefficient h was calculated by calculating back with the above formula (7).
  • FIG. 8 and FIG. 9 were drawn with the boiling heat transfer coefficient h calculated by the equation (7) and the heat flux q of the equation (6).
  • FIG. 8 shows the case where the hydraulic fluid is R-124
  • FIG. 9 shows the case where the hydraulic fluid is R-134a.
  • the solid line indicates an example
  • the broken line indicates a comparative example.
  • the boiling heat transfer coefficient of the test roll of the example exceeds the boiling heat transfer coefficient of the test roll of the comparative example, and the cooling efficiency is improved for any hydraulic fluid.

Abstract

 内部に複数の冷却管8が配設された円筒体2内に、蒸発と凝縮とを繰り返す作動流体を封入してなる冷却ロール1において、前記円筒体2の内周面に金属皮膜9が形成される。

Description

冷却ロール及びその製造方法
 本発明は、冷却ロール及びその製造方法に関し、更に詳しくは、合成樹脂等の各種シートや各種フィルムの製造装置、あるいは、これら各種シートや各種フィルムを積層するラミネート装置等に使用される冷却ロール及びその製造方法に関する。
 一般に、紙等の基材に対して合成樹脂フィルムを貼り合せるラミネート製造装置では、例えば、図10に示すように、供給ロール21から繰り出された基材22を、プレスロール23と冷却ロール24との間を通過させ、巻き取りロール25に巻き取らせる一方、プレスロール23と冷却ロール24との間に、ダイ26から溶融樹脂を流下させてフィルム層28を形成し、冷却ロール24にて冷却しながら基材22に貼合わせて、ラミネート積層紙29を製造している。
 上記冷却ロール24として、例えば、特許文献1には、多数本の冷却用の伝熱管が内部に配設された円筒体内に、作動流体(熱搬送液)を封入し、回転駆動される前記円筒体内における作動流体の蒸発と凝縮との繰り返しによって前記円筒体の表面を冷却する構成が開示されている。
 更に、作動流体が封入される円筒体の内面には、ウィックを張設して温度の均一化を図って一様に冷却できるようにしている。
特公平04-2720号公報
 上記のような冷却ロールでは、更なる冷却能力の向上が要求されており、本発明は、冷却能力を向上させた冷却ロール及びその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の冷却ロールは、冷却流体が流通する複数の冷却管が内部に配設された円筒体を備え、該円筒体内に、蒸発と凝縮とを繰り返す作動流体が封入される冷却ロールにおいて、前記円筒体の内周面に金属皮膜が形成される。
 前記金属皮膜は、溶射加工によって形成される溶射皮膜であるのが好ましい。
 前記金属皮膜は、Al皮膜であるのが好ましい。
 本発明の冷却ロールによれば、円筒体の内周面にAl皮膜等の金属皮膜を、溶射加工等によって形成するので、後述のように、沸騰伝熱係数を、円筒体の内周面にウィック加工が施された従来例に比べて高めることが可能となり、冷却効率を高めることができる。
 本発明の冷却ロールの製造方法は、冷却流体が流通する複数の冷却管が内部に配設された円筒体を備え、該円筒体内に、蒸発と凝縮とを繰り返す作動流体が封入される冷却ロールの製造方法において、前記円筒体の内周面に金属皮膜を溶射加工によって形成する。
 本発明の冷却ロールの製造方法によれば、円筒体の内周面に、金属皮膜を溶射加工によって形成するので、後述のように、沸騰伝熱係数を、円筒体の内周面にウィック加工が施された従来例に比べて高めることが可能となり、冷却効率を高めることができる。
 本発明によれば、円筒体の内周面に金属皮膜を形成するので、冷却ロールの冷却効率を高めることができる。
本発明の実施形態に係る冷却ロールの概略縦断面図である。 図1のA-A線の断面図である。 図2の部分拡大断面図である。 冷却ロールを模擬した試験装置の概略構成図である。 図4の試験装置によって得られた実施例と比較例の沸騰伝熱係数を示す図である。 試験用ロールを用いた試験設備の概略構成図である。 図6の試験用ロール及び加熱ヒータを示す図である。 図6の試験設備によって得られた実施例と比較例の試験用ロールの沸騰伝熱係数を示す図である。 図6の試験設備によって得られた実施例と比較例の試験用ロールの沸騰伝熱係数を示す図である。 ラミネート積層紙の製造装置の概略図である。
 以下、本発明の実施形態を、図面に基づいて詳細に説明する。
 図1は、本発明の一実施形態に係る冷却ロールの概略縦断面図であり、図2は、図1のA-A線に沿う断面図であり、図3は、図2の部分拡大断面図である。
 これらの図を参照して、この実施形態の冷却ロール1は、例えば、上記図10のラミネート製造装置等に使用する冷却ロールである。この冷却ロール1は、比較的薄い板厚の円筒体2と、この円筒体2を支持する中空の支持軸3とを備えている。円筒体2の両端部には、円筒体2の内部を密封する端板17,18が固着されており、更に、端板17,18より円筒体2の内方には、内部を密封する別の面板4,5が固着されている。
 上記支持軸3が、両端板17,18及び両面板4,5の中心を気密状態で貫通し、該支持軸3の両端部3a,3bが、円筒体2の外方に突出している。
 円筒体2の一端側には、内方の面板4と外方の端板17とによって、冷却水の入口室6が区画され、中空の支持軸3の一端3aから供給される冷却水が、矢符で示されるように、入口室6内に導入される。
 円筒体2の他端側には、内方の面板5と外方の端板18とによって、冷却水の出口室7が区画され、この出口室7は、中空の支持軸3の他端3bと連通し、矢符で示されるように、冷却水の排出経路が構成される。
 両面板4,5間には、円筒体2の軸線方向(図1の左右方向)に延びて入口室6及び出口室7にそれぞれ連通する冷却管8の複数本が、円周方向に沿って並設されている。
 これによって、支持軸3の一端3aから入口室6内に導入された冷却水が、各冷却管8に分配され、各冷却管8内を流れた冷却水が、出口室7から支持軸3の他端3bを介して排出されるように構成されている。
 両面板4,5で区間された円筒体2の内部は、減圧状態とされると共に、代替フロン、ナフタリン、キノリン等のように蒸発と凝縮とを繰り返すようにした作動流体としての作動液(図示せず)が封入されている。
 この構成において、回転する円筒体2内に封入した作動液は、遠心力によって円筒体2の内周面に接したとき、この円筒体2の外周面に接触する高温の樹脂フィルム等の被冷却シートからの熱によって蒸発し、蒸発した作動液は、各冷却管8への接触によって冷却され、凝縮して液化する。この液化した作動液が、再び、遠心力によって円筒体2の内周面に戻って、被冷却シートからの熱によって蒸発するという、蒸発と凝縮とを繰り返すことによって、被冷却シートの冷却を行う。
 この実施形態では、冷却効率を高めるために、円筒体2の内周面には、上記特許文献1のようにウィックを張設するのではなく、金属皮膜9を形成している。
 この金属皮膜9は、円筒体2の内周面の全面に溶射加工によって形成された溶射皮膜であるのが好ましい。この金属皮膜9の膜厚は、1mm以下であるのが好ましく、より好ましくは、500μm以下であり、更に好ましくは、100~400μm、この実施形態では、250μm程度としている。この膜厚が、1mmを超えると、十分な伝熱率の向上が見られない。
 金属皮膜9の材料は、金属やその合金であれば、その種類は特に限定されないが、溶射材料として使用される、例えば、Al、Al合金、SUS、亜鉛などが好ましい。
 金属皮膜9を形成するための溶射加工の方法は、特に限定されないが、例えばアークワイヤー溶射を挙げることができ、この実施形態の金属皮膜9は、アークワイヤー溶射によって形成されたAlの溶射皮膜である。
 金属皮膜9は、溶射加工によって形成された溶射皮膜であるので、気孔を有しており、作動流体を、気孔内に保持することができる。したがって、作動液を円筒体2の内周面の金属皮膜9の気孔に保持することができ、これによって、円筒体2の外周面を均一に冷却することができる。この気孔率は、3%以上であるのが好ましく、より好ましくは、5%以上である。
 次に、本発明の作用効果を、実施例及び比較例に基づいて説明する。
 実施例は、試験片の表面(沸騰表面)に、上記実施形態と同様にアークワイヤー溶射加工によってAlの金属皮膜を膜厚250μm程度形成した。
 比較例は、試験片の表面(沸騰表面)に、ウィック加工を施した。このウィック加工は、本件出願人が、市販している従来の冷却ロールと同じウィック加工である。
 実施例及び比較例の試験片の沸騰伝熱係数を、図4に示される冷却ロールを模擬した試験装置によって測定した。
 図4において、10は沸騰容器、11は試験片、12は凝縮器、13は作動液用の熱電対、14はヒータ、15は試験片用の熱電対、16は作動液である。作動液16は、R-123の代替フロンを使用し、次のような手順でそれぞれ測定行った。
 沸騰容器10内を真空状態とし、作動液16を30~60ml封入する。ヒータ14で試験片11をその裏面側から加熱し、試験片11の沸騰表面から作動液16を沸騰させて蒸発させながら、沸騰容器10内の圧力を正圧まで上昇させ、沸騰容器10の上部に溜まった不凝縮ガスを抜いて、沸騰容器10内を密閉する。
 その後、冷却水を循環させ、平衡状態になったところで、冷却水の入口、出口及び試験片11の温度を測定した。作動液16の深さは沸騰状態で約15mmとした。
 沸騰伝熱係数は、熱流束(ヒートフラックス)に対する沸騰伝熱係数であり、試験片11の沸騰表面の温度は、各点に設置した熱電対15の温度差により求めた。熱流束(ヒートフラックス)及び沸騰伝熱係数は以下の式(1)(2)を使用して求めた。
 q=V×Cpw×ρw×(Tw´-Tw)/A    …(1)
 hb=q÷(Ts-Tl)             …(2)
 なお、上記式(1)(2)において、qは熱流束[kcal/m2h]、Vは冷却水量「m3/h」、Cpwは冷却水の比熱[kcal/kg℃]、ρwは冷却水の密度[kg/m3]、Tw´は冷却水の出口温度[℃]、Twは冷却水の入口温度[℃]、Aは作動液の沸騰伝熱面積[m2]、hbは作動液の沸騰伝熱係数[kcal/m2h℃]、Tsは沸騰表面温度[℃]、Tlは作動液温度[℃]である。
 上記手順により測定した結果を図5に示す。図5において、実線は実施例を、破線は比較例をそれぞれ示している。
 図5に示すように、実施例の試験片の沸騰伝熱係数が、比較例の試験片の沸騰伝熱係数を上回っている。
 このように、表面にアークワイヤー溶射加工によってAlの金属皮膜を膜厚250μm程度形成した実施例の試験片は、表面に、本件出願人が市販している従来の冷却ロールと同じウィック加工を施した比較例の試験片に比べて、沸騰伝熱係数が向上し、冷却効率が向上していることが分る。
 更に、試験用ロールとして、実施例及び比較例の冷却ロールを製作し、各冷却ロールについて、沸騰伝熱係数を測定した。
 実施例の冷却ロールは、円筒体の内周面に、上記実施形態と同様にアークワイヤー溶射加工によってAlの金属皮膜を膜厚250μm程度形成した。
 比較例の冷却ロールは、円筒体の内周面に、ウィック加工を施した。このウィック加工は、本件出願人が、市販している従来の冷却ロールと同じウィック加工である。
 実施例及び比較例の冷却ロールの沸騰伝熱係数を、2種類の作動液である代替フロンR-124,R-134aをそれぞれ用いて、図6に示される試験設備で沸騰伝熱係数を測定した。
 図6において、30は実施例または比較例の冷却ロールである試験用ロール、31,32は試験用ロール30への冷却水の入口及び出口の温度をそれぞれ計測する第1,第2温度計、33は冷却水の流量を計測する流量計、34は冷却水ポンプ、35は試験用ロール30を回転駆動するモータ、37~41は試験用ロール30の表面温度を、その軸線方向(図6の左右方向)に沿う異なる位置でそれぞれ計測する第1~第5表面温度計である。
 試験用ロール30は、図7に示す加熱ヒータ36によって後述のように加熱される。この加熱ヒータ36及び上記モータ35は、図6の制御盤42によって制御される。
 この試験設備において、モータ35によって、試験用ロール30を、64rpmで回転させ、冷却水ポンプ34によって、冷却水を、21.5m3/hの流量で試験用ロール30内に循環させ、加熱ヒータ36によって試験用ロール30の外面を加熱する。その後、平衡状態となったところで、冷却水の入口温度及び出口温度を、第1,第2温度計31,32でそれぞれ計測した。試験用ロール30の表面温度は、第1~第5表面温度計37~41でそれぞれ計測し、それらの平均値とした。
 試験設備で得られた計測値に基づいて、熱流束(ヒートフラックス)及び沸騰伝熱係数を、下記の式(3)~(7)を使用して求めた。
 H=V×(T2-T1)×ρw×Cpw   ・・・・・・(3)
 θm=[(T0-T1)-(T0-T2)]/ln[(T0-T1)/(T0-T2)]   ・・・・・・(4)
 U=H/(Ao×θm)   ・・・・・・(5)
 q=H/Ao   ・・・・・・(6)
 1/U=Ao/(Ai×h)+Rt   ・・・・・・(7)
 上記式(3)~(7)において、T2は冷却水の出口温度[℃]、T1は冷却水の入口温度[℃]、T0はロール表面温度の平均値[℃]、Uは総括伝熱係数[kcal/m2h℃]、Aoはロール外面の伝熱面積[m2]、Aiはロール内面の伝熱面積[m2]、hは沸騰伝熱係数[kcal/m2h℃]、Rtは沸騰を除いたロールの伝熱抵抗の合計であり、q、V、ρw、Cpwは、上記図4における上記式(1)の説明と同様である。
 上記式(3)~(5)にて、総括伝熱係数Uを算出し、上記式(7)で逆算することにより、沸騰伝熱係数hを算出した。式(7)で算出された沸騰伝熱係数hと、式(6)の熱流束qにて、図8、図9を作図した。
 図8は作動液がR-124の場合であり、図9は作動液がR-134aの場合である。いずれも、実線は実施例を、破線は比較例をそれぞれ示している。
 図8及び図9に示すように、いずれの作動液についても、実施例の試験用ロールの沸騰伝熱係数が、比較例の試験用ロールの沸騰伝熱係数を上回っており、冷却効率が向上していることが分る。
 1   冷却ロール
 2   円筒体
 3   支持軸
 6   入口室
 7   出口室
 8   冷却管
 9   金属皮膜

Claims (4)

  1.  冷却流体が流通する複数の冷却管が内部に配設された円筒体を備え、該円筒体内に、蒸発と凝縮とを繰り返す作動流体が封入される冷却ロールにおいて、
     前記円筒体の内周面に金属皮膜が形成される、
     ことを特徴とする冷却ロール。
  2.  前記金属皮膜が、溶射加工によって形成される溶射皮膜である、
     請求項1に記載の冷却ロール。
  3.  前記金属皮膜が、Al皮膜である、
     請求項1又は2に記載の冷却ロール。
  4.  冷却流体が流通する複数の冷却管が内部に配設された円筒体を備え、該円筒体内に、蒸発と凝縮とを繰り返す作動流体が封入される冷却ロールの製造方法において、
     前記円筒体の内周面に金属皮膜を溶射加工によって形成する、
     ことを特徴とする冷却ロールの製造方法。
PCT/JP2014/004427 2014-08-28 2014-08-28 冷却ロール及びその製造方法 WO2016030929A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016545091A JP6341489B2 (ja) 2014-08-28 2014-08-28 冷却ロール及びその製造方法
PCT/JP2014/004427 WO2016030929A1 (ja) 2014-08-28 2014-08-28 冷却ロール及びその製造方法
CN201480081139.1A CN107614734B (zh) 2014-08-28 2014-08-28 冷却滚筒及其制造方法
KR1020177003269A KR101895737B1 (ko) 2014-08-28 2014-08-28 냉각롤 및 그 제조 방법
TW104125510A TWI627045B (zh) 2014-08-28 2015-08-06 Cooling drum and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004427 WO2016030929A1 (ja) 2014-08-28 2014-08-28 冷却ロール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016030929A1 true WO2016030929A1 (ja) 2016-03-03

Family

ID=55398878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004427 WO2016030929A1 (ja) 2014-08-28 2014-08-28 冷却ロール及びその製造方法

Country Status (5)

Country Link
JP (1) JP6341489B2 (ja)
KR (1) KR101895737B1 (ja)
CN (1) CN107614734B (ja)
TW (1) TWI627045B (ja)
WO (1) WO2016030929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672214B (zh) * 2017-12-14 2019-09-21 日商硬化鉻工業股份有限公司 冷卻輥及使用其之熱可塑性樹脂片材之製造方法
WO2022107237A1 (ja) * 2020-11-18 2022-05-27 安彦 大久保 冷却ロール装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136818A (zh) * 2018-07-23 2019-01-04 翟恩荣 一种粉末离子等离子镀涂设备
CN109203485B (zh) * 2018-09-25 2020-09-25 东阳市家强塑胶有限公司 一种塑料薄膜热合机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185558A (ja) * 1983-04-06 1984-10-22 Osaka Fuji Kogyo Kk 連続鋳造用ロ−ラ
JP2007504366A (ja) * 2003-09-01 2007-03-01 メッツォ ペーパー インコーポレイテッド 熱ロール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI106054B (fi) * 1999-03-29 2000-11-15 Valmet Corp Paperi-/kartonkikoneen tai jälkikäsittelykoneen termotela ja menetelmä termotelan valmistamiseksi
US3939900A (en) * 1973-11-16 1976-02-24 Allied Chemical Corporation Apparatus for continuous casting metal filament on interior of chill roll
US3881542A (en) * 1973-11-16 1975-05-06 Allied Chem Method of continuous casting metal filament on interior groove of chill roll
JPS57109554A (en) * 1980-12-26 1982-07-08 Kawasaki Steel Corp Method and device for preliminary detection of breakout of continuous casting machine
JPS5853457Y2 (ja) * 1981-10-01 1983-12-05 ニツカ株式会社 冷却用ロ−ル装置
JPS63282393A (ja) * 1987-05-09 1988-11-18 株式会社ササクラ 回転ローラ式冷却装置
JPH07214250A (ja) * 1994-02-08 1995-08-15 Kawasaki Steel Corp 急冷金属薄帯製造用の冷却ロール
DE19635845C1 (de) * 1996-09-04 1998-06-10 Voith Sulzer Finishing Gmbh Kalanderwalze mit einem Bezug aus elastischem Kunststoff
JP3967427B2 (ja) * 1997-07-01 2007-08-29 株式会社フジクラ 平板状ヒートパイプ
JP2001219249A (ja) * 2000-02-07 2001-08-14 Nippon Steel Corp 薄帯連続鋳造用冷却ドラム
JP4598574B2 (ja) * 2005-03-17 2010-12-15 東芝機械株式会社 加熱、冷却ロール
DE102007054147A1 (de) * 2007-11-12 2009-05-20 Khs Ag Leimwalze sowie Etikettieraggregat mit einer solchen Leimwalze

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185558A (ja) * 1983-04-06 1984-10-22 Osaka Fuji Kogyo Kk 連続鋳造用ロ−ラ
JP2007504366A (ja) * 2003-09-01 2007-03-01 メッツォ ペーパー インコーポレイテッド 熱ロール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI672214B (zh) * 2017-12-14 2019-09-21 日商硬化鉻工業股份有限公司 冷卻輥及使用其之熱可塑性樹脂片材之製造方法
WO2022107237A1 (ja) * 2020-11-18 2022-05-27 安彦 大久保 冷却ロール装置
JPWO2022107237A1 (ja) * 2020-11-18 2022-05-27

Also Published As

Publication number Publication date
JP6341489B2 (ja) 2018-06-20
TW201615377A (zh) 2016-05-01
KR20170038186A (ko) 2017-04-06
CN107614734B (zh) 2019-11-26
CN107614734A (zh) 2018-01-19
JPWO2016030929A1 (ja) 2017-07-27
KR101895737B1 (ko) 2018-09-05
TWI627045B (zh) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6341489B2 (ja) 冷却ロール及びその製造方法
Zheng et al. Experimental study of falling film evaporation heat transfer on superhydrophilic horizontal-tubes at low spray density
JP7140524B2 (ja) 液体状又は半液体状食品用の装置
EP0292123B1 (en) Cooling roller for a coooling machine
Ji et al. Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes
Rajkumar et al. Experimental study of condensation heat transfer on hydrophobic vertical tube
Swain et al. Flow boiling of distilled water over plain tube bundle with uniform and varying heat flux along the height of the tube bundle
US20110017439A1 (en) Heat exchanger for heating temperature and residence time sensitive products
Dewangan et al. Nucleate boiling of pure and quasi-azeotropic refrigerants from copper coated surfaces
Dewangan et al. Experimental study of nucleate boiling heat transfer of R-134a and R-600a on thermal spray coating surfaces
Ray et al. Structural properties of glancing angle deposited nanostructured surfaces for enhanced boiling heat transfer using refrigerant R-141b
TWI691404B (zh) 冷卻滾筒及其製造方法
Nagata et al. Enhancement of R1234ze (Z) pool boiling heat transfer on horizontal titanium tubes for high-temperature heat pumps
Swain et al. Pool boiling of distilled water over tube bundle with variable heat flux
Kumar et al. Condensation of R-134a vapour over single horizontal integral-fin tubes: effect of fin height
Saidi et al. Enhanced pool boiling of R-123 refrigerant on two selected tubes
Moharana et al. Experimental assessment of enhanced 2x3 Semi-Closed microstructure tube bundle as an alternative in shell and tube heat exchangers
JPH06137319A (ja) 熱交換ロールおよびこれを用いた加熱、冷却ロール装置
Arulselvan et al. Experimental investigation of the thermal performance of a heat pipe under various modes of condenser cooling
JP2018501456A5 (ja)
JPH0770351B2 (ja) 均熱ロール装置
Hsieh et al. An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes
US1838043A (en) Apparatus and method for heat exchangers
Bortolin et al. Flow boiling of a new low-GWP refrigerant inside a single square cross section microchannel
Basha et al. Solar thermal power system augmented with LHP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003269

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016545091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900634

Country of ref document: EP

Kind code of ref document: A1