WO2016029187A2 - Methods for production of oxygenated terpenes - Google Patents
Methods for production of oxygenated terpenes Download PDFInfo
- Publication number
- WO2016029187A2 WO2016029187A2 PCT/US2015/046421 US2015046421W WO2016029187A2 WO 2016029187 A2 WO2016029187 A2 WO 2016029187A2 US 2015046421 W US2015046421 W US 2015046421W WO 2016029187 A2 WO2016029187 A2 WO 2016029187A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- nootkatol
- product
- srko
- mutations
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 162
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- 150000003505 terpenes Chemical class 0.000 title abstract description 60
- 235000007586 terpenes Nutrition 0.000 title description 43
- 239000000203 mixture Substances 0.000 claims abstract description 100
- 102000004190 Enzymes Human genes 0.000 claims abstract description 71
- 108090000790 Enzymes Proteins 0.000 claims abstract description 71
- 238000009472 formulation Methods 0.000 claims abstract description 67
- 230000035772 mutation Effects 0.000 claims description 286
- WCTNXGFHEZQHDR-UHFFFAOYSA-N valencene Natural products C1CC(C)(C)C2(C)CC(C(=C)C)CCC2=C1 WCTNXGFHEZQHDR-UHFFFAOYSA-N 0.000 claims description 140
- WTOYNNBCKUYIKC-JMSVASOKSA-N (+)-nootkatone Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CC(=O)C=C21 WTOYNNBCKUYIKC-JMSVASOKSA-N 0.000 claims description 139
- 239000001890 (2R)-8,8,8a-trimethyl-2-prop-1-en-2-yl-1,2,3,4,6,7-hexahydronaphthalene Substances 0.000 claims description 135
- WTOYNNBCKUYIKC-UHFFFAOYSA-N dl-nootkatone Natural products C1CC(C(C)=C)CC2(C)C(C)CC(=O)C=C21 WTOYNNBCKUYIKC-UHFFFAOYSA-N 0.000 claims description 125
- GFNWRKNVTHDNPV-UHFFFAOYSA-N 2alpha-hydroxyvalencene Natural products C1CC(C(C)=C)CC2(C)C(C)CC(O)C=C21 GFNWRKNVTHDNPV-UHFFFAOYSA-N 0.000 claims description 118
- QEBNYNLSCGVZOH-NFAWXSAZSA-N (+)-valencene Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CCC=C21 QEBNYNLSCGVZOH-NFAWXSAZSA-N 0.000 claims description 110
- GFNWRKNVTHDNPV-UXOAXIEHSA-N beta-nootkatol Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)C[C@H](O)C=C21 GFNWRKNVTHDNPV-UXOAXIEHSA-N 0.000 claims description 110
- 150000004354 sesquiterpene derivatives Chemical class 0.000 claims description 110
- 229930004725 sesquiterpene Natural products 0.000 claims description 107
- 230000037361 pathway Effects 0.000 claims description 78
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 77
- 108090000623 proteins and genes Proteins 0.000 claims description 59
- 241000588724 Escherichia coli Species 0.000 claims description 54
- 230000000694 effects Effects 0.000 claims description 53
- 108010045510 NADPH-Ferrihemoprotein Reductase Proteins 0.000 claims description 51
- 108030003566 Valencene synthases Proteins 0.000 claims description 51
- 230000014509 gene expression Effects 0.000 claims description 42
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 36
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims description 34
- 102000007698 Alcohol dehydrogenase Human genes 0.000 claims description 34
- 102000004316 Oxidoreductases Human genes 0.000 claims description 34
- 108090000854 Oxidoreductases Proteins 0.000 claims description 34
- 229920001184 polypeptide Polymers 0.000 claims description 34
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 34
- 239000002773 nucleotide Substances 0.000 claims description 33
- 125000003729 nucleotide group Chemical group 0.000 claims description 33
- 239000000796 flavoring agent Substances 0.000 claims description 29
- 235000019634 flavors Nutrition 0.000 claims description 29
- IPFXNYPSBSIFOB-UHFFFAOYSA-N isopentyl pyrophosphate Chemical compound CC(C)CCO[P@](O)(=O)OP(O)(O)=O IPFXNYPSBSIFOB-UHFFFAOYSA-N 0.000 claims description 29
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 claims description 25
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 claims description 25
- -1 a-nootkatol Chemical compound 0.000 claims description 22
- GFNWRKNVTHDNPV-GBOPCIDUSA-N alpha-nootkatol Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)C[C@@H](O)C=C21 GFNWRKNVTHDNPV-GBOPCIDUSA-N 0.000 claims description 21
- 244000228451 Stevia rebaudiana Species 0.000 claims description 20
- 235000006092 Stevia rebaudiana Nutrition 0.000 claims description 20
- 239000004615 ingredient Substances 0.000 claims description 20
- 235000005976 Citrus sinensis Nutrition 0.000 claims description 17
- 240000002319 Citrus sinensis Species 0.000 claims description 17
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 102100035111 Farnesyl pyrophosphate synthase Human genes 0.000 claims description 16
- 101710125754 Farnesyl pyrophosphate synthase Proteins 0.000 claims description 16
- 230000001590 oxidative effect Effects 0.000 claims description 15
- 238000006467 substitution reaction Methods 0.000 claims description 15
- 101100278777 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) dxs1 gene Proteins 0.000 claims description 14
- 238000012217 deletion Methods 0.000 claims description 14
- 230000037430 deletion Effects 0.000 claims description 14
- 101150056470 dxs gene Proteins 0.000 claims description 14
- 108010067758 ent-kaurene oxidase Proteins 0.000 claims description 14
- 101150018742 ispF gene Proteins 0.000 claims description 13
- 101150075592 idi gene Proteins 0.000 claims description 12
- 101150022203 ispDF gene Proteins 0.000 claims description 12
- 101100152417 Bacillus spizizenii (strain ATCC 23059 / NRRL B-14472 / W23) tarI gene Proteins 0.000 claims description 11
- 101100509110 Leifsonia xyli subsp. xyli (strain CTCB07) ispDF gene Proteins 0.000 claims description 11
- 101150014059 ispD gene Proteins 0.000 claims description 11
- 230000004907 flux Effects 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 10
- 230000037431 insertion Effects 0.000 claims description 10
- 102000039446 nucleic acids Human genes 0.000 claims description 10
- 108020004707 nucleic acids Proteins 0.000 claims description 10
- 150000007523 nucleic acids Chemical class 0.000 claims description 10
- 235000013361 beverage Nutrition 0.000 claims description 9
- 239000003205 fragrance Substances 0.000 claims description 9
- 241000894006 Bacteria Species 0.000 claims description 8
- 241000607479 Yersinia pestis Species 0.000 claims description 8
- 239000002537 cosmetic Substances 0.000 claims description 8
- 102000037865 fusion proteins Human genes 0.000 claims description 8
- 108020001507 fusion proteins Proteins 0.000 claims description 8
- 238000001727 in vivo Methods 0.000 claims description 8
- 229940112822 chewing gum Drugs 0.000 claims description 7
- 235000015218 chewing gum Nutrition 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 7
- 235000009508 confectionery Nutrition 0.000 claims description 7
- 239000003599 detergent Substances 0.000 claims description 7
- 235000013355 food flavoring agent Nutrition 0.000 claims description 7
- 230000002503 metabolic effect Effects 0.000 claims description 7
- 241000894007 species Species 0.000 claims description 7
- QEBNYNLSCGVZOH-UHFFFAOYSA-N valencene group Chemical group CC1CCC=C2CCC(CC12C)C(C)=C QEBNYNLSCGVZOH-UHFFFAOYSA-N 0.000 claims description 7
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 6
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 6
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 6
- 238000004508 fractional distillation Methods 0.000 claims description 6
- 238000000338 in vitro Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 241000235648 Pichia Species 0.000 claims description 4
- 241000589776 Pseudomonas putida Species 0.000 claims description 4
- 241000235070 Saccharomyces Species 0.000 claims description 4
- 241000235013 Yarrowia Species 0.000 claims description 4
- 239000012431 aqueous reaction media Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- MAKBWIUHFAVVJP-HAXARLPTSA-N (2R,3S)-pentane-1,2,3,4-tetrol phosphoric acid Chemical compound OP(O)(O)=O.CC(O)[C@H](O)[C@H](O)CO MAKBWIUHFAVVJP-HAXARLPTSA-N 0.000 claims description 3
- 240000000560 Citrus x paradisi Species 0.000 claims description 3
- 238000004817 gas chromatography Methods 0.000 claims description 3
- 239000012074 organic phase Substances 0.000 claims description 3
- 238000000638 solvent extraction Methods 0.000 claims description 3
- 235000000882 Citrus x paradisi Nutrition 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims description 2
- 239000013598 vector Substances 0.000 claims description 2
- 229940095696 soap product Drugs 0.000 claims 5
- 241000544066 Stevia Species 0.000 claims 3
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 claims 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims 2
- 235000009392 Vitis Nutrition 0.000 claims 2
- 241000219095 Vitis Species 0.000 claims 2
- 230000007423 decrease Effects 0.000 claims 2
- 241000207199 Citrus Species 0.000 claims 1
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 235000020971 citrus fruits Nutrition 0.000 claims 1
- 238000004949 mass spectrometry Methods 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 102200049192 rs1057517679 Human genes 0.000 claims 1
- 102200163256 rs2234926 Human genes 0.000 claims 1
- 102220016896 rs75157409 Human genes 0.000 claims 1
- 102220227356 rs777753452 Human genes 0.000 claims 1
- 102220088131 rs869025353 Human genes 0.000 claims 1
- 102000040430 polynucleotide Human genes 0.000 abstract description 15
- 108091033319 polynucleotide Proteins 0.000 abstract description 15
- 239000002157 polynucleotide Substances 0.000 abstract description 15
- 238000002360 preparation method Methods 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 106
- 210000004027 cell Anatomy 0.000 description 69
- 229940024606 amino acid Drugs 0.000 description 59
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 56
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 55
- XMWHRVNVKDKBRG-CRCLSJGQSA-N [(2s,3r)-2,3,4-trihydroxy-3-methylbutyl] dihydrogen phosphate Chemical compound OC[C@](O)(C)[C@@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-CRCLSJGQSA-N 0.000 description 49
- XMWHRVNVKDKBRG-UHNVWZDZSA-N 2-C-Methyl-D-erythritol 4-phosphate Natural products OC[C@@](O)(C)[C@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-UHNVWZDZSA-N 0.000 description 45
- 235000001014 amino acid Nutrition 0.000 description 44
- 150000001413 amino acids Chemical class 0.000 description 42
- 238000006213 oxygenation reaction Methods 0.000 description 36
- 239000000758 substrate Substances 0.000 description 33
- 239000012528 membrane Substances 0.000 description 30
- 101150053185 P450 gene Proteins 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 26
- 238000012360 testing method Methods 0.000 description 25
- 101000649085 Vitis vinifera Valencene synthase Proteins 0.000 description 24
- 238000012216 screening Methods 0.000 description 23
- 230000009471 action Effects 0.000 description 17
- 230000003647 oxidation Effects 0.000 description 17
- 238000007254 oxidation reaction Methods 0.000 description 17
- 230000006872 improvement Effects 0.000 description 15
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 15
- 101150093426 yhcB gene Proteins 0.000 description 15
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 13
- 102220086836 rs864622758 Human genes 0.000 description 13
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 12
- 102220414544 c.227G>A Human genes 0.000 description 12
- 241000219195 Arabidopsis thaliana Species 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 241000196324 Embryophyta Species 0.000 description 10
- 101710093888 Pentalenene synthase Proteins 0.000 description 10
- 101710115850 Sesquiterpene synthase Proteins 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 238000002703 mutagenesis Methods 0.000 description 10
- 231100000350 mutagenesis Toxicity 0.000 description 10
- 101100286286 Dictyostelium discoideum ipi gene Proteins 0.000 description 9
- 229930004069 diterpene Natural products 0.000 description 9
- 101150014423 fni gene Proteins 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 description 8
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 7
- 240000006365 Vitis vinifera Species 0.000 description 7
- 235000014787 Vitis vinifera Nutrition 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 150000004141 diterpene derivatives Chemical class 0.000 description 7
- 235000002532 grape seed extract Nutrition 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 150000002576 ketones Chemical class 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 6
- 229940026455 cedrol Drugs 0.000 description 6
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 6
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 6
- 102220326731 rs1290624507 Human genes 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 description 5
- NUHSROFQTUXZQQ-UHFFFAOYSA-N Isopentenyl diphosphate Natural products CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 5
- 238000000126 in silico method Methods 0.000 description 5
- 230000000869 mutational effect Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- JSNRRGGBADWTMC-UHFFFAOYSA-N (6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene Chemical compound CC(C)=CCCC(C)=CCCC(=C)C=C JSNRRGGBADWTMC-UHFFFAOYSA-N 0.000 description 4
- OKZYCXHTTZZYSK-ZCFIWIBFSA-N (R)-5-phosphomevalonic acid Chemical compound OC(=O)C[C@@](O)(C)CCOP(O)(O)=O OKZYCXHTTZZYSK-ZCFIWIBFSA-N 0.000 description 4
- FAMPSKZZVDUYOS-UHFFFAOYSA-N 2,6,6,9-tetramethylcycloundeca-1,4,8-triene Chemical compound CC1=CCC(C)(C)C=CCC(C)=CCC1 FAMPSKZZVDUYOS-UHFFFAOYSA-N 0.000 description 4
- 101100397224 Bacillus subtilis (strain 168) isp gene Proteins 0.000 description 4
- 102000057412 Diphosphomevalonate decarboxylases Human genes 0.000 description 4
- 102100037584 FAST kinase domain-containing protein 4 Human genes 0.000 description 4
- TWVJWDMOZJXUID-SDDRHHMPSA-N Guaiol Chemical compound C1([C@H](CC[C@H](C2)C(C)(C)O)C)=C2[C@@H](C)CC1 TWVJWDMOZJXUID-SDDRHHMPSA-N 0.000 description 4
- 101001028251 Homo sapiens FAST kinase domain-containing protein 4 Proteins 0.000 description 4
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 4
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 4
- 108010000775 Hydroxymethylglutaryl-CoA synthase Proteins 0.000 description 4
- 102100028888 Hydroxymethylglutaryl-CoA synthase, cytoplasmic Human genes 0.000 description 4
- CKZXONNJVHXSQM-UHFFFAOYSA-N Ledol Natural products CC(C)C1CCC(C)(O)C2C3CC(C)CC123 CKZXONNJVHXSQM-UHFFFAOYSA-N 0.000 description 4
- PDSNLYSELAIEBU-UHFFFAOYSA-N Longifolene Chemical compound C1CCC(C)(C)C2C3CCC2C1(C)C3=C PDSNLYSELAIEBU-UHFFFAOYSA-N 0.000 description 4
- ZPUKHRHPJKNORC-UHFFFAOYSA-N Longifolene Natural products CC1(C)CCCC2(C)C3CCC1(C3)C2=C ZPUKHRHPJKNORC-UHFFFAOYSA-N 0.000 description 4
- 108700040132 Mevalonate kinases Proteins 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 101000958834 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) Diphosphomevalonate decarboxylase mvd1 Proteins 0.000 description 4
- 101000958925 Panax ginseng Diphosphomevalonate decarboxylase 1 Proteins 0.000 description 4
- 102100024279 Phosphomevalonate kinase Human genes 0.000 description 4
- 101100052502 Shigella flexneri yciB gene Proteins 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- OJFDKHTZOUZBOS-CITAKDKDSA-N acetoacetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 OJFDKHTZOUZBOS-CITAKDKDSA-N 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 210000004671 cell-free system Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- TWVJWDMOZJXUID-QJPTWQEYSA-N guaiol Natural products OC(C)(C)[C@H]1CC=2[C@H](C)CCC=2[C@@H](C)CC1 TWVJWDMOZJXUID-QJPTWQEYSA-N 0.000 description 4
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 4
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 4
- 101150064873 ispA gene Proteins 0.000 description 4
- 102000002678 mevalonate kinase Human genes 0.000 description 4
- 229930003658 monoterpene Natural products 0.000 description 4
- 150000002773 monoterpene derivatives Chemical class 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 108091000116 phosphomevalonate kinase Proteins 0.000 description 4
- 239000001384 succinic acid Substances 0.000 description 4
- YMBFCQPIMVLNIU-UHFFFAOYSA-N trans-alpha-bergamotene Natural products C1C2C(CCC=C(C)C)(C)C1CC=C2C YMBFCQPIMVLNIU-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RSKODCFDTXJUBN-NFAWXSAZSA-N (2r,8r,8as)-8,8a-dimethyl-2-prop-1-en-2-yl-2,3,7,8-tetrahydro-1h-naphthalene Chemical compound C1[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CC=CC2=C1 RSKODCFDTXJUBN-NFAWXSAZSA-N 0.000 description 3
- 241000743776 Brachypodium distachyon Species 0.000 description 3
- 101100180240 Burkholderia pseudomallei (strain K96243) ispH2 gene Proteins 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- VWFJDQUYCIWHTN-FBXUGWQNSA-N Farnesyl diphosphate Natural products CC(C)=CCC\C(C)=C/CC\C(C)=C/COP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-FBXUGWQNSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 3
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 3
- 101100126492 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) ispG1 gene Proteins 0.000 description 3
- 244000162450 Taxus cuspidata Species 0.000 description 3
- 235000009065 Taxus cuspidata Nutrition 0.000 description 3
- 240000000451 Zingiber zerumbet Species 0.000 description 3
- 235000014687 Zingiber zerumbet Nutrition 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- GJYJYFHBOBUTBY-UHFFFAOYSA-N alpha-camphorene Chemical compound CC(C)=CCCC(=C)C1CCC(CCC=C(C)C)=CC1 GJYJYFHBOBUTBY-UHFFFAOYSA-N 0.000 description 3
- 239000003098 androgen Substances 0.000 description 3
- 229940030486 androgens Drugs 0.000 description 3
- 230000036983 biotransformation Effects 0.000 description 3
- 239000004301 calcium benzoate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 125000000567 diterpene group Chemical group 0.000 description 3
- 101150118992 dxr gene Proteins 0.000 description 3
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 3
- XIRNKXNNONJFQO-UHFFFAOYSA-N ethyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC XIRNKXNNONJFQO-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- PIYDVAYKYBWPPY-UHFFFAOYSA-N heptadecanal Chemical compound CCCCCCCCCCCCCCCCC=O PIYDVAYKYBWPPY-UHFFFAOYSA-N 0.000 description 3
- NIOYUNMRJMEDGI-UHFFFAOYSA-N hexadecanal Chemical compound CCCCCCCCCCCCCCCC=O NIOYUNMRJMEDGI-UHFFFAOYSA-N 0.000 description 3
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000000640 hydroxylating effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 101150068863 ispE gene Proteins 0.000 description 3
- 101150081094 ispG gene Proteins 0.000 description 3
- 101150017044 ispH gene Proteins 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 235000002577 monoterpenes Nutrition 0.000 description 3
- 238000002887 multiple sequence alignment Methods 0.000 description 3
- FWWQKRXKHIRPJY-UHFFFAOYSA-N octadecanal Chemical compound CCCCCCCCCCCCCCCCCC=O FWWQKRXKHIRPJY-UHFFFAOYSA-N 0.000 description 3
- GGHMUJBZYLPWFD-CUZKYEQNSA-N patchouli alcohol Chemical compound C1C[C@]2(C)[C@@]3(O)CC[C@H](C)[C@@H]2C[C@@H]1C3(C)C GGHMUJBZYLPWFD-CUZKYEQNSA-N 0.000 description 3
- GGHMUJBZYLPWFD-UHFFFAOYSA-N rac-patchouli alcohol Natural products C1CC2(C)C3(O)CCC(C)C2CC1C3(C)C GGHMUJBZYLPWFD-UHFFFAOYSA-N 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 3
- LHYHMMRYTDARSZ-AJNGGQMLSA-N (-)-Tau-muurolol Chemical compound C1CC(C)=C[C@H]2[C@H](C(C)C)CC[C@](C)(O)[C@H]21 LHYHMMRYTDARSZ-AJNGGQMLSA-N 0.000 description 2
- PGBNIHXXFQBCPU-ILXRZTDVSA-N (-)-beta-santalene Chemical compound C1C[C@H]2C(=C)[C@@](CCC=C(C)C)(C)[C@@H]1C2 PGBNIHXXFQBCPU-ILXRZTDVSA-N 0.000 description 2
- DGZBGCMPRYFWFF-ZYOSVBKOSA-N (1s,5s)-6-methyl-4-methylidene-6-(4-methylpent-3-enyl)bicyclo[3.1.1]heptane Chemical compound C1[C@@H]2C(CCC=C(C)C)(C)[C@H]1CCC2=C DGZBGCMPRYFWFF-ZYOSVBKOSA-N 0.000 description 2
- CRDAMVZIKSXKFV-FBXUGWQNSA-N (2-cis,6-cis)-farnesol Chemical compound CC(C)=CCC\C(C)=C/CC\C(C)=C/CO CRDAMVZIKSXKFV-FBXUGWQNSA-N 0.000 description 2
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 2
- CXENHBSYCFFKJS-UHFFFAOYSA-N (3E,6E)-3,7,11-Trimethyl-1,3,6,10-dodecatetraene Natural products CC(C)=CCCC(C)=CCC=C(C)C=C CXENHBSYCFFKJS-UHFFFAOYSA-N 0.000 description 2
- BZQURGSQMBBPRU-DZGCQCFKSA-N (4as,8as)-3,8a-dimethyl-5-methylidene-4,4a,6,9-tetrahydrobenzo[f][1]benzofuran Chemical compound C([C@]1(C)C2)=CCC(=C)[C@@H]1CC1=C2OC=C1C BZQURGSQMBBPRU-DZGCQCFKSA-N 0.000 description 2
- NMALGKNZYKRHCE-CXTNEJHOSA-N (4r,4as,6r,8as)-4,4a-dimethyl-6-prop-1-en-2-yl-1,3,4,5,6,7,8,8a-octahydronaphthalen-2-one Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CC(=O)C[C@@H]21 NMALGKNZYKRHCE-CXTNEJHOSA-N 0.000 description 2
- 239000001306 (7E,9E,11E,13E)-pentadeca-7,9,11,13-tetraen-1-ol Substances 0.000 description 2
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 2
- ZENZJGDPWWLORF-KTKRTIGZSA-N (z)-octadec-9-enal Chemical compound CCCCCCCC\C=C/CCCCCCCC=O ZENZJGDPWWLORF-KTKRTIGZSA-N 0.000 description 2
- AJPADPZSRRUGHI-RFZPGFLSSA-N 1-deoxy-D-xylulose 5-phosphate Chemical compound CC(=O)[C@@H](O)[C@H](O)COP(O)(O)=O AJPADPZSRRUGHI-RFZPGFLSSA-N 0.000 description 2
- XBGUIVFBMBVUEG-UHFFFAOYSA-N 1-methyl-4-(1,5-dimethyl-4-hexenylidene)-1-cyclohexene Chemical compound CC(C)=CCCC(C)=C1CCC(C)=CC1 XBGUIVFBMBVUEG-UHFFFAOYSA-N 0.000 description 2
- ONVABDHFQKWOSV-UHFFFAOYSA-N 16-Phyllocladene Natural products C1CC(C2)C(=C)CC32CCC2C(C)(C)CCCC2(C)C31 ONVABDHFQKWOSV-UHFFFAOYSA-N 0.000 description 2
- 101710184086 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase Proteins 0.000 description 2
- 108030005203 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthases Proteins 0.000 description 2
- 101710201168 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase Proteins 0.000 description 2
- 101710195531 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, chloroplastic Proteins 0.000 description 2
- LGOFSGDSFQNIAT-SGMGOOAPSA-N 2-[(3s,3ar,5s)-3,8-dimethyl-1,2,3,3a,4,5,6,7-octahydroazulen-5-yl]propan-2-ol Chemical compound C1C[C@H](C(C)(C)O)C[C@@H]2[C@@H](C)CCC2=C1C LGOFSGDSFQNIAT-SGMGOOAPSA-N 0.000 description 2
- 101710166309 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase Proteins 0.000 description 2
- 108010014293 5-epi-aristolochene synthase Proteins 0.000 description 2
- OMOYQLRHKFGVGN-UHFFFAOYSA-N 7-methoxy-8-(3-methyl-2-oxobutyl)chromen-2-one Chemical compound C1=CC(=O)OC2=C(CC(=O)C(C)C)C(OC)=CC=C21 OMOYQLRHKFGVGN-UHFFFAOYSA-N 0.000 description 2
- 108010006229 Acetyl-CoA C-acetyltransferase Proteins 0.000 description 2
- 102100037768 Acetyl-CoA acetyltransferase, mitochondrial Human genes 0.000 description 2
- 239000004257 Anoxomer Substances 0.000 description 2
- 101100118004 Arabidopsis thaliana EBP1 gene Proteins 0.000 description 2
- 235000001405 Artemisia annua Nutrition 0.000 description 2
- 240000000011 Artemisia annua Species 0.000 description 2
- 101100132918 Artemisia annua CPR1 gene Proteins 0.000 description 2
- LGOFSGDSFQNIAT-UHFFFAOYSA-N Bulnesol Natural products C1CC(C(C)(C)O)CC2C(C)CCC2=C1C LGOFSGDSFQNIAT-UHFFFAOYSA-N 0.000 description 2
- 108010088986 Camphor 5-Monooxygenase Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 244000298479 Cichorium intybus Species 0.000 description 2
- 235000007542 Cichorium intybus Nutrition 0.000 description 2
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 2
- 102100031515 D-ribitol-5-phosphate cytidylyltransferase Human genes 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 102100035966 DnaJ homolog subfamily A member 2 Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102100039291 Geranylgeranyl pyrophosphate synthase Human genes 0.000 description 2
- 108010066605 Geranylgeranyl-Diphosphate Geranylgeranyltransferase Proteins 0.000 description 2
- 101000860349 Helianthus annuus Germacrene A hydroxylase Proteins 0.000 description 2
- 101000994204 Homo sapiens D-ribitol-5-phosphate cytidylyltransferase Proteins 0.000 description 2
- 101000931210 Homo sapiens DnaJ homolog subfamily A member 2 Proteins 0.000 description 2
- 108090000769 Isomerases Proteins 0.000 description 2
- 102000004195 Isomerases Human genes 0.000 description 2
- BVQAARKEKMVAKI-UHFFFAOYSA-N Khusimol Natural products CC1(C)C2CCC(=C)C3CCC(CO)C13C2 BVQAARKEKMVAKI-UHFFFAOYSA-N 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- WGTRJVCFDUCKCM-ASEORRQLSA-N Ledene Natural products C[C@@H]1[C@H]2[C@H]3C(C)(C)[C@@H]3CCC(C)=C2CC1 WGTRJVCFDUCKCM-ASEORRQLSA-N 0.000 description 2
- AYXPYQRXGNDJFU-AOWZIMASSA-N Ledol Chemical compound [C@@H]1([C@](CC[C@@H]2[C@H]3C2(C)C)(C)O)[C@H]3[C@H](C)CC1 AYXPYQRXGNDJFU-AOWZIMASSA-N 0.000 description 2
- BZQURGSQMBBPRU-ZFWWWQNUSA-N Lindestrene Natural products C=C1[C@H]2[C@@](C)(C=CC1)Cc1occ(C)c1C2 BZQURGSQMBBPRU-ZFWWWQNUSA-N 0.000 description 2
- 244000270673 Pelargonium graveolens Species 0.000 description 2
- 235000017927 Pelargonium graveolens Nutrition 0.000 description 2
- 241000392433 Pleurotus sapidus Species 0.000 description 2
- 101000745603 Pseudomonas putida Camphor 5-monooxygenase Proteins 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- 241000187560 Saccharopolyspora Species 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- XWQLUVQFUZQPDY-UHFFFAOYSA-N Sesquifenchene Natural products CC(=CCCC1(C)C2CCC1C(=C)C2)C XWQLUVQFUZQPDY-UHFFFAOYSA-N 0.000 description 2
- FRJSECSOXKQMOD-HQRMLTQVSA-N Taxa-4(5),11(12)-diene Chemical compound C1C[C@]2(C)CCC=C(C)[C@H]2C[C@@H]2CCC(C)=C1C2(C)C FRJSECSOXKQMOD-HQRMLTQVSA-N 0.000 description 2
- 241001116500 Taxus Species 0.000 description 2
- OOYRHNIVDZZGQV-UHFFFAOYSA-N Tricyclovetivenol Natural products C=C1C(C)(C)C(C2)CCC32C(CO)CCC31 OOYRHNIVDZZGQV-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 241000235015 Yarrowia lipolytica Species 0.000 description 2
- 101150117319 aba2 gene Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- YMBFCQPIMVLNIU-KKUMJFAQSA-N alpha-Bergamotene Natural products C1[C@@H]2[C@](CCC=C(C)C)(C)[C@H]1CC=C2C YMBFCQPIMVLNIU-KKUMJFAQSA-N 0.000 description 2
- YHBUQBJHSRGZNF-HNNXBMFYSA-N alpha-bisabolene Natural products CC(C)=CCC=C(C)[C@@H]1CCC(C)=CC1 YHBUQBJHSRGZNF-HNNXBMFYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000001654 beetroot red Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229930000766 bergamotene Natural products 0.000 description 2
- OJYKYCDSGQGTRJ-INLOORNJSA-N beta-Santalol Natural products C1C[C@H]2C(=C)[C@](CC\C=C(CO)/C)(C)[C@@H]1C2 OJYKYCDSGQGTRJ-INLOORNJSA-N 0.000 description 2
- ISLOGSAEQNKPGG-UHFFFAOYSA-N beta-Vetivone Chemical compound CC1CC(=O)C=C(C)C11CC(=C(C)C)CC1 ISLOGSAEQNKPGG-UHFFFAOYSA-N 0.000 description 2
- UPVZPMJSRSWJHQ-XIQJJJERSA-N beta-copaene Chemical compound C1CC(=C)C2[C@@]3(C)CC[C@@H](C(C)C)[C@H]2[C@@H]31 UPVZPMJSRSWJHQ-XIQJJJERSA-N 0.000 description 2
- OJYKYCDSGQGTRJ-GQYWAMEOSA-N beta-santalol Chemical compound C1C[C@H]2C(=C)[C@@](CC/C=C(CO)/C)(C)[C@@H]1C2 OJYKYCDSGQGTRJ-GQYWAMEOSA-N 0.000 description 2
- DGZBGCMPRYFWFF-UHFFFAOYSA-N beta-trans-Bergamoten Natural products C1C2C(CCC=C(C)C)(C)C1CCC2=C DGZBGCMPRYFWFF-UHFFFAOYSA-N 0.000 description 2
- ISLOGSAEQNKPGG-DOMZBBRYSA-N beta-vetivone Natural products C[C@@H]1CC(=O)C=C(C)[C@]11CC(=C(C)C)CC1 ISLOGSAEQNKPGG-DOMZBBRYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 2
- 229930003493 bisabolene Natural products 0.000 description 2
- 229940036350 bisabolol Drugs 0.000 description 2
- 238000002680 cardiopulmonary resuscitation Methods 0.000 description 2
- IRAQOCYXUMOFCW-CXTNEJHOSA-N cedrene Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1C(C)=CC2 IRAQOCYXUMOFCW-CXTNEJHOSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- VLXDPFLIRFYIME-BTFPBAQTSA-N copaene Chemical compound C1C=C(C)[C@H]2[C@]3(C)CC[C@@H](C(C)C)[C@H]2[C@@H]31 VLXDPFLIRFYIME-BTFPBAQTSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- IRAQOCYXUMOFCW-UHFFFAOYSA-N di-epi-alpha-cedrene Natural products C1C23C(C)CCC3C(C)(C)C1C(C)=CC2 IRAQOCYXUMOFCW-UHFFFAOYSA-N 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- WGTRJVCFDUCKCM-UHFFFAOYSA-N ent-ledene Natural products C1CC2C(C)(C)C2C2C(C)CCC2=C1C WGTRJVCFDUCKCM-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 229930009668 farnesene Natural products 0.000 description 2
- 229930002886 farnesol Natural products 0.000 description 2
- 229940043259 farnesol Drugs 0.000 description 2
- BXWQUXUDAGDUOS-UHFFFAOYSA-N gamma-humulene Natural products CC1=CCCC(C)(C)C=CC(=C)CCC1 BXWQUXUDAGDUOS-UHFFFAOYSA-N 0.000 description 2
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 2
- 229930001612 germacrene Natural products 0.000 description 2
- YDLBHMSVYMFOMI-SDFJSLCBSA-N germacrene Chemical compound CC(C)[C@H]1CC\C(C)=C\CC\C(C)=C\C1 YDLBHMSVYMFOMI-SDFJSLCBSA-N 0.000 description 2
- QBNFBHXQESNSNP-UHFFFAOYSA-N humulene Natural products CC1=CC=CC(C)(C)CC=C(/C)CCC1 QBNFBHXQESNSNP-UHFFFAOYSA-N 0.000 description 2
- 239000000077 insect repellent Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- OOYRHNIVDZZGQV-BHPKHCPMSA-N khusimol Chemical compound C=C1C(C)(C)[C@@H](C2)CC[C@]32[C@@H](CO)CC[C@@H]31 OOYRHNIVDZZGQV-BHPKHCPMSA-N 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000012269 metabolic engineering Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- MBRLOUHOWLUMFF-UHFFFAOYSA-N osthole Chemical compound C1=CC(=O)OC2=C(CC=C(C)C)C(OC)=CC=C21 MBRLOUHOWLUMFF-UHFFFAOYSA-N 0.000 description 2
- 230000000865 phosphorylative effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102220023083 rs387907438 Human genes 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- USDOQCCMRDNVAH-UHFFFAOYSA-N sigma-cadinene Natural products C1C=C(C)CC2C(C(C)C)CC=C(C)C21 USDOQCCMRDNVAH-UHFFFAOYSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 108010087432 terpene synthase Proteins 0.000 description 2
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 150000003648 triterpenes Chemical class 0.000 description 2
- 150000001378 valencene derivatives Chemical class 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- WGTRJVCFDUCKCM-FMKGYKFTSA-N viridiflorene Chemical compound C1C[C@H]2C(C)(C)[C@H]2[C@@H]2[C@H](C)CCC2=C1C WGTRJVCFDUCKCM-FMKGYKFTSA-N 0.000 description 2
- WGTRJVCFDUCKCM-SCUASFONSA-N viridiflorene Natural products C1C[C@@H]2C(C)(C)[C@H]2[C@@H]2[C@@H](C)CCC2=C1C WGTRJVCFDUCKCM-SCUASFONSA-N 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- YMBFCQPIMVLNIU-GRKKQISMSA-N α-bergamotene Chemical compound C1[C@H]2C(CCC=C(C)C)(C)[C@@H]1CC=C2C YMBFCQPIMVLNIU-GRKKQISMSA-N 0.000 description 2
- PDEQKAVEYSOLJX-YHYXMXQVSA-N α-santal-10-en-12-ol Chemical compound C1C2C3(C)C2CC1C3(C)CC/C=C(CO)/C PDEQKAVEYSOLJX-YHYXMXQVSA-N 0.000 description 2
- KWFJIXPIFLVMPM-UHFFFAOYSA-N α-santalene Chemical compound C1C2C3(C)C2CC1C3(C)CCC=C(C)C KWFJIXPIFLVMPM-UHFFFAOYSA-N 0.000 description 2
- USDOQCCMRDNVAH-KKUMJFAQSA-N β-cadinene Chemical compound C1C=C(C)C[C@H]2[C@H](C(C)C)CC=C(C)[C@@H]21 USDOQCCMRDNVAH-KKUMJFAQSA-N 0.000 description 2
- RHCTXHCNRLCYBN-UHFFFAOYSA-N (+)-1(10),5-germacradien-4-ol Natural products CC(C)C1CCC(C)=CCCC(C)(O)C=C1 RHCTXHCNRLCYBN-UHFFFAOYSA-N 0.000 description 1
- NMALGKNZYKRHCE-UHFFFAOYSA-N (+)-1,10-dihydronootkatone Natural products C1CC(C(C)=C)CC2(C)C(C)CC(=O)CC21 NMALGKNZYKRHCE-UHFFFAOYSA-N 0.000 description 1
- 101710135150 (+)-T-muurolol synthase ((2E,6E)-farnesyl diphosphate cyclizing) Proteins 0.000 description 1
- ONVABDHFQKWOSV-GCLMUHHRSA-N (-)-kaurene Chemical compound C1C[C@@H](C2)C(=C)C[C@]32CC[C@H]2C(C)(C)CCC[C@]2(C)[C@H]31 ONVABDHFQKWOSV-GCLMUHHRSA-N 0.000 description 1
- XMRKUJJDDKYUHV-HNNXBMFYSA-N (1E,4E,7betaH)-germacra-1(10),4,11(12)-triene Chemical compound CC(=C)[C@H]1CCC(C)=CCCC(C)=CC1 XMRKUJJDDKYUHV-HNNXBMFYSA-N 0.000 description 1
- NDUIFQPPDDOKRN-MRVPVSSYSA-N (1r)-4,6,6-trimethylbicyclo[3.1.1]hept-4-ene Chemical compound C1CC(C)=C2C(C)(C)[C@H]1C2 NDUIFQPPDDOKRN-MRVPVSSYSA-N 0.000 description 1
- ZENZJGDPWWLORF-UHFFFAOYSA-N (Z)-9-Octadecenal Natural products CCCCCCCCC=CCCCCCCCC=O ZENZJGDPWWLORF-UHFFFAOYSA-N 0.000 description 1
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 description 1
- OINNEUNVOZHBOX-QIRCYJPOSA-N 2-trans,6-trans,10-trans-geranylgeranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\COP(O)(=O)OP(O)(O)=O OINNEUNVOZHBOX-QIRCYJPOSA-N 0.000 description 1
- RZPFVRFSYMUDJO-UHFFFAOYSA-N 2h-naphthalen-1-one Chemical compound C1=CC=C2C(=O)CC=CC2=C1 RZPFVRFSYMUDJO-UHFFFAOYSA-N 0.000 description 1
- 101710139854 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (ferredoxin) Proteins 0.000 description 1
- 101710088071 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (ferredoxin), chloroplastic Proteins 0.000 description 1
- 101710086072 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin) Proteins 0.000 description 1
- 241000589220 Acetobacter Species 0.000 description 1
- 241000266272 Acidithiobacillus Species 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000588986 Alcaligenes Species 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000186063 Arthrobacter Species 0.000 description 1
- 241000589151 Azotobacter Species 0.000 description 1
- 101000745610 Bacillus megaterium (strain ATCC 14581 / DSM 32 / JCM 2506 / NBRC 15308 / NCIMB 9376 / NCTC 10342 / NRRL B-14308 / VKM B-512) NADPH-cytochrome P450 reductase Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101000860345 Barnadesia spinosa Germacrene A hydroxylase Proteins 0.000 description 1
- 241000722885 Brettanomyces Species 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 102220583909 Cellular tumor antigen p53_V97I_mutation Human genes 0.000 description 1
- 241000588881 Chromobacterium Species 0.000 description 1
- 241000723343 Cichorium Species 0.000 description 1
- 101100272981 Cichorium intybus CYP71AV8 gene Proteins 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241000589519 Comamonas Species 0.000 description 1
- 101710118490 Copalyl diphosphate synthase Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 102100031461 Cytochrome P450 2J2 Human genes 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 241000235035 Debaryomyces Species 0.000 description 1
- 102000016680 Dioxygenases Human genes 0.000 description 1
- 108010028143 Dioxygenases Proteins 0.000 description 1
- 101150084072 ERG20 gene Proteins 0.000 description 1
- 101710136506 Ent-kaurene oxidase 2 Proteins 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000589565 Flavobacterium Species 0.000 description 1
- 241000626621 Geobacillus Species 0.000 description 1
- 241001135750 Geobacter Species 0.000 description 1
- GVVPGTZRZFNKDS-YFHOEESVSA-N Geranyl diphosphate Natural products CC(C)=CCC\C(C)=C/COP(O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-YFHOEESVSA-N 0.000 description 1
- 101710119400 Geranylfarnesyl diphosphate synthase Proteins 0.000 description 1
- 101710107752 Geranylgeranyl diphosphate synthase Proteins 0.000 description 1
- 241000589236 Gluconobacter Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UXDDRFCJKNROTO-UHFFFAOYSA-N Glycerol 1,2-diacetate Chemical compound CC(=O)OCC(CO)OC(C)=O UXDDRFCJKNROTO-UHFFFAOYSA-N 0.000 description 1
- 239000004348 Glyceryl diacetate Substances 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 102220577733 Hepatocyte nuclear factor 3-alpha_A78E_mutation Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000941723 Homo sapiens Cytochrome P450 2J2 Proteins 0.000 description 1
- 241001495123 Hyoscyamus muticus Species 0.000 description 1
- 102220465797 Interferon-induced, double-stranded RNA-activated protein kinase_A67E_mutation Human genes 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000194036 Lactococcus Species 0.000 description 1
- 101000860351 Lactuca sativa Germacrene A hydroxylase Proteins 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102220575132 Leucine-rich repeat transmembrane protein FLRT1_S86N_mutation Human genes 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 239000006137 Luria-Bertani broth Substances 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004145 Methyl glucoside-coconut oil ester Substances 0.000 description 1
- 241001148170 Microlunatus Species 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- 101710198130 NADPH-cytochrome P450 reductase Proteins 0.000 description 1
- HPUXDMUGCAWDFW-UHFFFAOYSA-N Osthole Natural products COc1ccc2CCC(=O)Oc2c1C=CC(=O)C HPUXDMUGCAWDFW-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 241000235652 Pachysolen Species 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 241000520272 Pantoea Species 0.000 description 1
- 241000222350 Pleurotus Species 0.000 description 1
- 208000020584 Polyploidy Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 241000232299 Ralstonia Species 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000187561 Rhodococcus erythropolis Species 0.000 description 1
- 101001134671 Rhodococcus erythropolis (-)-trans-carveol dehydrogenase Proteins 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241001135312 Sinorhizobium Species 0.000 description 1
- 239000001882 Soybean hemicellulose Substances 0.000 description 1
- 239000004138 Stearyl citrate Substances 0.000 description 1
- 241000122971 Stenotrophomonas Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 101000895629 Synechococcus sp. (strain ATCC 27264 / PCC 7002 / PR-6) Geranylgeranyl pyrophosphate synthase Proteins 0.000 description 1
- 241000192584 Synechocystis Species 0.000 description 1
- GIOSSFCGQAGYSG-UHFFFAOYSA-N T-Muurolol Natural products CC(C)C1CCC(C)(O)C2CCC=CC12 GIOSSFCGQAGYSG-UHFFFAOYSA-N 0.000 description 1
- 241000228341 Talaromyces Species 0.000 description 1
- 241000589596 Thermus Species 0.000 description 1
- 101710174833 Tuberculosinyl adenosine transferase Proteins 0.000 description 1
- 102220573471 Tyrosine-protein kinase Fer_L59I_mutation Human genes 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- YPXGTKHZRCDZTL-KSFOROOFSA-N [(2r,3s)-2,3,4-trihydroxypentyl] dihydrogen phosphate Chemical compound CC(O)[C@H](O)[C@H](O)COP(O)(O)=O YPXGTKHZRCDZTL-KSFOROOFSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- ONVABDHFQKWOSV-HPUSYDDDSA-N ent-kaur-16-ene Chemical compound C1C[C@H](C2)C(=C)C[C@@]32CC[C@@H]2C(C)(C)CCC[C@@]2(C)[C@@H]31 ONVABDHFQKWOSV-HPUSYDDDSA-N 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940067592 ethyl palmitate Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N formic acid Substances OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- IBJVPIJUFFVDBS-JBMXZMKISA-N germacra-1(10),4,11(13)-trien-12-oic acid Chemical compound C\C1=C/C[C@H](C(=C)C(O)=O)CC\C(C)=C\CC1 IBJVPIJUFFVDBS-JBMXZMKISA-N 0.000 description 1
- IBJVPIJUFFVDBS-UHFFFAOYSA-N germacrene A Natural products CC1=CCC(C(=C)C(O)=O)CCC(C)=CCC1 IBJVPIJUFFVDBS-UHFFFAOYSA-N 0.000 description 1
- RHCTXHCNRLCYBN-BMCYRRRCSA-N germacrene D-4-ol Chemical compound CC(C)C/1CC\C(C)=C\CCC(C)(O)\C=C\1 RHCTXHCNRLCYBN-BMCYRRRCSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000019443 glyceryl diacetate Nutrition 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 210000005256 gram-negative cell Anatomy 0.000 description 1
- 210000005255 gram-positive cell Anatomy 0.000 description 1
- 239000004120 green S Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 101150000769 ispB gene Proteins 0.000 description 1
- NIKHGUQULKYIGE-UHFFFAOYSA-N kaurenoic acid Natural products C1CC2(CC3=C)CC3CCC2C2(C)C1C(C)(C(O)=O)CCC2 NIKHGUQULKYIGE-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 239000002107 nanodisc Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- RSKODCFDTXJUBN-UHFFFAOYSA-N nootkatene Natural products C1C(C(C)=C)CC2(C)C(C)CC=CC2=C1 RSKODCFDTXJUBN-UHFFFAOYSA-N 0.000 description 1
- 229940021584 osthol Drugs 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 108010071062 pinene cyclase I Proteins 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 239000000737 potassium alginate Substances 0.000 description 1
- 230000019525 primary metabolic process Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 102200072845 rs1050086 Human genes 0.000 description 1
- 102220078496 rs144817990 Human genes 0.000 description 1
- 102220266402 rs1555143594 Human genes 0.000 description 1
- 102220281569 rs1555514427 Human genes 0.000 description 1
- 102220024927 rs199472833 Human genes 0.000 description 1
- 102200118183 rs33917628 Human genes 0.000 description 1
- 102200007375 rs387907205 Human genes 0.000 description 1
- 102220011020 rs397507515 Human genes 0.000 description 1
- 102220014026 rs397517292 Human genes 0.000 description 1
- 102220044452 rs587781309 Human genes 0.000 description 1
- 102220094065 rs587782586 Human genes 0.000 description 1
- 102200036691 rs74315389 Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930002368 sesterterpene Natural products 0.000 description 1
- 150000002653 sesterterpene derivatives Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- LHYHMMRYTDARSZ-YJNKXOJESA-N t-cadinol Natural products C1CC(C)=C[C@@H]2[C@H](C(C)C)CC[C@](C)(O)[C@@H]21 LHYHMMRYTDARSZ-YJNKXOJESA-N 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N27/00—Biocides, pest repellants or attractants, or plant growth regulators containing hydrocarbons
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/10—Natural spices, flavouring agents or condiments; Extracts thereof
- A23L27/12—Natural spices, flavouring agents or condiments; Extracts thereof from fruit, e.g. essential oils
- A23L27/13—Natural spices, flavouring agents or condiments; Extracts thereof from fruit, e.g. essential oils from citrus fruits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
- C12N9/0073—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/002—Preparation of hydrocarbons or halogenated hydrocarbons cyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/13—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
- C12Y114/13078—Ent-kaurene oxidase (1.14.13.78)
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
Definitions
- the present disclosure relates to oxygenated sesquiterpenes (e.g., nootkatone and/or nootkatol) and methods for their production and use.
- the disclosure also provides enzymes for the production of oxygenated sesquiterpenes (e.g., nootkatone and/or nootkatol) and methods for identifying, selecting, making and using these enzymes.
- terpenes and/or terpenoid products as flavours and fragrances.
- many sesquiterpene compounds are used in perfumery (e.g., patchoulol) and in the flavour industry (e.g., nootkatone) and many are extracted from plants.
- factors such as: (i) the availability and high price of the plant raw material; (ii) the relatively low terpene content in plant; and (iii) the tedious and inefficient extraction processes to produce sufficient quantities of terpene products on an industrial scale all have stimulated research on the biosynthesis of terpenes using plant- independent systems. Consequently, effort has been expended in developing technologies to engineer microorganisms for converting renewable resources such as glucose into terpenoid products. By comparison with traditional methods, microorganisms have the advantage of fast growth without the need for land to sustain development.
- MEP methylerythritol 4-phosphate
- MVA melavonate
- Nootkatone (4,4a,5,6,7,8-hexahydro-6-isopropenyl-4,4a-dimethyl-2(3II)- naphtalenone) is an important flavour constituent of grapefruit and is used commercially to flavour soft drinks and other beverages, as well as being used in perfumery.
- the conventional method for nootkatone preparation is by oxidation of valencene (see, e.g., US 6,200,786 and US 8,097,442).
- the starting material valencene is expensive and thus methods that consume valencene are less commercially acceptable. Because of these drawbacks, there is a need for commercially feasible and sustainable methods to prepare nootkatone and associated products.
- An object of the present disclosure is to provide sustainable production of oxygenated sesquiterpene products.
- the present disclosure provides enzyme catalysts for the ex vivo or in vivo production of certain oxygenated sesquiterpenes.
- the disclosure provides host cells engineered for the biosynthesis of the oxygenated sesquiterpenes.
- Another object of the present disclosure is to provide engineered cytochrome P450 (CYP450) enzymes for synthesis of oxygenated sesquiterpenes, including in some embodiments functional expression alongside a reductase counterpart in E. coli, yeast, or other host cell. The disclosure thereby harnesses the unique capability of this class of enzymes to conduct oxidative chemistry.
- CYP450 cytochrome P450
- the disclosure provides a method for making an oxygenated product of a sesquiterpene.
- the method comprises contacting the sesquiterpene with Stevia rebaudiana Kaurene Oxidase (SrKO) or a derivative thereof having sesquiterpene oxidizing activity.
- SrKO Stevia rebaudiana Kaurene Oxidase
- the wild type SrKO enzyme was shown to have activity on a sesquiterpene substrate even though its natural activity is understood to act on a diterpene substrate.
- SrKO enzyme showed unique activities, including oxygenation, by creating different stereoisomers of the hydroxylated product (alpha and beta nootkatol and further oxidizing to ketone, nootkatone), and produced different oxygenated terpene products including hydroxygermacra-l(10)5-diene, and murolan-3,9(l 1) diene-10-peroxy.
- This activity is distinct from other P450 enzymes tested, which produced only one of the stereoisomers of the hydroxylated product (e.g., ⁇ -nootkatol), as the major product and produced only minor amounts of nootkatone.
- This activity of SrKO provides a unique sesquiterpene oil for flavoring applications.
- the method takes place in an ex vivo (e.g. , cell free) system.
- the sesquiterpene substrate and the SrKO or derivative thereof are contacted in a cell expressing the SrKO, such as a bacterium (e.g., E. coli).
- the oxygenated product of a sesquiterpene may be recovered, or may be the substrate for further chemical transformation.
- Functional expression of wild type cytochrome P450 in E. coli has inherent limitations attributable to the bacterial platforms (such as the absence of electron transfer machinery and cytochrome P450 reductases, and translational incompatibility of the membrane signal modules of P450 enzymes due to the lack of an endoplasmic reticulum).
- the SrKO enzyme is modified for functional expression in an E. coli host cell, for example, by replacing a portion of the SrKO N-terminal transmembrane region with a short peptide sequence that stabilizes interactions with the E. coli inner membrane and/or reduces cell stress.
- the SrKO derivative has at least one mutation with respect to the wild type SrKO that increases valencene oxidase activity, or increases production of nootkatone, a-nootkatol, and/or ⁇ -nootkatol.
- the SrKO may have from 1 to 50 mutations independently selected from substitutions, deletions, or insertions relative to wild type SrKO (SEQ ID NOS: 37 and 108) or an SrKO modified for expression and activity in E. coli (e.g., SEQ ID NOS: 38 and 106).
- the SrKO derivative may have from 1 to 40 mutations, from 1 to 30 mutations, from 1 to 20 mutations, or from 1 to 10 mutations relative to SrKO (SEQ ID NOS: 37 or 38).
- the SrKO derivative may comprise an amino acid sequence having at least 50% sequence identity, or at least 60% sequence identity, or at least 70%> sequence identity, or at least 80%> sequence identity, or at least 90% sequence identity to SrKO (SEQ ID NOS: 37 or 38), and has valencene oxidase activity.
- the SrKO in various embodiments maintains valencene oxidase activity, or has increased valencene oxidase activity as compared to the wild type enzyme in an ex vivo or bacterial system (e.g., E coli).
- Various mutations of SrKO which maintain or enhance valencene oxidase activity are listed in Tables 2.1, 2.2, 2.3 and 6.
- the SrKO may have at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, or at least 10 mutations selected from Tables 2.1, 2.2, 2.3 and/or 6.
- Exemplary derivatives of SrKO also referred to herein as "valencene oxidase” or “VO” are represented by, for example, SEQ ID NOS: 104 and 105, which may further be derivatized for improvements in desired activity. Mutations may be selected empirically for increases in oxygenated sesquiterpene titer, or selected by in silico evaluation, or both.
- oxygenated sesquiterpene products are obtainable by contacting a sesquiterpene substrate with Stevia rebaudiana Kaurene Oxidase (iSrKO) or derivative thereof having valencene oxidizing activity.
- iSrKO Stevia rebaudiana Kaurene Oxidase
- a SrKO enzyme when used with valencene sesquiterpene substrate, it produces a different oxygenated terpene product profile that can include hydroxygermacra-l(10)5-diene, murolan-3,9(l 1) diene-10-peroxy, alpha-nootkatol, beta-nootkatol, and nootkatone.
- the sesquiterpene substrate is (or the predominant sesquiterpene substrate is) valencene, germacrene (A, B, C, D, or E), farnesene, farnesol, nootkatol, patchoulol, cadinene, cedrol, humulene, longifolene, and/or bergamotene, ⁇ - y GmbHe, ⁇ -santalol, ⁇ -santalene, a-santalene, a-santalol, B-vetivone, a-vetivone, khusimol, bisabolene, ⁇ -aryophyllene, longifolene; a-sinensal; a-bisabolol, (-) ⁇ -copaene, (-)-a- copaene, 4(Z),7(Z)-ecadienal, cedrol, cedrene, cedrol, guaiol, (-)
- the disclosure when applied in vivo, is applicable to a wide array of host cells.
- the host cell is a microbial host, such as a bacterium selected from E. coli, Bacillus subtillus, or Pseudomonas putida; or a yeast, such as a species of Saccharomyces, Pichia, or Yarrowia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.
- the host cell produces isopentyl pyrophosphate (IPP), which acts as a substrate for the synthesis of the sesquiterpene.
- IPP is produced by metabolic flux through an endogenous or heterologous methylerythritol phosphate (MEP) or mevalonic acid (MVA) pathway.
- MEP endogenous or heterologous methylerythritol phosphate
- MVA mevalonic acid
- the sesquiterpene is produced at least in part by metabolic flux through an MEP pathway, and wherein the host cell has at least one additional copy of a dxs, ispD, ispF, and/or idi gene.
- the host cell expresses a farnesyl pyrophosphate synthase (FPPS), which produces farnesyl pyrophosphate (FPP) from IPP or DMAPP.
- FPPS farnesyl pyrophosphate synthase
- the host cell may further express a heterologous sesquiterpene synthase to produce the desired sesquiterpene scaffold.
- the cell expresses a valencene synthase.
- VvVS Vitis vinifera valencene synthase
- CsVS Citrus sinensis valencene synthase
- VvVS enzymes include Vitis vinifera valencene synthase (VvVS) (SEQ ID NO: 1) or Citrus sinensis valencene synthase (CsVS) (SEQ ID NO: 12), which may be employed with the present disclosure, or alternatively a derivative of the VvVS or CsVS.
- Exemplary derivative VvVS enzymes are disclosed herein.
- the sesquiterpene synthase is a valencene synthase selected from VvlMl (SEQ ID NO: 3), Vv2Ml (SEQ ID NO: 5), VvlM5 (SEQ ID NO: 7), Vv2M5 (SEQ ID NO: 9), VS2 (SEQ ID NO: 11), and VS3 (SEQ ID NO: 129), as disclosed herein.
- the iSrKO or derivative thereof acts on the sesquiterpene ⁇ e.g. , valencene) to produce the oxygenated terpene product.
- the SrKD is a fusion protein with a cytochrome P450 reductase partner ⁇ e.g., SrCPR), allowing the cofactor to be efficiently regenerated.
- a P450 reductase is provided ⁇ e.g., to in vitro system) or expressed in the host cell separately, and may be expressed in the same operon as the SrKO in some embodiments.
- the CPR enzyme is expressed separately, and the gene may be integrated into the host cell genome in some embodiments.
- Various exemplary CPR enzymes are disclosed herein, and which may be derivatized to improve oxygenated sesquiterpenoid titer and/or to improve P450 efficiency.
- the host cell expresses one or more enzymes that further direct oxygenated product to nootkatone, such as the expression of one or more alcohol dehydrogenase (ADH) enzymes.
- ADH alcohol dehydrogenase
- Exemplary ADH enzymes are disclosed herein.
- the disclosure provides a method for making a product containing an oxygenated sesquiterpene, which comprises incorporating the oxygenated sesquiterpene prepared and recovered according to the methods described herein into a consumer or industrial product.
- the product may be a flavor product, a fragrance product, a cosmetic, a cleaning product, a detergent or soap, or a pest control product.
- the oxygenated product recovered comprises nootkatol ⁇ e.g., a and/or ⁇ nootkatol) and/or nootkatone, and the product is a flavor product selected from a beverage, a chewing gum, a candy, or a flavor additive.
- the disclosure provides engineered SrKO enzymes having enhanced valencene oxidase activity as compared to wild type, as well as host cells producing an oxygenated sesquiterpene as described herein, and which express all of the enzyme components for producing the desired oxygenated sesquiterpene from isopentyl pyrophosphate (IPP).
- the host cell in various embodiments expresses a farnesyl pyrophosphate synthase, a sesquiterpene synthase, and the SrKO or derivative thereof.
- IPP may be produced through the MEP and/or MVA pathway, which may be endogenous to the host cell, and which may be enhanced through expression of heterologous enzymes or duplication of certain enzymes in the pathway.
- Host cells include various bacteria and yeast as described herein.
- the oxygenated sesquiterpene e.g., nootkatone and/or nootkatol
- the oxygenated sesquiterpene may be recovered from the culture, and/or optionally may act as the substrate for further chemical transformation in the cell or ex vivo system.
- the disclosure provides sesquiterpene-containing oil produced by the methods and host cells described herein.
- the oil comprises hydroxygermacra-l(10)5-diene, murolan-3,9(l 1) diene-10-peroxy, alpha-nootkatol, beta- nootkatol, and nootkatone.
- the predominant oxygenated products of valencene is nootkatone and nootkatol, and the oxygenated sesquiterpene product comprises both alpha and beta nootkatol.
- an SrKO crystal model structure based on the structural coordinates of P45017A1 (which catalyzes the biosynthesis of androgens).
- the CMS including the terpene binding pocket domain (TBD) that comprises a terpene binding pocket (TBP) and a terpene (e.g., valencene) bound to the TBD, is illustrated in Figures 8A and 8B.
- TBD terpene binding pocket domain
- TBP terpene binding pocket
- a terpene e.g., valencene
- the present disclosure illustrates the use of several mutational strategies to identify increases or improvements in sesquiterpene oxygenation activity, including back-to-consensus mutagenesis, site-saturation mutagenesis, and recombination library screening.
- Figure 2 depicts the fold productivities for site-directed mutants made to VvVS. 46 of the 225 point mutations convey an average improvement in productivity of valencene of at least 20% compared to the wild-type WT VvVS. Figure 2 shows the number of VvVS mutants (y-axis) exhibiting certain levels of productivity (x-axis) versus the wild type.
- Figure 3 provides the amino acid and nucleotide sequences of valencene synthases.
- Figure 3 A shows amino acid and nucleotide sequences from Vitis vinifera wild- type (WT) (VvVS) (SEQ ID NOS: 1 and 2) and derivatives VvlMl (SEQ ID NOS: 3 and 4), Vv2Ml (SEQ ID NOS: 5 and 6), VvlM5 (SEQ ID NOS: 7 and 8), Vv2M5 (SEQ ID NOS: 9 and 10), and VS2 (SEQ ID NOS: 11 and 120); as well as amino acid sequence for Citrus sinensis wild-type (CsVS) (SEQ ID NOS: 12 and 119).
- Figure 3B shows an alignment of wild-type VvVS and CsVS sequences, and the engineered Vv2M5 and VS2 sequences.
- Figure 4 provides the amino acid and nucleotide sequences of various CYP450 (Cytochrome P450) enzymes having activity on sesquiterpene scaffolds.
- Figure 4 A shows sequences of wild type amino acid sequences and amino acid and nucleotide sequences engineered for bacterial expression: ZzHO (SEQ ID NO: 13, 14, and 15 respectively), BsGAO (SEQ ID NO: 16, 17, and 18, respectively), HmPO (SEQ ID NO: 19, 20, and 21 respectively), LsGAO (SEQ ID NO: 22, 23, and 24, respectively), NtEAO (SEQ ID NO: 25, 26, and 27, respectively), CpVO (SEQ ID NO: 28, 29, and 30, respectively), AaAO (SEQ ID NO: 31, 32, and 33, respectively), AtKO (SEQ ID NO: 34, 35, and 36 respectively), SrKO (SEQ ID NO: 37, 38, and 39 respectively), PpKO (SEQ ID NO: 40, 41, and 42, respectively), BmVO (SEQ ID NO: 43 and SEQ ID NO:
- Figures 5A and 5B depict construct designs for expression of MEP, terpene and terpenoid synthases, and P450 enzymes in E. coli.
- Figure 5 A shows strain configuration of upstream MEP pathway genes and the two plasmids harboring downstream pathway genes.
- Figure 5B shows construction of P450 fusions, whereby N-terminal regions of both the P450 and CPR (Cytochrome P450 reductase) are truncated and an exemplary leader sequence (MALLLAVF - SEQ ID NO: 1 12) (8RP) is added while the two are fused with a short linker peptide.
- MALLLAVF - SEQ ID NO: 1 12 8RP
- Figure 6 (A-D) provides the amino acid and nucleotide sequences of various CPR (Cytochrome P450 reductase) enzymes with sequence alignments.
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana
- Sr Stevia rebaudiana (Sr)CPRl SEQ ID NOS: 76 and 77)
- Arabidopsis thaliana ⁇ At) CPR SEQ ID NOS: 64 and 65
- Taxus cuspidata (7c) CPR SEQ ID NOS: 66 and 67
- Artemisia annua Aa)CPR
- SEQ ID NOS: 68 and 69 Arabidopsis thaliana
- ⁇ t CPRl
- Figure 6B shows an alignment of amino acid sequences for Arabidopsis thaliana and Artemisia annua CPR sequences (SEQ ID NOS:72, 74, 68, 64, and 70).
- Figure 6C shows an alignment of Stevia rebaudiana CPR sequences (SEQ ID NOS: 78, 80, 62, and 76).
- Figure 6D shows an alignment of eight CPR amino acid sequences (SEQ ID NO: 74, 72, 82, 68, 80, 62, 78, and 76).
- Figure 7 provides GC-chromatographs which show the different activities of various CYP450 enzymes, as expressed in valencene -producing E. coli along with CPR partners as described in Example 2. Strains were cultured for four days and extracted with Methyl Tert- Butyl Ether (MTBE). 1 ⁇ of MTBE was injected through GC-MS and the product profiles were monitored by comparing with a MS library. From top to bottom: Taxus 5 -alpha hydroxylase, Cichorium intybus (CiVO) P450 (SEQ ID NO:50), Hyoscyamus muticus (HmPO) P450 (SEQ ID NO:20), and SrKO (SEQ ID NO:38).
- CiVO Cichorium intybus
- HmPO Hyoscyamus muticus
- SrKO SEQ ID NO:38
- Figures 8A and 8B illustrate a homology model of SrKO and its active site.
- the iSVKO homology model is based on the known mutant P45017A1 (the crystal structure of membrane-bound cytochrome P450 17 Al as disclosed in DeVore NM and Scott EE (Nature, 482, 1 16-1 19, 2012), which catalyzes the biosynthesis of androgens in human. The position of the heme is shown as sticks.
- Figure 8B depicts a structural model of SrKD active site with valencene docked in its a-binding mode. Secondary structure motifs (B-C Loop and I- Helix) and amino acids targeted for mutagenesis are shown.
- Figure 9 shows optimizing the valencene oxidase (VO) N-terminal membrane anchor.
- the N-terminus of E. coli yhcB was selected as a membrane anchor sequence, which provides a single-pass transmembrane helix.
- the length of the anchor (from 20 to 24 amino acids) and the VO N-terminal truncation length (from 28 to 32 amino acids) were screened for improvements in oxygenation titer.
- Figure 10 shows that a truncation length of 29, and a 20 amino acid N-terminal anchor based on E. coli yhcB, led to a 1.2-fold increase in total oxygenated titer compared to the average of controls.
- FIG 11 illustrates an exemplary downstream pathway for expression in the host cell, for conversion of farnesyl diphosphate to nootkatone.
- Farnesyl diphosphate (produced from IPP/DMAPP by an expressed Farnesyl Pyrophosphate Synthase) is converted to valencene by the action of a Valencene Synthase (VS), which is oxidized by a Valencene Oxidase (VO), such as SrKO or an SrKO derivative described herein.
- VO Valencene Oxidase
- the VO cofactor is regenerated by a cytochrome P450 reductase (CPR).
- CPR cytochrome P450 reductase
- the products of oxidation by VO can include nootkatol (a and ⁇ ) and nookatone, which can be further directed to nootkatone by the action of an Alcohol Dehydrogenase (ADH).
- ADH Alcohol Dehydrogenase
- Figure 12 shows the oxygenation profile for a strain expressing VOl-L- SrCPR.
- the oxygenation profile includes the single oxygenation products of ⁇ -nootkatol and a-nootkatol along with the two-step oxygenation product, nootkatone.
- Panel (A) shows the profile in mg/L.
- Panel (B) shows the profile by percent of total oxygenated product (the legend for panels (A) and (B) are the same).
- Figure 13 shows evaluation of mutations identified using a back-to- consensus strategy in wild-type SrKO, translated into an engineered valencene oxidase background (n22yhcB_t30VOl (SEQ ID NO: 104)). More than 50% of the mutations resulted in a 1.2 to 1.45 fold improvement in total oxygenated titers.
- Panel (A) shows titer in mg/L.
- Panel (B) shows fold change in oxygenated titer and ratio of ⁇ / ⁇ nootkatol.
- Figure 14 shows results of secondary screening of back-to-consensus mutations, N- terminal anchor optimization, and site-saturation mutagenesis (SSM). Several mutations were identified that show a 1.1 to 1.4-fold improvement in oxygenated titers.
- Figure 15 shows performance of select VOl variants at 33°C. Six mutations were identified that maintained improved productivities at 33°C.
- Figure 16 shows results from primary screening of the recombination library. Several variants (shown) exhibited up to 1.35 -fold improvement in oxygenated product titer. There was a shift in profile to more (+)-nootkatone and higher oxygenation capacity for select variants. Panel (A) shows oxygenated product in mg/L. Panel (B) plots the fold change in oxygenation capacity (nootkatols require only one oxygenation cycle from valencene, while nootkatone requires two oxygenation cycles).
- Figure 17 shows oxygenation capacity at 34°C and 37°C for select VO recombination library variants.
- FIG 18 shows oxygenation titer at 34°C and 37°C after re-screen of lead VO variants.
- C6(l) R76K, M94V, T131Q, I390L, T468I
- V02 SEQ ID NO: 111
- Figure 19 shows screening of cytochrome P450 reductase (CPR) orthologs for enhanced valencene oxidase activity (30°C).
- iSrCPR3 shows increased oxygenation titer and higher production of Nootkatone.
- Figure 20 shows screening of CPR orthologs at 34°C.
- SVCPR3 and ⁇ aCPR exhibit ⁇ 1.3-fold improvement in oxygenated titer, even at the higher temperature.
- Figure 21 shows conversion of nootkatols to nootkatone with an alcohol dehydrogenase (ADH).
- ADH alcohol dehydrogenase
- Figure 22 depicts alcohol dehydrogenase enzymes.
- Figure 22A shows amino acid and nucleotide sequences including those for Rhodococcus erythropolis ( ?e)CDH (SEQ ID NOS: 84 and 85), Citrus sinensis (Cs)DH (SEQ ID NOS: 86 and 87), Citrus sinensis (Cs)DHl (SEQ ID NOS: 88 and 89), Citrus sinensis (Cs)DH2 (SEQ ID NOS: 90 and 91), Citrus sinensis (Cs)DH3 (SEQ ID NOS: 92 and 93), Vitis vinifera (Fv)DH (SEQ ID NOS: 94 and 95), Vitis vinifera (Fv)DHl (SEQ ID NOS: 96 and 97, Citrus sinensis (Cs)ABA2 (SEQ ID NOS: 98 and 99), Brachypodium distachyon (Bd)OH (SEQ ID NO: 100 and 101 and 101
- Figure 23 shows alignments of several engineered valencene oxidase (VO) variants.
- 8rp-t20SrKO (SEQ ID NO: 106) is the SrKO sequence with a 20- amino acid truncation at the N-terminus, and the addition of an 8-amino acid membrane anchor.
- 8rp-t20VO0 (SEQ ID NO: 107) has a truncation of 20 amino acids of the SrKO N- terminus, the addition of an 8-amino acid N-terminal anchor, and a single mutation at position 499 (numbered according to wild-type SrKO).
- n22yhcB-t30VOl (SEQ ID NO: 104) has a 30-amino acid truncation of the SrKO N-terminus, a membrane anchor based on 22 amino acids from E. coli yhcB, and eight point mutations at positions 46, 231, 284, 383, 400, 444, 488, and 499 (with respect to SrKO wild-type).
- n22yhcB-t30VO2 (SEQ ID NO: 105) has a 30-amino acid truncation of the SrKO N-terminus, a membrane anchor based on 22 amino acids from E.
- the present disclosure in various aspects provides methods for making oxygenated terpenes or terpenoids in ex vivo or in cell systems.
- the disclosure further provides engineered or modified enzymes, polynucleotides, and host cells for use in such methods.
- the disclosure in various embodiments is directed to a method to produce nootkatone and/or nootkatol using an SrKO enzyme.
- the SrKO enzyme can be used to catalyze sesquiterpene oxidation ⁇ e.g., valencene oxidation to nootkatol and nootkatone).
- SrKO refers to ent-kaurene oxidase CYP701A5 [Stevia rebaudiana] with Accession No AAQ63464.1 (SEQ ID NO: 37). SrKO and its activity on diterpenes (and kaurene in particular) are known and are described in, for example, US 2012/0164678, which is hereby incorporated by reference in its entirety. It is a member of the CYP70 family of cytochrome p450 enzymes (CYP450). An exemplary SrKO sequence modified for expression in E. coli is shown as SEQ ID NO: 38.
- SrKO is active on sesquiterpene substrates (e.g., valencene), producing nootkatol (both a and ⁇ ) and nootkatone, which are valuable terpenoid compounds. Further, SrKO provides a unique product profile with unique sensory characteristics that is based on the oxygenation of valencene. These activities and product profiles can be further refined by mutagenesis of the SrKO using processes (and aided by in silico models) described in detail herein.
- SrKO derivative As used herein, the term "SrKO derivative,” “modified SrKO polypeptide,” “engineered SrKO,” “SrKO variant,” “engineered valencene oxidase,” or “valencene oxidase variant” refers to an amino acid sequence that has substantial structural and/or sequence identity with SrKO, and catalyzes oxygenation of a sesquiterpene scaffold, such as valencene. SrKO enzymes engineered for the oxygentation of valencene are also referred to herein as “valencene oxidase” or "VO" enzymes.
- derivatives comprise mutated forms of SrKO having at least one mutation that increases the activity of the enzyme for the valencene substrate or for the production of nootkatone, nootkatol, and/or other products.
- SrKO mutations are provided in Tables 2.1, 2.2, and 2.3. Some such additional SrKO mutations are provided in Table 6.
- contacting means that the components are physically brought together, whether in vivo through co-expression of relevant protein products (e.g., sesquiterpene synthase and CYP450) in a host cell, or by adding or feeding a substrate of interest to a host cell expressing an SrKO or derivative thereof, or in vitro (or "ex vivo") by adding sesquiterpene substrate to purified P450 enzyme or cellular extract or partially purified extract containing the same.
- relevant protein products e.g., sesquiterpene synthase and CYP450
- terpenes are a large and varied class of hydrocarbons that have a simple unifying feature, despite their structural diversity. According to the "isoprene rule", all terpenes consist of isoprene (C5) units. This fact is used for a rational classification depending on the number of such units. Monoterpenes comprise 2 isoprene units and are classified as (CIO) terpenes, sesquiterpenes comprise 3 isoprene units and are classified as (CI 5) terpenes, diterpenes comprise 4 isoprene units and are classified as (C20) terpenes, sesterterpenes (C25), triterpenes (C30) and rubber (C5)n.
- CIO isoprene
- sesquiterpenes comprise 3 isoprene units and are classified as (CI 5)
- diterpenes comprise 4 isoprene units and are classified as (C20) terpenes, sesterterpenes (
- Terpenoids Monoterpenes
- CIO Monoterpenes
- CI 5 Sesquiterpenes
- Diterpenes C20
- GPP geranyl diphosphate
- FPP farnesyl diphosphate
- GGPP geranylgeranyl diphosphate
- terpene cyclases Since the product of the reactions are cyclised to various monoterpene, sesquiterpene and diterpene carbon skeleton products. Many of the resulting carbon skeletons undergo subsequence oxygenation by cytochrome p450 hydro lysase enzymes to give rise to large families of derivatives.
- the technical syntheses of top-selling flavours and fragrances can start from terpenes which can also serve as excellent solvents or diluting agents for dyes and varnishes.
- Natural or synthetic resins of terpenes are used and also many pharmaceutical syntheses of vitamins and insecticides start from terpenes.
- the term "terpene” or "sesquiterpene” includes corresponding terpenoid or sesquiterpenoid compounds.
- oxygenated sesquiterpene refers to a sesquiterpene scaffold having one or more oxygenation events, producing a corresponding alcohol, aldehyde, carboxylic acid and/or ketone.
- oxygenated sesquiterpenes may be referred to herein as an "oxygenated product.”
- unoxygenated sesquiterpene refers to a sesquiterpene scaffold that has not undergone any oxygenation events.
- An unoxygenated sesquiterpene may also be referred to herein as an "unoxygenated product.”
- oxygenated product titer or “oxygenated titer” refers to the sum of titers of a-nootkatol, ⁇ -nootkatol, and (+)-nootkatone.
- MEP pathway refers to the (2-C-methyl-D-erythritol 4- phosphate) pathway, also called the MEP/DOXP (2-C-methyl-D-erythritol 4-phosphate/l- deoxy-D-xylulose 5 -phosphate) pathway or the non-mevalonate pathway or the mevalonic acid-independent pathway.
- MEP pathway pyruvate and D-glyceraldehyde-3 -phosphate are converted via a series of reactions to IPP and DMAPP.
- the pathway typically involves action of the following enzymes: l-deoxy-D-xylulose-5 -phosphate synthase (Dxs), 1-deoxy- D-xylulose-5 -phosphate reductoisomerase (IspC), 4-diphosphocytidyl-2-C-methyl-D- erythritol synthase (IspD), 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), 2C- methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), l-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), and isopentenyl diphosphate isomerase (IspH).
- Dxs 1-deoxy- D-xylulose-5 -phosphate reductoisomerase
- IspD 4-d
- genes that make up the MEP pathway include dxs, ispC, ispD, ispE, ispF, ispG, ispH, idi, and ispA.
- the "MVA pathway” refers to the biosynthetic pathway that converts acetyl-CoA to IPP.
- the mevalonate pathway typically comprises enzymes that catalyze the following steps: (a) condensing two molecules of acetyl-CoA to acetoacetyl-CoA ⁇ e.g., by action of acetoacetyl-CoA thiolase); (b) condensing acetoacetyl-CoA with acetyl-CoA to form hydroxymethylglutaryl-CoenzymeA (HMG-CoA) ⁇ e.g., by action of HMG-CoA synthase (HMGS)); (c) converting HMG-CoA to mevalonate ⁇ e.g., by action of HMG-CoA reductase (HMGR)); (d) phosphorylating mevalonate to mevalonate 5-phosphate ⁇ e.g., by action of mevalonate
- cytochrome P450 reductase partner or “CPR partner” refers to a cytochrome P450 reductase capable of regenerating the cofactor component of the cytochrome P450 oxidase of interest (e.g., iSrKO) for oxidative chemistry.
- iSrCPR is a natural CPR partner for iSrKO.
- the CPR partner is not the natural CPR partner for iSrKO.
- the SrKO and SrCPR are co-expressed as separate proteins, or in some embodiments are expressed as a fusion protein.
- natural product refers to a product obtained, at least in part, from plant and/or animal material or obtained from microbial enzymatic biotransformations/bioconversions/biocatalysis and/or biosynthesis.
- Ranges can be expressed herein as from “about” one particular value, and/or to "about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
- sequence alignments can be carried out with several art-known algorithms, such as with the mathematical algorithm of Karlin and Altschul (Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-5877), with hmmalign (HMMER package, http://hmmer.wustl.edu/) or with the CLUSTAL algorithm (Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673-80).
- the grade of sequence identity may be calculated using e.g.
- BLAST, BLAT or BlastZ (or BlastX).
- BLASTN and BLASTP programs Altschul et al (1990) J. Mol. Biol. 215: 403-410.
- Gapped BLAST is utilized as described in Altschul et al (1997) Nucleic Acids Res. 25: 3389-3402.
- Sequence matching analysis may be supplemented by established homology mapping techniques like Shuffle-LAGAN (Brudno M., Bioinformatics 2003b, 19 Suppl 1 : 154-162) or Markov random fields.
- Constant substitutions may be made, for instance, on the basis of similarity in polarity, charge, size, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the amino acid residues involved.
- the 20 naturally occurring amino acids can be grouped into the following six standard amino acid groups:
- conservative substitutions are defined as exchanges of an amino acid by another amino acid listed within the same group of the six standard amino acid groups shown above. For example, the exchange of Asp by Glu retains one negative charge in the so modified polypeptide.
- glycine and proline may be substituted for one another based on their ability to disrupt a-helices.
- Some preferred conservative substitutions within the above six groups are exchanges within the following sub-groups: (i) Ala, Val, Leu and He; (ii) Ser and Thr; (ii) Asn and Gin; (iv) Lys and Arg; and (v) Tyr and Phe.
- non-conservative substitutions or “non-conservative amino acid exchanges” are defined as exchanges of an amino acid by another amino acid listed in a different group of the six standard amino acid groups (1) to (6) shown above.
- the disclosure provides a method for making an oxygenated product of a sesquiterpene.
- the sesquiterpene substrate is (or the predominant sesquiterpene substrate is) valencene, germacrene (A, B, C, D, or E), farnesene, farnesol, nootkatol, patchoulol, cadinene, cedrol, humulene, longifolene, and/or bergamotene, ⁇ - y GmbHe, ⁇ -santalol, ⁇ -santalene, a-santalene, a-santalol, B-vetivone, a-vetivone, khusimol, bisabolene, ⁇ -aryophyllene, Longifolene; a-sinensal; a-bisabolol, (-) ⁇ -copaene, (-)-a- copaene, 4(Z),7(Z)-ecadien
- the predominant sesquiterpene substrate is valencene
- the predominant oxygenated product is nootkatone and/or nootkatol, which in some embodiments comprises both a and ⁇ nootkatol.
- the term "predominant" means that the particular sesquiterpene is present at a level higher than all other terpene or terpenoid species individually.
- the predominant sesquiterpene (either the substrate or the oxygenated product after the reaction) makes up at least 25%, at least 40%, at least 50%, or at least 75% of the terpene or terpenoid component of the composition.
- the oxygenated product is recovered from the culture media, and can be fractionated to isolate or enrich for various components of the product, such as nootkatone, nootkatol, and/or other components.
- the disclosure comprises contacting a sesquiterpene with a terpene oxidizing P450 enzyme, or a derivative thereof.
- the contacting may take place in a host cell or in a cell free system.
- the substrate for oxidation e.g., the sesquiterpene
- the oxygenated product may be recovered, or be the substrate for further chemical transformation either in the cellular system or cell free system.
- Table 1 below provides a list of exemplary P450 enzymes.
- a preferred enzyme in accordance with this disclosure is iSrKO.
- Exemplary oxygenated sesquiterpene products obtained by these reactions in accordance with the disclosure are shown in Table 4.
- the method comprises contacting the sesquiterpene with a protein comprising Stevia rebaudiana Kaurene Oxidase (SrKO) or derivative thereof.
- SrKO Stevia rebaudiana Kaurene Oxidase
- the SrKO is expressed in a host cell as described below, or is provided in a cell free system.
- certain in vitro and in vivo systems for oxidizing terpenes with P450 enzymes are disclosed in US 7,211,420, which are hereby incorporated by reference. McDougle DR, Palaria A, Magnetta E, Meling DD, Das A. Functional Studies of N-terminally modified CYP2J2 epoxygenase in Model Lipid Bilayers, Protein Sci.
- the SrKO derivative comprises an amino acid sequence that has from about 1 to about 50 mutations independently selected from substitutions, deletions, or insertions relative to SrKO (SEQ ID NO: 37 or 38), or relative to an SrKO enzyme modified at its N-terminus for functional expression in E. coli (SEQ ID NO: 38 or 55).
- the mutation or combination of mutations enhances the activity of the enzyme for oxygenation of valencene, such as the production of nootkatone and/or nootkatol.
- Protein modeling as described herein may be used to guide such substitutions, deletions, or insertions in the SrKO sequence. For example, a structural model of the SrKO amino acid sequence may be created using the coordinates for P45017A1.
- the SrKO derivative may have from about 1 to about 45 mutations, about 1 to about 40 mutations, about 1 to about 35 mutations, from about 1 to about 30 mutations, about 1 to about 25 mutations, from about 1 to about 20 mutations, about 1 to about 15 mutations, about 1 to about 10 mutations, or from about 1 to about 5 mutations relative to SrKO (SEQ ID NO: 37, 38, or 55).
- the SrKO comprises a sequence having at least 5 or at least 10 mutations with respect to SEQ ID NO: 37, 38, or 55, but not more than about 20 or 30 mutations.
- the SrKO derivative may have about 1 mutation, about 2 mutations, about 3 mutations, about 4 mutations, about 5 mutations, about 6 mutations, about 7 mutations, about 8 mutations, about 9 mutations, about 10 mutations, about 11 mutations, about 12 mutations, about 13 mutations, about 14 mutations, about 15 mutations, about 16 mutations, about 17 mutations, about 18 mutations, about 19 mutations, about 20 mutations, about 21 mutations, about 22 mutations, about 23 mutations, about 24 mutations, about 25 mutations, about 26 mutations, about 27 mutations, about 28 mutations, about 29 mutations, about 30 mutations, about 31 mutations, about 32 mutations, about 33 mutations, about 34 mutations, about 35 mutations, about 36 mutations, about 37 mutations, about 38 mutations, about 39 mutations, about 40 mutations, about 41 mutations, about 42 mutations, about 43 mutations, about 44 mutations, about 45 mutations, about 46 mutations, about 47 mutations, about 48 mutations, about 49 mutations
- the SrKO derivative may comprise an amino acid sequence having at least about 50% sequence identity, at least about 55% sequence identity, at least about 60% sequence identity, at least about 65 % sequence identity, at least about 70% sequence identity, at least about 75% sequence identity, at least about 80% sequence identity, at least about 85% sequence identity, or at least 90% sequence identity, or at least 91% sequence identity, or at least 92% sequence identity, or at least 93% sequence identity, or at least 94%) sequence identity, or at least 95% sequence identity, or at least 96% sequence identity, or at least 97% sequence identity, or at least 98% sequence identity, or at least 99% sequence identity, to SrKO (SEQ ID NO: 37, 38, or 55).
- the SrKO derivative has higher activity for the oxygenation of valencene than the wild type enzyme, such as a higher production of oxygenated oil upon contact with valencene substrate than the wild type enzyme (SEQ ID NO: 37) or the wild type enzyme as modified for functional expression in E. coli (e.g., SEQ ID NO: 38).
- the SrKO derivative may comprise an amino acid sequence having at least: about 50% identity, about 51% identity, about 52% identity, about 53% identity, about 54% identity, about 55% identity, about 56% identity, about 57% identity, about 58% identity, about 59% identity, about 60% identity, about 61 ) identity, about 62% identity, about 63% identity, about 64% identity, about 65% identity, about 66% identity, about 67% identity, about 68% identity, about 69% identity, about 70%) identity, about 71% identity, about 72% identity, about 73% identity, about 74% identity, about 75% identity, about 76% identity, about 77% identity, about 78% identity, about 79% identity, about 80% identity, about 81% identity, about 82% identity, about 83% identity, about 84% identity, about 85% identity, about 86% identity, about 87% identity, about 88%) identity, about 89% identity, about 90% identity, about 91% sequence identity, about 92%) sequence identity, about 93% sequence identity, about 94% sequence identity, about 95% sequence identity, about 92
- mutants are selected for an increase in production of oxygenated valencene, such as nootkatone, a-nootkatol, and/or ⁇ -nootkatol.
- the iSrKO derivative may have one or more mutations at positions selected from 46, 76, 94, 131 , 231 , 284, 383, 390, 400, 444, 468, 488 and 499, numbered according to SEQ ID NO: 37.
- the SrKO is a derivative comprising an amino acid sequence having one or more (or all) of the mutations selected from H46R, R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, V400Q, I444A, T468I, T488D, and T499N, numbered according to SEQ ID NO: 37.
- the SrKO is a derivative comprising an amino acid sequence having one or more (or all) of the mutations selected from R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, T468I, and T499N, numbered according to SEQ ID NO: 37.
- the SrKO derivative comprises an amino acid sequence selected from SEQ ID NOS: 55-61 , which were engineered according to this disclosure to improve activity for oxygenation of valencene (e.g., production of nootkatone).
- the derivative comprises an amino acid sequence having from one to twenty mutations relative to a sequence selected from SEQ ID NOS: 55-61 , with the proviso that the amino acid sequence has one or more mutations at positions selected from 46, 76, 94, 131 , 231 , 284, 383, 390, 400, 444, 468, 488, and 499 (numbered according to SEQ ID NO: 37), or the proviso that the SrKO derivative comprises an amino acid sequence having one or more (or all) of the mutations selected from H46R, R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, V400Q, I444A, T468I, T488D, and T499N (numbered according to SEQ ID NO: 37).
- the derivative comprises an amino acid sequence having from one to twenty mutations relative to a sequence selected from SEQ ID NOS: 55-61 , with the proviso that the amino acid sequence has one or more mutations at positions selected from 46, 76, 94, 131 , 231 , 284, 383, 390, 400, 444, 468, 488, and 499 (numbered according to SEQ ID NO: 37), or the proviso that the SrKO derivative comprises an amino acid sequence having one or more (or all) of the mutations selected from R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, T468I, and T499N (numbered according to SEQ ID NO: 37).
- the disclosure provides a recombinant polynucleotide encoding the SrKO derivative described above, which may be inserted into expression vectors for expression and optional purification.
- the polynucleotide is incorporated into the genome of valencene-producing cells, such as valencene -producing E. coli cells.
- the iSrKO or derivative in various embodiments has valencene oxidase activity.
- Assays for determining and quantifying valencene oxidase activity are described herein and are known in the art. Assays include expressing the SrKO (or derivative) in valencene- producing cells (e.g. , E. coli expressing FPPS and valencene synthase), and extracting the oxygenated oil from the aqueous reaction media. The profile of terpenoid product can be determined quantitatively by GC/MS. Various mutations of SrKO tested for effect on valencene oxidase activity are listed in Tables 2.1, 2.2, 2.3 and/or 6.
- the SrKO may have at least about 1 , at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, or at least about 10 mutations selected from Tables 2.1, 2.2, 2.3 and/or 6.
- the SrKO derivative is a modified SrKO polypeptide comprising an amino acid sequence which has up to 25 mutations compared to the wild type protein according to SEQ ID NO: 37 (or its counterpart that is modified for expression in E.
- coli comprises at least the substitutions I310V, V375I or T487N in combination with at least any one or more of V375F, V375A, V375M, M120L, M120I, M120V, F129L, F129I, LI 14V, L1 14F and V121A (numbered according to SEQ ID NO: 38) (see Table 6), and optionally comprises a leader sequence (as shown in SEQ ID NO: 38) supporting functional expression in E. coli.
- Table 2.1 Summary of some Stevia rebaudiana kaurene oxidase mutations tested, numbered according to wild type SrKO (SEQ ID NOS: 37 and 108), 8rp-t20SrKO (SEQ ID NOS: 38 and 106), n22yhcB-t30VO l (SEQ ID NO: 104), and n22yhcB-t30VO2 (SEQ ID NOS: 61 and 105).
- Table 2.2 The following mutants were evaluated in the VOl background (n22- yhcB-t30-VOl, SEQ ID NO:110) according to wild type SrKO (SEQ ID NOS: 37 and 108), 8rp-t20SrKO (SEQ ID NOS: 38 and 106), n22yhcB-t30VOl (SEQ ID NO: 104) and n22yhcB-t30VO2 (SEQ ID NOS: 61 and 105).
- Table 2.3 Summary of mutations of several engineered SrKO derivatives based on alignments relative to wild type SrKO (SEQ ID NOS: 37 and 108).
- the point mutations for each of the SrKO derivatives (SEQ ID NOS: 38, 61, 104, 105, 106, and 107) are identified based on the shift value for each sequence relative to wild type SrKO.
- 8rp-t20SrKO (SEQ ID NOS: 38 and 106) is the SrKO sequence with a 20-amino acid truncation at the N-terminus, and the addition of an 8-amino acid membrane anchor.
- 8rp-t20VO0 (SEQ ID NO: 107) has a truncation of 20 amino acids of the SrKO N-terminus, the addition of an 8-amino acid N- terminal anchor, and a single mutation at position 487.
- n22yhcB-t30VOl (SEQ ID NO: 104) has a 30-amino acid truncation of the SrKO N-terminus, a membrane anchor based on 22 amino acids from E. coli yhcB, and eight point mutations at positions 38, 223, 276, 375, 392, 436, 480, and 491, and a n22t30-yhcB mutation.
- n22yhcB-t30VO2 (SEQ ID NOS: 61 and 105) has a 30-amino acid truncation of the SrKO N-terminus, a membrane anchor based on 22 amino acids from E. coli yhcB, and nine point mutations at positions 68, 86, 123, 223, 276, 375, 382, 460, and 491, and a n22t30-yhcB mutation.
- the SrKO may be expressed in a variety of host cells, either for recombinant protein production, or for sesquiterpene (e.g., valencene) oxidation.
- the host cells include those described in US 8,512,988, which is hereby incorporated by reference in its entirety.
- the host cell may be a prokaryotic or eukaryotic cell.
- the cell is a bacterial cell, such as Escherichia spp., Streptomyces spp., Zymonas spp., Acetobacter spp., Citrobacter spp., Synechocystis spp., Rhizobium spp., Clostridium spp., Cory neb acterium spp., Streptococcus spp., Xanthomonas spp., Lactobacillus spp., Lactococcus spp., Bacillus spp., Alcaligenes spp., Pseudomonas spp., Aeromonas spp., Azotobacter spp., Comamonas spp., Mycobacterium spp., Rhodococcus spp., Gluconobacter spp., Ralstonia spp., Acidithiobacillus s
- the bacterial cell can be a Gram-negative cell such as an Escherichia coli (E. coli) cell, or a Gram-positive cell such as a species of Bacillus.
- the cell is a fungal cell such as a yeast cell, such as, for example, Saccharomyces spp., Schizosaccharomyces spp., Pichia spp., Paffia spp., Kluyveromyces spp., Candida spp., Talaromyces spp., Brettanomyces spp., Pachysolen spp., Debaryomyces spp., Yarrowia spp., and industrial polyploid yeast strains.
- the host cell is a bacterium selected from E. coli, Bacillus subtillus, or Pseudomonas putida.
- the host cell is a yeast, and may be a species of Saccharomyces, Pichia, or Yarrowia, including Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.
- the host cell produces isopentyl pyrophosphate (IPP), which acts as a substrate for the synthesis of the sesquiterpene.
- IPP is produced by metabolic flux (e.g. , starting with a carbon source supplied to the cell) through an endogenous or heterologous methylerythritol phosphate (MEP) or mevalonic acid (MVA) pathway.
- MEP or MVA pathway may be enhanced through expression of heterologous enzymes or duplication of certain enzymes in the pathway.
- the MEP (2-C-methyl-D-erythritol 4-phosphate) pathway also called the MEP/DOXP (2-C-methyl-D-erythritol 4-phosphate/l-deoxy-D-xylulose 5-phosphate) pathway or the non-mevalonate pathway or the mevalonic acid-independent pathway refers to the pathway that converts glyceraldehyde-3-phosphate and pyruvate to IPP and DMAPP.
- the pathway typically involves action of the following enzymes: l-deoxy-D-xylulose-5- phosphate synthase (Dxs), l-deoxy-D-xylulose-5 -phosphate reductoisomerase (IspC), 4- diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD), 4-diphosphocytidyl-2-C-methyl- D-erythritol kinase (IspE), 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF), 1- hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), and isopentenyl diphosphate isomerase (IspH).
- Dxs l-deoxy-D-xylulose-5- phosphate synthase
- IspC l-
- genes that make up the MEP pathway include dxs, ispC, ispD, ispE, ispF, ispG, ispH, idi, and ispA.
- the sesquiterpene is produced at least in part by metabolic flux through an MEP pathway, and wherein the host cell has at least one additional copy of a dxs, ispD, ispF, and/or idi gene (e.g., dxs and idi; or dxs, ispD, ispF, and/or idi).
- the MVA pathway refers to the biosynthetic pathway that converts acetyl-CoA to IPP.
- the mevalonate pathway typically comprises enzymes that catalyze the following steps: (a) condensing two molecules of acetyl-CoA to acetoacetyl-CoA (e.g., by action of acetoacetyl-CoA thiolase); (b) condensing acetoacetyl-CoA with acetyl-CoA to form hydroxymethylglutaryl-CoenzymeA (HMG-CoA) (e.g., by action of HMG-CoA synthase (HMGS)); (c) converting HMG-CoA to mevalonate (e.g., by action of HMG-CoA reductase (HMGR)); (d) phosphorylating mevalonate to mevalonate 5-phosphate (e.g., by action of mevalonate kinase (MK)
- the host cell expresses a farnesyl pyrophosphate synthase (FPPS), which produces farnesyl pyrophosphate from IPP or DMAPP.
- FPPS farnesyl pyrophosphate synthase
- farnesyl pyrophosphate is an intermediate for production of valencene.
- An exemplary farnesyl pyrophosphate synthase is ERG20 of Saccharomyces cerevisiae (NCBI accession P08524) and E. coli ispA.
- Various other prokaryotic, yeast, plant, and mammalian FPPS enzymes are known, and may be used in accordance with this aspect.
- the host cell may further express a heterologous sesquiterpene synthase to produce the desired sesquiterpene, such as a valencene synthase.
- a heterologous sesquiterpene synthase to produce the desired sesquiterpene, such as a valencene synthase.
- valencene synthase enzymes are known including valencene synthase from Citrus x paradisi or from Citrus sinensis. Citrus sinensis VS ⁇ e.g., AAQ04608.1) as well as various derivatives thereof are described in US 2012/0246767, which is hereby incorporated by reference.
- the disclosure may employ an amino acid sequence of Citrus sinensis valencene synthase (CsVS) (SEQ ID NO: 12), or a derivative, having from 1 to 30 mutations or from 1 to 20 or from 1 to 10 mutations with respect to the wild type amino acid sequence (SEQ ID NO: 12).
- CsVS Citrus sinensis valencene synthase
- Such sequences may have at least 60% sequence identity, at least 70% sequence identity, at least 80%) sequence identity, at least 90%> sequence identity, at least 95% sequence identity, or at least about 96%>, about 97%, about 98%>, or about 99% sequence identity with the wild type sequence (SEQ ID NO: 12).
- VvVS Vitis vinifera
- SEQ ID NO: 1 valencene synthase from Vitis vinifera
- a valencene synthase comprising the amino acid sequence of VvVS (SEQ ID NO: 1) or an engineered derivative thereof may be employed with the present disclosure.
- Various sesquiterpene synthase enzymes such as valencene synthase are known and are described in, for example, US 2012/0107893, US 2012/0246767, and US 7,273,735, which are hereby incorporated by reference in their entireties.
- the valencene synthase is a VvVS derivative that comprises an amino acid sequence having from about 1 to about 40 mutations, from about 1 to about 35 mutations, from about 1 to about 30 mutations, about 1 to about 25 mutations, from about 1 to about 20 mutations, about 1 to about 15 mutations, or from about 1 to about 10 mutations independently selected from substitutions, deletions, or insertions with respect to VvVS (SEQ ID NO: 1).
- the VvVS derivative may comprise an amino acid sequence having at least about 5 or at least about 10, but less than about 30 or about 20 mutations with respect to SEQ ID NO: 1.
- the VvVS derivative comprises an amino acid sequence that has about 1 mutation, about 2 mutations, about 3 mutations, about 4 mutations, about 5 mutations, about 6 mutations, about 7 mutations, about 8 mutations, about 9 mutations, about 10 mutations, about 11 mutations, about 12 mutations, about 13 mutations, about 14 mutations, about 15 mutations, about 16 mutations, about 17 mutations, about 18 mutations, about 19 mutations, about 20 mutations, about 21 mutations, about 22 mutations, about 23 mutations, about 24 mutations, about 25 mutations, about 26 mutations, about 27 mutations, about 28 mutations, about 29 mutations, about 30 mutations, about 31 mutations, about 32 mutations, about 33 mutations, about 34 mutations, about 35 mutations, about 36 mutations, about 37 mutations, about 38 mutations, about 39 mutations, or about 40 mutations relative to VvVS (SEQ ID NO: 1).
- Such sequences may have at least 60% sequence identity, at least 70%> sequence identity, at least 80%> sequence identity, at least 90%) sequence identity, at least 95% sequence identity, or at least about 96%>, about 97%, about 98%o, or about 99% sequence identity with SEQ ID NO: l .
- Exemplary mutations of VvVS are shown in Table 3. Mutations can be guided by a homology model of Vitis vinifera valencene synthase (VvVS) based on the 5-epi-aristolochene synthase crystal structure as a template (PDB: 5 EAT).
- Table 3.2 Summary of mutations evaluated in the Vv2M5 background (SEQ ID NO: 9).
- Table 3.3 Summary of mutations evaluated in VS2 background (SEQ ID NO: 11).
- the engineered VvVS may have at least about 1 mutation, about 2 mutations, about 3 mutations, about 4 mutations, about 5 mutations, about 6 mutations, about 7 mutations, about 8 mutations, about 9 mutations, about 10 mutations, about 11 mutations, about 12 mutations, about 13 mutations, about 14 mutations, about 15 mutations, about 16 mutations, about 17 mutations, about 18 mutations, about 19 mutations, about 20 mutations, about 21 mutations, about 22 mutations, about 23 mutations, about 24 mutations, about 25 mutations, about 26 mutations, about 27 mutations, about 28 mutations, about 29 mutations, about 30 mutations, about 31 mutations, about 32 mutations, about 33 mutations, about 34 mutations, about 35 mutations, about 36 mutations, about 37 mutations, about 38 mutations, about 39 mutations, or about 40 mutations selected from Table 3.
- Exemplary recombinant valencene synthases VvlMl (SEQ ID NO: 3), Vv2Ml (SEQ ID NO: 5), VvlM5 (SEQ ID NO: 7), Vv2M5 (SEQ ID NO: 9), and VS2 (SEQ ID NO: 1 1) are further depicted in Figure 3, including an alignment in Figure 3B.
- a further exemplary recombinant valencene synthase VS3 (SEQ ID NO: 129) is also depicted herein.
- the disclosure provides polynucleotides comprising a nucleotide sequence encoding a valencene synthase modified for increased expression of valencene as described above.
- Such polynucleotides may be expressed in host cells, either on extrachromosomal elements such as plasmids, or may be chromosomally integrated.
- the SrKO is expressed alongside a P450 reductase to regenerate the enzyme, or alternatively, the SrKO or derivative is expressed with the P450 reductase as a chimeric P450 enzyme.
- Functional expression of cytochrome P450 has been considered challenging due to the inherent limitations of bacterial platforms, such as the absence of electron transfer machinery and cytochrome P450 reductases, and translational incompatibility of the membrane signal modules of P450 enzymes due to the lack of an endoplasmic reticulum.
- the SrKO is expressed as a fusion protein with a cytochrome P450 reductase partner.
- Cytochrome P450 reductase is a membrane protein found in the endoplasmic reticulum. It catalyzes pyridine nucleotide dehydration and electron transfer to membrane bound cytochrome P450s. Isozymes of similar structure are found in humans, plants, other mammals, and insects.
- Exemplary P450 reductase partners include, for example, Stevia rebaudiana (iSr)CPR (SEQ ID NOS: 62 and 63), Stevia rebaudiana (5r)CPRl (SEQ ID NOS: 76 and 77), Arabidopsis thaliana (.4i)CPR (SEQ ID NOS: 64 and 65), Taxus cuspidata (7c) CPR (SEQ ID NOS: 66 and 67), Artemisia annua ( ⁇ a)CPR (SEQ ID NOS: 68 and 69), Arabidopsis thaliana (At)CV ⁇ (SEQ ID NOS: 70 and 71), Arabidopsis thaliana ( ⁇ t)CPR2 (SEQ ID NOS: 72 and 73), Arabidopsis thaliana (At)R2 (SEQ ID NOS: 74 and 75); Stevia rebaudiana (iSr)CPR2 (SEQ ID NOS: 78 and 79); Stevia
- any of these P450s can be derivatized in some embodiments, for example, to introduce from 1 to about 20 mutations, or from about 1 to about 10 mutations.
- Figure 6B shows an alignment of amino acid sequences for Arabidopsis thaliana and Artemisia annua CPR sequences (SEQ ID NOS: 72, 74, 68, 64, and 70).
- Figure 6C shows an alignment of Stevia rebaudiana CPR sequences (SEQ ID NOS: 78, 80, 62, and 76).
- Figure 6D shows an alignment of eight CPR amino acid sequences (SEQ ID NOS: 74, 72, 82, 68, 80, 62, 78, and 76).
- the SrKO is fused to the cytochrome P450 reductase partner through a linker.
- linker sequences which are predominantly serine, glycine, and/or alanine, and optionally from one to five charged amino acids such as lysine or arginine, include, for example, GSG, GSGGGGS (SEQ ID NO: 113), GSGEAAAK (SEQ ID NO: 114), GSGEAAAKEAAAK (SEQ ID NO: 115), GSGMGSSSN (SEQ ID NO: 116), and GSTGS (SEQ ID NO: 117).
- the linker is generally flexible, and contains no more than one, two, or three hydrophobic residues, and is generally from three to fifty amino acids in length, such as from three to twenty amino acids in length.
- a P450 reductase is expressed in the host cell separately, and may be expressed in the same operon as the SrKO in some embodiments.
- the P450 reductase enzyme is expressed separately in the host cell, and the gene is optionally integrated into the genome or expressed from a plasmid.
- the N-terminus of the P450 enzymes may be engineered to increase their functional expression.
- the N-terminus of membrane-bound P450 plays important roles in enzyme expression, membrane association and substrate access. It has been reported that the use of rare codons in the N-terminus of P450 significantly improved the expression level of P450. Further, since most plant P450 enzymes are membrane-bound and hydrophobic substrates are thought to enter the enzymes through channels dynamically established between the P450 and membrane, N-terminal engineering can affect the association of the membrane and P450 and therefore the access of substrate to the enzyme. Accordingly, in an embodiment, N-terminal engineering of SrKO generates an SrKO derivative that either maintains or shows enhanced valencene oxidase activity in a host system such as E.
- N-terminal sequence is 8rp or MALLLAVF (SEQ ID NO: 112), and other exemplary sequences include sequences of from four to twenty amino acids (such as from four to fifteen amino acids, or from four to ten amino acids, or about eight amino acids) that are predominately hydrophobic, for example, constructed predominately of (at least 50%, or at least 75%) amino acids selected from leucine, valine, alanine, isoleucine, and phenylalanine.
- the SrKO is a derivative having a deletion of at least a portion of its N-terminal transmembrane region, and the addition of an inner membrane transmembrane domain from E.
- the P450 enzyme has a more stable and/or productive association with the E. coli inner membrane, which reduces cell stress otherwise induced by the expression of a membrane- associated P450 enzyme.
- the SrKO is a derivative having a deletion of from 15 to 35 amino acids of its N-terminal transmembrane domain, and the addition of from 15 to 25 amino acids of the transmembrane domain from E. coli yhcB or derivative thereof.
- the N-terminal transmembrane domain of the derivative comprises the amino acid sequence MAWEYALIGLVVGIIIGAVA (SEQ ID NO: 118), or an amino acid sequence having from 1 to 10 or from 1 to 5 amino acid mutations with respect to SEQ ID NO: 118.
- the host cell further expresses one or more enzymes, such as an alcohol dehydrogenase (ADH).
- ADH alcohol dehydrogenase
- the host cell may express an ADH enzyme producing nootkatone from nootkatol, examples of which include Rhodococcus erythropolis CDH (SEQ ID NO: 84), Citrus sinensis DH (SEQ ID NO: 86), Citrus sinensis DH1 (SEQ ID NO: 88), Citrus sinensis DH2 (SEQ ID NO: 90), Citrus sinensis DH3 (SEQ ID NO: 92), Vitis vinifera DH (SEQ ID NO: 94), Vitis vinifera DH1 (SEQ ID NO: 96), Citrus sinensis ABA2 (SEQ ID NO: 98), Brachypodium distachyon DH (SEQ ID NO: 100), and Zingiber zerumbet SDR (SEQ ID NO: 102).
- the ADH may comprise
- Sesquiterpenes ⁇ e.g., valencene and its oxygenated products
- IPP Isopentenyl Pyrophosphate
- a multivariate-modular approach to metabolic pathway engineering can be employed to optimize the production of sesquiterpenes in an engineered E. coli.
- the multivariate-modular pathway engineering approach is based on a systematic multivariate search to identify conditions that optimally balance the two pathway modules to minimize accumulation of inhibitory intermediates and flux diversion to side products.
- WO 201 1/060057, US 201 1/0189717, US 2012/107893, and US 8512988 describe methods and compositions for optimizing production of terpenoids in cells by controlling expression of genes or proteins participating in an upstream pathway and a downstream pathway. This can be achieved by grouping the enzyme pathways into two modules: an upstream (MEP) pathway module (e.g., containing one or more genes of the MEP pathway) and a downstream, heterologous pathway to sesquiterpene production.
- MEP upstream pathway module
- genes within the MEP pathway can thus be regulated in a modular method.
- regulation by a modular method refers to regulation of multiple genes together.
- multiple genes within the MEP pathway can be recombinantly expressed on a contiguous region of DNA, such as an operon.
- modules of genes within the MEP pathway consistent with aspects of the disclosure, can contain any of the genes within the MEP pathway, in any order.
- a gene within the MEP pathway is one of the following: dxs, ispC, ispD, ispE, ispF, ispG, ispH, idi, ispA or ispB.
- a non-limiting example of a module of genes within the MEP pathway is a module containing the genes dxs, idi, ispD and ispF, and referred to as dxs-idi-ispDF.
- genes and/or proteins including modules such as the dxs-idi-ispDF operon, and a FPPS-VS operon
- expression of the genes or operons can be regulated through selection of promoters, such as inducible promoters, with different strengths.
- promoters include Trc, T5 and T7.
- expression of genes or operons can be regulated through manipulation of the copy number of the gene or operon in the cell.
- the expression of one or more genes and/or proteins within the MEP pathway can be upregulated and/or downregulated.
- upregulation of one or more genes and/or proteins within the MEP pathway can be combined with downregulation of one or more genes and/or proteins within the MEP pathway.
- a cell that overexpresses one or more components of the non-mevalonate (MEP) pathway is used, at least in part, to amplify isopentyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), substrates of GGPPS.
- IPP isopentyl diphosphate
- DMAPP dimethylallyl diphosphate
- overexpression of one or more components of the non-mevalonate (MEP) pathway is achieved by increasing the copy number of one or more components of the non-mevalonate (MEP) pathway.
- copy numbers of components at rate-limiting steps in the MEP pathway such as (dxs, ispD, ispF, idi) can be amplified, such as by additional episomal expression.
- the production of indole is used as a surrogate marker for sesquiterpene production, and/or the accumulation of indole in the culture is controlled to increase sesquiterpene production.
- accumulation of indole in the culture is controlled to below about 100 mg/L, or below about 75 mg/L, or below about 50 mg/L, or below about 25 mg/L, or below about 10 mg/L.
- the accumulation of indole can be controlled by balancing protein expression and activity using the multivariate modular approach described above, and/or is controlled by chemical means.
- the disclosure provides a method for making a product containing an oxygenated sesquiterpene (as described), which comprises incorporating the oxygenated sesquiterpene prepared and recovered according to the method described above into a consumer or industrial product.
- the product may be a flavor product, a fragrance product, a cosmetic, a cleaning product, a detergent or soap, or a pest control product (e.g., an insect repellant).
- the oxygenated product recovered and optionally enriched by fractionation is nootkatol (e.g., a and ⁇ nootkatol) and/or nootkatone, and the product is a flavor product selected from a beverage, a chewing gum, a candy, or a flavor additive, or is a pest control product (e.g., an insect repellant).
- nootkatol e.g., a and ⁇ nootkatol
- the product is a flavor product selected from a beverage, a chewing gum, a candy, or a flavor additive
- a pest control product e.g., an insect repellant
- the oxygenated product can be recovered by any suitable process, including partitioning the desired product into an organic phase.
- the production of the desired product can be determined and/or quantified, for example, by gas chromatography (e.g., GC-MS).
- the desired product can be produced in batch or continuous bioreactor systems. Production of product, recovery, and/or analysis of the product can be done as described in US 2012/0246767, which is hereby incorporated by reference in its entirety.
- oxygenated oil is extracted from aqueous reaction medium, which may be done by using an organic solvent, such as an alkane such as heptane, followed by fractional distillation. Sesquiterpene and sesquiterpenoid components of fractions may be measured quantitatively by GC/MS, followed by blending of the fractions to generate a desired nootkatone-containing ingredient for flavour (or other) applications.
- the disclosure provides polynucleotides comprising a nucleotide sequence encoding a P450 derivative described herein.
- the polynucleotide may be codon optimized for expression in E. coli or yeast in some embodiments.
- the polynucleotide may comprise a nucleotide sequence encoding a SrKO fusion protein, optionally with a P450 reductase partner as described herein.
- the disclosure provides polynucleotides comprising a nucleotide sequence encoding a sesquiterpene synthase variant described herein, which may likewise be codon optimized for expression in E. coli or yeast.
- Such polynucleotides may further comprise, in addition to sequences encoding the P450 or sesquiterpene synthase, one or more expression control elements.
- the polynucleotide may comprise one or more promoters or transcriptional enhancers, ribosomal binding sites, transcription termination signals, and polyadenylation signals, as expression control elements.
- the polynucleotide may be inserted within any suitable vector, including an expression vector, and which may be contained within any suitable host cell for expression.
- the polynucleotide may be designed for introduction and/or protein expression in any suitable host cell, including bacterial cells and yeast cells, and may be expressed from a plasmid, or may be chromosomally integrated.
- the recombinant nucleic acid molecule encodes an SrKO derivative with a higher activity for oxidation of valencene than the wild type enzyme (SEQ ID NO: 37), and having a leader sequence as described, such as the leader sequence MALLLAVF (SEQ ID NO: 112) or leader sequence derived from E. coli yhcB.
- the recombinant nucleic acid molecules further encodes either as an operon or as a fusion in frame with the SrKO derivative, an SrCPR or derivative thereof capable of regenerating the SrKO enzyme.
- the SrKO derivative and the SrCPR may be connected by a linking sequence of from 3 to 10 amino acids (e.g., 5 amino acids).
- the linking sequence is predominately glycine, serine, and/or alanine and may comprise the sequence GSTGS.
- the disclosure provides host cells producing an oxygenated sesquiterpene as described herein, and which express all of the enzyme components for producing the desired oxygenated sesquiterpene from isopentyl pyrophosphate (IPP).
- IPP isopentyl pyrophosphate
- the host cell in various embodiments expresses a farnesyl pyrophosphate synthase, a sesquiterpene synthase, and the SrKO or derivative thereof.
- IPP may be produced through the MEP and/or MVA pathway, which may be endogenous to the host cell or modified through expression of heterologous enzymes or duplication of certain enzymes in the pathway.
- Host cells include various bacteria and yeast as described herein.
- the disclosure provides sesquiterpene products produced by the methods and host cells described herein.
- SrKO enzyme showed unique activities by creating different stereoisomers of the hydroxylated product (alpha and beta nootkatol and further oxidizing to ketone, nootkatone), and produced different_oxygenated terpene products including hydroxygermacra-l(10)5-diene, and murolan-3,9(l 1) diene-10- peroxy. This activity provides for the incorporation of a unique valencene oxidation profile into an oil suitable for flavouring applications.
- compositions and formulations comprising an oxygenated product.
- said compositions and formulations may further comprise an unoxygenated product, a sesquiterpene, valencene, a non-sesquiterpene component, and/or one or more additional ingredients.
- the compositions and formulations disclosed herein comprise at least one of valencene, hydroxygermacra-l(10)5-diene, murolan-3,9(l 1) diene- 10-peroxy, a-nootkatol, ⁇ -nootkatol, and nootkatone.
- the compositions and formulations comprise at least one of nootkatone, a-nootkatol, ⁇ -nootkatol, and valencene.
- the nootkatone content may be selected from about 50% to about 65% (w/w), about 52.5% to about 62.5% (w/w), and about 55% to about 60% (w/w);
- the a- nootkatol content may be selected from about 15% to about 30% (w/w), about 17.5% to about 27.5%) (w/w), and about 20% to about 25% (w/w);
- the ⁇ -nootkatol content may be selected from about 1% to about 15% (w/w), about 3% to about 12% (w/w), and about 5% to about 10%) (w/w);
- the valencene content may be selected from about 1% to about 15% (w/w), about 3%) to about 12% (w/w/w
- the compositions and formulations comprise at least one of nootkatone, ⁇ -nootkatol, and ⁇ - nootkatol.
- the nootkatone content may be selected from about 50% to about 65% (w/w), about 52.5% to about 62.5% (w/w), and about 55%) to about 60% (w/w);
- the ⁇ -nootkatol content may be selected from about 15% to about 30% (w/w), about 17.5% to about 27.5% (w/w), and about 20% to about 25% (w/w); and the ⁇ -nootkatol content may be selected from about 1% to about 15% (w/w), about 3% to about 12% (w/w), and about 5% to about 10% (w/w).
- the composition or formulation comprise nootkatone, a- nootkatol, and ⁇ -nootkatol, wherein the nootkatone is present in an amount ranging from about 55% to about 60% (w/w), the a-nootkatol is present in an amount ranging from about 20% to about 25% (w/w), and the ⁇ -nootkatol is present in an amount ranging from about 5% to about 10% (w/w).
- the composition or formulation comprise valencene, nootkatone, ⁇ -nootkatol, and ⁇ -nootkatol, wherein the valencene is present in an amount ranging from about 5% to about 10% (w/w), the nootkatone is present in an amount ranging from about 55% to about 60% (w/w), the ⁇ -nootkatol is present in an amount ranging from about 20% to about 25% (w/w), and the ⁇ -nootkatol is present in an amount ranging from about 5% to about 10% (w/w).
- P450 enzymes tested including previously known sesquiterpene CYP450's or P450's having hydroxylating activity on the valencene substrate produced one of the stereoisomers (beta nootkatol) and only minor amounts of the ketone (nootkatone).
- the other sesquiterpene CYP450 enzymes produced beta-nootkatol and hydroxyl valencene as major products, while Taxol CYP450 enzyme did not produce any oxygenated valencene (Table 4 and Figure 7).
- the different blend of sesquiterpene products produced by SrKO provides a unique profile with a unique sensory/taste profile.
- the disclosure relates to SrKO derivative enzymes.
- the SrKO derivative polypeptide comprises an amino acid sequence that has up to 25 mutations compared to the wild type protein according to SEQ ID NO: 37.
- the SrKO derivative may comprise an amino acid sequence that has one or more mutations at positions selected from 46, 76, 94, 131, 231, 284, 383, 390, 400, 444, 468, 488 and 499, numbered according to SEQ ID NO: 37.
- the SrKO is a derivative comprising an amino acid sequence having one or more (or all) of the mutations selected from H46R, R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, V400Q, I444A, T468I, T488D, and T499N, numbered according to SEQ ID NO:37.
- the SrKO is a derivative comprising an amino acid sequence having one or more (or all) of the mutations selected from R76K, M94V, T131 Q, F231L, H284Q, R383K, I390L, T468I, and T499N, numbered according to SEQ ID NO: 37.
- the SrKO derivative comprises an amino acid sequence selected from SEQ ID NOS: 55-61 , which were engineered according to this disclosure to improve activity for oxygenation of valencene (e.g. , production of nootkatone and/or nootkatol).
- the derivative comprises an amino acid sequence having from one to twenty mutations relative to a sequence selected from SEQ ID NOS: 55-61 , with the proviso that the amino acid sequence has one or more mutations at positions selected from 46, 76, 94, 131 , 231 , 284, 383, 390, 400, 444, 468, 488 and 499 (numbered according to SEQ ID NO: 37), or the proviso that the SrKO derivative comprises an amino acid sequence having one or more (or all) of the mutations selected from H46R, R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, V400Q, I444A, T468I, T488D, and T499N (numbered according to SEQ ID NO: 37).
- the derivative comprises an amino acid sequence having from one to twenty mutations relative to a sequence selected from SEQ ID NOS: 55-61 , with the proviso that the amino acid sequence has one or more mutations at positions selected from 46, 76, 94, 131 , 231 , 284, 383, 390, 400, 444, 468, 488 and 499 (numbered according to SEQ ID NO: 37), or the proviso that the SrKO derivative comprises an amino acid sequence having one or more (or all) of the mutations selected from R76K, M94V, T131Q, F231L, H284Q, R383K, I390L, T468I, and T499N (numbered according to SEQ ID NO: 37). As shown herein, these mutations increase the level of SrKOs valencene oxidation activity.
- the SrKO is a derivative having a deletion of at least a portion of its N-terminal transmembrane region, and the addition of an inner membrane transmembrane domain from E. coli yhcB or derivative thereof.
- the iSrKO is a derivative having a deletion of from 15 to 35 amino acids of its N-terminal transmembrane domain, and the addition of from 15 to 25 amino acids of the transmembrane domain from E. coli yhcB or derivative thereof.
- the N-terminal transmembrane domain of the derivative comprises the amino acid sequence MAWEYALIGLVVGIIIGAVA (SEQ ID NO: l 18), or an amino acid sequence having from 1 to 10 or from 1 to 5 amino acid mutations with respect to SEQ ID NO: l 18.
- the disclosure provides a method of preparing the modified iSrKO polypeptide, wherein the method comprises the steps of: (i) culturing a host cell expressing the modified polypeptide under conditions which permit expression of the polypeptide; and (ii) optionally recovering the polypeptide.
- the disclosure provides a method of producing an oxygenated sesquiterpene comprising the steps of: (i) providing the modified SrKO polypeptide, (ii) contacting a sesquiterpene with the modified SrKO polypeptide, and (iii) recovering the produced oxygenated sesquiterpene.
- the method may further comprise providing a CPR enzyme for regenerating the iSrKO cofactor (e.g., SrCPR).
- the oxygenated sesquiterpene is recovered as an oil.
- the sesquiterpene is valencene.
- the oxygenated sesquiterpene comprises hydroxygermacra-l(10)5-diene, murolan-3,9(l 1) diene-10-peroxy, alpha-nootkatol, beta- nootkatol, and nootkatone.
- the predominant oxygenated product is nootkatone and/or nootkatol.
- the oxygenated product comprises both alpha and beta nootkatol.
- an SrKO crystal model structure based on the structural coordinates of P45017A1 , with an amino acid sequence of iSrKO or derivative described herein.
- the CMS comprises a terpene binding pocket domain (TBD) that comprises a terpene binding pocket (TBP) and a terpene (e.g., valencene) bound to the TBD.
- TBD terpene binding pocket domain
- TBP terpene binding pocket
- a terpene e.g., valencene
- the disclosure provides a method of screening for a terpene capable of binding to a TBD wherein the method comprises the use of the iSrKO CMS.
- the disclosure provides a method for screening for a terpene capable of binding to the TBP, and the method comprises contacting the TBP with a test compound, and determining if said test compound binds to said TBP.
- the method is to screen for a test compound (e.g., terpenes) useful in modulating the activity of a SrKO enzyme.
- the disclosure provides a method for predicting, simulating or modelling the molecular characteristics and/or molecular interactions of a terpene binding domain (TBD) comprising the use of a computer model, said computer model comprising, using or depicting the structural coordinates of a terpene binding domain as defined above to provide an image of said ligand binding domain and to optionally display said image.
- TBD terpene binding domain
- Example 1 Construction of sesquiterpene precursor (Valencene) producing E. coli strain
- E. coli overexpressing upstream MEP pathway genes dxs, ispD, ispF, and idi was created, which facilitates flux to the isoprenoid precursor isopentyl-pyrophosphate (IPP) supporting more than 1 g/L titers of a heterologous diterpenoid product (3).
- IPP isopentyl-pyrophosphate
- Strains were constructed producing a variety of terpenoids including mono- and sesquiterpenes by replacing the geranylgeranyl pyrophosphate synthase (GGPS) and diterpene synthase with a farnesyl pyrophosphate synthase (FPPS) and sesquiterpene synthase or a geranyl pyrophosphate synthase (GPPS) and monoterpene synthase.
- GGPS geranylgeranyl pyrophosphate synthase
- FPPS farnesyl pyrophosphate synthase
- GPPS geranyl pyrophosphate synthase
- a sesquiterpene producing strain to test the CYP450s for novel oxygenated terpenes, a valencene synthase enzyme was cloned and expressed in the MEP pathway overexpressed E. coli strain.
- the high substrate flux helps identify the activity of the CYP450.
- research on an oxygenated taxadiene producing strain showed a significant drop in the productivity upon transferring the CYP450 pathway to the taxadiene producing strain (300 mg/L to ⁇ 10 mg/L).
- MMME multivariate modular metabolic engineering
- VvVS Vitis vinifera valencene synthase
- Mutated enzyme variants were transformed into the screening strain, triplicate colonies were cultured in selective LB cell culture medium overnight, and then inoculated into a minimal R-medium and cultured for four days at 22°C. Cultures were extracted using methyl tert-butyl ether (MTBE) and analyzed by combined gas chromatography/mass spectrometry for productivity of valencene.
- MTBE methyl tert-butyl ether
- Valencene was used as a model system to validate the power of CYP450-based oxygenation chemistry for production terpene chemicals.
- the CYPP450 candidate screening was conducted using the valencene producing E. coli strains as host background.
- a proprietary plasmid system p5Trc (plasmid derived from pSClOl) was used to construct a plasmid containing the candidate P450 fused to an N-terminal truncated Stevia rebaudiana cytochrome P450 reductase (SrCPR) through a flexible 5 -amino acid linker (GSTGS, SEQ ID NO: 117).
- SrCPR N-terminal truncated Stevia rebaudiana cytochrome P450 reductase
- GSTGS flexible 5 -amino acid linker
- the candidate CYP450's were analyzed for N-terminal membrane associating regions which were truncated and a 8-amino acid leader sequence (MALLLAVF, SEQ ID NO: 112) was added to the fusion ( Figures 5A and 5B).
- CPR red/ox partners from Arabidopsis thaliana and Taxus cuspidata were also prepared in similar genetic constructions. Since the native SrCPR was effective, the level of activity of these constructs was not determined. The sequences of the various CPR red/ox partners are shown in Figure 6. Following transformation of p5Trc- CYP450-L-iSrCPR to valencene producing strain, the strains were cultured overnight at 30°C in antibiotic selective LB media.
- SrKO natively oxidizes the diterpene (-)-kaurene at the C19 position to (- )-kaurenoic acid.
- SrKO enzyme showed unique activities in the present studies by creating different stereoisomers of the hydroxylated product (alpha and beta nootkatol and further oxidizing to the ketone, nootkatone), and produced different oxygenated terpene products including hydroxygermacra-l(10)5-diene, murolan-3,9(l 1) diene-10-peroxy, in addition to the alpha-nootkatol, beta-nootkatol, and nootkatone.
- P450's including the previously known sesquiterpene CYP450's for hydroxylating valencene produced only one of the isomers (beta nootkatol) and only detectable amounts of ketone (nootkatone).
- the other sesquiterpene CYP450 enzymes produced beta-nootkatol and hydroxyl valencene as major products, while another diterpene CYP450 enzymes ⁇ e.g., Taxus 5-alpha hydroxylase) produced nootkatol as only a minor (detectable) product (Table 4 and Figure 7).
- cytochrome P450 derivatives were assessed for improvements in total oxygenated terpene productivity (e.g., total of the major peaks observed by GC/MS) in the in vivo testing system described above. Mutagenesis on active site positions guided by the model revealed several variants with significantly improved oxygenated products (Table 6 and Table 7 below).
- Table 6 Binding pocket mutations and their fold productivity of total oxygenated oil according to wild type SrKO (SEQ ID NOS: 37 and 108), 8rp-t20SrKO (SEQ ID NOS: 38 and 106), n22yhcB-t30VOl (SEQ ID NO: 104) and n22yhcB-t30VO2 (SEQ ID NOS: 61 and 105).
- Table 7 Non-binding pocket point mutations and productivity of total oxygenated oil compared to the wild type SrKO (SEQ ID NOS : 38 and 106).
- the oxygenated oil product can then be extracted from the aqueous reaction medium using an appropriate solvent (e.g., heptane) followed by fractional distillation.
- an appropriate solvent e.g., heptane
- the chemical composition of each fraction can be measured quantitatively by GC/MS. Fractions can be blended to generate the desired alpha/beta nootkatol and/or nootkatone ingredients for use in flavour or other applications.
- Verification of acceptability can be carried out by direct comparison to a reference nootkatone flavouring product (for example, an existing natural flavouring commercial product obtained from Frutarom) with analysis provided in Table 9.
- a reference nootkatone flavouring product for example, an existing natural flavouring commercial product obtained from Frutarom
- Two exemplary methods of verification are: 1) Duo-Trio Test, 2) Forced-Choice Preference Test.
- the SrKO derived product can be compared to the reference product (for example a commercial Frutarom sourced nootkatone ingredient) in a duo-trio test to determine if the ingredients can be distinguished with statistical significance. This test will determine if the two nootkatone containing ingredients at least match one another based on perception of overall taste and aroma profiles.
- the second test assuming the two products are determined to be distinguishable in a duo trio test, one could determine if the SrKO derived nootkatone is preferred by conducting a forced-choice preference test. More details on these tests are provided as follows.
- a Duo-Trio Test can be conducted to determine if the blended fractions obtained from the iSrKO derived nootkatone flavouring can be distinguished with statistical significance from a reference nootkatone product (for example, a commercially available nootkatone flavouring sourced from Frutarom). The test will determine if the nootkatone flavouring ingredients at least match in terms of overall taste and aroma profile typically conducted in a sugar/acid solution but could also be evaluated in water or sugar water.
- One ounce of the reference sample labelled "REF" is presented first followed by a one ounce sample of the reference and a one ounce sample of the test sample presented blindly in random order to a minimum of 15 discriminator panellists. The panellists are asked which blind sample is the same as the reference sample. The data are subjected to a statistical analysis to determine the degree of difference between the test sample and the reference control.
- a Forced-Choice Preference Test can be conducted to determine if one sample is preferred over the other as a nootkatone flavouring ingredient.
- the test can be conducted in sugar/acid solution, sugar water or water.
- Methodology One ounce of each test sample is presented blindly in random order to a minimum of 40 discriminator panellists. The panellists are asked which blind sample is preferred based on aroma and taste when consumed orally and are forced to make a decision. The data are subjected to a statistical analysis to determine the degree of preference for one sample over the other.
- E. coli proteins anchored in the inner membrane with a cytoplasmic C-terminus were identified.
- An N-terminal sequence of E. coli yhcB was selected, which provides a single-pass transmembrane domain. 20-24 amino acids from the N-terminus of yhcB was exchanged for the original membrane anchor sequence MALLLAVF (SEQ ID NO: l 12), and the size of the SrKO N-terminal truncation was varied from 28 to 32. See Figure 9.
- VOl was expressed under control of a T7 promoter on a p5 plasmid.
- SrCPR was expressed independently from the chromosome. Strains were cultured in 96 deepwell plates at 30°C for 48 hours, in R-medium plus glycerol and dodecane overlay as already described.
- n20yhcB_t29VOl exhibited 1.2-fold productivity in total oxygenated titer compared to the average of controls.
- N20yhcB_t29VOl exhibited a total oxygentated titer approximately 1.8 fold of the original 8RP anchor (not shown).
- ScFPPS Fab46-VS2 MP6-ScCPR was used as the background, which when transformed with a p5-T7-yhcB-V01 plasmid produces about 18% nootkatone, about 35% a-nootkatol, and about 47% ⁇ -nootkatol, with a complete conversion of valencene. Strains were evaluated for higher production of nootkatone and a-nootkatol.
- Table 12 Paired Position Libraries (numbered according to SEQ ID NOS: 37 and 108)
- Strains were evaluated as in Example 4 for total oxygenation of valencene, and ratio of a- to ⁇ -nootkatol. Strains were evaluated at 30°C and 22°C.
- Library 3 contained variants with improved activity at 22°C but not 30°C. Thus, introducing two or more mutations simultaneously in the first shell residues can be determimental to activity.
- Table 13 The following single position SSM was conducted (numbered according to SEQ ID NOS: 37 and 108)
- Figure 13B shows the same screen plotted versus fold total oxygenated product change and a-/p-nootkatol ratio.
- the seven mutations selected after secondary screening were randomly incorporated into a VO recombination library by allowing either the variant or wild type at each site.
- the background strain was MB2509 (EGV G2 MP6-CPR) + pBAC-T7-BCD7- yhcB-VO.
- Figure 23 shows alignments of several engineered valencene oxidase (VO) variants as described herein, and highlights select mutations evaluated in the screening process.
- 8rp-t20SrKO (SEQ ID NO: 106) is the SrKO sequence with a 20- amino acid truncation at the N-terminus, and the addition of an 8-amino acid membrane anchor.
- 8rp-t20VO0 (SEQ ID NO: 107) has a truncation of 20 amino acids of the SrKO N- terminus, the addition of an 8-amino acid N-terminal anchor, and a single mutation at position 499 (numbered according to wild-type SrKO).
- n22yhcB-t30VOl (SEQ ID NO: 104) has a 30-amino acid truncation of the SrKO N-terminus, a membrane anchor based on 22 amino acids from E. coli yhcB, and eight point mutations at positions 46, 231, 284, 383, 400, 444, 488, and 499 (with respect to SrKO wild-type).
- n22yhcB-t30VO2 (SEQ ID NOS: 61 and 105) has a 30-amino acid truncation of the SrKO N-terminus, a membrane anchor based on 22 amino acids from E.
- Example 8 Cytochrome P450 Reductase screening A set of cytochrome P450 reductases were screened for improved activity with VOL This example was done using the strain MB2459 as the background, with pBAC-T7-BCD7- V01(I382L)-T7BCDx-CPRx.
- BCD stands for BiCistronic Design, and is described in Mutalik et. al. Nature Methods 2013(10)4:354. Lower BCD numbers refer to higher translation rate.
- CPRs included SrCPR (SEQ ID NO: 62), SrCPR3 (SEQ ID NO: 80), AaCPR (SEQ ID NO: 68), PgCPR (SEQ ID NO: 82), AtCPR2 (SEQ ID NO: 72), AtCPRl (SEQ ID NO: 70), eSrCPRl (SEQ ID NO: 76), and eATR2 (SEQ ID NO: 74). Strains were tested as in Example 5, at 30°C.
- Example 9 Alcohol Dehydrogenase enzymes to alter product profile
- MP6-MEP FAB46-ScFPPS-L-VSl MP6-V01-o-SrCPR + p5-T7-BCD14-ADH MP6-MEP FAB46-ScFPPS-L-VSl MP6-V01-o-SrCPR + p5-T7-BCD14-ADH.
- MP6, Fab46 and T7 refer to the promoter for the attached gene or operon.
- MEP is an operon overexpressing E. coli dxs, idi, and ispDF genes.
- the L between ScFPPS and VS1 refers to a short polypeptide linker encoding (GSTGS) while -o- between VOl and SrCPR refers to an operonic construction in which an RBS sequence is inserted between the two genes.
- GSTGS short polypeptide linker encoding
- -o- between VOl and SrCPR refers to an operonic construction in which an RBS sequence is inserted between
- Sevrioukova IF Li H, Zhang H, Peterson J a, Poulos TL. Structure of a cytochrome P450-redox partner electron-transfer complex. Proc. Natl. Acad. Sci. U. S. A.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Nutrition Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/505,022 US10501760B2 (en) | 2014-08-21 | 2015-08-21 | Methods for production of oxygenated terpenes |
EP15757404.7A EP3183353A2 (en) | 2014-08-21 | 2015-08-21 | Process for producing oxygenated products of valencene |
US16/669,051 US11180782B2 (en) | 2014-08-21 | 2019-10-30 | Methods for production of oxygenated terpenes |
US17/456,126 US11807890B2 (en) | 2014-08-21 | 2021-11-22 | Methods for production of oxygenated terpenes |
US18/373,659 US20240141392A1 (en) | 2014-08-21 | 2023-09-27 | Methods for production of oxygenated terpenes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462040284P | 2014-08-21 | 2014-08-21 | |
US62/040,284 | 2014-08-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/505,022 A-371-Of-International US10501760B2 (en) | 2014-08-21 | 2015-08-21 | Methods for production of oxygenated terpenes |
US16/669,051 Division US11180782B2 (en) | 2014-08-21 | 2019-10-30 | Methods for production of oxygenated terpenes |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2016029187A2 true WO2016029187A2 (en) | 2016-02-25 |
WO2016029187A3 WO2016029187A3 (en) | 2016-05-06 |
Family
ID=54035332
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/046369 WO2016029153A1 (en) | 2014-08-21 | 2015-08-21 | Methods for production of oxygenated terpenes |
PCT/US2015/046421 WO2016029187A2 (en) | 2014-08-21 | 2015-08-21 | Methods for production of oxygenated terpenes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/046369 WO2016029153A1 (en) | 2014-08-21 | 2015-08-21 | Methods for production of oxygenated terpenes |
Country Status (7)
Country | Link |
---|---|
US (6) | US10934564B2 (ja) |
EP (2) | EP3183357B1 (ja) |
JP (1) | JP6735750B2 (ja) |
CN (1) | CN107002109A (ja) |
MY (1) | MY185817A (ja) |
SG (1) | SG11201701278RA (ja) |
WO (2) | WO2016029153A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017034942A1 (en) * | 2015-08-21 | 2017-03-02 | Manus Biosynthesis, Inc. | Increasing productivity of e. coli host cells that functionally express p450 enzymes |
WO2019059337A1 (ja) * | 2017-09-22 | 2019-03-28 | 味の素株式会社 | ヌートカトンの製造方法 |
WO2019169027A3 (en) * | 2018-02-27 | 2019-10-03 | Manus Bio, Inc. | Microbial production of triterpenoids including mogrosides |
WO2019194287A1 (ja) | 2018-04-06 | 2019-10-10 | 味の素株式会社 | 13-ヒドロキシ-9(z)-オクタデセン酸の製造方法 |
US10501760B2 (en) | 2014-08-21 | 2019-12-10 | Givaudan Sa | Methods for production of oxygenated terpenes |
CN114181964A (zh) * | 2021-11-02 | 2022-03-15 | 云南大学 | 一种表达盒组合、重组载体和重组酿酒酵母及其应用 |
WO2022090402A1 (en) | 2020-10-30 | 2022-05-05 | Givaudan Sa | Method of causing conversion of volatile terpene species |
WO2022090464A1 (en) | 2020-10-30 | 2022-05-05 | Givaudan Sa | Method of mitigating conversion of volatile terpene species |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3488008A2 (en) * | 2016-07-20 | 2019-05-29 | Firmenich SA | Vetiver |
CN109890217A (zh) | 2016-09-16 | 2019-06-14 | 百事可乐公司 | 用于改善非营养性甜味剂的味道的组合物和方法 |
EP3536792A4 (en) * | 2016-11-04 | 2020-07-01 | Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences | RECOMBINANT YEAST AND ASSOCIATED USE |
JP7330888B2 (ja) | 2017-01-26 | 2023-08-22 | マナス バイオ インコーポレイテッド | テルペノイド産物を微生物生産するための代謝工学 |
BR112019016036A2 (pt) * | 2017-02-03 | 2020-05-26 | Manus Bio, Inc. | Manipulação metabólica para produção microbiana de produtos terpenoides |
CN107723252A (zh) * | 2017-09-22 | 2018-02-23 | 天津大学 | 生产巴伦西亚橘烯和诺卡酮的重组解脂耶氏酵母菌及构建方法 |
EP3697898A1 (en) * | 2018-01-18 | 2020-08-26 | Firmenich SA | Cytochrome p450 monooxygenase catalyzed oxidation of sesquiterpenes |
GB201808663D0 (en) * | 2018-05-25 | 2018-07-11 | Innes John Centre | Method |
WO2020051488A1 (en) * | 2018-09-06 | 2020-03-12 | Manus Bio, Inc. | Microbial production of rotundone |
WO2020072908A1 (en) * | 2018-10-05 | 2020-04-09 | Manus Bio, Inc. | Biosynthesis and recovery of secondary metabolites |
CN109486695B (zh) * | 2018-12-26 | 2021-04-06 | 浙江医药股份有限公司 | 用于生产法尼烯的解脂耶氏酵母 |
CN109913380B (zh) * | 2019-03-25 | 2021-12-10 | 南京工业大学 | 生产(-)-α-红没药醇的重组解脂耶氏酵母菌及其构建方法和应用 |
CN110923249A (zh) * | 2019-10-15 | 2020-03-27 | 贵州省烟草科学研究院 | 烟草CyP71及在调控植物表皮毛发育方面的应用 |
CN111019852B (zh) * | 2019-12-31 | 2021-11-23 | 江南大学 | 一种提高酿酒酵母工程菌株合成葡萄糖二酸效率的方法 |
CN111154665B (zh) * | 2020-01-21 | 2021-02-02 | 南京工业大学 | 一株重组解脂耶罗维亚酵母及其构建方法和应用 |
CN111235046A (zh) * | 2020-02-05 | 2020-06-05 | 天津大学 | 异源合成α-檀香烯的重组解脂耶氏酵母及其构建方法 |
US11939618B2 (en) * | 2020-03-23 | 2024-03-26 | The Regents Of The University Of California | Fusion proteins useful for modifying terpenes |
CN111394290A (zh) * | 2020-03-26 | 2020-07-10 | 北京化工大学 | 产长叶烯的基因工程菌及其构建方法与应用 |
CN112391360B (zh) * | 2020-11-04 | 2022-09-06 | 江南大学 | 黄酮3β-羟化酶还原酶突变体及其应用 |
US20240254521A1 (en) * | 2021-05-11 | 2024-08-01 | Manus Bio Inc. | Enzymes, host cells, and methods for production of rotundone and other terpenoids |
CN114480512B (zh) * | 2021-12-13 | 2022-10-25 | 华南理工大学 | 氧化还原酶及其突变体在生物合成圆柚酮中的应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200786B1 (en) | 1999-09-08 | 2001-03-13 | Givaudan S.A. | Process for the preparation of nootkatone by laccase catalysis |
US7211420B1 (en) | 1998-11-19 | 2007-05-01 | Isis Innovation Limited | Process for oxidizing terpenes |
US7273735B2 (en) | 2002-10-04 | 2007-09-25 | Firmenich Sa | Sesquiterpene synthases and methods of use |
US7667017B2 (en) | 2001-12-06 | 2010-02-23 | The Regents Of The University Of California | Isolated mevalonate pathway enzyme nucleic acids |
WO2011060057A1 (en) | 2009-11-10 | 2011-05-19 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
US8097442B2 (en) | 2003-08-11 | 2012-01-17 | Verenium Corporation | Laccases, nucleic acids encoding them and methods for making and using them |
US20120107893A1 (en) | 2009-11-10 | 2012-05-03 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
US20120164678A1 (en) | 2010-11-30 | 2012-06-28 | Massachusetts Institute Of Technology | Microbial production of natural sweeteners, diterpenoid steviol glycosides |
US20120246767A1 (en) | 2010-10-29 | 2012-09-27 | Jean Davin Amick | Modified valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL121437A (en) * | 1995-12-18 | 2000-10-31 | Firmenich & Cie | Process for the preparation of nootkatone or nootkatol or of mixtures of these compounds |
WO1999025196A1 (fr) | 1997-11-17 | 1999-05-27 | Taisho Pharmaceutical Co., Ltd. | Insectifuge contre insectes hematophages |
US6890960B1 (en) | 1999-10-19 | 2005-05-10 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Vetiver oil extracts as termite repellent and toxicant |
JP4139646B2 (ja) * | 2002-08-01 | 2008-08-27 | 長谷川香料株式会社 | 香気香味賦与剤 |
CN101914558B (zh) * | 2002-10-04 | 2013-05-29 | 弗门尼舍有限公司 | 倍半萜烯合成酶及其使用方法 |
DE102004006825A1 (de) | 2004-02-11 | 2005-09-01 | Maxens Gmbh | Verfahren zur Herstellung von aromaaktiven Terpenen |
WO2006079020A2 (en) | 2005-01-19 | 2006-07-27 | University Of Kentucky Research Foundation | Functional identification of the hyoscyamus muticus gene coding for premnaspirodiene hydroxylase activity |
IN2014CN03791A (ja) * | 2011-11-09 | 2015-10-16 | Amyris Inc | |
ES2911701T3 (es) * | 2012-11-01 | 2022-05-20 | Univ British Columbia | Polipéptidos de citocromo P450 y citocromo P450 reductasa, moléculas de ácido nucleico codificantes y usos de los mismos |
KR101559489B1 (ko) | 2014-04-08 | 2015-10-12 | 한국해양과학기술원 | 방향타를 이용한 요제어방식 조류발전장치 및 이의 제어방법 |
JP6735750B2 (ja) | 2014-08-21 | 2020-08-05 | マナス バイオシンセシス インコーポレイテッド | 含酸素テルペンの産生方法 |
WO2016073740A1 (en) | 2014-11-05 | 2016-05-12 | Manus Biosynthesis, Inc. | Microbial production of steviol glycosides |
EP3337893B1 (en) | 2015-08-21 | 2023-07-19 | Manus Bio Inc. | Increasing productivity of e. coli host cells that functionally express p450 enzymes |
WO2020051488A1 (en) * | 2018-09-06 | 2020-03-12 | Manus Bio, Inc. | Microbial production of rotundone |
-
2015
- 2015-08-21 JP JP2017529974A patent/JP6735750B2/ja active Active
- 2015-08-21 SG SG11201701278RA patent/SG11201701278RA/en unknown
- 2015-08-21 WO PCT/US2015/046369 patent/WO2016029153A1/en active Application Filing
- 2015-08-21 US US15/505,503 patent/US10934564B2/en active Active
- 2015-08-21 MY MYPI2017700561A patent/MY185817A/en unknown
- 2015-08-21 EP EP15834525.6A patent/EP3183357B1/en active Active
- 2015-08-21 CN CN201580057470.4A patent/CN107002109A/zh active Pending
- 2015-08-21 EP EP15757404.7A patent/EP3183353A2/en active Pending
- 2015-08-21 WO PCT/US2015/046421 patent/WO2016029187A2/en active Application Filing
- 2015-08-21 US US15/505,022 patent/US10501760B2/en active Active
-
2019
- 2019-10-30 US US16/669,051 patent/US11180782B2/en active Active
-
2021
- 2021-01-05 US US17/141,758 patent/US11952608B2/en active Active
- 2021-11-22 US US17/456,126 patent/US11807890B2/en active Active
-
2023
- 2023-09-27 US US18/373,659 patent/US20240141392A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7211420B1 (en) | 1998-11-19 | 2007-05-01 | Isis Innovation Limited | Process for oxidizing terpenes |
US6200786B1 (en) | 1999-09-08 | 2001-03-13 | Givaudan S.A. | Process for the preparation of nootkatone by laccase catalysis |
US7667017B2 (en) | 2001-12-06 | 2010-02-23 | The Regents Of The University Of California | Isolated mevalonate pathway enzyme nucleic acids |
US7273735B2 (en) | 2002-10-04 | 2007-09-25 | Firmenich Sa | Sesquiterpene synthases and methods of use |
US8097442B2 (en) | 2003-08-11 | 2012-01-17 | Verenium Corporation | Laccases, nucleic acids encoding them and methods for making and using them |
WO2011060057A1 (en) | 2009-11-10 | 2011-05-19 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
US20110189717A1 (en) | 2009-11-10 | 2011-08-04 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
US20120107893A1 (en) | 2009-11-10 | 2012-05-03 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
US8512988B2 (en) | 2009-11-10 | 2013-08-20 | Massachusetts Institute Of Technology | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway |
US20120246767A1 (en) | 2010-10-29 | 2012-09-27 | Jean Davin Amick | Modified valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US20120164678A1 (en) | 2010-11-30 | 2012-06-28 | Massachusetts Institute Of Technology | Microbial production of natural sweeteners, diterpenoid steviol glycosides |
Non-Patent Citations (42)
Title |
---|
AJIKUMAR ET AL., SCIENCE, vol. 330, 2010, pages 70 - 74 |
AJIKUMAR P; TYO K; CARLSEN S: "Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms", MOL. PHARM. [INTERNET, vol. 5, no. 2, 2008, pages 167 - 90 |
AJIKUMAR PK; XIAO W-H; TYO KEJ; WANG Y; SIMEON F; LEONARD E ET AL.: "Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli", SCIENCE [INTERNET, vol. 330, no. 6000, 1 October 2010 (2010-10-01), pages 70 - 4 |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410 |
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
BAR-EVEN A; NOOR E; SAVIR Y; LIEBERMEISTER W; DAVIDI D; TAWFIK DS ET AL.: "The Moderately Efficient Enzyme : Evolutionary and Physicochemical Trends Shaping Enzyme Parameters", BIOCHEMISTRY, 2011 |
BELL SG; CHEN X; SOWDEN RJ; XU F; WILLIAMS JN; WONG L ET AL.: "Molecular Recognition in (+)-r-Pinene Oxidation by Cytochrome P450cam", J. AM. CHEM. SOC., vol. 125, 2003, pages 705 - 14 |
BM- P; SOWDEN RJ; YASMIN S; REES NH; BELL SG; WONG L, BIOTRANSFORMATION OF THE SESQUITERPENE (+)-VALENCENE BY CYTOCHROME P450, 2005, pages 57 - 64 |
BRANDLE JE; RICHMAN A; SWANSON AK; CHAPMAN BP: "Leaf Ests from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis", PLANT MOL. BIOL. [INTERNET, vol. 50, no. 4-5, November 2002 (2002-11-01), pages 613 - 22 |
BRUDNO M., BIOINFORMATICS, vol. 19, no. 1, 2003, pages 154 - 162 |
CANKAR K; VAN HOUWELINGEN A; BOSCH D; SONKE T; BOUWMEESTER H; BEEKWILDER J: "A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene", FEBS LETT. [INTERNET]. FEDERATION OF EUROPEAN BIOCHEMICAL SOCIETIES, vol. 585, no. 1, 3 January 2011 (2011-01-03), pages 178 - 82 |
CHEN MMY; SNOW CD; VIZCARRA CL; MAYO SL; ARNOLD FH: "Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes", PROTEIN ENG. DES. SEL. [INTERNET, vol. 25, no. 4, April 2012 (2012-04-01), pages 171 - 8 |
DAI M; FISHER HE; TEMIROV J; KISS C; PHIPPS ME; PAVLIK P ET AL.: "The creation of a novel fluorescent protein by guided consensus engineering", PROTEIN ENG. DES. SEL. [INTERNET]., vol. 20, no. 2, February 2007 (2007-02-01), pages 69 - 79 |
DEVORE N.M.; SCOTT E.E., NATURE, vol. 482, 2012, pages 116 - 119 |
EKROOS M; SJOGREN T: "Structural basis for ligand promiscuity in cytochrome P450 3A4", PROC. NATL. ACAD. SCI. U. S. A. [INTERNET, vol. 103, no. 37, 12 September 2006 (2006-09-12), pages 13682 - 7 |
FRAATZ M A.; RIEMER SJL; STOBER R; KASPERA R; NIMTZ M; BERGER RG ET AL.: "A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone", J. MOL. CATAL. B ENZYM. [INTERNET, vol. 61, no. 3-4, December 2009 (2009-12-01), pages 202 - 7 |
GIRHARD M; MACHIDA K; ITOH M; SCHMID RD; ARISAWA A; URLACHER VB: "Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system", MICROB. CELL FACT. [INTERNET, vol. 8, no. 4, January 2009 (2009-01-01), pages 36 |
GOTOH 0., J. BIOL CHEM, vol. 267, 1992, pages 83 - 90 |
HARFORD-CROSS CF; CARMICHAEL A B; ALLAN FK; ENGLAND P A; ROUCH D A; WONG LL: "Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons", PROTEIN ENG. [INTERNET, vol. 13, no. 2, February 2000 (2000-02-01), pages 121 - 8 |
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877 |
KASPERA R; KRINGS U; NANZAD T; BERGER RG: "Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum", APPL. MICROBIOL. BIOTECHNOL. [INTERNET, vol. 67, no. 4, June 2005 (2005-06-01), pages 477 - 83 |
KRIIGENER S; KRINGS U; ZORN H; BERGER RG: "Bioresour. Technol. [Internet", vol. 101, January 2010, ELSEVIER LTD, article "A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation", pages: 457 - 62 |
LEHMANN M; PASAMONTES L; LASSEN SF; WYSS M: "The consensus concept for thermostability engineering of proteins", BIOCHIM. BIOPHYS. ACTA [INTERNET, vol. 1543, no. 2, 29 December 2000 (2000-12-29), pages 408 - 15 |
LICKER ET AL., PHYTOCHEMISTRY, vol. 65, 2004, pages 2649 - 2659 |
LUTHRA, A.; GREGORY, M.; GRINKOVA, Y. V.; DENISOV, 1. G.; SLIGAR, S. G.: "Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes", METHODS MOL. BIOL., vol. 987, 2013, pages 115 - 127 |
MCDOUGLE DR; PALARIA A; MAGNETTA E; MELING DD; DAS A, FUNCTIONAL STUDIES OF N-TERMINALLY MODIFIED CYP2J2 EPOXYGENASE IN MODEL LIPID BILAYERS, PROTEIN SCI., vol. 22, 2013, pages 964 - 79 |
MORRONE D; CHEN X; COATES RM; PETERS RJ: "Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis", BIOCHEM. J. [INTERNET, vol. 431, no. 3, 1 November 2010 (2010-11-01), pages 337 - 44 |
MUTALIK, NATURE METHODS, vol. 4, no. 10, 2013, pages 354 |
NATURE, vol. 482, 2012, pages 116 - 119 |
PLEISS J.: "Protein design in metabolic engineering and synthetic biology", CURR. OPIN. BIOTECHNOL. [INTERNET, vol. 22, no. 5, October 2011 (2011-10-01), pages 611 - 7 |
QUALLEY A; DUDAREVA N.: "Encycl. Life Sci.", 2010, article "Plant Volatiles", pages: 1 - 9 |
RO D-K; PARADISE EM; OUELLET M; FISHER KJ; NEWMAN KL; NDUNGU JM ET AL.: "Production of the antimalarial drug precursor artemisinic acid in engineered yeast", NATURE [INTERNET, vol. 440, no. 7086, 13 April 2006 (2006-04-13), pages 940 - 3 |
SEVRIOUKOVA IF; LI H; ZHANG H; PETERSON J A; POULOS TL: "Structure of a cytochrome P450-redox partner electron-transfer complex", PROC. NATL. ACAD. SCI. U. S. A. [INTERNET, vol. 96, no. 5, 2 March 1999 (1999-03-02), pages 1863 - 8 |
SEVRIOUKOVA IF; POULOS TL: "Arch. Biochem. Biophys. [Internet", vol. 507, 1 March 2011, ELSEVIER INC., article "Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system", pages: 66 - 74 |
SOWDEN R; YASMIN S; REES N; BELL SG; WONG L-L: "Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3", ORG. BIOMOL. CHEM. [INTERNET, vol. 3, 2005, pages 57 - 64 |
STJERNSCHANTZ E; VAN VUGT-LUSSENBURG BM A; BONIFACIO A; DE BEER SB A; VAN DER ZWAN G; GOOIJER C ET AL.: "Structural rationalization of novel drug metabolizing mutants of cytochrome P450 BM3", PROTEINS [INTERNET, vol. 71, no. 1, April 2008 (2008-04-01), pages 336 - 52 |
TAKAHASHI S; YEO Y-S; ZHAO Y; O'MAILLE PE; GREENHAGEN BT; NOEL JP ET AL.: "Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates", J. BIOL. CHEM. [INTERNET, vol. 282, no. 43, 26 October 2007 (2007-10-26), pages 31744 - 54 |
THOMPSON, J. D.; HIGGINS, D. G.; GIBSON, T. J., NUCLEIC ACIDS RES., vol. 22, 1994, pages 4673 - 80 |
TROTT 0; OLSON A: "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading", J. COMPUT. CHEM. [INTERNET, vol. 31, no. 2, 2010, pages 455 - 61.1 |
VAZQUEZ-FIGUEROA E; YEH V; BROERING JM; CHAPARRO-RIGGERS JF; BOMMARIUS AS: "Thermostable variants constructed via the structure-guided consensus method also show increased stability in salts solutions and homogeneous aqueous-organic media", PROTEIN ENG. DES. SEL. [INTERNET, vol. 21, no. 11, November 2008 (2008-11-01), pages 673 - 80 |
ZHANG Z; SIBBESEN O: "The substrate specificity of cytochrome P450 cam", BIOORGANIC MED.... [INTERNET, vol. 6, 1998, pages 1501 - 8 |
ZORN H; FRAATZ MA; RIEMER SJL; TAKENBERG M, ENZYMATIC SYNTHESIS OF NOOTKATONE, 2010 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11180782B2 (en) | 2014-08-21 | 2021-11-23 | Givaudan Sa | Methods for production of oxygenated terpenes |
US11807890B2 (en) | 2014-08-21 | 2023-11-07 | Givaudan Sa | Methods for production of oxygenated terpenes |
US10501760B2 (en) | 2014-08-21 | 2019-12-10 | Givaudan Sa | Methods for production of oxygenated terpenes |
EP3337893A4 (en) * | 2015-08-21 | 2019-01-02 | Manus Biosynthesis, Inc. | Increasing productivity of e. coli host cells that functionally express p450 enzymes |
WO2017034942A1 (en) * | 2015-08-21 | 2017-03-02 | Manus Biosynthesis, Inc. | Increasing productivity of e. coli host cells that functionally express p450 enzymes |
US10774314B2 (en) | 2015-08-21 | 2020-09-15 | Manus Bio Inc. | Increasing productivity of E. coli host cells that functionally express P450 enzymes |
WO2019059337A1 (ja) * | 2017-09-22 | 2019-03-28 | 味の素株式会社 | ヌートカトンの製造方法 |
WO2019169027A3 (en) * | 2018-02-27 | 2019-10-03 | Manus Bio, Inc. | Microbial production of triterpenoids including mogrosides |
CN112041457A (zh) * | 2018-02-27 | 2020-12-04 | 马努斯生物合成股份有限公司 | 包括罗汉果苷在内的三萜类化合物的微生物产生 |
WO2019194287A1 (ja) | 2018-04-06 | 2019-10-10 | 味の素株式会社 | 13-ヒドロキシ-9(z)-オクタデセン酸の製造方法 |
WO2022090402A1 (en) | 2020-10-30 | 2022-05-05 | Givaudan Sa | Method of causing conversion of volatile terpene species |
WO2022090464A1 (en) | 2020-10-30 | 2022-05-05 | Givaudan Sa | Method of mitigating conversion of volatile terpene species |
US11932587B2 (en) | 2020-10-30 | 2024-03-19 | Givaudan Sa | Method of causing conversion of volatile terpene species |
CN114181964A (zh) * | 2021-11-02 | 2022-03-15 | 云南大学 | 一种表达盒组合、重组载体和重组酿酒酵母及其应用 |
Also Published As
Publication number | Publication date |
---|---|
WO2016029187A3 (en) | 2016-05-06 |
US11952608B2 (en) | 2024-04-09 |
US11180782B2 (en) | 2021-11-23 |
CN107002109A (zh) | 2017-08-01 |
EP3183357B1 (en) | 2020-03-04 |
US20200224224A1 (en) | 2020-07-16 |
US11807890B2 (en) | 2023-11-07 |
EP3183353A2 (en) | 2017-06-28 |
JP2017525395A (ja) | 2017-09-07 |
JP6735750B2 (ja) | 2020-08-05 |
US20240141392A1 (en) | 2024-05-02 |
MY185817A (en) | 2021-06-10 |
US20180135081A1 (en) | 2018-05-17 |
US10501760B2 (en) | 2019-12-10 |
US20220073955A1 (en) | 2022-03-10 |
US20210292798A1 (en) | 2021-09-23 |
WO2016029153A1 (en) | 2016-02-25 |
EP3183357A1 (en) | 2017-06-28 |
US20180327789A1 (en) | 2018-11-15 |
EP3183357A4 (en) | 2018-07-04 |
SG11201701278RA (en) | 2017-03-30 |
US10934564B2 (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11807890B2 (en) | Methods for production of oxygenated terpenes | |
US10633675B2 (en) | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway | |
KR102656420B1 (ko) | 터페노이드 생성물의 미생물 생산을 위한 대사 조작 | |
EP2773751B1 (en) | Cytochrome p450 and use thereof for the enzymatic oxidation of terpenes | |
US11130972B2 (en) | Method for producing fragrant alcohols | |
JP2020114230A (ja) | テルペン又はテルペノイドを産生する方法 | |
Wu et al. | Establishment of strigolactone-producing bacterium-yeast consortium | |
Polichuk et al. | A glandular trichome-specific monoterpene alcohol dehydrogenase from Artemisia annua | |
Moniodis et al. | The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum) | |
JP2022500018A (ja) | ロタンドンの微生物生成 | |
Ajikumar et al. | Microbial engineering for the production of chemical and pharmaceutical products from the isoprenoid pathway | |
Khalid et al. | Development of a terpenoid-production platform in Streptomyces reveromyceticus SN-593 | |
Suenaga-Hiromori et al. | Comprehensive identification of terpene synthase genes and organ-dependent accumulation of terpenoid volatiles in a traditional medicinal plant Angelica archangelica L. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15757404 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015757404 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015757404 Country of ref document: EP Ref document number: 15505022 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |