WO2016027741A1 - 発振装置及び発振装置の製造方法 - Google Patents

発振装置及び発振装置の製造方法 Download PDF

Info

Publication number
WO2016027741A1
WO2016027741A1 PCT/JP2015/072838 JP2015072838W WO2016027741A1 WO 2016027741 A1 WO2016027741 A1 WO 2016027741A1 JP 2015072838 W JP2015072838 W JP 2015072838W WO 2016027741 A1 WO2016027741 A1 WO 2016027741A1
Authority
WO
WIPO (PCT)
Prior art keywords
oscillation
frequency
elapsed time
unit
setting value
Prior art date
Application number
PCT/JP2015/072838
Other languages
English (en)
French (fr)
Inventor
古幡司
Original Assignee
日本電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電波工業株式会社 filed Critical 日本電波工業株式会社
Priority to CN201580044532.8A priority Critical patent/CN106797198B/zh
Priority to US15/505,109 priority patent/US10447205B2/en
Publication of WO2016027741A1 publication Critical patent/WO2016027741A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/027Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using frequency conversion means which is variable with temperature, e.g. mixer, frequency divider, pulse add/substract logic circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/028Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only of generators comprising piezoelectric resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop

Definitions

  • the present invention relates to an OCXO (Oven Controlled Crystal Oscillator) type oscillation device that stabilizes the temperature of an atmosphere in which a piezoelectric vibrator is placed by a heating unit.
  • OCXO Organic Controlled Crystal Oscillator
  • OCXO when high frequency stability is required, such as a mobile phone base station, OCXO as shown in Patent Document 1, for example, is used as most oscillators.
  • the OCXO is a piezoelectric vibrator that outputs an oscillation frequency.
  • the temperature of the atmosphere in which the crystal vibrator is placed is made constant by the heating unit, so the oscillation frequency is stable.
  • the output frequency of the oscillation device may change over time due to a change in mass caused by adhesion of substances contained in the atmosphere to the piezoelectric vibrator.
  • the aging deterioration of the oscillation frequency in the market has been suppressed by sufficiently aging the piezoelectric vibrator before shipping the product.
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a technique capable of suppressing a secular change in oscillation frequency and obtaining a stable oscillation output in an oscillation device using a piezoelectric vibrator. It is in.
  • the oscillation device of the present invention uses a piezoelectric vibrator, and in an oscillation device that can obtain an oscillation output based on a frequency setting value, Created based on the result of acquiring the correspondence relationship between the oscillation frequency and the elapsed time from the start of oscillation of the piezoelectric vibrator to the preset elapsed time, and including after the preset elapsed time
  • a storage unit that stores prediction data corresponding to the correspondence relationship between the accumulated elapsed time of oscillation and the oscillation frequency;
  • a correction value calculation unit for obtaining a correction value of the frequency setting value;
  • an addition unit for adding the correction value obtained by the correction value calculation unit and the frequency setting value to obtain a corrected frequency setting value.
  • Another invention is a method of manufacturing an oscillation device that uses a piezoelectric vibrator and obtains an oscillation output based on a frequency setting value.
  • the step of obtaining data corresponding to the correspondence between the accumulated elapsed time of oscillation after the preset elapsed time and the oscillation frequency and storing it in the storage unit The prediction data stored in the storage unit is corrected by obtaining a correction value of the frequency setting value based on the prediction data and the accumulated elapsed time of oscillation, and adding the obtained correction value and the frequency setting value. It is used for obtaining a subsequent frequency setting value.
  • the present invention acquires the correspondence relationship between the oscillation frequency and the elapsed time at the initial time after the oscillation start of the piezoelectric vibrator, and based on the acquisition result, the accumulated elapsed time and oscillation frequency of the oscillation after the oscillation start thereafter Prediction data corresponding to the correspondence relationship is obtained, and the frequency setting value is corrected based on the accumulated elapsed time of oscillation and the prediction data. Therefore, the secular change of the oscillation frequency is suppressed, and a stable oscillation output can be obtained.
  • FIG. 1 is a block diagram showing an outline of an embodiment of the oscillation device of the present invention.
  • the present invention is directed to an oscillating device that uses a piezoelectric vibrator, for example, a quartz vibrator, and that can obtain an oscillation output based on a frequency setting value.
  • reference numeral 9 denotes an oscillator that uses a crystal resonator and obtains an oscillation output according to an input frequency setting value.
  • the atmosphere in which the crystal resonator is placed by a heater 5 that is a heating unit is constant. Heating to temperature. Therefore, the oscillation device 1 including the oscillator 9 is an OCXO.
  • An example of the oscillator 9 includes a Colpitts circuit, for example, through which a control voltage of the Colpitts circuit is input via a variable capacitance diode.
  • the control voltage corresponds to a frequency setting value, and the output frequency of the oscillator 9 is adjusted according to the control voltage.
  • the oscillation frequency of the crystal resonator changes slightly after the start of oscillation (after the start of energization) according to the elapsed time.
  • the memory 68 which is a storage unit, has a relationship between the accumulated elapsed time of oscillation after the start of oscillation of the crystal unit and the frequency, for example, the accumulated elapsed time of oscillation and the oscillation frequency at that time relative to the oscillation frequency at the start of oscillation.
  • the data indicating the relationship between the rate of change (for example, the unit is ppb) and ppb is stored.
  • This frequency aging data is obtained by oscillating the crystal resonator for a short period, for example, for one month, detecting the oscillation frequency at a predetermined time interval, for example, for one hour, and accumulating elapsed time after the start of oscillation. And the oscillation frequency. Therefore, this data is prediction data.
  • an external computer 8 is connected to the oscillation device 1, the external computer 8 detects an oscillation frequency via a frequency detection unit (not shown), creates prediction data of frequency change over time, and transmits it to the memory 68 of the oscillation device 1. .
  • the correction value calculation unit 640 is based on the prediction data of the frequency aging change in the memory 68 and the accumulated elapsed time of the oscillation of the crystal resonator managed by the timer 66 that is a part of the time measurement unit. The frequency change rate corresponding to the accumulated elapsed time is read, and a correction value for the frequency setting value is obtained.
  • the correction value calculation unit 640, the timer 66, and the memory 68 correspond to the correction value output unit 6 shown in FIG. *
  • the relationship between the frequency change rate and the change in the oscillation output of the oscillation device 1 is grasped in advance, and the correction value calculation unit 640 corrects the frequency setting value based on this relationship and the read frequency change rate. You need to do it.
  • the obtained correction value is added to the frequency setting value by the adding unit 31, and the corrected frequency setting value is input to the oscillator 9.
  • the oscillation device is not limited to the above-described example, and a reference signal for the PLL circuit unit is created based on the frequency signal output from the DDS (Direct Digital Synthesizer), or the frequency concerned, as in the specific example described later.
  • a signal may be used as a reference signal of the PLL circuit unit, and an output of a voltage controlled oscillator (VCXO) provided in a loop including the PLL circuit unit may be used as an output of the oscillation device.
  • the DDS is driven by using the output of the oscillation circuit that oscillates the crystal resonator as a clock, and the input value for setting the output frequency of the DDS becomes the frequency setting value, thereby compensating for the change with time of the oscillation frequency of the crystal resonator. Therefore, a correction value is obtained, and this correction value is added to the frequency setting value.
  • a specific example of such an oscillation device will be described. *
  • FIG. 2 is an overall block diagram showing the embodiment of the oscillation device of the present invention more specifically.
  • This oscillating device includes a first crystal resonator 11 and a second crystal resonator 21, and the first crystal resonator 11 and the second crystal resonator 21 are, for example, a common strip-shaped crystal.
  • a piece 10 is used, and excitation electrodes 12 and 13 (22 and 23) are provided on both front and back surfaces of each divided region (vibration region).
  • a first oscillation circuit 14 and a second oscillation circuit 24 are connected to the first crystal unit 11 and the second crystal unit 21, respectively.
  • the outputs of the first and second oscillation circuits 14 and 24 are, for example, overtones (harmonics) of the first and second crystal units 11 and 21.
  • a signal corresponding to the difference between both frequencies is to be used as a temperature detection signal, and the first crystal resonator 11 and the second crystal resonator 21 are part of the temperature detection unit. be able to.
  • This temperature detection unit is used to control the power supplied to the heater 5 provided in the oscillation device 1 as will be described later.
  • the first crystal unit 11 and the first oscillation circuit 14 are used as a clock for the DDS 70.
  • the change with time of the oscillation frequency of the first crystal unit 11 is a problem, and this time change is commensurate.
  • the frequency correction value obtained is determined. *
  • reference numeral 3 denotes a frequency difference detection unit.
  • the frequency difference detection unit 3 can be roughly expressed as an oscillation frequency f ⁇ b> 1 of the first oscillation circuit 14 and an oscillation frequency f ⁇ b> 2 of the second oscillation circuit 24.
  • ⁇ fr is a difference between f1 (f1r) and f2 (f2r) at a reference temperature, for example, 25 ° C. Therefore, the frequency difference detection value is a value based on a frequency change due to a temperature change from the reference temperature, and can be said to be a temperature detection value.
  • an addition unit 53 is provided.
  • the adder 53 reads the temperature setting value and calculates the difference between the temperature setting value and the frequency difference detection value.
  • a loop filter 52 corresponding to an integrating circuit unit is provided after the adding unit 53.
  • a digital / analog (D / A) converter 51 is provided after the loop filter 52.
  • the D / A converter 51 inputs a DC voltage corresponding to the digital signal to the heater 5. Accordingly, the temperature of the atmosphere in which the first and second crystal resonators 11 and 21 are placed is controlled by the adder 53, the loop filter 52, the D / A converter 51, and the heater 5.
  • a PLL circuit unit 71 is connected to the subsequent stage of the DDS 70, and a voltage controlled oscillator 72 is connected to the PLL circuit unit 71.
  • the PLL circuit unit 71 integrates the frequency dividing circuit, the phase difference circuit that extracts the difference between the phase of the reference signal from the DDS 70 and the phase of the frequency signal from the frequency dividing circuit, and the phase difference signal extracted by the phase difference circuit.
  • the output of the voltage controlled oscillator 72 corresponds to the output of the oscillation device 1.
  • the DDS 70 receives a frequency setting value and outputs a frequency signal having a frequency corresponding to the frequency setting value.
  • the frequency setting value includes a temperature correction value that is a correction amount for compensating a change in frequency based on a temperature change of the first crystal resonator 11 and a change with time of the first crystal resonator 11.
  • the addition unit 31 adds a temporal change correction value, which is a correction amount for compensating for a change in frequency based on the frequency.
  • the temperature correction value is a frequency difference detection signal of the frequency difference detection unit 3, and a signal corresponding to the difference between the oscillation frequencies of the first oscillation circuit 14 and the second oscillation circuit 24 corresponds to the temperature. It is obtained based on the detection signal and the frequency temperature characteristic of the first crystal unit 11 (relationship between the temperature and the frequency change rate with respect to the frequency at the reference temperature).
  • a memory (not shown) in the external computer 8 corresponding to the external parameter setting unit shown in FIG. 3 has a frequency indicating a correspondence relationship between the accumulated elapsed time of oscillation after the oscillation of the first crystal unit 11 and the oscillation frequency.
  • Temporal change data (predicted data) is stored.
  • FIG. 4 shows an example of this data, where the horizontal axis is the accumulated elapsed time after the start of oscillation, and the vertical axis is the rate of change of the oscillation frequency at that time relative to the oscillation frequency at the start of oscillation.
  • the relationship between the accumulated elapsed time and the change rate of the oscillation frequency is approximated by equation (1).
  • Change rate of oscillation frequency A ⁇ (1-exp ( ⁇ t / ⁇ )) (1) equation
  • the aging saturation value A and the time coefficient ⁇ can be rewritten by the external computer 8.
  • the frequency change data is generated by the external computer 8 and sent to the memory 68.
  • the frequency detection unit 81 connected to the external computer 8 outside the oscillation device 1 is connected to the output side of the first oscillation circuit 14 via the connection terminal unit 15 and the interface 61 by the operator, and the external computer 8 is connected.
  • the correction calculation circuit 6 (correction value output unit) is connected via the terminal unit 62 and the interface 61. Then, the oscillation device 1 is driven, and the oscillation frequency of the first crystal unit 11 is sampled every hour for one month after the power is turned on (after the start of oscillation), for example. *
  • the system waits for 24 hours and then samples the oscillation frequency.
  • the frequency change data is represented as an exponential function in this example, an exponential function corresponding to the data of the time change including one month and after is predicted based on the data from the start of oscillation to one month.
  • the aging saturation value A and the time coefficient ⁇ in the equation (1) are obtained, and the obtained data is transmitted to the memory 68 of the oscillation device 1.
  • the aging saturation value A is, for example, 10 ppb
  • the time constant ⁇ is set to 1440 hours.
  • the first crystal unit 11 is oscillated for one month (720 hours) in order to obtain frequency change data.
  • the accumulated elapsed time of 720 hours is stored in the memory 68 of the oscillation device 1. *
  • the correction value output unit 6 includes a timer 66 that also serves as a time measurement unit that measures the accumulated time of oscillation after the first crystal oscillator 11 starts oscillating, and a time-dependent change correction value.
  • An aging correction program 64 corresponding to a correction value calculation unit and a CPU 63 for executing the program 64 are provided, and a bus 60 is connected to a memory 68.
  • the frequency change data is acquired by the external computer 8
  • the accumulated elapsed time of the oscillation of the first crystal unit 11 is counted. Is turned off, the accumulated elapsed time of 720 hours is written into the memory 68. *
  • the timer 66 counts the output frequency of the first oscillation circuit 14 as a clock, outputs a aging correction value, and then counts up when a number of clocks corresponding to a set time, for example, 1 hour, is counted. Is output.
  • the program 64 calculates the frequency change rate of the first crystal unit 11 by substituting the accumulated elapsed time at that time into the above-described equation (1).
  • a time-dependent change correction value corresponding to the change rate is obtained and output to the adding unit 31.
  • the temporal change correction value corresponding to the frequency change rate can be obtained, for example, by multiplying the frequency change rate by a coefficient obtained in advance. *
  • step S0 when the user turns on the oscillation device 1 (step S0), the first and second oscillation circuits 14 and 24 oscillate, and the accumulated elapsed time of oscillation stored in the memory 68 as step S1 is read. It is. *
  • the accumulated elapsed time read out as described above is 720 hours (one month), and is based on this accumulated elapsed time and data corresponding to the expression (1) stored in the memory 68. Then, the frequency change rate of the first crystal unit 11 is calculated, a time-dependent change correction value corresponding to this frequency change rate is obtained (step S2), and output to the adder 31 to correct the frequency setting value (Ste S3).
  • the temperature compensation unit 30 always outputs a temperature correction value, and the temperature correction value is added to the frequency setting value, for example. Since the above equation (1) is an exponential function, the frequency change rate becomes substantially constant when the accumulated elapsed time becomes considerably long. Therefore, the accumulated elapsed time is determined in advance as the maximum time and stored as tmax in the memory 68. When the accumulated elapsed time exceeds tmax, the change with time is stopped. For this reason, step S4 is provided. *
  • the timer 66 is driven when the aging correction value is output in step S3, and counts up after 1 hour has elapsed, that is, when the determination step S5 becomes “YES”, a count-up signal is output. 1 is added to the accumulated elapsed time stored in the memory 68 (steps S6 and S7). Based on the accumulated elapsed time (721 hours) and the data corresponding to the expression (1) stored in the memory 68, the frequency change rate of the first crystal unit 11 is calculated, and this frequency change rate is supported. A time-dependent change correction value to be obtained is obtained and the frequency set value is similarly corrected (step S8). Thereafter, this operation is repeated, and the frequency set value is corrected every hour until the accumulated elapsed time reaches tmax. *
  • FIG. 6 shows the rate of change of the oscillation frequency when the change with time of the oscillation frequency of the first crystal unit 11 is not corrected, prediction data indicating the relationship between the oscillation frequency and the accumulated elapsed time, and the prediction data.
  • the change rate of the oscillation frequency when the change with time is corrected is shown as an image.
  • the correspondence between the oscillation frequency and the accumulated elapsed time at the initial time after the oscillation of the first crystal unit 11 is acquired is acquired, and the oscillation start including the subsequent is acquired based on the acquisition result.
  • Prediction data corresponding to the correspondence relationship between the accumulated elapsed time of the subsequent oscillation and the oscillation frequency is obtained, and the frequency setting value is corrected based on the accumulated elapsed time of oscillation and the predicted data. Therefore, the secular change of the oscillation frequency of the first crystal unit 11 is suppressed, and as a result, a stable oscillation output can be obtained from the oscillation device 1.
  • the formula (1) is used as the prediction data indicating the relationship between the accumulated elapsed time of oscillation after the start of oscillation and the oscillation frequency, but as the predicted data, the change rate of the accumulated elapsed time and the oscillation frequency is used.
  • the data associated with the numerical values may be stored in the memory 68 as a table, and in this specification, this also corresponds to calculating the correction value.
  • the accumulated elapsed time and the correction value of the change rate of the oscillation frequency are stored as a table in the memory 68, and even when the correction value is read out based on the accumulated elapsed time, the accumulated elapsed time of oscillation and the storage are stored. This corresponds to obtaining a correction value of the frequency setting value based on the prediction data stored in the unit.
  • the memory 68 when correcting the change rate of the oscillation frequency every hour, stores a correction value of the change rate of the oscillation frequency every 24 hours (one day), and the change rate of the oscillation frequency every 24 hours. The correction is performed by reading the correction value from the memory 68. Further, for the correction every hour, an interpolation value that interpolates between correction values every 24 hours stored in the memory 68 may be used. As a method for interpolating data, for example, a linear approximation method or a least square method can be used. This configuration has an advantage that the capacity of the memory 68 can be reduced. *
  • the formula used as the prediction data is not limited to the exponential function as shown in formula (1), but may be the sum of two formulas of exponential function as shown in formula (2).
  • Oscillation frequency change rate A1 ⁇ (1 ⁇ exp ( ⁇ t / ⁇ )) + A2 ⁇ (1 ⁇ exp ( ⁇ t / ⁇ )) (2)
  • exponential function as shown in equation (3)
  • Rate of change of oscillation frequency A ⁇ (1-exp ( ⁇ t / ⁇ )) + Bt (3)

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

 圧電振動子を用いた発振装置において、発振周波数の経年変化を抑え、安定した発振出力が得られる技術を提供すること。 水晶振動子を発振させて発振周波数を出力するOCXO1において、第1の水晶振動子11の発振開始後の初期時における発振周波数と経過時間との対応関係を取得し、取得結果に基づいてそれ以降における、発振開始後の発振の累積経過時間と発振周波数との対応関係に応じたデータを求め、発振の累積経過時間とこのデータとに基づいて周波数設定値を補正している。第1の水晶振動子11の出力周波数は、経過時間に伴い変動するが、累積経過時間に応じた周波数補正値により補正されるため、発振周波数が安定する。

Description

発振装置及び発振装置の製造方法
 本発明は、加熱部により圧電振動子が置かれる雰囲気の温度を安定化させる、OCXO(Oven Controlled Crystal Oscillator)タイプの発振装置に関する。
 例えば携帯電話の基地局など、高い周波数安定性が求められる場合には、ほとんどの発振器として例えば特許文献1に示すようなOCXOが用いられている。OCXOは発振周波数を出力する圧電振動子である例えば水晶振動子が置かれる雰囲気の温度を加熱部により一定化しているため、発振周波数が安定している。 
 一方、発振装置における出力周波数は、圧電振動子に雰囲気中に含まれる物質が付着することによる質量変化などに起因して、その発振周波数が経年変化する場合がある。従来は、製品の出荷前に、圧電振動子に対して十分なエージングを行うことにより、市場における発振周波数の経年劣化を抑制していた。 
 ところで、通信業界や宇宙開発分野等では、更なる発振周波数の安定化が要求されている。そのためメーカ側で圧電振動子に対してエージングを行った時に例えば納期の制約などでそのエージングが不十分であった場合などには、発振周波数の経年劣化による変動が問題になる懸念がある。またメーカ側においてエージングに長い期間を要し、製品の速やかな流通に対して負担が大きくなる懸念もある。
  
特開2013-51676号公報
 本発明はこのような事情の下になされたものであり、その目的は、圧電振動子を用いた発振装置において、発振周波数の経年変化を抑え、安定した発振出力が得られる技術を提供することにある。
 本発明の発振装置は、圧電振動子を用い、周波数設定値に基づいて発振出力が得られる発振装置において、
 前記圧電振動子の発振開始後から予め設定した経過時間までの間における発振周波数と経過時間との対応関係を取得した結果に基づいて作成され、前記予め設定した経過時間以降を含む、発振開始後の発振の累積経過時間と発振周波数との対応関係に応じた予測データを記憶する記憶部と、
 圧電振動子の発振開始後の発振の累積経過時間を計測する時間計測部と、 前記時間計測部にて計測された発振の累積経過時間と前記記憶部に記憶されている予測データとに基づいて前記周波数設定値の補正値を求める補正値演算部と、
 前記補正値演算部にて求めた補正値と前記周波数設定値とを加算して補正後の周波数設定値を求める加算部と、を備えたことを特徴とする。 
 また他の発明は、圧電振動子を用い、周波数設定値に基づいて発振出力が得られる発振装置を製造する方法において、
 前記圧電振動子の発振開始後から予め設定した経過時間までの間において発振周波数と経過時間とを取得する工程と、
 この工程で取得した取得結果に基づいて、前記予め設定した経過時間以降における発振の累積経過時間と発振周波数との対応関係に応じたデータを求めて記憶部に記憶する工程と、を含み、
 前記記憶部に記憶されている予測データは、当該予測データと発振の累積経過時間とに基づいて前記周波数設定値の補正値を求め、求めた補正値と前記周波数設定値とを加算して補正後の周波数設定値を求めるために用いられるものであることを特徴とする。
 本発明は、圧電振動子の発振開始後の初期時における発振周波数と経過時間との対応関係を取得し、取得結果に基づいてそれ以降における、発振開始後の発振の累積経過時間と発振周波数との対応関係に応じた予測データを求め、発振の累積経過時間とこの予測データとに基づいて周波数設定値を補正している。従って、発振周波数の経年変化を抑え、安定した発振出力が得られる。
本発明の実施の形態に係る発振装置の概要を示すブロック図である。 本発明の実施の形態に係る発振装置の具体例を示すブロック図である。 本発明の実施の形態に係るOCXO(発振装置)の補正値出力部を示すブロック図である。 第1の水晶振動子の発振周波数の経時変化を示す特性図である。 本発明の実施の形態に係るOCXOの作用を説明するチャート図である。 本発明の実施の形態に係るOCXOの出力周波数の経時変化を示す特性図である。
 [実施形態の概略的な説明]
 図1は本発明の発振装置の実施形態の概要を示すブロック図である。本発明は、圧電振動子例えば水晶振動子を用い、周波数設定値に基づいて発振出力が得られる発振装置を対象としている。図1中、9は水晶振動子を用い、入力される周波数設定値に応じて発振出力を得る発振器を示しており、加熱部であるヒータ5により水晶振動子が置かれている雰囲気を一定の温度に加熱している。従ってこの発振器9を含む発振装置1は、OCXOである。 
 発振器9の一例としては、例えばコルピッツ回路からなり、可変容量ダイオードを介して当該コルピッツ回路の制御電圧が入力されるものを挙げることができる。この場合には、制御電圧は周波数設定値に相当し、制御電圧に応じて発振器9の出力周波数が調整される。ところで水晶振動子は、発振開始後(通電開始後)に経過時間に応じて発振周波数がわずかではあるが変化する。このため記憶部であるメモリ68には、水晶振動子の発振開始後の発振の累積経過時間と周波数との関係、例えば発振の累積経過時間と、発振開始時点の発振周波数に対するそのときの発振周波数の変化率(例えば単位がppbである)と、の関係を示すデータが記憶されている。 
 この周波数経時変化のデータは、水晶振動子を短期間、例えば1か月間発振させ、その1か月間において所定の時間間隔、例えば1時間間隔で発振周波数を検出し、発振開始後の累積経過時間と発振周波数とに基づいて作成される。従ってこのデータは予測データである。例えば外部コンピュータ8を発振装置1に接続し、この外部コンピュータ8が図示しない周波数検出部を介して発振周波数を検出して周波数経時変化の予測データを作成し、発振装置1のメモリ68に送信する。補正値演算部640は、メモリ68内の周波数経時変化の予測データと、時間計測部の一部であるタイマ66で管理されている水晶振動子の発振の累積経過時間と、に基づいて、当該累積経過時間に対応する周波数変化率を読み出し、周波数設定値に対する補正値を求める。なお、補正値演算部640、タイマ66及びメモリ68は後述の図2の補正値出力部6に相当する。 
 周波数変化率と発振装置1の発振出力の変化分との関係を事前に把握しておき、補正値演算部640においては、この関係と読み出した周波数変化率とに基づいて周波数設定値をどのくらい補正すればよいかが求められる。求めた補正値は、加算部31にて周波数設定値と加算され、補正後の周波数設定値が発振器9に入力されることになる。 
 発振装置としては上述の例に限られるものではなく、後述の具体例のように、DDS(Direct Digital Synthesizer)から出力される周波数信号に基づいてPLL回路部の参照信号を作成し、あるいは当該周波数信号をPLL回路部の参照信号とし、PLL回路部を含むループに設けられた電圧制御発振器(VCXO:Voltage Controlled Crystal Oscillator)の出力を発振装置の出力とするものを挙げることができる。この場合、水晶振動子を発振させる発振回路の出力をクロックとしてDDSを駆動し、DDSの出力周波数を設定するための入力値が周波数設定値となり、水晶振動子の発振周波数の経時変化を補償するために補正値を求めて、この補正値を周波数設定値に加算することになる。次にこのような発振装置の具体例について述べる。 
 [実施形態の具体例の詳細]
 図2は本発明の発振装置の実施形態をより具体的に示す全体ブロック図である。この発振装置は、第1の水晶振動子11及び第2の水晶振動子21を備えており、これら第1の水晶振動子11及び第2の水晶振動子21は、例えば共通の短冊状の水晶片10を用い、各分割領域(振動領域)の表裏両面に励振用の電極12、13(22、23)が設けられて構成されている。 
 第1の水晶振動子11及び第2の水晶振動子21には夫々第1の発振回路14及び第2の発振回路24が接続されている。これら第1及び第2の発振回路14、24の出力は、例えば第1及び第2の水晶振動子11、21のオーバートーン(高調波)である。この例では、両周波数の差分に相当する信号を温度検出信号として利用しようとするものであり、第1の水晶振動子11及び第2の水晶振動子21は温度検出部の一部であるということができる。この温度検出部は、後述のように発振装置1が備えるヒータ5の供給電力を制御するために用いられている。また第1の水晶振動子11及び第1の発振回路14は、DDS70のクロックとして使用され、この例では、第1の水晶振動子11の発振周波数の経時変化を問題として、この経時変化に見合った周波数補正値を求めることとしている。 
 先ず温度検出部及びヒータ5の制御回路部分について述べる。図2中、3は周波数差検出部であり、この周波数差検出部3は概略的な言い方をすれば、第1の発振回路14の発振周波数f1と第2の発振回路24の発振周波数f2との差分と、Δfrとの差分である、周波数差検出値f2-f1-Δfrを取り出すための回路部である。Δfrは、基準温度例えば25℃におけるf1(f1r)とf2(f2r)との差分である。従って周波数差検出値は、基準温度からの温度変化による周波数変化に基づく値であり、温度検出値といえる。
 周波数差検出部3の後段には、加算部53が設けられている。加算部53は温度設定値を読み出し、温度設定値と周波数差検出値との差分を演算する。図1に示すように加算部53の後段には積分回路部に相当するループフィルタ52が設けられている。更にループフィルタ52の後段には、ディジタル/アナログ(D/A)変換器51が設けられている。D/A変換器51は、ディジタル信号に応じた直流電圧をヒータ5に入力する。従って第1及び第2の水晶振動子11、21が置かれている雰囲気の温度は、加算部53、ループフィルタ52及びD/A変換器51及びヒータ5により制御される。
 次に図1に示す発振器9に相当する部分について説明する。図2中、DDS70の後段にはPLL回路部71が接続され、PLL回路部71には電圧制御発振器72が接続されている。PLL回路部71は分周回路と、DDS70からの参照信号の位相と分周回路からの周波数信号の位相との差分を取り出す位相差回路と、位相差回路で取り出された位相差信号を積分する回路部などと、を備え、PLLの一部を構成している。電圧制御発振器72の出力は、発振装置1の出力に相当する。DDS70は、周波数設定値が入力され、周波数設定値に応じた周波数の周波数信号を出力する。
 周波数設定値は、この例では、第1の水晶振動子11の温度変化に基づく周波数の変化分を補償するための補正量である温度補正値と、第1の水晶振動子11の経時変化に基づく周波数の変化分を補償するための補正量である経時変化補正値と、が加算部31にて加算される。温度補正値は、周波数差検出部3の周波数差検出信号である、第1の発振回路14及び第2の発振回路24の発振周波数の差に相当する信号が温度に対応することから、周波数差検出信号と第1の水晶振動子11の周波数温度特性(温度と基準温度における周波数に対する周波数の変化率との関係)とに基づいて求められる。
 経時変化補正値に関して説明する。図3に示す外部のパラメータ設定部に相当する外部コンピュータ8内の図示しないメモリには、第1の水晶振動子11の発振開始後の発振の累積経過時間と発振周波数との対応関係を示す周波数経時変化のデータ(予測データ)が記憶されている。図4にはこのデータの一例が示されており、横軸は発振開始後の累積経過時間であり、縦軸は発振開始時点の発振周波数に対するそのときの発振周波数の変化率である。累積経過時間と発振周波数の変化率との関係は、(1)式で近似される。
発振周波数の変化率=A×(1-exp(-t/τ))・・・(1)式 
 この(1)式における、エージング飽和値Aと時係数τとは、外部コンピュータ8により書き換え可能になっている。即ち、この例では周波数経時変化のデータは、外部コンピュータ8により作成されてメモリ68に送られる。このデータの作成について説明する。発振装置1の外部にて外部コンピュータ8に接続された周波数検出部81をオペレータにより接続端子部15及びインターフェイス61を介して第1の発振回路14の出力側に接続すると共に、外部コンピュータ8を接続端子部62及びインターフェイス61を介して補正演算回路6(補正値出力部)と接続する。そして発振装置1を駆動させて、第1の水晶振動子11の発振周波数を例えば電源投入後(発振開始後)1か月の間において1時間ごとにサンプリングする。 
 なお、電源開始後しばらくの間は、発振周波数が不安定になる場合があることから、例えば24時間経過後まで待機し、それ以降に発振周波数のサンプリングを行う。周波数経時変化のデータは、この例では指数関数として表されるので、発振開始から1か月までのデータに基づいて、1か月以降も含む経時変化のデータに相当する指数関数を予測して求める。具体的には、(1)式のエージング飽和値Aと時係数τとを求め、求められたデータが発振装置1のメモリ68に送信される。一例を挙げるとエージング飽和値Aは例えば10ppbであり、時定数τは1440時間と設定される。この例では周波数経時変化のデータを求めるために第1の水晶振動子11を1か月間(720時間)発振させている。この720時間という累積経過時間は、発振装置1のメモリ68に記憶される。 
 補正値出力部6は、図3に示すように第1の水晶振動子11の発振開始後の発振の累積時間の計測する時間計測部を兼用するタイマ66と、経時変化補正値を求めるための補正値演算部に相当するエージング補正プログラム64と、プログラム64を実行するためのCPU63とを備え、バス60がメモリ68に接続されている。既述のように、外部コンピュータ8により周波数経時変化のデータを取得している間、第1の水晶振動子11の発振の累積経過時間がカウントされ、外部コンピュータ8によるデータ取得作業を終えて電源をオフにするときには、累積経過時間である720時間がメモリ68に書き込まれる。 
 タイマ66は例えば、第1の発振回路14の出力周波数をクロックとしてカウントし、経時変化補正値を出力した後、設定時間例えば1時間に相当する数のクロックをカウントするとカウントアップしてカウントアップ信号を出力する。プログラム64は、タイマ66からのカウントアップ信号に基づいて、そのときの累積経過時間を既述の(1)式に代入して第1の水晶振動子11の周波数変化率を算出し、この周波数変化率に対応する経時変化補正値を求めて加算部31に出力する。周波数変化率に対応する経時変化補正値は、例えば周波数変化率に事前に求めた係数を掛けることにより得られる。 
 続いて上述実施形態の作用について図5のフローチャートを参照しながら説明する。発振装置1の補正値出力部6のメモリ68には、既に例えばメーカ側にて(1)式が求められて記憶されているものとする。そして例えばユーザ側で発振装置1の電源を入れると(ステップS0)、第1及び第2の発振回路14、24が発振すると共に、ステップS1としてメモリ68に記憶された発振の累積経過時間が読み出される。 
 この例では、既述のように読み出された累積経過時間は720時間(1か月)であり、この累積経過時間とメモリ68に記憶されている(1)式に相当するデータとに基づいて、第1の水晶振動子11の周波数変化率を算出し、この周波数変化率に対応する経時変化補正値を求めて(ステップS2)、加算部31に出力し、周波数設定値を補正する(ステップS3)。なお、温度補償部30からは、常時温度補正値が出力されていて周波数設定値に温度補正値が例えば加算されている。上記の(1)式は指数関数であることから、累積経過時間がかなり長くなると、周波数変化率はほぼ一定になる。そこでその累積経過時間を最大時間として事前に決めておいてメモリ68にtmaxとして記憶させ、累積経過時間がtmaxを越えると、経時変化補正を停止する。このためステップS4が設けられている。 
 一方タイマ66は、ステップS3にて経時変化補正値を出力したときに駆動され、1時間経過してカウントアップすると、即ち判断ステップS5にて「YES」になると、カウントアップ信号が出力され、これによりメモリ68に記憶されている累積経過時間に1時間が加えられる(ステップS6、S7)。そして累積経過時間(721時間)とメモリ68に記憶されている(1)式に相当するデータとに基づいて、第1の水晶振動子11の周波数変化率を算出し、この周波数変化率に対応する経時変化補正値を求めて同様に、周波数設定値を補正する(ステップS8)。以後この動作が繰り返され、累積経過時間がtmaxになるまで、1時間おきに周波数設定値が補正される。 
 図6は、第1の水晶振動子11の発振周波数の経時変化を補正しない場合の当該発振周波数の変化率と、発振周波数と累積経過時間との関係を示す予測データと、この予測データを用いて経時変化の補正を行った場合の発振周波数の変化率と、をイメージとして示すものである。 
 上述の実施の形態によれば、第1の水晶振動子11の発振開始後の初期時における発振周波数と累積経過時間との対応関係を取得し、取得結果に基づいてそれ以降を含む、発振開始後の発振の累積経過時間と発振周波数との対応関係に応じた予測データを求め、発振の累積経過時間とこの予測データとに基づいて周波数設定値を補正している。従って、第1の水晶振動子11の発振周波数の経年変化を抑え、結果として発振装置1から安定した発振出力が得られる。 
 上述の例では、発振開始後の発振の累積経過時間と発振周波数との関係を示す予測データとして(1)式が用いられているが、予測データとしては、累積経過時間と発振周波数の変化率の数値とを対応付けたデータをメモリ68にテーブルとして記憶させておいてもよく、本願明細書ではこの場合も補正値を演算することに相当する。また、メモリ68に累積経過時間と発振周波数の変化率の補正値とがテーブルとして記憶されており、累積経過時間に基づいて補正値を読み出す場合であっても、発振の累積経過時間と前記記憶部に記憶されている予測データとに基づいて前記周波数設定値の補正値を求めることに相当する。 
 また発振周波数の変化率の補正を例えば1時間ごとに行うにあたって、メモリ68には24時間(1日)ごとの発振周波数の変化率の補正値を記憶し、24時間ごとの発振周波数の変化率の補正については、メモリ68から補正値を読み出して補正を行う。また1時間ごとの補正については、メモリ68に記憶されている24時間ごとの補正値の間を補間する補間値を用いてもよい。データを補間する手法としては、例えば直線近似法や最小二乗法を用いることができる。このように構成すればメモリ68の容量が少なくて済む利点がある。 
 さらに予測データとして用いる式は(1)式で示したような指数関数に限らず、(2)式に示すような指数関数2式の合算としてもよく、
発振周波数の変化率=A1×(1-exp(-t/τ))+A2×(1-exp(-t/τ))・・・(2)式
更に(3)式に示すような指数関数と一次式との合算でもよい。
発振周波数の変化率=A×(1-exp(-t/τ))+Bt・・・(3)式
1        発振装置
11       第1の水晶振動子
14       第1の発振回路
21       第2の水晶振動子
24       第2の発振回路
31       加算部
5        加熱部
6        補正値出力部
66       タイマ
68       メモリ
8        外部コンピュータ
9        発振器
70       DDS回路部

Claims (4)

  1.  圧電振動子を用い、周波数設定値に基づいて発振出力が得られる発振装置において、 前記圧電振動子の発振開始後から予め設定した経過時間までの間における発振周波数と経過時間との対応関係を取得した結果に基づいて作成され、前記予め設定した経過時間以降を含む、発振開始後の発振の累積経過時間と発振周波数との対応関係に応じた予測データを記憶する記憶部と、
     圧電振動子の発振開始後の発振の累積経過時間を計測する時間計測部と、
     前記時間計測部にて計測された発振の累積経過時間と前記記憶部に記憶されている予測データとに基づいて前記周波数設定値の補正値を求める補正値演算部と、
     前記補正値演算部にて求めた補正値と前記周波数設定値とを加算して補正後の周波数設定値を求める加算部と、を備えたことを特徴とする発振装置。
  2.  前記圧電振動子は水晶振動子であり、累積経過時間と発振周波数との関係は、指数関数であることを特徴とする請求項1に記載の発振装置。
  3.  電圧制御発振部を含むPLL回路部と、前記周波数設定値が入力されることにより当該周波数設定値に応じた、前記PLL回路部の参照用の周波数信号を出力するDDSと、を備え、
     前記圧電振動子は前記DDSの動作クロックとして用いられることを特徴とする請求項1または2に記載の発振装置。
  4.  圧電振動子を用い、周波数設定値に基づいて発振出力が得られる発振装置を製造する方法において、
     前記圧電振動子の発振開始後から予め設定した経過時間までの間において発振周波数と経過時間とを取得する工程と、
     この工程で取得した取得結果に基づいて、前記予め設定した経過時間以降を含む、発振の累積経過時間と発振周波数との対応関係に応じた予測データを求めて記憶部に記憶する工程と、を含み、
     前記記憶部に記憶されている予測データは、当該予測データと発振の累積経過時間とに基づいて前記周波数設定値の補正値を求め、求めた補正値と前記周波数設定値とを加算して補正後の周波数設定値を求めるために用いられるものであることを特徴とする発振装置の製造方法。
PCT/JP2015/072838 2014-08-20 2015-08-12 発振装置及び発振装置の製造方法 WO2016027741A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580044532.8A CN106797198B (zh) 2014-08-20 2015-08-12 振荡装置及振荡装置的制造方法
US15/505,109 US10447205B2 (en) 2014-08-20 2015-08-12 Oscillation device and method for manufacturing the oscillation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014167673A JP6089011B2 (ja) 2014-08-20 2014-08-20 発振装置及び発振装置の製造方法
JP2014-167673 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027741A1 true WO2016027741A1 (ja) 2016-02-25

Family

ID=55350686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072838 WO2016027741A1 (ja) 2014-08-20 2015-08-12 発振装置及び発振装置の製造方法

Country Status (4)

Country Link
US (1) US10447205B2 (ja)
JP (1) JP6089011B2 (ja)
CN (1) CN106797198B (ja)
WO (1) WO2016027741A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117119B2 (ja) 2018-03-26 2022-08-12 日本電波工業株式会社 発振装置
EP4007161A1 (en) * 2020-11-30 2022-06-01 Huawei Technologies Co., Ltd. Clock oscillator and method for preparing clock oscillator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282118A (ja) * 2003-03-12 2004-10-07 Nec Corp 周波数補正方法、装置、および移動端末
JP2009290380A (ja) * 2008-05-27 2009-12-10 Kyocera Kinseki Corp 発振器
JP2013051677A (ja) * 2011-08-01 2013-03-14 Nippon Dempa Kogyo Co Ltd 水晶発振器
JP2014059167A (ja) * 2012-09-14 2014-04-03 Lapis Semiconductor Co Ltd 半導体装置および計測装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659884A (en) * 1995-02-10 1997-08-19 Matsushita Communication Industrial Corp. Of America System with automatic compensation for aging and temperature of a crystal oscillator
US6933788B2 (en) * 2001-05-16 2005-08-23 Kyocera Wireless Corp. Reference oscillator
JP2003168927A (ja) * 2001-12-03 2003-06-13 Nippon Dempa Kogyo Co Ltd Cpu制御の水晶発振器
US7015762B1 (en) * 2004-08-19 2006-03-21 Nortel Networks Limited Reference timing signal apparatus and method
JP2006186839A (ja) * 2004-12-28 2006-07-13 Kyocera Kinseki Corp 水晶振動子の支持構造
CN1750399B (zh) * 2005-11-03 2010-05-05 北京天碁科技有限公司 一种修正时钟源老化的方法和装置
US7692499B2 (en) * 2007-12-31 2010-04-06 Integrated Device Technology, Inc. Digitally compensated highly stable holdover clock generation techniques using adaptive filtering
CN101534119B (zh) * 2008-03-12 2012-07-25 泰艺电子股份有限公司 振荡器电路装置的老化补偿校正方法、控制模组及其装置
TWI473418B (zh) * 2011-02-28 2015-02-11 Nihon Dempa Kogyo Co 振盪裝置
US8729978B2 (en) * 2011-08-01 2014-05-20 Nihon Dempa Kogyo Co., Ltd. Quartz-crystal controlled oscillator
JP5946737B2 (ja) * 2012-09-27 2016-07-06 日本電波工業株式会社 発振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282118A (ja) * 2003-03-12 2004-10-07 Nec Corp 周波数補正方法、装置、および移動端末
JP2009290380A (ja) * 2008-05-27 2009-12-10 Kyocera Kinseki Corp 発振器
JP2013051677A (ja) * 2011-08-01 2013-03-14 Nippon Dempa Kogyo Co Ltd 水晶発振器
JP2014059167A (ja) * 2012-09-14 2014-04-03 Lapis Semiconductor Co Ltd 半導体装置および計測装置

Also Published As

Publication number Publication date
US20190158023A1 (en) 2019-05-23
CN106797198B (zh) 2020-02-28
JP2016046582A (ja) 2016-04-04
JP6089011B2 (ja) 2017-03-01
US10447205B2 (en) 2019-10-15
CN106797198A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
TWI473418B (zh) 振盪裝置
JP5893924B2 (ja) 発振装置
JP6092540B2 (ja) 水晶発振器
JP6177614B2 (ja) 発振装置
JP5782724B2 (ja) 発振装置
JP5946737B2 (ja) 発振装置
JP4524326B2 (ja) 水晶発振器
TWI533594B (zh) 振盪裝置
JP2013232836A (ja) 発振装置
JP6548411B2 (ja) 発振装置
JP5931152B2 (ja) 温度補正機能付きタイミング信号発生器
JP6089011B2 (ja) 発振装置及び発振装置の製造方法
JP6055708B2 (ja) 水晶発振器及び発振装置
JP5931151B2 (ja) 温度補正機能付きタイミング信号発生器
JP2013143601A (ja) 発振装置
JP6033156B2 (ja) 発振装置
JP6564250B2 (ja) 発振装置
JP2017020852A (ja) 組込装置
Stofanik et al. Self-identification of differences between aging rates of two frequencies excited in the dual-mode crystal oscillator
JP6163591B2 (ja) 発振装置
JP6529788B2 (ja) 発振器
JP2015198291A (ja) 発振装置
JP2004347457A (ja) 電子時計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833149

Country of ref document: EP

Kind code of ref document: A1