WO2016027727A1 - 全地球航法衛星システムの受信装置および受信方法、並びにプログラム - Google Patents

全地球航法衛星システムの受信装置および受信方法、並びにプログラム Download PDF

Info

Publication number
WO2016027727A1
WO2016027727A1 PCT/JP2015/072720 JP2015072720W WO2016027727A1 WO 2016027727 A1 WO2016027727 A1 WO 2016027727A1 JP 2015072720 W JP2015072720 W JP 2015072720W WO 2016027727 A1 WO2016027727 A1 WO 2016027727A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
satellite
unit
correlation
satellite signal
Prior art date
Application number
PCT/JP2015/072720
Other languages
English (en)
French (fr)
Inventor
卓 寳地
裕 市村
弘 河島
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/500,296 priority Critical patent/US20170212246A1/en
Publication of WO2016027727A1 publication Critical patent/WO2016027727A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS

Definitions

  • the present technology relates to a receiver, a reception method, and a program for a global navigation satellite system, and more particularly, a global navigation satellite system that can receive satellite signals of spread codes having a plurality of code lengths with an inexpensive hardware configuration.
  • the present invention relates to a receiving apparatus, a receiving method, and a program.
  • GNSS Global Navigation Satellite System
  • GNSS acquires position information (latitude and longitude) on the earth through communication with a plurality of artificial satellites orbiting the earth, and is applied to, for example, car navigation systems.
  • This GNSS has almost the same operating principle, but there are multiple types depending on the region.
  • GPS Global Positioning System
  • BeiDou the Hokuto Satellite Navigation System
  • Galileo European Community Global Navigation Satellite System
  • the signal acquisition unit is provided with a processor for processing the FFT and a memory necessary for the processing.
  • the code length of the spreading code varies depending on the type of GNSS. For example, GPS has 1024 points (number of words), BeiDou has 2048 points, and Galileo has 4096 points. Processor and memory are different.
  • the present technology has been made in view of such circumstances, and in particular, realizes a GNSS receiver that supports an extension code of a plurality of types of code lengths with an inexpensive and simple hardware configuration. It is.
  • a receiving device of a global navigation satellite system includes a receiving unit that receives a satellite signal, the satellite signal received by the receiving unit, and a spreading code having a data length corresponding to the type of the satellite signal
  • a correlation calculation unit that calculates the correlation between the satellite signal and the pseudo signal by the FFT calculation, and a memory having a predetermined data length required for the FFT calculation in the correlation calculation unit;
  • a plurality of signal capturing devices that capture the satellite signal based on the correlation calculated by the correlation calculating unit, and the correlation calculating unit of the predetermined signal capturing device, depending on the type of the satellite signal, Utilizing its own memory and the memory in the other signal capturing device, the satellite signal and a pseudo signal generated from a spread code having a data length according to the type of the satellite signal are subjected to an FFT operation, Said Calculating a correlation between the star signal and the pseudo signal.
  • the correlation calculation unit can calculate the correlation between the satellite signal and the pseudo signal in the frequency domain or the time domain.
  • the predetermined data length can be 1024 words, and when the type of the satellite signal is a satellite signal of a GPS (Global Positioning System) satellite, the correlation calculation unit uses only its own memory.
  • the satellite signal and a pseudo signal generated from a spread code having a data length corresponding to the type of the satellite signal can be subjected to an FFT operation, and a correlation between the satellite signal and the pseudo signal can be calculated. .
  • the correlation calculation unit may include a radix-4 calculation unit that performs a 1024-word radix-4 FFT calculation.
  • the radix-4 calculation unit includes five 1024-word radix-4 FFTs. By repeatedly executing the calculation, the correlation between the satellite signal and the pseudo signal can be calculated.
  • the predetermined data length may be 1024 words, and when the type of the satellite signal is a satellite signal of a BeiDou (BeiDouvigNavigation Satellite System) satellite, the correlation calculation unit includes its own memory, 1 Using the memory in the other signal acquisition unit, the satellite signal and a pseudo signal generated from a spread code having a data length corresponding to the type of the satellite signal are subjected to an FFT operation, and the satellite signal and the pseudo signal are obtained. The correlation with the signal can be calculated.
  • BeiDou BeiDouvigNavigation Satellite System
  • the correlation calculation unit may include a radix-4 calculation unit that performs a 1024-word radix-4 FFT operation and a radix-2 calculation unit that performs a 2048-word radix-2 FFT operation, Each of the radix-4 computing unit of its own and the radix-4 computing unit in the other signal capturing unit repeats the 1024-word radix-4 FFT operation, respectively, and then performs the 2048-word radix-2 FFT operation. By executing, the correlation between the satellite signal and the pseudo signal can be calculated.
  • the predetermined data length can be 1024 words, and when the type of the satellite signal is a satellite signal of a Galileo satellite, the correlation calculation unit includes its own memory and three other signal capturing devices. And calculating the correlation between the satellite signal and the pseudo signal by performing an FFT operation on the satellite signal and a pseudo signal generated from a spreading code having a data length corresponding to the type of the satellite signal. You can make it.
  • any one of the signal capturing devices captures a satellite signal of a GPS (Global Positioning System) satellite alone, and any two of the signal capturing apparatuses are BeiDou (BeiDou Navigation Satellite System) At least one of capturing a satellite signal of a satellite and / or any four of the signal capturers capturing a satellite signal of a Galileo satellite is performed.
  • GPS Global Positioning System
  • BeiDou BeiDou Navigation Satellite System
  • a receiving method of a receiving device of a global navigation satellite system includes a receiving unit that receives a satellite signal, the satellite signal received by the receiving unit, and a data length corresponding to the type of the satellite signal.
  • a correlation calculation unit for calculating a correlation between the satellite signal by the FFT calculation and the pseudo signal with the pseudo signal generated from the spreading code of the predetermined code length required for the FFT calculation in the correlation calculation unit A receiving method in a global navigation satellite system receiving apparatus, comprising: a memory; and a plurality of signal capturing devices that capture the satellite signal based on the correlation calculated by the correlation calculating unit, wherein the predetermined signal
  • the correlation calculation unit of the trap uses the memory of its own and the memory of the other signal trap to set the type of the satellite signal and the satellite signal. Flip and FFT operation on the pseudo signal generated from the data length spreading code, it calculates a correlation between the satellite signal and the pseudo signal.
  • a program includes a receiving unit that receives a satellite signal, the satellite signal received by the receiving unit, and a pseudo signal generated from a spreading code having a data length corresponding to the type of the satellite signal.
  • a correlation calculation unit for calculating a correlation between the satellite signal and the pseudo signal by FFT calculation, a memory having a predetermined data length required for the FFT calculation in the correlation calculation unit, and the correlation calculation unit.
  • the computer that controls the receiving device including a plurality of signal capture devices that capture the satellite signal, the correlation calculation unit of the predetermined signal capture device according to the type of the satellite signal, Using the memory of its own and the memory of the other signal capturing device, the satellite signal and the pseudo signal generated from the spread code having the data length corresponding to the type of the satellite signal are FFT-processed. And to execute to compute the correlation between the satellite signal and the pseudo signal.
  • a reception unit receives a satellite signal
  • a correlation calculation unit generates the satellite signal received by the reception unit and a spreading code having a data length corresponding to the type of the satellite signal.
  • the correlation between the satellite signal and the pseudo signal by the FFT calculation is calculated, and a memory having a predetermined data length required for the FFT calculation in the correlation calculation unit is calculated by the correlation calculation unit.
  • a plurality of signal capturing devices for capturing the satellite signals based on the correlation, and by a correlation calculation unit of the predetermined signal capturing device, depending on the type of the satellite signals, Then, the memory in the other signal acquisition unit is used, and the satellite signal and the pseudo signal generated from the spread code having the data length corresponding to the type of the satellite signal are subjected to an FFT operation, Signal and the correlation between the pseudo signal is calculated.
  • the receiving device of the global navigation satellite system may be an independent device or a block that performs reception processing.
  • various satellite signals can be received with only a plurality of configurations for receiving a predetermined satellite signal.
  • FIG. 11 is a diagram illustrating a configuration example of a general-purpose personal computer.
  • FIG. 1 shows a configuration example of an embodiment of a GNSS (Global Navigation Satellite System (s)) receiver to which the present technology is applied.
  • the GNSS receiver 11 of FIG. 1 receives satellite signals from GPS (Global Positioning System) satellites, BeiDou (BeiDou Navigation Satellite System) satellites, and Galileo satellites, which are not shown, and calculates position information.
  • GPS Global Positioning System
  • BeiDou BeiDou Navigation Satellite System
  • Galileo satellites Galileo satellites
  • the GPS satellite is a satellite used in the global positioning network (GPS: Global Positioning System, hereinafter simply referred to as GPS) mainly in the United States.
  • GPS Global Positioning System
  • the BeiDou satellite is a satellite used in BeiDou Navigation Satellite System, which is independently developed by the People's Republic of China.
  • the Galileo satellite is a satellite used by the Global Navigation Satellite System (Galileo), which is being developed mainly by the European Community.
  • the GNSS receiver 11 includes an analog processing unit 21 and a digital processing unit 22.
  • the analog processing unit 21 converts a satellite signal received via the antenna 12 into a digital signal and supplies the digital signal to the digital processing unit 22.
  • the analog processing unit 21 includes an analog front end 51 (FIG. 2), and down-converts an RF (Radio Frequency) signal received via the antenna 12 into an IF (Intermediate Frequency). Further, the analog processing unit 21 includes a frequency conversion unit 52 (FIG. 2), which converts an analog signal satellite signal into analog-digital (AD) and converts the analog signal IF signal into baseband. It is sampled and quantized and output as a digital signal.
  • FOG. 2 analog front end 51
  • IF Intermediate Frequency
  • the digital processing unit 22 analyzes the satellite signal converted into the digital signal and specifies its own position.
  • the digital processing unit 22 includes a control unit 31, a signal capturing unit 32, a signal tracking unit 33, and a positioning unit 34.
  • the control unit 31 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and controls the entire operation of the digital processing unit 22.
  • the signal acquisition unit 32 acquires a satellite signal based on the correlation between the diffusion code specific to each satellite signal converted into a digital signal and the diffusion code specific to the GNSS receiver 11, and parameters required for acquisition. Is supplied to the signal tracking unit 33 and the positioning unit 34.
  • the signal tracking unit 33 uses the parameters supplied from the signal acquisition unit 32 to keep track of the satellite signal and maintain the acquired state, and supplies satellite signals sequentially acquired to the positioning unit 34.
  • the positioning unit 34 obtains the distance to the artificial satellite in real time based on the satellite signal supplied from the signal capturing unit 32, and thus determines itself from the positional relationship with a plurality of artificial satellites whose positions are known. The current position of is calculated.
  • the signal capturing unit 32 includes a plurality of signal capturing devices 101-1 to 101-n. In FIG. 1, only the signal capturing devices 101-1 and 101-2 are illustrated, but it is possible to configure n that can be physically arranged. Further, each of the signal traps 101-1 to 101-n is simply referred to as the signal trap 101 when it is not necessary to distinguish between them, and the other configurations are also referred to in the same manner.
  • the signals captured by the signal capturing units 101-1 to 101-n are referred to as first channel to nth channel signals.
  • the signal acquisition unit 101 (101-1 to 101-n) includes a control unit 121 (121-1 to 121-n), a Doppler correction unit 122 (122-1 to 122-n), and a synchronous addition unit 123 (123-1). Through 123-n), frequency domain correlator 124 (124-1 through 124-n), spreading code section 125 (125-1 through 125-n), and absolute value adder 126 (126-1 through 126-n) It has.
  • the control unit 121 controls the entire operation of the signal trap 101.
  • the control unit 121 receives a satellite signal from each of a GPS satellite, a BeiDou satellite, and a Galileo satellite, and operates a plurality of signal capture devices 101 in cooperation with each other. Slaves operating in a dependent manner are controlled by communicating between the control units 121 of the signal capturing devices 101.
  • the Doppler correction unit 122 corrects the frequency shift due to the Doppler effect of the satellite signal.
  • the synchronous adder 123 synchronizes and adds data having a data length of 1024 points (1024 words: 1024 W) corresponding to the 1 ms spread code length of the GPS satellite for each of the I channel and the Q channel. More specifically, the synchronous adder 123 includes a memory 141 (141-1 to 141-n) for storing, and performs synchronous addition for each of the I channel and the Q channel, and SN (Signal / Noise) The ratio is improved and output to the frequency domain correlator 124. The detailed function of the synchronous adder 123 will be described later with reference to FIG.
  • the frequency domain correlator 124 calculates the correlation between the received satellite signal and the pseudo signal generated by its own spreading code supplied from the spreading code unit 125, by FFT (Fast Fourier Transform). The propagation delay time with the highest correlation is calculated by FFT (Fast Fourier Transform).
  • the frequency domain correlation unit 124 (124-1 to 124-n) includes an FFT unit 161 (161-1 to 161-n), respectively.
  • the FFT unit 161 (161-1 to 161-n) includes a radix-4 operation unit 171 (171-1 to 171-n), a radix-2 operation unit 172 (1722-1 to 172-n), and memories 173, 174 ( 173-1 to 173-n, 174-1 to 174-n).
  • the radix-4 calculation unit 171 performs FFT for a 1024-point input signal when the radix is 4, which will be described later with reference to FIG.
  • the radix-2 calculation unit 172 performs an FFT for a 1024-point input signal when the radix is 2, which will be described later with reference to FIG.
  • the memories 173 and 174 are, for example, data memories having a data length of 1024 points (1024 words), and temporarily store calculation results used for calculations in the radix-4 calculation unit 171 and the radix-2 calculation unit 172. .
  • the details of the function of the frequency domain correlator 124 will be described later with reference to FIG.
  • the spreading code unit 125 stores a unique spreading code possessed by the GNSS receiver 11 and supplies it to the frequency domain correlation unit 124. More specifically, the spreading code section 125 is 1024 points unique spreading code for GPS satellites in the GNSS receiver 11, 2048 points unique spreading code for BeiDou satellites, and 4096 points unique spreading codes for Galileo satellites. Each code is stored and is switched and output depending on which satellite signal is received for the GPS satellite, BeiDou satellite, or Galileo satellite.
  • the absolute value addition unit 126 (126-1 to 126-n) adds the calculation results output from the frequency domain correlation unit 124, and converts each of the I channel and the Q channel into absolute values.
  • the absolute value addition unit 126 includes, for example, a 1024-point memory 191 (191-1 to 191-n) and is used for calculation as necessary. The details of the function of the absolute value adding unit 126 will be described later with reference to FIG.
  • the memories 141, 173, 174, and 191 are all described here as being 1024 points (1024 W: 1024 words).
  • the 1024 points are derived from the fact that the GPS satellite has a 1024 point spread code. Therefore, the signal capturer 101 of FIG. 2 can capture a satellite signal from a GPS satellite alone. However, since the spread code of the BeiDou satellite is 2048 points and the spread code of the Galileo satellite is 4096 points, the signal trap 101 cannot capture any satellite signal by itself.
  • the spreading code of the BeiDou satellite has twice the number of points as the spreading code of the GPS satellite
  • the spreading code of the Galileo satellite has four times the number of points of the spreading code of the GPS satellite.
  • any one of the signal acquisition units 101-1 and 101-2 has the memories 141-1, 141-2, 173-1, and 173. -2, 174-1, 174-2, 191-1, 191-2, and the radix-4 arithmetic units 171-1, 171-2 are shared. Therefore, for example, when the signal acquisition unit 101-1 becomes a master and the signal acquisition unit 101-2 becomes a slave, the control unit 121-1 of the signal acquisition unit 101-1 declares itself as a master. In addition, the control unit 121-2 of the signal capturing device 101-2 is instructed to perform a slave operation.
  • control unit 121-2 of the signal acquisition unit 101-2 becomes a slave, so that the Doppler correction unit 122-2, the synchronous addition unit 123-2, the frequency domain correlation unit 124-2, the spreading code unit 125- 2 and the operation of the absolute value adder 126-2 are stopped.
  • control unit 121-2 controls the memory 141-2 to be under the control of the synchronous adder 123-1 of the signal trap 101-1. Further, the control unit 121-2 controls the memories 173-2 and 174-2 and the radix-4 calculation unit 171-2 to be under the control of the frequency domain correlation unit 124-1. Furthermore, the control unit 121-2 controls the memory 191-2 so that it is under the control of the absolute value addition unit 126-1. In addition, the control unit 121-1 of the signal capturing device 101-1 controls the spreading code unit 125-1 to output a 2048-point spreading code for the BeiDou satellite.
  • the synchronous adder 123-1 processes the spread code of the BeiDou satellite by securing a 2048-point storage area composed of the memories 141-1 and 141-2.
  • the frequency domain correlator 124-1 secures two 2048-point storage areas using the memories 173-1, 173-2, 174-1 and 174-2, and two 1024-point radix-4 operations.
  • the spreading code of the BeiDou satellite can be processed.
  • the absolute value adding unit 126-1 can process the spread code of the BeiDou satellite by securing a 2048-point storage area including the memories 191-1 and 191-2.
  • the signal capturing device 101-1 can use twice as much storage capacity as when processing the spreading code of the GPS satellite, and can process the spreading code of the BeiDou satellite.
  • the signal acquisition unit 101-1 becomes the master, and the signal acquisition units 101-2 to 101-4 are slaves to process the spreading code of the Galileo satellite, which is four times the number of points of the GPS satellite. Is possible.
  • the control unit 121-1 of the signal capturing device 101-1 causes the spreading code unit 125-1 to output a 4096-point Galileo spreading code.
  • the synchronous adder 123 has a function in which an adder 123a is provided in addition to the 1024-point memory 141 as shown in the upper part of FIG.
  • the adding unit 123a shows the operation of the memory 141 in a formal manner, and does not exist in reality. That is, as shown in the lower part of FIG. 3, the memory 141 of the synchronous adder 123 converts a signal composed of the spread codes of the I channel and the Q channel into 1024 points corresponding to the spread code length (1 ms of GPS). Minutes of data (width L in the figure) are sequentially accumulated from the beginning, and when accumulation for 1024 points is completed, the data is added again from the beginning and accumulated.
  • the signal constituting the spreading code is repeatedly added, so that the SN ratio of the spreading code can be improved.
  • the frequency domain correlator 124 includes 1024 FFT (First Fourier Transform) arithmetic units 161a-1 and 161a-2, memories 173 and 174, a complex conjugate arithmetic unit (Conjugate) 161c, a complex
  • the configuration includes a conjugate multiplication unit 161b and a 1024 IFFT (Inverse First Fourier Transform) calculation unit 161d.
  • the 1024 FFT (First Fourier Transform) operation units 161a-1 and 161a-2 have the same function, and the functions are realized by the operations of the radix-4 operation unit 171 and the radix-2 operation unit 172, and the input diffusion
  • Each of the I channel and Q channel of the code is subjected to FFT and stored in the memories 173 and 174.
  • the complex conjugate calculation unit 161c takes the complex conjugate of the signal obtained by multiplying the spreading code supplied from the spreading code unit 125 stored in the memory 174 by the FFT, and supplies the complex conjugate multiplication unit 161b.
  • the complex conjugate multiplier 161b performs a complex conjugate multiplication of the signal supplied from the complex conjugate calculator 161c and the spreading code from the satellite signal multiplied by the FFT stored in the memories 173 and 174 to perform a 1024 IFFT operation. To the unit 161d.
  • the function of the 1024 IFFT calculation unit 161d is realized by the calculation by the radix-4 calculation unit 171 and the radix-2 calculation unit 172, and the IFFT (inverse FFT) is applied to each of the I channel and the Q channel of the input signal in the frequency domain.
  • the correlation is stored in the memories 173 and 174.
  • the memories 173 and 174 output the frequency domain correlation of the stored I channel and Q channel, respectively.
  • the absolute value adding unit 126 includes an absolute value converting unit 126a, an adding unit 126b, and a memory 191.
  • the absolute value converter 126a converts the I channel and Q channel signals indicating the frequency domain correlation supplied from the frequency domain correlator 124 into absolute values and outputs the absolute values to the adder 126b.
  • the signal stored in the memory 191 has an increased number of additions from the first addition, and, for example, a peak at the beginning of the spread code appears in the Nth addition. Thus, it becomes possible to detect the head position of the spread code.
  • step S11 the antenna 12 receives a radio wave from a satellite (not shown) and outputs it to the analog processing unit 21.
  • step S12 the analog processing unit 21 converts the satellite signal received via the antenna 12 into a digital signal and supplies the digital signal to the digital processing unit 22. More specifically, the analog processing unit 21 controls the analog front end 51 (FIG. 2) to down-convert an RF (Radio Frequency) signal received via the antenna 12 into an IF (Intermediate Frequency). Furthermore, the analog processing unit 21 controls the frequency converting unit 52 to convert the analog satellite signal into analog digital (AD), convert the analog signal IF signal into baseband, and sample it. It is quantized and output as a digital signal.
  • analog front end 51 Fidelity
  • IF Intermediate Frequency
  • step S13 the control unit 121 determines whether reception of a satellite signal corresponding to a GPS satellite is instructed. For example, which of the signal capturers 101-1 to 101-n receives a satellite signal from a GPS satellite, BeiDou satellite, or Galileo satellite may be assigned in advance by the control unit 31. Good. For example, if reception of a satellite signal of a GPS satellite is instructed, the process proceeds to step S14.
  • step S14 the control unit 121 switches the operation to a mode in which the signal capturer 101 is a single unit (in one channel) and receives satellite signals of GPS satellites. More specifically, the control unit 121 instructs the control unit 121 of the other signal capturing device 101 to use the memories 141, 173, 174, 191 and the radix-4 calculation unit 171 in cooperation with each other. First, switch the operation to the mode to receive the GPS satellite signal alone.
  • step S15 the signal capturing device 101 for one channel independently executes the satellite signal reception processing of the GPS satellite. That is, the Doppler correction unit 122 corrects the frequency variation due to the Doppler effect and supplies the satellite signal to the synchronous addition unit 123. As described with reference to FIG. 3, the synchronous adder 123 uses the memory 141 to synchronously add the satellite signals whose frequency fluctuation due to the Doppler effect has been corrected by the Doppler correction unit 122. It outputs to the area correlation part 124.
  • the frequency band correlator 124 calculates the correlation between the spread code for the GPS satellite, which is output from the spread code unit 125 and is unique to the GPS satellite, and the spread code of the transmitted satellite signal. More specifically, as described with reference to FIG. 4, the frequency domain correlation unit 124 controls the radix 4 calculation unit 171 and uses the memories 173 and 174 to perform 1024-point FFT processing and IFFT processing. , And the time domain information in the received satellite signal is converted into the frequency domain information to obtain the delay time information having the highest correlation, and is output to the absolute value adding unit 126.
  • the absolute value addition unit 126 uses the memory 191 to add and output the calculation result of the frequency domain correlation unit 124.
  • the radix-4 calculation unit 171 determines the stage (Stage) from the data in the time domain indicated by x (0) to x (1024) of 1024 points stored in the memory 173. ) The data in the frequency range indicated by 1024 points X (0) to X (1024) is calculated and output by the processes 1 to 5.
  • the calculation executed by the radix-4 calculation unit 171 is an FFT calculation process by a so-called butterfly calculation of the radix-4 shown in FIG.
  • FIG. 8 shows an operation in which input values f (0) to f (3) are subjected to FFT processing to output values F (0) to F (3) by the radix-4 butterfly operation indicated by the frame F1.
  • the radix-4 butterfly operation indicated by the frame F1 is a combination of four radix-2 butterfly operations indicated by the frame F2.
  • e is the base of the natural logarithm
  • step S13 if reception of the satellite signal of the GPS satellite is not instructed in step S13, the process proceeds to step S16.
  • step S16 the control unit 121 determines whether reception of a satellite signal corresponding to the BeiDou satellite is instructed. For example, if any of the signal capturers 101-1 to 101-n is instructed to receive a satellite signal of, for example, a BeiDou satellite, the process proceeds to step S17.
  • step S ⁇ b> 17 the control unit 121 switches the operation to the mode of receiving the satellite signals of the BeiDou satellites with the two signal capturing devices 101 (with two channels). More specifically, for example, the control unit 121-1 cooperates the memories 141-2, 173-2, 174-2, and 191-2 with the control unit 121-2 of the signal trap 101-2. Give instructions to use. Further, for example, the control unit 121-3 uses the memories 141-4, 173-4, 174-4, and 191-4 in cooperation with the control unit 121-4 of the signal trap 101-4. Give instructions.
  • the control unit 121-1 of the signal acquisition unit 101-1 declares itself to be a master, and sends it to the control unit 121-2 of the signal acquisition unit 101-2. Instruct the player to become a slave.
  • the control unit 121-3 of the signal capturing device 101-3 declares itself as a master and instructs the control unit 121-4 of the signal capturing device 101-4 to become a slave.
  • control unit 121-2 of the signal acquisition unit 101-2 becomes a slave of the signal acquisition unit 101-1, so that the Doppler correction unit 122-2, the synchronous addition unit 123-2, and the frequency domain correlation unit 124- 2.
  • the operations of the spreading code unit 125-2 and the absolute value adding unit 126-2 are stopped.
  • control unit 121-4 of the signal acquisition unit 101-4 becomes a slave of the signal acquisition unit 101-3, so that the Doppler correction unit 122-4, the synchronous addition unit 123-4, and the frequency domain correlation unit 124 are obtained. ⁇ 4, the operation of the spreading code section 125-4 and the absolute value adding section 126-4 is stopped.
  • control unit 121-2 controls the memory 141-2 to be under the control of the synchronous adder 123-1 of the signal trap 101-1.
  • control unit 121-2 controls the FFT unit 161-2 to be under the control of the frequency domain correlation unit 124-1.
  • control unit 121-2 controls the memory 191-2 so that it is under the control of the absolute value addition unit 126-1.
  • the memory 141-2 is drawn so as to be included in the synchronous adder 123-1. Further, in order to show that the FFT unit 161-2 is under the control of the frequency domain correlator 124-1, it is drawn so as to be included in the corresponding frequency domain correlator 124'-1. Similarly, in FIG. 9, the memory 191-2 is depicted as being included in the absolute value adding unit 126-1.
  • control unit 121-4 controls the memory 141-4 to be under the control of the synchronous addition unit 123-3 of the signal trap 101-3.
  • control unit 121-4 controls the memories 173-4, 174-4 and the radix-4 calculation unit 171-4 to be under the control of the frequency domain correlation unit 124-3.
  • control unit 121-4 controls the memory 191-4 to be under the control of the absolute value addition unit 126-3.
  • the memory 141-4 is depicted as being included in the synchronous adder 123-3.
  • the FFT unit 161-4 is under the control of the frequency domain correlator 124-3, it is drawn to be included in the corresponding frequency domain correlator 124'-3.
  • the memory 191-4 is depicted as being included in the absolute value adding unit 126-3.
  • control unit 121-1 of the signal acquisition unit 101-1 controls the spreading code unit 125-1, and, as indicated by a dotted arrow in FIG. 9, 2048 points for its own BeiDou satellite. Output spreading code.
  • control unit 121-3 of the signal acquisition unit 101-3 controls the spreading code unit 125-3, as indicated by the dotted arrow in FIG. 9, for 2048 points for its own BeiDou satellite. Output the spreading code.
  • the synchronous adder 123-1 of the signal acquisition unit 101-1 secures a 2048-point storage area composed of the memories 141-1 and 141-2, so that one cycle of the spread code of the BeiDou satellite (2 ms) Min) can be processed.
  • the frequency domain correlator 124′-1 secures two 2048-point storage areas in the memories 173-1, 173-2, 174-1, and 174-2, so that the spread code of the BeiDou satellite One cycle (2ms) can be processed.
  • the frequency domain correlator 124′-1 uses a 1024-point radix-4 arithmetic unit 171-1 and 171-2 and a 2048-point radix-2 arithmetic unit 172-1 to thereby provide a 2048-point BeiDou satellite.
  • One cycle (2 ms) of the spreading code can be processed.
  • the absolute value adder 126-1 can process one cycle (2ms) of the spread code of the BeiDou satellite by securing a storage area of 2048 points comprising the memories 191-1 and 191-2. it can.
  • the signal acquisition unit 101-3 can process the 2048-point BeiDou satellite spreading code.
  • the 2048-point radix-4 computing unit 171 exists, as shown in FIG. 10, the data in the time domain indicated by 2048 points x (0) to x (2047) stored in the memory 173 is obtained.
  • the radix-2 calculation unit 172 executes stage (Stage) 6 processing while performing the processing of stages (Stage) 1 to 5, and the frequency indicated by 2048 points X (0) to X (2047). Calculate and output area data.
  • ⁇ 4 ⁇ 4 ⁇ 4 butterfly operations performed by the 2048-point radix-4 calculation unit 171 and one radix-2 butterfly operation performed by the 2048-point radix-2 calculation unit 172 are performed.
  • ⁇ 4 ⁇ 4 ⁇ 2 FFT calculation processing corresponding to the number of points of the spread code for the BeiDou satellite signal of 2048 points can be executed.
  • each 1024 point of the FFT units 161-1 and 161-2 is increased.
  • a 2048-point BeiDou satellite signal is obtained by a 2048-point radix-2 operation unit 172-1 in stage 6 using the operation results obtained by the processing of stages 1 to 5 of the corresponding radix-4 operation units 171-1 and 171-2. It is possible to calculate the correlation corresponding to the number of points of the spreading code for use.
  • the signal acquisition units 101-1 and 101-3 have twice the storage capacity when processing the spreading codes of GPS satellites, the radix-4 arithmetic unit 171 with twice the number of points, and twice the points. It is possible to use the radix-2 arithmetic unit 172 of the number, and to process the spreading code of the BeiDou satellite.
  • a 2048-point radix-4 FFT calculation process may be executed by performing the 1024-point radix-4 calculation unit 171-1 twice,
  • the 1024-point radix-2 computation units 172-1 and 172-2 may execute 2048-point FFT computation.
  • the IFFT operation is realized by executing the operations in the order of stages 6 to 1 in FIG.
  • step S16 Furthermore, if reception of the BeiDou satellite signal is not instructed in step S16, the process proceeds to step S19.
  • step S19 the control unit 121 determines whether reception of a satellite signal corresponding to the Galileo satellite is instructed. For example, if any of the signal capturers 101-1 to 101-n is instructed to receive a satellite signal of the Galileo satellite, for example, the process proceeds to step S20, and the reception of the satellite signal of the Galileo satellite is performed. If not instructed, reception of any satellite signal is not instructed, and the process ends.
  • step S20 the control unit 121 switches the operation to the mode of receiving the satellite signals of the Galileo satellites with the four signal capturing devices 101 (with four channels). More specifically, for example, the control unit 121-1 cooperates the memories 141, 173, 174, and 191 with the control units 121-2 to 121-4 of the signal capturing devices 101-2 to 101-4. Give instructions to use.
  • control unit 121-1 of the signal acquisition unit 101-1 declares itself to be a master, and the control units of the signal acquisition units 101-2 to 101-4 Instructs 121-2 through 121-4 to become a slave.
  • the control units 121-2 to 121-4 of the signal acquisition units 101-2 to 101-4 become slaves of the signal acquisition unit 101-1, so that the Doppler correction units 122-2 to 122-4 are synchronized.
  • the operations of the adders 123-2 to 123-4, the frequency domain correlation units 124-2 to 124-4, the spreading code units 125-2 to 125-4, and the absolute value adders 126-2 to 126-4 are stopped. .
  • 125-4 and the absolute value adders 126-2 through 126-4 are not displayed, indicating that no data is output when the operation is stopped.
  • control units 121-2 to 121-4 control the memories 141-2 to 141-4, respectively, to be under the control of the synchronous adder 123-1 of the signal trap 101-1. Also, the control units 121-2 through 121-4 control the FFT units 161-2 through 161-4 so that they are under the control of the frequency domain correlation unit 124-1. Furthermore, the control units 121-2 through 121-4 control the memories 191-2 through 191-4 so that they are under the control of the absolute value addition unit 126-1.
  • the memories 141-2 to 141-4 are drawn so as to be included in the synchronous adder 123-1. Further, in order to indicate that the FFT units 161-2 to 161-4 are under the control of the frequency domain correlator 124-1, they are drawn to be included in the corresponding frequency domain correlator 124 ''-1. .
  • control unit 121-1 of the signal capturing device 101-1 controls the spreading code unit 125-1 to output a 4096-point spreading code for the Galileo satellite as shown by the dotted line in FIG.
  • the synchronous adder 123-1 of the signal acquisition unit 101-1 secures a storage area of 4096 points including the memories 141-1 to 141-4, and thereby, one cycle (4 ms) of the spreading code of the Galileo satellite. Min) can be processed.
  • the frequency domain correlator 124 ′′ -1 secures two 4096-point storage areas using the memories 173-1 through 173-4 and 174-1 through 174-4, thereby spreading the Galileo satellite spreading code. One cycle (4ms) can be processed.
  • the frequency domain correlator 124 ′′ -1 uses the 1024-point radix-4 arithmetic units 171-1 to 171-4 to generate one cycle (4 ms) of the 4096-point Galileo satellite spreading code.
  • the absolute value adder 126-1 can process one cycle (4ms) of the spreading code of the Galileo satellite by securing a storage area of 4096 points including the memories 191-1 to 191-4. it can.
  • the signal acquisition unit 101-1 can use the radix-4 computing unit 171 with four times the storage capacity when processing the spreading code of the GPS satellite, and the Galileo satellite The spreading code can be processed.
  • GPS satellite, BeiDou satellite, and Galileo satellite dedicated GPS signal capture devices 101-1 to 101-n, BeiDou signal capture devices 201-1 to 201-n, and Galileo signal capture devices 301-1 to 301-n, respectively. It was necessary.
  • the signal acquisition unit 32 includes GPS signal acquisition units 101-1 to 101-n, BeiDou signal acquisition units 201-1 to 201-n, and Galileo signal acquisition units 301-1 to 301-n. Are provided independently.
  • the BeiDou signal acquisition unit 201 includes a dedicated Doppler correction unit 222, a synchronous addition unit (including a 2048-point memory 241) 223, and a frequency domain correlation unit (including an FFT unit 261 including 2048-point memories 273 and 274). 224, a spread code unit 225, and an absolute value addition unit (including a 2048-point memory 291) 226.
  • the Galileo signal acquisition unit 301 includes a dedicated Doppler correction unit 322, a synchronous addition unit (including a 4096-point memory 341), and a frequency domain correlation unit (including an FFT unit 361 including 4096-point memories 373 and 374). 324, a spreading code unit 325, and an absolute value adding unit (including a 4096-point memory 391) 326.
  • each configuration increases the cost of the device and may increase the size of the device.
  • the signal acquisition unit 32 of the present technology shown in FIG. 2 is configured to provide a plurality of channels of the signal acquisition unit 101 corresponding to the GPS satellite in principle, so that the memories 141, 173, 174, 191 are provided.
  • the 1024-point radix-4 computing unit 171 and the 2048-point radix-2 computing unit 172 as necessary, it is possible to realize operations corresponding to GPS satellites, BeiDou satellites, and Galileo satellites. It becomes possible.
  • the signal acquisition units 101-1 to 101-6 implement frequency band correlation units 124-1 to 124-6 corresponding to 1024 points of spreading codes, respectively, so as to receive signals of six types of GPS satellites. Also good.
  • the signal traps 101-1, 101-2, the signal traps 101-3, 101-4, and the signal traps 101-5, 101-6 Each of the two units may be combined to realize the frequency domain correlation units 124′-1 to 124′-3 corresponding to the 2048-point spreading code so as to receive signals from three types of BeiDou satellites.
  • the signal acquisition units 101-1 to 101-4 realize a frequency domain correlation unit 124 ′′ -1 corresponding to a 4096-point spreading code, and Galileo
  • the satellite signal is received, and the signal acquisition units 101-5 and 101-6 realize the frequency band correlation units 124-5 and 124-6 corresponding to the 1024-point spread code so as to receive the GPS satellite signal.
  • the signal acquisition units 101-5 and 101-6 realize the frequency band correlation units 124-5 and 124-6 corresponding to the 1024-point spread code so as to receive the GPS satellite signal.
  • the signal traps 101-1 and 101-2 realize a frequency domain correlation unit 124'-1 corresponding to a 2048-point spread code, and the BeiDou satellite
  • the signal acquisition units 101-3 to 101-6 implement the frequency band correlation unit 124 ''-3 corresponding to the 4096-point spreading code so as to receive the signal of the Galileo satellite. It may be.
  • a plurality of types of satellite signals may be received by various combinations.
  • the above-described series of processing can be executed by hardware, but can also be executed by software.
  • a program constituting the software may execute various functions by installing a computer incorporated in dedicated hardware or various programs. For example, it is installed from a recording medium in a general-purpose personal computer or the like.
  • FIG. 15 shows a configuration example of a general-purpose personal computer.
  • This personal computer incorporates a CPU (Central Processing Unit) 1001.
  • An input / output interface 1005 is connected to the CPU 1001 via a bus 1004.
  • a ROM (Read Only Memory) 1002 and a RAM (Random Access Memory) 1003 are connected to the bus 1004.
  • the input / output interface 1005 includes an input unit 1006 including an input device such as a keyboard and a mouse for a user to input an operation command, an output unit 1007 for outputting a processing operation screen and an image of the processing result to a display device, programs, and various types.
  • a storage unit 1008 including a hard disk drive for storing data, a LAN (Local Area Network) adapter, and the like are connected to a communication unit 1009 that executes communication processing via a network represented by the Internet.
  • magnetic disks including flexible disks
  • optical disks including CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc)), magneto-optical disks (including MD (Mini Disc)), or semiconductors
  • a drive 1010 for reading / writing data from / to a removable medium 1011 such as a memory is connected.
  • the CPU 1001 is read from a program stored in the ROM 1002 or a removable medium 1011 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, installed in the storage unit 1008, and loaded from the storage unit 1008 to the RAM 1003. Various processes are executed according to the program.
  • the RAM 1003 also appropriately stores data necessary for the CPU 1001 to execute various processes.
  • the CPU 1001 loads the program stored in the storage unit 1008 to the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes the program, for example. Is performed.
  • the program executed by the computer (CPU 1001) can be provided by being recorded on the removable medium 1011 as a package medium, for example.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 1008 via the input / output interface 1005 by attaching the removable medium 1011 to the drive 1010. Further, the program can be received by the communication unit 1009 via a wired or wireless transmission medium and installed in the storage unit 1008. In addition, the program can be installed in advance in the ROM 1002 or the storage unit 1008.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • this technique can also take the following structures.
  • a receiver for receiving satellite signals Calculates the correlation between the satellite signal and the pseudo signal by FFT calculation between the satellite signal received by the receiving unit and a pseudo signal generated from a spreading code having a data length corresponding to the type of the satellite signal.
  • a correlation calculation unit A memory having a predetermined data length required for the FFT calculation in the correlation calculation unit; A plurality of signal capturing devices for capturing the satellite signals based on the correlation calculated by the correlation calculating unit;
  • the correlation calculation unit of the predetermined signal acquisition unit uses the memory of its own and the memory of the other signal acquisition unit according to the type of the satellite signal, and the satellite signal and the satellite signal
  • a receiver for a global navigation satellite system that performs an FFT operation on a pseudo signal generated from a spread code having a data length corresponding to a type, and calculates a correlation between the satellite signal and the pseudo signal.
  • the reception device of the global navigation satellite system according to (1) wherein the correlation calculation unit calculates a correlation between the satellite signal and the pseudo signal in a frequency domain or a time domain.
  • the predetermined data length is 1024 words,
  • the correlation calculation unit uses only the memory of the satellite signal and data corresponding to the type of the satellite signal.
  • the receiver for the global navigation satellite system according to (1) wherein an FFT calculation is performed on a pseudo signal generated from a long spreading code, and a correlation between the satellite signal and the pseudo signal is calculated.
  • the correlation calculation unit Including a radix-4 arithmetic unit that performs a 1024-word radix-4 FFT operation,
  • the radix-4 computing unit computes the correlation between the satellite signal and the pseudo signal by repeatedly executing 1024 radix-4 FFT operations of 1024 words, and the global navigation satellite system according to (3).
  • Receiver device Including a radix-4 arithmetic unit that performs a 1024-word radix-4 FFT operation, The radix-4 computing unit computes the correlation between the satellite signal and the pseudo signal by repeatedly executing 1024 radix-4 FFT operations of 1024 words, and the global navigation satellite system according to (3).
  • the predetermined data length is 1024 words
  • the correlation calculation unit uses the memory of its own and one of the other signal capturing devices, and FFT on a satellite signal and a pseudo signal generated from a spread code having a data length corresponding to the type of the satellite signal, and calculating a correlation between the satellite signal and the pseudo signal.
  • Navigation satellite system receiver uses the memory of its own and one of the other signal capturing devices, and FFT on a satellite signal and a pseudo signal generated from a spread code having a data length corresponding to the type of the satellite signal, and calculating a correlation between the satellite signal and the pseudo signal.
  • the correlation calculation unit A radix-4 computing unit that performs a 1024-word radix-4 FFT operation; A radix-2 computing unit that performs a 2048-word radix-2 FFT operation, Each of the radix-4 computing unit of its own and the radix-4 computing unit in the other signal capturing unit repeats the 1024-word radix-4 FFT operation, respectively, and then performs the 2048-word radix-2 FFT operation.
  • the receiver for the global navigation satellite system according to (5), wherein a correlation between the satellite signal and the pseudo signal is calculated by executing the correlation.
  • the predetermined data length is 1024 words
  • the correlation calculation unit uses its own memory and the memory in the other three signal capturing devices to use the satellite signal and the satellite.
  • the receiver of the global navigation satellite system according to (1) which performs an FFT operation on a pseudo signal generated from a spreading code having a data length corresponding to a signal type, and calculates a correlation between the satellite signal and the pseudo signal. .
  • any one of the signal capturing devices captures a satellite signal of a GPS (Global Positioning System) satellite alone, Any two of the signal capturers capture a satellite signal of a BeiDou (BeiDou Navigation Satellite System) satellite; and, Any four of the signal capturers capture the satellite signal of the Galileo satellite;
  • the global navigation satellite system receiver according to (1), wherein at least one of the receivers is performed.
  • a receiver for receiving satellite signals Calculates the correlation between the satellite signal and the pseudo signal by FFT calculation between the satellite signal received by the receiving unit and a pseudo signal generated from a spreading code having a data length corresponding to the type of the satellite signal.
  • a correlation calculation unit A memory having a predetermined data length required for the FFT calculation in the correlation calculation unit;
  • a receiving method in a global navigation satellite system receiver including a plurality of signal capturing devices that capture the satellite signal based on the correlation calculated by the correlation calculating unit,
  • the correlation calculation unit of the predetermined signal acquisition unit uses the memory of its own and the memory of the other signal acquisition unit according to the type of the satellite signal, and the satellite signal and the satellite signal
  • a reception method for a receiver of a global navigation satellite system that performs an FFT operation on a pseudo signal generated from a spreading code having a data length corresponding to a type, and calculates a correlation between the satellite signal and the pseudo signal.
  • a receiver for receiving satellite signals Calculates the correlation between the satellite signal and the pseudo signal by FFT calculation between the satellite signal received by the receiving unit and a pseudo signal generated from a spreading code having a data length corresponding to the type of the satellite signal.
  • a correlation calculation unit A memory having a predetermined data length required for the FFT calculation in the correlation calculation unit; Based on the correlation calculated by the correlation calculation unit, a computer that controls the receiving device including a plurality of signal capturing devices that capture the satellite signal,
  • the correlation calculation unit of the predetermined signal acquisition unit uses the memory of its own and the memory of the other signal acquisition unit according to the type of the satellite signal, and the satellite signal and the satellite signal
  • GNSS receiver 21 analog processing unit, 22 digital processing unit, 31 control unit, 32 signal capturing unit, 33 signal tracking unit, 34 positioning unit, 101, 101-1 to 101-n signal capturing unit, 121, 121-1 Through 121-n control unit, 122, 122-1 through 122-n Doppler correction unit, 123, 123-1 through 123-n period addition unit, 124, 124-1 through 124-n, 124 ', 124'-1 To 124′-n, 124 ′′, 124 ′′ -1 to 124 ′′ -n frequency band correlator, 125, 125-1 to 125-n spreading code, 126, 126-1 to 126-n absolute value addition , 141, 141-1 to 141-n memory, 161, 161-1 to 161-n FFT unit, 171, 1 71-1 to 171-n, radix-4 arithmetic unit, 172, 172-1 to 172-n, radix-2 arithmetic unit, 173, 173-1 to

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

 本技術は、安価な構成で様々な衛星信号を受信できるようにする全地球航法衛星システムの受信装置および受信方法、並びにプログラムに関する。 周波数域相関部124'は、GPS衛星信号を受信するための信号捕捉器101-1の1024ワードのメモリ173-1,174-1に加えて、GPS衛星信号を受信するための信号捕捉器101-2の1024ワードのメモリ173-2,174-2を利用して、2048ワードのBeiDou衛星信号の拡散コードより生成される疑似信号との、FFT演算による周波数域の相関を演算する。これにより、GPS衛星信号を受信する信号捕捉器101を複数に組み合わせるだけで、様々な衛星信号を受信することができる。本技術は、GNSSレシーバに適用することができる。

Description

全地球航法衛星システムの受信装置および受信方法、並びにプログラム
 本技術は、全地球航法衛星システムの受信装置および受信方法、並びにプログラムに関し、特に、安価なハードウェア構成により、複数のコード長の拡散コードの衛星信号を受信できるようにした全地球航法衛星システムの受信装置および受信方法、並びにプログラムに関する。
 GNSS(Global Navigation Satellite System(s))と呼ばれる、全地球航法衛星システムを用いた技術が一般に普及している。
 このGNSSは、地球上を周回する複数の人工衛星との通信により地球上の位置情報(緯度および経度)を取得するものであり、例えば、カーナビゲーションシステムなどに応用されている。
 このGNSSには、動作原理はほぼ同一ではあるが、地域などにより複数の種別が存在し、例えば、米国が主体となっている全地球測位網(GPS:Global Positioning System、以下、単にGPSとも称する)(非特許文献1参照)、中華人民共和国が独自に開発している北斗衛星導航系統(BeiDou Navigation Satellite System、以下、単にBeiDouとも称するものとする)、ヨーロッパ共同体が主体となって開発している全地球航法衛星システム(Galileo)(以下、単に、Galileoとも称する)などがある。
GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION
 ところで、上述したGNSSの受信装置は、衛星から信号を受信して、受信した信号を捕捉するとき、信号に含まれる拡散コードをFFT(高速フーリエ変換)処理する必要がある。このため、GNSSの受信装置(レシーバ)においては、信号捕捉部において、FFTを処理するプロセッサと、その処理に必要なメモリが設けられている。
 ところが、拡散コードのコード長は、GNSSの種別により異なるものであり、例えば、GPSは1024ポイント(ワード数)、BeiDouは2048ポイント、およびGalileoは4096ポイントとなっており、それぞれの処理に必要なプロセッサやメモリが異なる。
 このため、GNSSの3種類の種別に対応する受信装置を構成しようとすると、それぞれのポイント数の拡張コードに対応したFFTのプロセッサ、およびメモリを設ける必要があり、装置コストを増大させてしまう。
 本技術は、このような状況に鑑みてなされたものであり、特に、安価で、かつ、簡易なハードウェア構成により、複数の種類のコード長の拡張コードに対応したGNSS受信装置を実現させるものである。
 本技術の一側面の全地球航法衛星システムの受信装置は、衛星信号を受信する受信部と、前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含み、所定の前記信号捕捉器の相関演算部は、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する。
 前記相関演算部には、周波数域または時間域における、前記衛星信号と前記疑似信号との相関を演算させるようにすることができる。
 前記所定データ長は、1024ワードとすることができ、前記衛星信号の種別がGPS(Global Positioning System)衛星の衛星信号である場合、前記相関演算部には、自らの前記メモリのみを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算させるようにすることができる。
 前記相関演算部には、1024ワードの基数4のFFT演算を実行する基数4演算部を含ませるようにすることができ、前記基数4演算部には、5回の1024ワードの基数4のFFT演算を繰り返し実行することにより、前記衛星信号と前記疑似信号との相関を演算させるようにすることができる。
 前記所定データ長は、1024ワードとすることができ、前記衛星信号の種別がBeiDou(BeiDou Navigation Satellite System)衛星の衛星信号である場合、前記相関演算部には、自らの前記メモリと、1の他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算させるようにすることができる。
 前記相関演算部には、1024ワードの基数4のFFT演算を実行する基数4演算部と、2048ワードの基数2のFFT演算を実行する基数2演算部とを含ませるようにすることができ、自らの前記基数4演算部、および前記他の前記信号捕捉器における前記基数4演算部が、それぞれ5回の1024ワードの基数4のFFT演算を繰り返した後、2048ワードの基数2のFFT演算を実行することにより、前記衛星信号と前記疑似信号との相関を演算させるようにすることができる。
 前記所定データ長は、1024ワードとすることができ、前記衛星信号の種別がGalileo衛星の衛星信号である場合、前記相関演算部には、自らの前記メモリと、3の他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算させ、前記衛星信号と前記疑似信号との相関を演算させるようにすることができる。
 前記複数の信号捕捉器のうち、いずれかの前記信号捕捉器が単独でGPS(Global Positioning System)衛星の衛星信号を捕捉する、いずれかの2の前記信号捕捉器がBeiDou(BeiDou Navigation Satellite System)衛星の衛星信号を捕捉する、および、いずれかの4の前記信号捕捉器がGalileo衛星の衛星信号を捕捉する、のうちの少なくともいずれかがなされる。
 本技術の一側面の全地球航法衛星システムの受信装置の受信方法は、衛星信号を受信する受信部と、前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含む全地球航法衛星システムの受信装置における受信方法であって、所定の前記信号捕捉器の相関演算部が、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する。
 本技術の一側面のプログラムは、衛星信号を受信する受信部と、前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含む受信装置を制御するコンピュータに、所定の前記信号捕捉器の相関演算部が、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算するように実行させる。
 本技術の一側面においては、受信部により衛星信号が受信され、相関演算部により、前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関が演算され、前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、前記相関演算部により演算された相関に基づいて、前記衛星信号が捕捉される、複数の信号捕捉器とが設けられ、所定の前記信号捕捉器の相関演算部により、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとが利用されて、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とがFFT演算され、前記衛星信号と前記疑似信号との相関が演算される。
 本技術の一側面の全地球航法衛星システムの受信装置は、独立した装置であっても良いし、受信処理を行うブロックであっても良い。
 本技術の一側面によれば、所定の衛星信号を受信するための複数の構成のみで、様々な衛星信号を受信することが可能となる。
本技術を適用したGNSSレシーバの一実施の形態の構成例を示す図である。 図1の信号捕捉部の構成例を説明する図である。 図2の同期加算部により実現される機能を説明する図である。 図2の周波数域相関部により実現される機能を説明する図である。 図2の絶対値加算部により実現される機能を説明する図である。 図2の信号捕捉部による信号捕捉処理を説明するフローチャートである。 GPS衛星信号を捕捉するための相関を演算する処理を説明する図である。 基数4と基数2のバタフライ演算を説明する図である。 信号捕捉部によるBeiDou衛星信号を捕捉する動作を説明する図である。 BeiDou衛星信号を捕捉するための相関を演算する処理を説明する図である。 BeiDou衛星信号を捕捉するための相関を演算する処理を説明する図である。 信号捕捉部によるGalileo衛星信号を捕捉する動作を説明する図である。 複数の衛星信号を捕捉するための一般てきな信号捕捉部の構成例を示す図である。 複数の信号捕捉器による複数の衛星信号を受信するためのバリエーションを説明する図である。 汎用のパーソナルコンピュータの構成例を説明する図である。
 <本技術を適用したGNSSシステムのレシーバ(受信装置)の構成例>
 図1は、本技術を適用したGNSS(Global Navigation Satellite System(s))レシーバの一実施の形態の構成例を示している。図1のGNSSレシーバ11は、図示せぬGPS(Global Positioning System)衛星、BeiDou(BeiDou Navigation Satellite System)衛星、およびGalileo衛星からの衛星信号をそれぞれ区別して受信して、位置情報を算出する。
 ここで、GPS衛星は、米国が主体となっている全地球測位網(GPS:Global Positioning System、以下、単にGPSと称する)において使用される衛星である。また、BeiDou衛星は、中華人民共和国が独自に開発している北斗衛星導航系統(BeiDou Navigation Satellite System)において使用される衛星である。さらに、Galileo衛星は、ヨーロッパ共同体が主体となって開発している全地球航法衛星システム(Galileo)により使用される衛星である。
 より詳細には、GNSSレシーバ11は、アナログ処理部21、およびデジタル処理部22を備えている。
 アナログ処理部21は、アンテナ12を介して受信される衛星信号をデジタル信号に変換してデジタル処理部22に供給する。
 より詳細には、アナログ処理部21は、アナログフロントエンド51(図2)を備えており、アンテナ12を介して受信されたRF(Radio Frequency)信号をIF(Intermediate Frequency)へとダウンコンバージョンする。さらに、アナログ処理部21は、周波数変換部52(図2)を備えており、アナログ信号からなる衛星信号をアナログデジタル(AD)変換させて、アナログ信号からなるIF信号をベースバンドに変換して標本化すると共に、量子化してデジタル信号として出力する。
 デジタル処理部22は、デジタル信号に変換された衛星信号を解析し、自らの位置を特定する。
 より詳細には、デジタル処理部22は、制御部31、信号捕捉部32、信号追尾部33、および測位部34を備えている。制御部31は、CPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)などからなり、デジタル処理部22の動作の全体を制御している。
 信号捕捉部32は、デジタル信号に変換された、各衛星信号に固有の拡散コードと、GNSSレシーバ11に固有の拡散コードとの相関に基づいて衛星信号を捕捉し、捕捉に必要とされるパラメータを信号追尾部33および測位部34に供給する。
 信号追尾部33は、信号捕捉部32により供給されてくるパラメータを利用して、衛星信号を追尾して捕捉した状態を維持し、順次捕捉される衛星信号を測位部34に供給する。
 測位部34は、信号捕捉部32より供給されてくる衛星信号に基づいて、実時間内で人工衛星までの距離を求めることにより、位置がわかっている複数の人工衛星との位置関係から、自らの現在位置を算出する。
 <信号捕捉部の構成例>
 次に、図2を参照して、図1の信号捕捉部32の構成例について説明する。
 信号捕捉部32は、複数の信号捕捉器101-1乃至101-nより構成されている。尚、図1には、信号捕捉器101-1,101-2のみが描かれているが、物理的に配置可能なn個を構成することが可能である。また、信号捕捉器101-1乃至101-nのそれぞれについて、特に区別する必要が無い場合、単に信号捕捉器101と称するものとし、その他の構成についても、同様に称するものとする。また、信号捕捉器101-1乃至101-nのそれぞれにより捕捉される信号を第1チャンネル乃至第nチャンネルの信号と称するものとする。
 信号捕捉器101(101-1乃至101-n)は、制御部121(121-1乃至121-n)、ドップラ補正部122(122-1乃至122-n)、同期加算部123(123-1乃至123-n)、周波数域相関部124(124-1乃至124-n)、拡散コード部125(125-1乃至125-n)、および絶対値加算部126(126-1乃至126-n)を備えている。
 制御部121は、信号捕捉器101の動作の全体を制御している。また、制御部121は、GPS衛星、BeiDou衛星、およびGalileo衛星のそれぞれからの衛星信号を受信する際、複数の信号捕捉器101を連携して動作させる際に、主体的に動作するマスタ、および従属的に動作するスレイブを、信号捕捉器101同士の制御部121間で通信して制御する。
 ドップラ補正部122は、衛星信号のドップラ効果による周波数ずれを補正する。
 同期加算部123は、IチャンネルおよびQチャンネルのそれぞれについて、GPS衛星の1ms分の拡散コード長に対応するデータ長が1024ポイント(1024ワード数:1024W)のデータを同期して加算する。より詳細には、同期加算部123は、記憶するメモリ141(141-1乃至141-n)を備えており、IチャンネルおよびQチャンネルのそれぞれについて、同期して加算し、SN(Signal/Noise)比を向上させて周波数域相関部124に出力する。尚、同期加算部123の詳細な機能については、図3を参照して後述するものとする。
 周波数域相関部124は、受信された衛星信号と、拡散コード部125より供給されてくる自らの固有の拡散コードにより生成される疑似信号との相関を、FFT(Fast Fourier Transform:高速フーリエ変換)により求めて最も相関の高い伝達遅延時間を算出する。
 より詳細には、周波数域相関部124(124-1乃至124-n)は、それぞれFFT部161(161-1乃至161-n)を備えている。FFT部161(161-1乃至161-n)は、それぞれ基数4演算部171(171-1乃至171-n)、基数2演算部172(172-1乃至172-n)、メモリ173,174(173-1乃至173-n,174-1乃至174-n)を備えている。
 基数4演算部171は、1024ポイントの入力信号に対する、図8を参照して後述する基数を4とするときのFFTを実行する。
 基数2演算部172は、1024ポイントの入力信号に対する、図8を参照して後述する基数を2とするときのFFTを実行する。
 メモリ173,174は、例えば、データ長が1024ポイント(1024ワード数)のデータのメモリであり、基数4演算部171および基数2演算部172における演算に使用する演算結果等を一時的に記憶する。尚、周波数域相関部124の機能の詳細については、図4を参照して後述するものとする。
 拡散コード部125は、GNSSレシーバ11が持つ固有の拡散コードを記憶し、周波数域相関部124に供給する。より詳細には、拡散コード部125は、GNSSレシーバ11におけるGPS衛星用の1024ポイントの固有の拡散コード、BeiDou衛星用の2048ポイントの固有の拡散コード、およびGalileo衛星用の4096ポイントの固有の拡散コードをそれぞれ記憶しており、GPS衛星用、BeiDou衛星用、およびGalileo衛星用のいずれの衛星信号を受信するモードであるかにより切り替えて出力する。
 絶対値加算部126(126-1乃至126-n)は、周波数域相関部124より出力される演算結果を加算し、IチャンネルおよびQチャンネルのそれぞれを絶対値に変換する。この際、絶対値加算部126は、例えば、1024ポイントのメモリ191(191-1乃至191-n)を備えており、必要に応じて演算に使用する。尚、絶対値加算部126の機能の詳細については、図5を参照して後述するものとする。
 尚、メモリ141,173,174,191は、いずれもここでは、1024ポイント(1024W:1024ワード数)であるものとして説明するものとする。この1024ポイントは、GPS衛星の拡散コードが1024ポイントであることに由来するものである。従って、図2の信号捕捉器101は、単体で、GPS衛星からの衛星信号を捕捉することが可能である。しかしながら、BeiDou衛星の拡散コードは、2048ポイントであり、また、Galileo衛星の拡散コードは4096ポイントであるため、信号捕捉器101は、単体では、いずれの衛星信号も捕捉することができない。
 ところで、BeiDou衛星の拡散コードがGPS衛星の拡散コードの2倍のポイント数であり、さらに、Galileo衛星の拡散コードがGPS衛星の拡散コードの4倍のポイント数となっている。
 そこで、信号捕捉部32は、BeiDou衛星の2048ポイントの拡散コードに対応するため、信号捕捉器101-1,101-2のいずれかが、メモリ141-1,141-2,173-1,173-2,174-1,174-2,191-1,191-2、および、基数4演算部171-1,171-2を共用する。従って、例えば、信号捕捉器101-1がマスタとなり、信号捕捉器101-2がスレイブになる場合、信号捕捉器101-1の制御部121-1が、自らをマスタであるものと宣言するような動作を実行すると共に、信号捕捉器101-2の制御部121-2に対してスレイブとなることを指示する。
 このとき、信号捕捉器101-2の制御部121-2は、スレイブとなることにより、ドップラ補正部122-2、同期加算部123-2、周波数域相関部124-2、拡散コード部125-2、および絶対値加算部126-2の動作を停止させる。
 さらに、制御部121-2は、メモリ141-2を信号捕捉器101-1の同期加算部123-1の支配下となるように制御する。また、制御部121-2は、メモリ173-2,174-2および基数4演算部171-2を周波数域相関部124-1の制御下となるように制御する。さらに、制御部121-2は、メモリ191-2を絶対値加算部126-1の制御下となるように制御する。また、信号捕捉器101-1の制御部121-1は、拡散コード部125-1を制御して、BeiDou衛星用の2048ポイントの拡散コードを出力させる。
 これにより、同期加算部123-1は、メモリ141-1,141-2からなる2048ポイントの記憶領域を確保することで、BeiDou衛星の拡散コードを処理する。また、周波数域相関部124-1は、メモリ173-1,173-2,174-1,174-2により、2個の2048ポイントの記憶領域を確保し、2個の1024ポイントの基数4演算部171-1,171-2および2048ポイントの基数2演算部172-1を制御することで、BeiDou衛星の拡散コードを処理することができる。さらに、絶対値加算部126-1は、メモリ191-1,191-2からなる2048ポイントの記憶領域を確保することで、BeiDou衛星の拡散コードを処理することができる。
 結果として、信号捕捉器101-1が、GPS衛星の拡散コードを処理する際の2倍の記憶容量を使用することが可能となり、BeiDou衛星の拡散コードを処理することが可能となる。
 同様に、信号捕捉器101-1が、マスタとなり、信号捕捉器101-2乃至101-4をスレイブとすることにより、GPS衛星の4倍のポイント数であるGalileo衛星の拡散コードを処理することが可能となる。尚、当然のことながら、この場合、信号捕捉器101-1の制御部121-1は、拡散コード部125-1より4096ポイントのGalileo用の拡散コードを出力させる。
 以上のような構成により、拡散コードのコード長が異なる複数の衛星信号を受信することが可能となる。
 <同期加算部により実現される機能>
 次に、図3を参照して、同期加算部123により実現される機能について説明する。
 同期加算部123は、詳細には、図3の上部で示されるように、1024ポイントのメモリ141に加えて、加算部123aが設けられたような機能となる。ここで、加算部123aは、メモリ141の動作を形式的に示すものであり、実態として存在するものではない。すなわち、同期加算部123のメモリ141は、図3の下部で示されるように、Iチャンネル、およびQチャンネルのそれぞれの拡散コードからなる信号を、拡散コード長に対応する1024ポイント分(GPSの1ms分のデータ:図中の幅L)だけ先頭から順次蓄積し、1024ポイント分蓄積が完了すると、再び先頭からデータを加算して蓄積する。
 このとき、同期加算部123のメモリ141は、拡散コードの先頭位置を認識していないので、拡散コード分だけ蓄積すると、再び、先頭位置から同一の位置のデータを加算して蓄積することにより、順次送信されてくる拡散コードを同期しながら加算して記憶する。
 このような処理により、拡散コードを構成する信号が繰り返し加算されていくことで、拡散コードのSN比を改善させることが可能となる。
 <周波数域相関部の機能>
 次に、図4を参照して、周波数域相関部124により実現される機能について説明する。周波数域相関部124は、詳細には、図4で示されるように、1024FFT(First Fourier Transform)演算部161a-1,161a-2、メモリ173,174、複素共役演算部(Conjugate)161c、複素共役乗算部161b、および1024IFFT(Inverse First Fourier Transform)演算部161dを備えた構成となる。
 1024FFT(First Fourier Transform)演算部161a-1,161a-2は、いずれも同一の機能であり、基数4演算部171および基数2演算部172による演算により、その機能が実現され、入力された拡散コードのIチャンネルおよびQチャンネルのそれぞれにFFTをかけてメモリ173,174に格納させる。
 複素共役演算部161cは、メモリ174に格納されている拡散コード部125より供給されてきた拡散コードにFFTが掛けられた信号の複素共役をとり、複素共役乗算部161bに供給する。
 複素共役乗算部161bは、複素共役演算部161cより供給されてくる信号と、メモリ173,174に格納されているFFTが掛けられた、衛星信号からの拡散コードとを複素共役乗算して1024IFFT演算部161dに出力する。
 1024IFFT演算部161dは、基数4演算部171および基数2演算部172による演算により、その機能が実現され、入力された信号のIチャンネルおよびQチャンネルのそれぞれにIFFT(逆FFT)をかけて周波数域相関としてメモリ173および174に格納させる。
 メモリ173および174は、それぞれ格納したIチャンネルおよびQチャンネルの周波数域相関を出力する。
 <絶対値加算部の機能>
 次に、図5を参照して、絶対値加算部126により実現される機能について説明する。
 図5の上部で示されるように、絶対値加算部126は、絶対値変換部126aおよび加算部126b、並びに、メモリ191より構成される。絶対値変換部126aは、周波数域相関部124より供給される周波数域相関を示すIチャンネルとQチャンネルの信号を絶対値に変換して加算部126bに出力する。
 加算部126bは、メモリ191に絶対値に変換された値を先頭位置(1番地)から順次格納し、最終位置(X番地:GPSの場合X=1024)まで格納したら先頭から、加算して格納する処理を繰り返す。この結果、メモリ191に格納される信号は、図5の下部で示されるように、1回目加算から加算数が増えて、例えば、N回目加算において、拡散コードの先頭位置となるピークが現れることにより、拡散コードの先頭位置を検出することが可能となる。
 以上のような処理により、拡散コードを受信しつつ、信号のSN比を改善比すると共に、先頭位置を特定することが可能となる。
 尚、以上においては、周波数域における相関を利用する例について説明してきたが、時間域の相関を利用するようにしてもよいものであるが、原則的な処理は同様であるので、その説明は省略するものとする。
 <信号捕捉処理>
 次に、図6のフローチャートを参照して、図2の信号捕捉部32による信号捕捉処理について説明する。
 ステップS11において、アンテナ12は、図示せぬ衛星からの電波を受信し、アナログ処理部21に出力する。
 ステップS12において、アナログ処理部21は、アンテナ12を介して受信される衛星信号をデジタル信号に変換してデジタル処理部22に供給する。より詳細には、アナログ処理部21は、アナログフロントエンド51(図2)を制御して、アンテナ12を介して受信されたRF(Radio Frequency)信号をIF(Intermediate Frequency)へとダウンコンバージョンする。さらに、アナログ処理部21は、周波数変換部52を制御して、アナログ信号からなる衛星信号をアナログデジタル(AD)変換し、アナログ信号からなるIF信号をベースバンドに変換して標本化すると共に、量子化してデジタル信号として出力する。
 ステップS13において、制御部121は、GPS衛星に対応する衛星信号の受信が指示されているか否かを判定する。例えば、各信号捕捉器101-1乃至101-nのいずれが、GPS衛星、BeiDou衛星、およびGalileo衛星のいずれからの衛星信号を受信するかについては、制御部31により予め割り付けられるようにしてもよい。例えば、GPS衛星の衛星信号の受信が指示されている場合、処理は、ステップS14に進む。
 ステップS14において、制御部121は、信号捕捉器101が単体で(1チャンネルで)、それぞれGPS衛星の衛星信号を受信するモードに動作を切り替える。より詳細には、制御部121は、他の信号捕捉器101の制御部121に対して、メモリ141,173,174,191、および基数4演算部171を連携して使用するような指示を出さず、単独でGPS衛星の衛星信号を受信するモードに動作を切り替える。
 ステップS15において、1チャンネル分の信号捕捉器101が単独でGPS衛星の衛星信号の受信処理を実行する。すなわち、ドップラ補正部122は、ドップラ効果による周波数変動を補正して衛星信号を同期加算部123に供給する。同期加算部123は、ドップラ補正部122より、ドップラ効果による周波数変動が補正された衛星信号を、図3を参照して説明したように、メモリ141を利用して、同期して加算し、周波数域相関部124に出力する。
 周波数域相関部124は、拡散コード部125より出力されてくる、自らの信号捕捉部32により固有のGPS衛星用の拡散コードと、送信されてきた衛星信号の拡散コードとの相関を演算する。より具体的には、周波数域相関部124は、図4を参照して説明したように、基数4演算部171を制御して、メモリ173,174を利用して1024ポイントのFFT処理およびIFFT処理を実行させて、受信した衛星信号における時間域の情報を周波数域の情報に変換して最も相関の高い遅延時間の情報を求め、絶対値加算部126に出力する。
 絶対値加算部126は、図5を参照して説明したように、メモリ191を利用して、周波数域相関部124の演算結果を加算して出力する。
 より詳細には、基数4演算部171は、図7で示されるように、メモリ173に格納された1024ポイントのx(0)乃至x(1024)で示される時間域のデータより、ステージ(Stage)1乃至5の処理により1024ポイントのX(0)乃至X(1024)で示される周波数域のデータを算出して出力する。
 ここで、基数4演算部171により実行される演算は、図8で示される基数4の、いわゆるバタフライ演算によるFFT演算処理である。図8においては、フレームF1で示される基数4のバタフライ演算により入力値f(0)乃至f(3)が、FFT処理されて出力値F(0)乃至F(3)とされる演算が示されている。図8で示されるように、フレームF1で示される基数4のバタフライ演算は、フレームF2で示される、基数2のバタフライ演算を4個まとめたものである。
 すなわち、1024ポイントの基数4演算部171によりなされる基数4のステージ1乃至5で示される5回のバタフライ演算により、4×4×4×4×4=1024ポイントのGPS衛星信号用の数拡散コードに対応するFFT演算を実行することが可能となる。尚、IFFT演算については、図7を示して説明した演算と逆方向にステージ5乃至1の順序でなされることにより実現される。また、図8におけるW(ここでは下付文字および上付文字の記載が省略されている)は、その下付文字をNとし、上付文字をXとするとき、e-j2×π×(X/N)で定義される。ここでeは、自然対数の底であり、(-j2×π×(X/N))が、その指数となる。従って、W(ここでは下付文字および上付文字の記載が省略されている)は、X=0かつN=4の場合、1となり、X=1かつN=4の場合、-jとなる。
 一方、ステップS13において、GPS衛星の衛星信号の受信が指示されていない場合、処理は、ステップS16に進む。
 ステップS16において、制御部121は、BeiDou衛星に対応する衛星信号の受信が指示されているか否かを判定する。例えば、各信号捕捉器101-1乃至101-nのいずれが、例えば、BeiDou衛星の衛星信号の受信が指示されている場合、処理は、ステップS17に進む。
 ステップS17において、制御部121は、2個の信号捕捉器101で(2チャンネルで)、それぞれBeiDou衛星の衛星信号を受信するモードに動作を切り替える。より詳細には、例えば、制御部121-1は、信号捕捉器101-2の制御部121-2に対して、メモリ141-2,173-2,174-2,191-2を連携して使用するような指示を出す。また、例えば、制御部121-3は、信号捕捉器101-4の制御部121-4に対して、メモリ141-4,173-4,174-4,191-4を連携して使用するような指示を出す。
 これにより、例えば、図9で示されるように、信号捕捉器101-1の制御部121-1が、自らをマスタであるものと宣言し、信号捕捉器101-2の制御部121-2に対してスレイブとなることを指示する。同様に、信号捕捉器101-3の制御部121-3が、自らをマスタであるものと宣言し、信号捕捉器101-4の制御部121-4に対してスレイブとなることを指示する。
 このとき、信号捕捉器101-2の制御部121-2は、信号捕捉器101-1のスレイブとなることにより、ドップラ補正部122-2、同期加算部123-2、周波数域相関部124-2、拡散コード部125-2、および絶対値加算部126-2の動作を停止させる。
 これに伴って、図9においては、ドップラ補正部122-2、同期加算部123-2、周波数域相関部124-2、拡散コード部125-2、および絶対値加算部126-2のそれぞれからの矢印が表示されておらず、動作が停止することにより、何らデータを出力しないことが示されている。
 同様に、信号捕捉器101-4の制御部121-4は、信号捕捉器101-3のスレイブとなることにより、それぞれドップラ補正部122-4、同期加算部123-4、周波数域相関部124-4、拡散コード部125-4、および絶対値加算部126-4の動作を停止させる。
 これに伴って、図9においては、ドップラ補正部122-4、同期加算部123-4、周波数域相関部124-4、拡散コード部125-4、および絶対値加算部126-4のそれぞれからの矢印が表示されておらず、動作が停止することにより、何らデータを出力しないことが示されている。
 さらに、制御部121-2は、メモリ141-2を信号捕捉器101-1の同期加算部123-1の制御下とするように制御する。また、制御部121-2は、FFT部161-2を、周波数域相関部124-1の制御下となるように制御する。さらに、制御部121-2は、メモリ191-2を絶対値加算部126-1の、制御下となるように制御する。
 図9においては、この状態を示すため、メモリ141-2が、同期加算部123-1に含まれるように描かれている。また、FFT部161-2が、周波数域相関部124-1の制御下であることを示すため、対応する周波数域相関部124’-1に含まれるように描かれている。同様に、図9においては、メモリ191-2が、絶対値加算部126-1に含まれて描かれている。
 同様に、制御部121-4は、メモリ141-4を信号捕捉器101-3の同期加算部123-3の制御下となるように制御する。また、制御部121-4は、メモリ173-4,174-4および基数4演算部171-4を、周波数域相関部124-3の制御下となるように制御する。さらに、制御部121-4は、メモリ191-4を絶対値加算部126-3の制御下となるように制御する。図9においては、メモリ141-4が、同期加算部123-3に含まれて描かれている。また、FFT部161-4が、周波数域相関部124-3の制御下であることを示すため、対応する周波数域相関部124’-3に含まれるように描かれている。同様に、図9においては、メモリ191-4が、絶対値加算部126-3に含まれて描かれている。
 また、信号捕捉器101-1の制御部121-1は、拡散コード部125-1を制御して、図9の点線の矢印で示されるように、自らの固有のBeiDou衛星用の2048ポイントの拡散コードを出力させる。同様に、信号捕捉器101-3の制御部121-3は、拡散コード部125-3を制御して、図9の点線の矢印で示されるように、自らの固有のBeiDou衛星用の2048ポイントの拡散コードを出力させる。
 これにより、信号捕捉器101-1の同期加算部123-1は、メモリ141-1,141-2からなる2048ポイントの記憶領域を確保することで、BeiDou衛星の拡散コードの1周期分(2ms分)を処理することができる。また、周波数域相関部124’-1は、メモリ173-1,173-2,174-1,174-2により、2個の2048ポイントの記憶領域を確保することで、BeiDou衛星の拡散コードの1周期分(2ms分)を処理することができる。また、周波数域相関部124’-1は、1024ポイントの基数4演算部171-1,171-2と、2048ポイントの基数2演算部172-1とを利用することで、2048ポイントのBeiDou衛星の拡散コードの1周期分(2ms分)を処理することができる。さらに、絶対値加算部126-1は、メモリ191-1,191-2からなる2048ポイントの記憶領域を確保することで、BeiDou衛星の拡散コードの1周期分(2ms分)を処理することができる。
 同様に、信号捕捉器101-3についても、2048ポイントのBeiDou衛星の拡散コードを処理することが可能となる。
 この場合、2048ポイントの基数4演算部171が存在すれば、図10で示されるように、メモリ173に格納された2048ポイントのx(0)乃至x(2047)で示される時間域のデータより、ステージ(Stage)1乃至5の処理を実行すると共に、基数2演算部172がステージ(Stage)6の処理を実行することにより、2048ポイントのX(0)乃至X(2047)で示される周波数域のデータを算出して出力する。
 すなわち、2048ポイントの基数4演算部171によりなされる基数4の5回のバタフライ演算と、2048ポイントの基数2演算部172によりなされる基数2の1回のバタフライ演算とにより、4×4×4×4×4×2=2048ポイントのBeiDou衛星信号用の拡散コードのポイント数に対応するFFT演算処理を実行することが可能となる。
 しかしながら、基数4演算部171は、1024ポイントに対応する基数4のバタフライ演算を実行するものであるので、図11で示されるように、FFT部161-1,161-2のそれぞれの1024ポイントに対応する基数4演算部171-1,171-2のステージ1乃至5の処理によりなされた演算結果を利用して、ステージ6において2048ポイントの基数2演算部172-1により2048ポイントのBeiDou衛星信号用の拡散コードのポイント数に対応する相関を演算することが可能となる。
 結果として、信号捕捉器101-1,101-3が、GPS衛星の拡散コードを処理する際の2倍の記憶容量を、2倍のポイント数の基数4演算部171、並びに、2倍のポイント数の基数2演算部172を使用することが可能となり、BeiDou衛星の拡散コードを処理することが可能となる。
 尚、この他にも、例えば、1024ポイントの基数4演算部171-1により2回処理を行うことで、2048ポイントの基数4のFFT演算処理を実行するようにしても良いし、2個の1024ポイントの基数2演算部172-1,172-2により2048ポイントのFFT演算処理を実行するようにしても良い。また、IFFT演算については、図10のステージ6乃至1の順序で演算を実行することにより実現される。
 さらに、ステップS16において、BeiDou衛星の衛星信号の受信が指示されていない場合、処理は、ステップS19に進む。
 ステップS19において、制御部121は、Galileo衛星に対応する衛星信号の受信が指示されているか否かを判定する。例えば、各信号捕捉器101-1乃至101-nのいずれかが、例えば、Galileo衛星の衛星信号の受信が指示されている場合、処理は、ステップS20に進み、Galileo衛星の衛星信号の受信が指示されていない場合、いずれの衛星信号の受信も指示されていないので処理は終了する。
 ステップS20において、制御部121は、4個の信号捕捉器101で(4チャンネルで)、それぞれGalileo衛星の衛星信号を受信するモードに動作を切り替える。より詳細には、例えば、制御部121-1は、信号捕捉器101-2乃至101-4の制御部121-2乃至121-4に対して、メモリ141,173,174,191を連携して使用するような指示を出す。
 これにより、例えば、図12で示されるように、信号捕捉器101-1の制御部121-1が、自らをマスタであるものと宣言し、信号捕捉器101-2乃至101-4の制御部121-2乃至121-4に対してスレイブとなることを指示する。
 このとき、信号捕捉器101-2乃至101-4の制御部121-2乃至121-4は、信号捕捉器101-1のスレイブとなることにより、ドップラ補正部122-2乃至122-4、同期加算部123-2乃至123-4、周波数域相関部124-2乃至124-4、拡散コード部125-2乃至125-4、および絶対値加算部126-2乃至126-4の動作を停止させる。
 これに伴って、図12においては、ドップラ補正部122-2乃至122-4、同期加算部123-2乃至123-4、周波数域相関部124-2乃至124-4、拡散コード部125-2乃至125-4、および絶対値加算部126-2乃至126-4のそれぞれからの矢印が表示されておらず、動作が停止することにより、何らデータを出力しないことが示されている。
 さらに、制御部121-2乃至121-4は、それぞれメモリ141-2乃至141-4をそれぞれ信号捕捉器101-1の同期加算部123-1の制御下となるように制御する。また、制御部121-2乃至121-4は、FFT部161-2乃至161-4をそれぞれ周波数域相関部124-1の制御下となるように制御する。さらに、制御部121-2乃至121-4は、メモリ191-2乃至191-4をそれぞれ絶対値加算部126-1の制御下となるように制御する。
 図12においては、この状態を示すため、メモリ141-2乃至141-4が、同期加算部123-1に含まれるように描かれている。また、FFT部161-2乃至161-4が、周波数域相関部124-1の制御下であることを示すため、対応する周波数域相関部124’’-1に含まれるように描かれている。
 また、信号捕捉器101-1の制御部121-1は、拡散コード部125-1を制御して、図12の点線で示されるように、Galileo衛星用の4096ポイントの拡散コードを出力させる。
 これにより、信号捕捉器101-1の同期加算部123-1は、メモリ141-1乃至141-4からなる4096ポイントの記憶領域を確保することで、Galileo衛星の拡散コードの1周期分(4ms分)を処理することができる。また、周波数域相関部124’’-1は、メモリ173-1乃至173-4および174-1乃至174-4により、2個の4096ポイントの記憶領域を確保することで、Galileo衛星の拡散コードの1周期分(4ms分)を処理することができる。また、周波数域相関部124’’-1は、1024ポイントの基数4演算部171-1乃至171-4を利用することで、4096ポイントのGalileo衛星の拡散コードの1周期分(4ms分)を処理することができる。さらに、絶対値加算部126-1は、メモリ191-1乃至191-4からなる4096ポイントの記憶領域を確保することで、Galileo衛星の拡散コードの1周期分(4ms分)を処理することができる。
 結果として、信号捕捉器101-1が、GPS衛星の拡散コードを処理する際の4倍の記憶容量を、4倍のポイント数の基数4演算部171を使用することが可能となり、Galileo衛星の拡散コードを処理することが可能となる。
 以上により、これまではGPS衛星、BeiDou衛星、およびGalileo衛星のそれぞれの1024ポイント、2048ポイント、および4096ポイントの拡散コードに対応した処理を実現するには、例えば、図13で示されるように、GPS衛星、BeiDou衛星、およびGalileo衛星のそれぞれ専用のGPS信号捕捉器101-1乃至101-n、BeiDou信号捕捉器201-1乃至201-n、およびGalileo信号捕捉器301-1乃至301-nが必要であった。
 尚、図13においては、信号捕捉部32内に、GPS信号捕捉器101-1乃至101-n、BeiDou信号捕捉器201-1乃至201-n、およびGalileo信号捕捉器301-1乃至301-nが独立して設けられている。
 また、BeiDou信号捕捉器201は、専用のドップラ補正部222、同期加算部(2048ポイントのメモリ241を含む)223、周波数域相関部(2048ポイントのメモリ273,274を含むFFT部261を含む)224、拡散コード部225、および絶対値加算部(2048ポイントのメモリ291含む)226を備えている。
 さらに、Galileo信号捕捉器301は、専用のドップラ補正部322、同期加算部(4096ポイントのメモリ341を含む)323、周波数域相関部(4096ポイントのメモリ373,374を含むFFT部361を含む)324、拡散コード部325、および絶対値加算部(4096ポイントのメモリ391含む)326を備えている。
 このため、それぞれの構成を設けることにより装置コストが増大する上、装置が大型化してしまう恐れがあった。
 これに対して、図2で示される本技術の信号捕捉部32は、原則的に、GPS衛星に対応した信号捕捉器101を複数チャンネル設ける構成とすることで、メモリ141、173,174,191および1024ポイントの基数4演算部171および2048ポイントの基数2演算部172を必要に応じて組み合わせて使用することで、GPS衛星、BeiDou衛星、およびGalileo衛星のそれぞれに対応した動作を実現することが可能となる。
 結果として、装置コストの増大と、大型化を抑制しつつ、GPS衛星、BeiDou衛星、およびGalileo衛星といった複数の衛星信号の捕捉を実現することが可能となる。
 尚、信号捕捉器101の組み合わせ方により、複数の衛星信号を受信するバリエーションを設けることが可能である。
 すなわち、例えば、図14で示されるように、信号捕捉器101が6台である場合(信号捕捉器101-1乃至101-6の場合)、図14の最左部で示されるように、個別に信号捕捉器101-1乃至101-6が、それぞれ1024ポイントの拡散コードに対応した周波数域相関部124-1乃至124-6を実現し、6種類のGPS衛星の信号を受信するようにしても良い。また、図14の左から2列目で示されるように信号捕捉器101-1,101-2、信号捕捉器101-3,101-4、および信号捕捉器101-5,101-6が、それぞれ2台ずつを組み合わせて、2048ポイントの拡散コードに対応した周波数域相関部124’-1乃至124’-3を実現し、3種類のBeiDou衛星の信号を受信するようにしても良い。さらに、図14の右から2列目で示されるように、信号捕捉器101-1乃至101-4により、4096ポイントの拡散コードに対応した周波数域相関部124’’-1を実現してGalileo衛星の信号を受信し、信号捕捉器101-5,101-6により1024ポイントの拡散コードに対応した周波数域相関部124-5,124-6を実現して、GPS衛星の信号を受信するようにしても良い。さらにまた、図14の最右列で示されるように、信号捕捉器101-1,101-2により、2048ポイントの拡散コードに対応した周波数域相関部124’-1を実現して、BeiDou衛星の信号を受信するようにし、信号捕捉器101-3乃至101-6により、4096ポイントの拡散コードに対応した周波数域相関部124’’-3を実現して、Galileo衛星の信号を受信するようにしてもよい。
 この他にも、様々な組み合わせにより、複数の種類の複数の衛星信号を受信できるようにしても良い。
 尚、以上においては、GPS衛星、BeiDou衛星、およびGalileo衛星の例について説明してきたが、これ以外の衛星信号についても1024ポイント倍数からなる拡散コードであれば、同様に対応することが可能となる。また、倍数に応じて同様の処理ができるので、例えば、512ポイントの処理が可能得な信号捕捉器101を複数に用意して組み合わせるようにしても良い。さらに、1024ポイントの倍数ではない拡張コードであっても、必要とされるポイント数以上の処理が可能な構成を組み合わせて用意し、例えば、不要なポイントについては、0を入力するなどして処理することで、1024ポイントの倍数以外の拡張コードを用いた衛星信号に対しても対応することが可能である。
 ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
 図15は、汎用のパーソナルコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタ-フェイス1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
 入出力インタ-フェイス1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
 CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 尚、本技術は、以下のような構成も取ることができる。
(1) 衛星信号を受信する受信部と、
 前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、
 前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、
 前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含み、
 所定の前記信号捕捉器の相関演算部は、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
 全地球航法衛星システムの受信装置。
(2) 前記相関演算部は、周波数域または時間域における、前記衛星信号と前記疑似信号との相関を演算する
 (1)に記載の全地球航法衛星システムの受信装置。
(3) 前記所定データ長は、1024ワードであり、
 前記衛星信号の種別がGPS(Global Positioning System)衛星の衛星信号である場合、前記相関演算部は、自らの前記メモリのみを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
 (1)に記載の全地球航法衛星システムの受信装置。
(4) 前記相関演算部は、
  1024ワードの基数4のFFT演算を実行する基数4演算部を含み、
 前記基数4演算部が、5回の1024ワードの基数4のFFT演算を繰り返し実行することにより、前記衛星信号と前記疑似信号との相関を演算する
 (3)に記載の全地球航法衛星システムの受信装置。
(5) 前記所定データ長は、1024ワードであり、
 前記衛星信号の種別がBeiDou(BeiDou Navigation Satellite System)衛星の衛星信号である場合、前記相関演算部は、自らの前記メモリと、1の他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
 (1)に記載の全地球航法衛星システムの受信装置。
(6) 前記相関演算部は、
  1024ワードの基数4のFFT演算を実行する基数4演算部と、
  2048ワードの基数2のFFT演算を実行する基数2演算部とを含み、
 自らの前記基数4演算部、および前記他の前記信号捕捉器における前記基数4演算部が、それぞれ5回の1024ワードの基数4のFFT演算を繰り返した後、2048ワードの基数2のFFT演算を実行することにより、前記衛星信号と前記疑似信号との相関を演算する
 (5)に記載の全地球航法衛星システムの受信装置。
(7) 前記所定データ長は、1024ワードであり、
 前記衛星信号の種別がGalileo衛星の衛星信号である場合、前記相関演算部は、自らの前記メモリと、3の他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
 (1)に記載の全地球航法衛星システムの受信装置。
(8) 前記複数の信号捕捉器のうち、
  いずれかの前記信号捕捉器が単独でGPS(Global Positioning System)衛星の衛星信号を捕捉する、
  いずれかの2の前記信号捕捉器がBeiDou(BeiDou Navigation Satellite System)衛星の衛星信号を捕捉する、
 および、
  いずれかの4の前記信号捕捉器がGalileo衛星の衛星信号を捕捉する、
 のうちの少なくともいずれかがなされる
 (1)に記載の全地球航法衛星システムの受信装置。
(9) 衛星信号を受信する受信部と、
 前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、
 前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、
 前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含む全地球航法衛星システムの受信装置における受信方法であって、
 所定の前記信号捕捉器の相関演算部が、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
 全地球航法衛星システムの受信装置の受信方法。
(10) 衛星信号を受信する受信部と、
 前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、
 前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、
 前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含む受信装置を制御するコンピュータに、
 所定の前記信号捕捉器の相関演算部が、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
 ように実行させるプログラム。
 11 GNSSレシーバ, 21 アナログ処理部, 22 デジタル処理部, 31 制御部, 32 信号捕捉部, 33 信号追尾部, 34 測位部, 101,101-1乃至101-n 信号捕捉器, 121,121-1乃至121-n 制御部, 122,122-1乃至122-n ドップラ補正部, 123,123-1乃至123-n 周期加算部, 124,124-1乃至124-n,124’,124’-1乃至124’-n,124’’,124’’-1乃至124’’-n 周波数域相関部, 125,125-1乃至125-n 拡散コード, 126,126-1乃至126-n 絶対値加算部, 141,141-1乃至141-n メモリ, 161,161-1乃至161-n FFT部, 171,171-1乃至171-n 基数4演算部, 172,172-1乃至172-n 基数2演算部, 173,173-1乃至173-n,174,174-1乃至174-n メモリ, 191,191-1乃至191-n メモリ

Claims (10)

  1.  衛星信号を受信する受信部と、
     前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、
     前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、
     前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含み、
     所定の前記信号捕捉器の相関演算部は、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
     全地球航法衛星システムの受信装置。
  2.  前記相関演算部は、周波数域または時間域における、前記衛星信号と前記疑似信号との相関を演算する
     請求項1に記載の全地球航法衛星システムの受信装置。
  3.  前記所定データ長は、1024ワードであり、
     前記衛星信号の種別がGPS(Global Positioning System)衛星の衛星信号である場合、前記相関演算部は、自らの前記メモリのみを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
     請求項1に記載の全地球航法衛星システムの受信装置。
  4.  前記相関演算部は、
      1024ワードの基数4のFFT演算を実行する基数4演算部を含み、
     前記基数4演算部が、5回の1024ワードの基数4のFFT演算を繰り返し実行することにより、前記衛星信号と前記疑似信号との相関を演算する
     請求項3に記載の全地球航法衛星システムの受信装置。
  5.  前記所定データ長は、1024ワードであり、
     前記衛星信号の種別がBeiDou(BeiDou Navigation Satellite System)衛星の衛星信号である場合、前記相関演算部は、自らの前記メモリと、1の他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
     請求項1に記載の全地球航法衛星システムの受信装置。
  6.  前記相関演算部は、
      1024ワードの基数4のFFT演算を実行する基数4演算部と、
      2048ワードの基数2のFFT演算を実行する基数2演算部とを含み、
     自らの前記基数4演算部、および前記他の前記信号捕捉器における前記基数4演算部が、それぞれ5回の1024ワードの基数4のFFT演算を繰り返した後、2048ワードの基数2のFFT演算を実行することにより、前記衛星信号と前記疑似信号との相関を演算する
     請求項5に記載の全地球航法衛星システムの受信装置。
  7.  前記所定データ長は、1024ワードであり、
     前記衛星信号の種別がGalileo衛星の衛星信号である場合、前記相関演算部は、自らの前記メモリと、3の他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
     請求項1に記載の全地球航法衛星システムの受信装置。
  8.  前記複数の信号捕捉器のうち、
      いずれかの前記信号捕捉器が単独でGPS(Global Positioning System)衛星の衛星信号を捕捉する、
      いずれかの2の前記信号捕捉器がBeiDou(BeiDou Navigation Satellite System)衛星の衛星信号を捕捉する、
     および、
      いずれかの4の前記信号捕捉器がGalileo衛星の衛星信号を捕捉する、
     のうちの少なくともいずれかがなされる
     請求項1に記載の全地球航法衛星システムの受信装置。
  9.  衛星信号を受信する受信部と、
     前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、
     前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、
     前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含む全地球航法衛星システムの受信装置における受信方法であって、
     所定の前記信号捕捉器の相関演算部が、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
     全地球航法衛星システムの受信装置の受信方法。
  10.  衛星信号を受信する受信部と、
     前記受信部により受信された前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号との、FFT演算による前記衛星信号と前記疑似信号との相関を演算する相関演算部と、
     前記相関演算部における前記FFT演算に必要とされる所定データ長のメモリと、
     前記相関演算部により演算された相関に基づいて、前記衛星信号を捕捉する、複数の信号捕捉器とを含む受信装置を制御するコンピュータに、
     所定の前記信号捕捉器の相関演算部が、前記衛星信号の種別に応じて、自らの前記メモリと、他の前記信号捕捉器におけるメモリとを利用して、前記衛星信号と、前記衛星信号の種別に応じたデータ長の拡散コードより生成される疑似信号とをFFT演算し、前記衛星信号と前記疑似信号との相関を演算する
     ように実行させるプログラム。
PCT/JP2015/072720 2014-08-20 2015-08-11 全地球航法衛星システムの受信装置および受信方法、並びにプログラム WO2016027727A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/500,296 US20170212246A1 (en) 2014-08-20 2015-08-11 Receiving apparatus, receiving method, and program for global navigation satellite system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-167496 2014-08-20
JP2014167496 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027727A1 true WO2016027727A1 (ja) 2016-02-25

Family

ID=55350672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072720 WO2016027727A1 (ja) 2014-08-20 2015-08-11 全地球航法衛星システムの受信装置および受信方法、並びにプログラム

Country Status (2)

Country Link
US (1) US20170212246A1 (ja)
WO (1) WO2016027727A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597493A (zh) * 2016-12-16 2017-04-26 武汉大学 非线性函数驱动时空混沌卫星导航测距码实现方法及系统
CN106772476A (zh) * 2016-12-16 2017-05-31 武汉大学 多变量时空混沌卫星导航高性能测距码实现方法和系统
CN109725337A (zh) * 2019-01-28 2019-05-07 西安开阳微电子有限公司 一种B2a信号匹配滤波捕获方法、装置及计算机存储介质
WO2019155703A1 (ja) * 2018-02-09 2019-08-15 ソニーセミコンダクタソリューションズ株式会社 衛星測位信号受信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807371B (zh) * 2017-09-14 2019-10-01 北京航空航天大学 基于北斗卫星观测数据的数据相关性处理方法
US11546161B2 (en) * 2020-02-21 2023-01-03 Hong Kong Applied Science and Technology Research Institute Company Limited Zero knowledge proof hardware accelerator and the method thereof
CN113031026B (zh) * 2021-02-25 2024-03-19 湖南国科微电子股份有限公司 一种测距码生成方法、装置、设备及存储介质

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513787A (ja) * 1995-10-09 1999-11-24 スナップトラック・インコーポレーテッド Gps受信機とgps信号を処理する方法
JP2002500751A (ja) * 1996-04-25 2002-01-08 シーフ、テクノロジー、インコーポレーテッド マルチビット相関器を備えたスペクトル拡散受信機
JP2002529752A (ja) * 1998-11-11 2002-09-10 サムソン・エレクトロニクス・カンパニー・リミテッド 衛星無線航法システムの擬似雑音信号の受信器
JP2003258769A (ja) * 2002-02-27 2003-09-12 Sony Corp Gps受信機およびgps衛星信号の受信方法
JP2004040297A (ja) * 2002-07-01 2004-02-05 Sony Corp 測位用衛星信号の受信機および測位用衛星信号の受信方法
JP2006155487A (ja) * 2004-12-01 2006-06-15 Sony Corp 高速フーリエ変換処理装置および演算処理用制御装置
JP2006337260A (ja) * 2005-06-03 2006-12-14 Mazeran Systems Japan Kk 衛星測位方法及び衛星測位システム
JP2007504771A (ja) * 2003-09-02 2007-03-01 サーフ テクノロジー インコーポレイテッド 衛星測位信号用の信号処理システム
JP2007510891A (ja) * 2003-10-22 2007-04-26 グローバル ロケート, インコーポレイテッド ヒストリカル相関データを使用して信号相関を実行する方法及び装置
US20080191932A1 (en) * 2005-03-31 2008-08-14 Erwin Hemming Method and Device for Correlation Detection in Spread Spectrum Transmission Systems by Fast Fourier Transformation
JP2009529814A (ja) * 2006-03-09 2009-08-20 ヨーロピアン スペース エージェンシー 衛星ナビゲーション・システムに使用するための受信機および送信機
JP2011504229A (ja) * 2007-11-15 2011-02-03 クゥアルコム・インコーポレイテッド Gnss受信機及び信号追跡回路及びシステム
CN102025391A (zh) * 2009-09-21 2011-04-20 北京兴中芯电子科技有限公司 实现多种扩频码长的高速滤波装置及其方法
US20110193744A1 (en) * 2010-02-05 2011-08-11 Andreas Warloe Method and system for integrated glonass and gps processing
JP2011174725A (ja) * 2010-02-23 2011-09-08 Seiko Epson Corp 信号捕捉方法及び信号捕捉装置
CN102545957A (zh) * 2011-12-19 2012-07-04 西安合众思壮导航技术有限公司 一种通用bpsk信号快速捕获模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298083B1 (en) * 1998-03-16 2001-10-02 Trimble Navigation Limited Power savings technique for a positioning system receiver
US7822105B2 (en) * 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
US20050128937A1 (en) * 2003-12-11 2005-06-16 Nokia Corporation Determination of correlation in the frequency domain
US7990315B2 (en) * 2006-09-15 2011-08-02 Mediatek Inc. Shared memory device applied to functional stages configured in a receiver system for processing signals from different transmitter systems and method thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513787A (ja) * 1995-10-09 1999-11-24 スナップトラック・インコーポレーテッド Gps受信機とgps信号を処理する方法
JP2002500751A (ja) * 1996-04-25 2002-01-08 シーフ、テクノロジー、インコーポレーテッド マルチビット相関器を備えたスペクトル拡散受信機
JP2002529752A (ja) * 1998-11-11 2002-09-10 サムソン・エレクトロニクス・カンパニー・リミテッド 衛星無線航法システムの擬似雑音信号の受信器
JP2003258769A (ja) * 2002-02-27 2003-09-12 Sony Corp Gps受信機およびgps衛星信号の受信方法
JP2004040297A (ja) * 2002-07-01 2004-02-05 Sony Corp 測位用衛星信号の受信機および測位用衛星信号の受信方法
JP2007504771A (ja) * 2003-09-02 2007-03-01 サーフ テクノロジー インコーポレイテッド 衛星測位信号用の信号処理システム
JP2007510891A (ja) * 2003-10-22 2007-04-26 グローバル ロケート, インコーポレイテッド ヒストリカル相関データを使用して信号相関を実行する方法及び装置
JP2006155487A (ja) * 2004-12-01 2006-06-15 Sony Corp 高速フーリエ変換処理装置および演算処理用制御装置
US20080191932A1 (en) * 2005-03-31 2008-08-14 Erwin Hemming Method and Device for Correlation Detection in Spread Spectrum Transmission Systems by Fast Fourier Transformation
JP2006337260A (ja) * 2005-06-03 2006-12-14 Mazeran Systems Japan Kk 衛星測位方法及び衛星測位システム
JP2009529814A (ja) * 2006-03-09 2009-08-20 ヨーロピアン スペース エージェンシー 衛星ナビゲーション・システムに使用するための受信機および送信機
JP2011504229A (ja) * 2007-11-15 2011-02-03 クゥアルコム・インコーポレイテッド Gnss受信機及び信号追跡回路及びシステム
CN102025391A (zh) * 2009-09-21 2011-04-20 北京兴中芯电子科技有限公司 实现多种扩频码长的高速滤波装置及其方法
US20110193744A1 (en) * 2010-02-05 2011-08-11 Andreas Warloe Method and system for integrated glonass and gps processing
JP2011174725A (ja) * 2010-02-23 2011-09-08 Seiko Epson Corp 信号捕捉方法及び信号捕捉装置
CN102545957A (zh) * 2011-12-19 2012-07-04 西安合众思壮导航技术有限公司 一种通用bpsk信号快速捕获模块

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106597493A (zh) * 2016-12-16 2017-04-26 武汉大学 非线性函数驱动时空混沌卫星导航测距码实现方法及系统
CN106772476A (zh) * 2016-12-16 2017-05-31 武汉大学 多变量时空混沌卫星导航高性能测距码实现方法和系统
CN106772476B (zh) * 2016-12-16 2019-01-04 武汉大学 多变量时空混沌卫星导航高性能测距码实现方法和系统
WO2019155703A1 (ja) * 2018-02-09 2019-08-15 ソニーセミコンダクタソリューションズ株式会社 衛星測位信号受信装置
JPWO2019155703A1 (ja) * 2018-02-09 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 衛星測位信号受信装置
JP7161500B2 (ja) 2018-02-09 2022-10-26 ソニーセミコンダクタソリューションズ株式会社 衛星測位信号受信装置
US11841445B2 (en) 2018-02-09 2023-12-12 Sony Semiconductor Solutions Corporation Satellite positioning signal receiving device
CN109725337A (zh) * 2019-01-28 2019-05-07 西安开阳微电子有限公司 一种B2a信号匹配滤波捕获方法、装置及计算机存储介质
CN109725337B (zh) * 2019-01-28 2023-11-03 西安开阳微电子有限公司 一种B2a信号匹配滤波捕获方法、装置及计算机存储介质

Also Published As

Publication number Publication date
US20170212246A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2016027727A1 (ja) 全地球航法衛星システムの受信装置および受信方法、並びにプログラム
US20170139053A1 (en) Simultaneous signal reception device of different satellite navigation systems
US20230288574A1 (en) Modernized global navigation satellite system (gnss) receivers and commercially viable consumer grade gnss receivers
US8634504B2 (en) Correlation calculating method, satellite signal capturing method, and correlation calculating circuit
Li et al. GPS signal acquisition via compressive multichannel sampling
US20150204981A1 (en) Signal processing method for ultra-fast acquisition and tracking of severely attenuated spread spectrum signals with doppler frequency and apparatus thereof
US8873504B2 (en) Flexible low complexity reference signal filtering for LTE receivers
JP2009100408A (ja) 最尤復号化方法、最尤復号装置、及び受信機
JP5974487B2 (ja) 衛星信号捕捉方法及び衛星信号捕捉装置
JP6061773B2 (ja) 信号処理装置、信号処理方法及び信号処理プログラム
JP2004340855A (ja) 衛星測位システム及び衛星測位方法
CN111257913A (zh) 北斗卫星信号捕获方法以及装置
US20140205045A1 (en) Method, apparatus, and system for frequency offset estimation and channel estimation
JP7081887B2 (ja) 周波数領域における相関関数を取得するための装置および方法
KR101356239B1 (ko) Gnss 및 대역확산 신호의 신속한 신호 획득을 위한 압축 감지 방법 및 그 장치
JP2013509753A (ja) マルチアンテナシステムにおけるチャネル推定方法及びその装置
JP2019054344A (ja) フィルタ係数算出装置、収音装置、その方法、及びプログラム
US20080191932A1 (en) Method and Device for Correlation Detection in Spread Spectrum Transmission Systems by Fast Fourier Transformation
JP4818437B2 (ja) コード変換装置及び受信機及びコード変換方法
CN113671547B (zh) 一种改进的高动态捕获方法、装置、设备及存储介质
US9025640B2 (en) Global navigation satellite system signal decomposition and parameterization algorithm
KR20080016690A (ko) 타임-슬롯 cdma 시스템에서의 다중-코드-셋 채널 추정 방법
US20130188668A1 (en) Multipath searching method and multipath searcher
CN105301610B (zh) 一种抗符号跳变的新型gps l5信号快速捕获方法
WO2016177108A1 (zh) 天线合并的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15500296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15834362

Country of ref document: EP

Kind code of ref document: A1