WO2016027296A1 - 干渉型振動観測装置、振動観測プログラムおよび振動観測方法 - Google Patents

干渉型振動観測装置、振動観測プログラムおよび振動観測方法 Download PDF

Info

Publication number
WO2016027296A1
WO2016027296A1 PCT/JP2014/005066 JP2014005066W WO2016027296A1 WO 2016027296 A1 WO2016027296 A1 WO 2016027296A1 JP 2014005066 W JP2014005066 W JP 2014005066W WO 2016027296 A1 WO2016027296 A1 WO 2016027296A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
observation
vibration
unit
transmission
Prior art date
Application number
PCT/JP2014/005066
Other languages
English (en)
French (fr)
Inventor
仁 能美
Original Assignee
アルウェットテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルウェットテクノロジー株式会社 filed Critical アルウェットテクノロジー株式会社
Priority to PCT/JP2015/003859 priority Critical patent/WO2016027422A1/ja
Priority to JP2016543800A priority patent/JP6363209B2/ja
Priority to EP18214747.0A priority patent/EP3486621B1/en
Priority to EP15834032.3A priority patent/EP3184974B1/en
Publication of WO2016027296A1 publication Critical patent/WO2016027296A1/ja
Priority to US15/427,573 priority patent/US10718659B2/en
Priority to US16/897,431 priority patent/US10989589B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays

Definitions

  • the present invention relates to a vibration observation technique such as displacement and minute fluctuation generated in large buildings such as terrain, bridges, and elevated roads.
  • a vibration measurement sensor such as an accelerometer is attached to a specific observation site (target) of the building. If the target increases, the number of vibration measurement sensors increases.
  • a remote measurement method using microwaves is known instead of direct measurement using such sensors.
  • microwaves are irradiated to a building or the like, and a minute displacement or sway of a large structure can be measured from a remote point of several hundred meters or more by analyzing the reflected signal.
  • Such a measurement method can analyze the state of displacement and shaking by observing at a frequency more than twice the shaking cycle occurring in the building.
  • a system using a ground-installed synthetic aperture radar is known for observing minute displacements of an observation target that is three-dimensionally spread, such as landslides and dam bodies (for example, Patent Document 3).
  • This system irradiates the observation target with radio waves while moving the synthetic aperture radar transmitter / receiver, measures the reflected wave from the observation target, and performs synthetic aperture processing using the phase change of the signal received at the scanning point on the rail.
  • the observation target point is identified in two dimensions of direction and distance, and the change in the distance in the slant range direction of the observation target is detected from the change in the phase value of the observation target obtained for each scan.
  • Non-Patent Document 1 and Non-Patent Document 2 are known.
  • each observation point is separated and identified by distance, and the vibration and its intensity at a specific point are measured.
  • a radar reflector is attached to the observation target, the location is specified, and each reflection point is identified by the reflection intensity and distance.
  • an object of the present invention is to observe vibrations of an observation object having a two-dimensional or three-dimensional spread such as a structure such as a bridge or an elevated road, and to visualize the observation result.
  • a transmission unit that transmits a transmission signal from a transmission antenna toward an observation target and a plurality of receptions of reflected waves from the observation target
  • a receiving unit that receives the antenna and generates a receiving unit output signal for each receiving antenna, and obtains a phase plane of the reflected wave with respect to the antenna surface from a phase difference between the receiving unit output signals, and an arrival direction and signal intensity of the reflected wave
  • a signal processing unit that calculates a phase variation of the reflected wave from the specific direction and generates an observation signal representing the vibration of the observation target or the specific part.
  • the interference-type vibration observation apparatus further includes an image display unit that displays an image representing the observation target from the observation signal, generates the image based on the observation signal, and includes the observation target in an entire image of the observation target.
  • An image representing the vibration distribution inside may be superimposed and displayed on the image display unit.
  • the transmission signal of the transmission unit, the output signal of the reception unit of the reception unit, and the signal processing of the signal processing unit are further synchronized with the signal processing unit or outside the signal processing unit.
  • a signal generator that generates a reference signal to be generated.
  • the transmission unit outputs a pulse signal for detecting the observation target or a distance on the observation target, or a pulse signal that is chirp-modulated for pulse compression, and the reception unit May pulse-compress the reception unit output signal in phase with the reference signal and separate the specific part to be observed by the distance.
  • the transmission unit outputs an FMCW signal for detecting the observation target or a distance on the observation target
  • the reception unit outputs the reception unit in phase synchronization with a reference signal.
  • the FMCW signal of the signal may be analyzed, and the specific part to be observed may be separated by the distance.
  • the plurality of receiving antennas include one of a two-dimensional array such as a linear one-dimensional array, a T-shaped array, and an L-shaped array
  • the receiving unit or the signal processing unit includes:
  • the direction of the observation target may be identified by the phase difference of the reception unit output signal.
  • the plurality of receiving antennas include a two-dimensional array such as a T-shaped array or an L-shaped array, and the receiving unit or the signal processing unit is either one of an azimuth and an elevation angle of the observation target. One or both may be calculated.
  • a vibration observation program for observing vibration or displacement of an observation target by a computer, wherein a transmission signal is transmitted from the transmission antenna toward the observation target. And receiving a reflected wave from the observation target by a plurality of receiving antennas, generating a receiving unit output signal for each receiving antenna, and obtaining a phase plane of the reflected wave with respect to the antenna plane from a phase difference between the receiving unit output signals. Processing to identify an arrival direction and signal intensity of the reflected wave, calculate a phase variation of the reflected wave from the specific direction, and generate an observation signal representing vibration of the observation target or the specific part Let it run.
  • the computer may further execute a process of generating an image from the observation signal and superimposing an image representing a vibration distribution in the observation target on the entire image of the observation target.
  • a computer-readable recording medium recording a vibration observation program for causing a computer to observe vibration or displacement of an observation target. Transmitting a transmission signal to the observation target by the transmission antenna, receiving reflected waves from the observation target by a plurality of reception antennas, generating a reception unit output signal for each reception antenna, and between the reception unit output signals Obtaining the phase plane of the reflected wave with respect to the antenna plane from the phase difference, identifying the arrival direction and signal intensity of the reflected wave, calculating the phase fluctuation of the reflected wave from the specific direction, and the observation target or specific part thereof
  • a vibration observation program for causing the computer to execute a process for generating an observation signal representing the vibration of the image is recorded.
  • the vibration observation program for causing the computer to execute processing for generating an image from the observation signal and superimposing an image representing a vibration distribution in the observation target on the entire image of the observation target in the recording medium. It may be recorded.
  • a step of transmitting a transmission signal from a transmission antenna toward an observation target, and a plurality of reception antennas receive reflected waves from the observation target.
  • the vibration observation method may further include a step of generating an image from the observation signal and superimposing an image representing a vibration distribution in the observation target on the entire image of the observation target.
  • a radiation beam such as a transmission wave from a transmission antenna is irradiated to the entire observation object without scanning, and the reflected wave from the observation object or specific part is received by multiple reception antennas, and the reception obtained for each reception antenna Since the part output signal is subjected to digital beam forming, an image representing an observation target can be realized with high resolution, and vibration measurement can be imaged at regular intervals. Thereby, vibration observation and displacement observation can be performed with high accuracy.
  • the vibration characteristics of one or more observation points to be observed can be obtained by collecting the reflected waves from each identified observation position in a time sequence, converting the frequency, and analyzing it. Can be increased.
  • Example 4 of an interference type vibration observation apparatus It is a figure which shows Example 5 of an interference type vibration observation apparatus.
  • FIG. 1 shows an interference type vibration observation apparatus (hereinafter simply referred to as “observation apparatus”) according to the first embodiment.
  • observation apparatus an interference type vibration observation apparatus (hereinafter simply referred to as “observation apparatus”) according to the first embodiment.
  • the configuration illustrated in FIG. 1 is an example, and the present invention is not limited to such a configuration.
  • This observation device 2 is used for observing vibrations generated in an observation object 4 such as a bridge or a specific observation part (target) thereof.
  • This vibration observation includes observation of continuous vibration, irregular vibration, vibration such as intermittent displacement, or displacement generated in the observation object 4 or its target.
  • the observation device 2 includes a transmission unit 6, a reception unit group 8, and a signal processing unit 10.
  • the transmission unit 6 includes, for example, a single transmission antenna 12 and outputs a transmission signal f T to the transmission antenna 12.
  • a transmission wave Tw is transmitted from the transmission antenna 12 toward the observation target 4.
  • This transmission wave Tw is, for example, a microwave.
  • the receiving unit group 8 includes two or more receiving units 8-1, 8-2,. .., 8-n individually include receiving antennas 14-1, 14-2,..., 14-n, and the reflected wave Rw from the observation target 4 is transmitted to each receiving antenna 14. ⁇ 1, 14-2... 14-n, and the reception signal f R is obtained as the reception unit output signal for each of the reception antennas 14-1, 14-2. Provided.
  • the signal processing unit 10 uses the reception unit output signals obtained by the reception units 8-1, 8-2,..., 8-n for the reception antennas 14-1, 14-2,. Then, the phase plane of the reflected wave with respect to the antenna surface is obtained from the phase difference between the output signals of the receiving unit, the arrival direction and the signal intensity of the reflected wave are identified, the phase fluctuation of the reflected wave from the specific direction is calculated, and the observation target 4 Alternatively, an observation signal representing the displacement or vibration of the specific part is generated.
  • the observation target 4 may be the entire observation target 4, but may be a specific observation part in the observation target 4, that is, a vibration displacement of the target.
  • FIG. 2 shows an example of the processing procedure of the interference type vibration observation of the observation target 4.
  • This processing procedure is an example of the vibration observation program or the vibration observation method of the present invention, and is an example of information processing executed by a computer mounted on the signal processing unit 10 or the observation device 2.
  • This vibration observation program is stored in, for example, a computer-readable recording medium.
  • the transmission unit 6 transmits the transmission signal f T from the transmission antenna 12 toward the observation target 4 (S11). .., 14-n receive the reflected wave Rw and receive signals f R obtained from the receiving units 8-1, 8-2.
  • the receiver output signal Y (t) described above is generated in synchronization with the transmission timing of T (S12).
  • Each receiving unit output signal Y (t) is provided to each signal processing unit 10 from each receiving unit 8-1, 8-2,..., 8-n, and the signal processing unit 10 performs signal processing for generating an observation signal. Execute (S13).
  • phase plane of the reflected wave with respect to the antenna plane is obtained from the phase difference between the output signals of the receiving units, and the arrival direction and signal intensity of the reflected wave are identified.
  • the transmission signal f T from the transmission antenna 12 is irradiated to the entire observation target 4 without spatial scanning, and each of the reception antennas 14-1, 14-2,.
  • the image representing the observation target 4 can be realized with high resolution, and vibration measurement can be imaged at regular intervals. Thereby, vibration observation and displacement observation can be performed with high accuracy.
  • FMCW the frequency is scanned.
  • the vibration characteristics of one or more targets of the observation target 4 are obtained by collecting the received signal f R by the reflected wave Rw from each identified observation position in a time sequence, frequency-converting it, and analyzing it. Can improve the observation accuracy.
  • the observation target 4 can be a large building such as a bridge, a high-rise building, and a highway in addition to the terrain, and its external shape, vibration or displacement can be observed remotely.
  • the transmission signal f T For example, CW (Continuous Wave) signal, a pulse signal, FMCW: may be any of such (Frequency Modulated Continuous Wave Frequency modulated continuous wave) signal.
  • a plurality of receiving antennas 14-1, 14-2,..., 14-n may be arranged in the receiving antenna array 14, for example, as a one-dimensional array or a two-dimensional array. Through the signal analysis, a two-dimensional image or a three-dimensional image of the observation object 4 and its specific part can be obtained.
  • FIG. 3 shows an observation apparatus 2 according to the second embodiment.
  • the same parts as those in FIG. 3 are identical parts as those in FIG. 3
  • an image display unit 16 is provided on the output side of the signal processing unit 10 of the observation device 2 shown in FIG. 1, and the image display unit 16 uses the observation signal obtained from the signal processing unit 10. Display the observation image.
  • the image display unit 16 may be installed inside the observation apparatus 2, or an image display function may be realized using an external device such as a personal computer.
  • FIG. 4 shows an example of the receiving antenna array 14 used in this embodiment.
  • the receiving antenna array 14 may be used as a one-dimensional array receiving antenna 14a as shown in FIG. 4A or may be used as a two-dimensional array receiving antenna 14b as shown in FIG. 4B.
  • a plurality of receiving antennas 14-11, 14-12,... 14-1n arranged in the horizontal direction and a plurality of receiving antennas 14-21 arranged in the vertical direction are arranged.
  • 14-22,... 14-2n For example, these antenna arrays may be arranged orthogonally.
  • the transmission signal system can be selected from three systems: a CW signal system, a pulse signal system, and an FMCW signal system.
  • a CW signal system a pulse signal system
  • an FMCW signal system a pulse signal system
  • vibration measurement shown in Table 1 can be performed.
  • the observation target 4 can be identified and classified by the direction and the distance to the observation target 4, and a plurality of observation targets 4 in the same direction can be simultaneously measured.
  • the image display unit 16 is installed on the output side of the signal processing unit 10.
  • the image display unit 16 is provided with an observation signal output from the signal processing unit 10, and displays an image representing the vibration of the specific part together with the observation target 4.
  • an image display function or display of a personal computer may be used for the image display unit 16.
  • the signal processing unit 10 is configured by a computer, for example, as shown in FIG.
  • a processor 18 a memory unit 20, a reference signal generation unit 22, an interface unit 24, and an output unit 26 are provided.
  • the processor 18 includes an OS (Operating System) stored in the memory unit 20 and information processing for executing a vibration observation program, and executes signal processing necessary for vibration observation, control of various functional units, and the like.
  • OS Operating System
  • the memory unit 20 is an example of a computer-readable recording medium, and may include, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the RAM constitutes a work area for executing various programs.
  • the ROM is an example of a means for recording a program.
  • the ROM stores the above-described OS and vibration observation program, and stores various data necessary for vibration observation.
  • the ROM may be, for example, a semiconductor memory such as an EEPROM (Electrically-Erasable-and Programmable-Read-Only-Memory) that can be electrically rewritten, or a flash memory.
  • EEPROM Electrically-Erasable-and Programmable-Read-Only-Memory
  • the memory unit 20 is not limited to the RAM and the ROM, and may be a computer-readable recording medium such as a magnetic disk, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, and an SSD (solid state drive).
  • a computer-readable recording medium such as a magnetic disk, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, and an SSD (solid state drive).
  • the reference signal generator 22 is controlled by the processor 18 and generates a reference signal that becomes a synchronization signal. This reference signal is provided to the transmitter 6 and the receivers 8-1, 8-2,.
  • the interface unit 24 receives the receiver output signals output from the receivers 8-1, 8-2,..., 8-n.
  • the output unit 26 outputs an observation signal obtained by executing the vibration observation program.
  • FIG. 6A shows a processing procedure of vibration observation processing by the observation device 2.
  • a transmission signal is transmitted from the transmission antenna 12 toward the observation target 4 from the transmission unit 6 (S21).
  • a reflected wave is obtained from the observation object 4, and this reflected wave is received by each receiving antenna 14-1, 14-2,... 14-n, and each receiving unit 8-1, 8-2,.
  • Generate a receiver output signal at 8-n (S22).
  • the receiving unit output signals obtained by the receiving units 8-1, 8-2,..., 8-n are digitized in the receiving unit and provided to the signal processing unit 10.
  • a two-dimensional process is performed (S23).
  • the two-dimensional process (S23) may be omitted.
  • the distance between the receiving antennas 14-1, 14-2,... 14-n of the observation apparatus 2 and the observation target 4 is short distance or long distance (S24). If it is a short distance, a reference function multiplication process is performed (S25), and if it is a long distance, a 2D FFT (2-Dimensional Fast Fourier Transform) process is performed (S26). Following S25 or S26, it is determined whether the observation time for vibration analysis is over (S27). Before the end of the observation time (NO in S27), the process returns to S21 and the processes from S21 to S27 are continued. During this observation time, an image corresponding to a period of one cycle or more of the lowest frequency to be analyzed is accumulated.
  • FIG. 6B shows the polarimetric function provided in the transmitting antenna 12 and the receiving antennas 14-1, 14-2... 14-n.
  • the transmission antenna 12 can switch between horizontal (H) polarization and vertical (V) polarization for transmission, and the reception antennas 14-1, 14-2,. Enables simultaneous reception of vertically polarized waves. That is, at the transmission / reception timing, each polarization is alternately transmitted at each repetition period, and both polarizations are received simultaneously.
  • FIG. 7 shows a CW signal type observation device 2-1. 7, the same parts as those in FIG. 3 are denoted by the same reference numerals.
  • the reference signal generation unit 22 in the signal processing unit 10 generates a reference signal with high frequency stability and supplies it to the transmission unit 6, the reception units 8-1, 8-2,.
  • the CW signal generation unit 28 of the transmission unit 6 generates a CW signal having a transmission frequency using the reference signal received from the reference signal generation unit 22.
  • the CW signal is amplified to a predetermined level by the power amplifier 30 and then supplied to the transmission antenna 12 through the directional coupler 32. This CW signal is emitted toward the observation object 4 as a transmission signal.
  • a part of the transmission signal is branched by the directional coupler 32 and distributed from the distribution circuit 34 to the receiving units 8-1, 8-2,.
  • This transmission signal is used as a local signal of each of the receiving units 8-1, 8-2,.
  • the reception signals obtained by the receiving antennas 14-1, 14-2,... 14-n are amplified by an LNA (Low Noise Amplifier) 36, and then a frequency mixer (MIXER) 38-1. , 38-2.
  • the MIXER 38-1 mixes the received signal with the transmission signal whose phase is shifted by ⁇ / 2 by the phase shifter 40.
  • the reception signal and the transmission signal are mixed.
  • frequency conversion is performed on the intermediate signal using the complex signal (I, Q) local signal, and an intermediate frequency signal is obtained.
  • a / D Analog to digital converters
  • the preprocessing unit 48 integrates the digital signal for one observation period to reduce noise. As a result, the output signals of the preprocessing units 48 of the receiving units 8-1, 8-2 to 8 -n are output to the signal processing unit 10.
  • FIG. 8 shows the relationship between the reflector 4-1 in the observation object 4 and any of the transmission antenna 12 and the reception antennas 14-1, 14-2,... 14-n.
  • the distance between the transmitting antenna 12 and the receiving antennas 14-1, 14-2,... 14-n and the reflector 4-1 is set such that the transmitting antenna 12 and the receiving antennas 14-1, 14-2,. It is assumed that it is sufficiently larger than the distance between 14-n.
  • the distance from the transmitting antenna 12 to the position A of the reflector 4-1 is R T , and similarly, the position A of the reflector 4-1 from the receiving antennas 14-1, 14-2,.
  • R R be the distance to the point.
  • the reflector 4-1 vibrates with an amplitude ⁇ L and a vibration period ⁇ 0 .
  • the vibration period ⁇ 0 is a frequency of about 1 [kHz] or less.
  • the reception signals obtained by the receiving antennas 14-1, 14-2,... 14-n are affected by the vibration of the reflector 4-1, and It becomes like this.
  • the intermediate frequency signal f if has a signal format in which the transmission frequency ⁇ c is phase-modulated with the amplitude of the vibration period ⁇ 0 .
  • the intermediate frequency signal is amplified by intermediate frequency amplifiers 44-1 and 44-2, and converted to a digital signal by A / Ds 46-1 and 46-2.
  • the vibration period ⁇ 0 is 1 [kHz] or less
  • the vibration of the observation target 4 can be observed if the A / D conversion frequency is 2 [kHz].
  • the data may be integrated by the preprocessing unit 48 and reduced to 2 [kHz]. Thereby, S / N (Signal to Noise Ratio) can be improved.
  • FIG. 9 shows a pulse signal type observation device 2-2. 9, the same parts as those in FIG. 3 are denoted by the same reference numerals.
  • the reference signal generation unit 22 in the signal processing unit 10 generates a reference signal with high frequency stability, and supplies the reference signal to the transmission unit 6 and each of the reception units 8-1, 8-2,.
  • the chirp signal generation unit 50 generates a linear chirp signal based on the reference signal provided from the reference signal generation unit 22, and the carrier signal generation unit 52 generates a carrier signal having a transmission frequency. Generate.
  • a linear chirp signal is applied to each MIXER 54-1, 54-2.
  • the MIXER 54-1 the linear chirp signal and the carrier signal are mixed.
  • the MIXER 54-2 mixes the linear chirp signal with the carrier signal whose phase is shifted by ⁇ / 2 by the phase shifter 56.
  • the chirp pulse signal which is a transmission signal is converted into a transmission frequency by a carrier signal, and a transmission signal is obtained.
  • the transmission signal is amplified to a predetermined level by the power amplification unit 58, supplied to the transmission antenna 12, and irradiated toward the observation target 4.
  • the carrier signal generated by the carrier signal generation unit 52 is distributed by the distribution circuit 34 to the receiving units 8-1, 8-2,.
  • Each receiving unit 8-1, 8-2,..., 8-n uses this carrier signal as a local signal.
  • the reflected waves from the observation object 4 are received by the receiving antennas 14-1, 14-2,... 14-n, and the received signals are obtained from the receiving antennas 14-1, 14-2,. It is done.
  • the received signal is frequency-converted with the local signal, and an intermediate frequency signal is obtained.
  • the intermediate frequency signal is amplified to a predetermined level and then converted into a digital signal by A / D converters 46-1 and 46-2.
  • the receiving units 8-1, 8-2,..., 8-n are the same as the CW signal system observation apparatus 2-1 described above, and are therefore denoted by the same reference numerals. Omit.
  • Such a pulse signal type observation device 2-2 can use a pulse compression technique in the same way as a general radar, and the range resolution can be improved by using this pulse compression technique.
  • FIG. 10 shows a state of the transmission signal of the pulse signal system.
  • 10A shows a change in frequency of the transmission signal
  • FIG. 10B shows a change in amplitude of the transmission signal.
  • the distance from the transmitting antenna 12 to the point A of the reflector 4-1 is R T , and similarly from the receiving antennas 14-1, 14-2,... 14-n to the point A of the reflector 4-1.
  • R R be the distance.
  • the reflector 4-1 is assumed to vibrate with an amplitude ⁇ L and a vibration period ⁇ 0 .
  • the vibration period ⁇ 0 is a frequency of about 1 [kHz] or less.
  • the received signal f R is expressed as follows.
  • This received signal is amplified by the LNA 36, the carrier signal is separated, the frequency is converted by the complex local signal, and then the low frequency components are extracted by the LPFs 42-1 and 42-2, whereby an intermediate frequency signal f if is obtained. .
  • the intermediate frequency signal f if is amplified by the intermediate frequency amplifiers 44-1 and 44-2, converted into a digital signal by the A / Ds 46-1 and 46-2, and the pre-processing unit 48 performs pulse compression of the chirp signal. After that, the signal is output to the signal processing unit 10.
  • FIG. 11 shows the pulse compression processing of the preprocessing unit 48.
  • A shows the output obtained by the pulse compression process
  • B shows the output obtained by the pulse compression process.
  • This pulse compression process is performed by the correlation between the chirp signal f (t) and the reference function g ( ⁇ ).
  • the reference function g ( ⁇ ) is a conjugate function of the transmission chirp function in the chirp signal f (t) and is expressed by the following equation.
  • the processing for each range of the received signal at each of the receiving antennas 14-1, 14-2,... 14-n is the same as the processing of the CW signal system. However, the azimuth detection processing of the reflector 4-1 is performed for each distance between the observation target 4 and the receiving antennas 14-1, 14-2,... 14-n. This may be a reflection point.
  • FIG. 12 shows an FMCW signal type observation device 2-3.
  • FIG. 12 the same parts as those in FIG. 3 or FIG.
  • the transmission signal frequency can be scanned over a wide band as a linear FM signal to improve the range resolution.
  • the reference signal generation unit 22 in the signal processing unit 10 generates a reference signal with high frequency stability and supplies it to the transmission unit 6, the reception units 8-1, 8-2,.
  • the FMCW signal generation unit 60 of the transmission unit 6 generates an FMCW signal that has been subjected to frequency scanning with a linear transmission bandwidth based on the reference signal provided from the reference signal generation unit 22.
  • the FMCW signal is amplified to a predetermined level by the power amplifying unit 30 and then supplied to the transmission antenna 12 through the directional coupler 32 and is irradiated toward the observation target 4 by the transmission antenna 12.
  • a part of the transmission signal is added to the distribution circuit 34, and is distributed to each of the receiving units 8-1, 8-2,.
  • This transmission signal is used as a local signal in each of the receiving units 8-1, 8-2,.
  • a continuous wave is used as a transmission signal, and transmission of the transmission signal and reception of the reception signal are performed simultaneously. Since transmission and reception are performed simultaneously, it is necessary to take measures to prevent the transmission signal of the transmission antenna 12 from entering the reception antennas 14-1, 14-2,. For example, a distance may be set between the transmitting antenna 12 and each of the receiving antennas 14-1, 14-2,. That is, the transmission antenna 12 and the receiving antennas 14-1, 14-2,...
  • the transmission signal irradiated to the observation target 4 by the transmission antenna 12 is reflected by the observation target 4, and the reflected waves are received by the reception antennas 14-1, 14-2,... 14-n, and the reception antenna 14-1, 14-2,..., 14-n, a received signal is obtained.
  • Each received signal is amplified by the LNA 36, mixed with a local signal (a signal obtained by branching and distributing the transmission signal) by the MIXER 38, frequency-converted, and converted to an intermediate frequency signal.
  • a low frequency component is extracted from the intermediate frequency signal by the LPF 42, the low frequency component signal is amplified to a predetermined level by the intermediate frequency amplifier 44, and then converted into a digital signal by the A / D converter 46.
  • the signal is provided to the preprocessing unit 48.
  • the provided digital signal is converted into a digital signal having a frequency domain corresponding to the range space by FFT processing.
  • This digital signal is provided to the signal processing unit 10 as a reception unit output signal.
  • FIG. 13 shows the state of transmission / reception signals.
  • A indicates the frequency change of the transmission / reception signal
  • B indicates the frequency of the mixer output signal in the receiving unit. That is, since the reception signal is delayed by the round-trip distance from the transmission / reception antenna to the observation point, this reception signal delay causes a frequency difference between the transmission signal and the reception signal. This frequency difference becomes the frequency of the mixer output signal.
  • the transmission signal f T (t) of the FMCW signal system is expressed by the following equation when the chirp rate is k.
  • the received wave from the reflecting body 4-1 of the observation object 4 that is vibrating is obtained.
  • the distance from the transmitting antenna 12 to the point A of the reflector 4-1 is R T , and similarly from the receiving antennas 14-1, 14-2,... 14-n to the point A of the reflector 4-1. Let R R be the distance.
  • the reflector 4-1 is assumed to vibrate with an amplitude ⁇ L and a vibration period ⁇ 0 .
  • the vibration period ⁇ 0 is a frequency of about 1 [kHz] or less. If the transmission frequency is F c and the chirp rate is k, the received signal f R is expressed as follows.
  • the transmission signal is subjected to frequency conversion using the branched local signal, and the low-frequency portion is extracted by the LPF 42, the following intermediate frequency signal f if is obtained.
  • the intermediate frequency signal f if is amplified by the intermediate frequency amplification unit 44, converted into a digital signal by the A / D 46, and the preprocessing unit 48 converts the frequency of the FMCW signal by FFT (Fast Fourier Transform). , Signal components for each distance are extracted.
  • FFT Fast Fourier Transform
  • each range of the received signal obtained by each receiving antenna 14-1, 14-2,... 14-n is the same as the processing in the CW signal system described above. However, in this FMCW signal system, the direction detection processing of the reflector 4-1 is performed for each distance. In this azimuth detection processing, azimuth synthesis is performed from the reception signals of the reception antennas 14-1, 14-2,.
  • FIG. 14 for this orientation composition.
  • an observation apparatus 2 using a single transmission unit 6 and six reception units 8-1, 8-2,... 8-6 is assumed.
  • a transmission signal is irradiated to the observation object 4 separated from the transmission antenna 12 by a distance RT .
  • Reflected waves obtained from the observation object 4 are received by the receiving antennas 14-1, 14-2,... 14-6.
  • the output signals of the receiving units 8-1, 8-2 In any of the above-described CW signal system, pulse signal system, and FMCW signal system, the output signals of the receiving units 8-1, 8-2,.
  • n is an antenna number assigned to the receiving antennas 14-1, 14-2,... 14-6, and is 1 to 6.
  • the vibration frequency is low and the value can be regarded as a constant value within the repetition period PRT shown in FIG.
  • the output signals of the receiving units 8-1, 8-2,... 8-6 are correlated with the reference function by the signal processing unit 10. Thereby, the signal processing unit 10 extracts a signal component corresponding to the azimuth resolution.
  • the azimuth resolution ⁇ RES that can be expected is assumed that the wavelength of the transmission signal is ⁇ .
  • ⁇ RES ⁇ / D (17) It becomes.
  • the CW signal method cannot separate and identify distances, it can be used when there is only a single reflection point in one direction.
  • This reference function g (n, ⁇ ) is
  • Rx (R, n, ⁇ ) is the total distance from the transmitting antenna 12 to the distance R, the reflection point in the azimuth ⁇ , and the n-th receiving antenna 14-n.
  • the reference function process can be replaced with a simpler FFT. In general, this distance is a region called the far field. If the total aperture length of the deployed antenna is D and the wavelength is ⁇ ,
  • the phase difference between the antennas is determined by the angle of the receiving antennas 14-1, 14-2,. Is done. If the intermediate frequency signal f if (n) is subjected to FFT processing, the frequency component h (f) is converted into a signal in the azimuth direction. If the frequency of the FFT output is f, the direction ⁇ is
  • the vibration period and vibration amplitude can be obtained as the vibration characteristics of the observation target 4.
  • FIG. 16 shows a case where targets A and B exist as two reflection points on a gentle slope, and exist in an azimuth A and an azimuth B, respectively.
  • FIG. 17 shows an example in which the CW signal type observation device 2-1 is used and the signal processing unit 10 processes the reception system output that does not include distance information.
  • the signal components of the azimuth A and the azimuth B change on the time axis due to the vibrations of the targets A and B.
  • FIG. 18 shows an example in which the target shown in FIG. 16 is observed by the one-dimensional array receiving antenna 14a in the pulse signal system or FMCW signal system receivers 8-1, 8-2,.
  • the targets A and B are mapped on the two-dimensional space of azimuth and distance for each observation and the repetition frequency of transmission and reception is twice or more the vibration frequency of the targets A and B, the targets A and B By analyzing the phase data including vibration information, the vibration characteristics of the observation object 4 can be observed.
  • FIG. 19 shows an example of the observation apparatus 2 using the one-dimensional array receiving antenna 14a.
  • the observation apparatus 2 may be any of the CW signal system, the pulse signal system, or the FMCW signal system described above. 19, the same parts as those in FIG. 3 are denoted by the same reference numerals.
  • a personal computer 62 is used for the image display unit 16 on the output side of the signal processing unit 10. An image generated by the observation signal is displayed on the display 64 of the personal computer 62.
  • the control signal output from the image display unit 16 is added to the reference signal generation unit 22 of the signal processing unit 10 and used to generate the reference signal.
  • the observation may be performed using the two-dimensional array receiving antenna 14b.
  • the positions of the individual structures in the observation target 4 are identified by the azimuth (hereinafter referred to as “AZ”) angle of the receiving antennas 14-1, 14-2,. EL ”).
  • FIG. 20 shows an example of the observation apparatus 2 using the two-dimensional array receiving antenna 14b, and this observation apparatus 2 may be any of the CW signal system, the pulse signal system, or the FMCW signal system described above. 20, the same parts as those in FIG. 19 are denoted by the same reference numerals.
  • each receiving unit output signal is received from the receiving units 8-1, 8-2,.
  • Setting is made depending on whether 4 is a short distance or a long distance (S211).
  • a reference function multiplication process is performed at a short distance (S212), and an FFT process is performed at a long distance (S213).
  • Vibration processing is performed on these processing results (S214), and imaging processing is executed (S215). Thereby, the vibration image of the observation object 4 and its specific position is obtained.
  • the direction of the reflected wave from the observation target 4 can be specified for the received signal by the reference function multiplication process (S212) or the FFT process (S213).
  • the transmission unit 6 generates a transmission signal for the observation target 4, and at the same time, local signals for controlling reception timing synchronized with the transmission signal are distributed to the reception units 8-1, 8-2,. Therefore, the reference signal generation unit 22 provides a synchronization signal to each of the transmission unit 6, the reception units 8-1, 8-2,... 8-n and the signal processing unit 10.
  • Each unit of the signal processing unit 10 receives the timing signal from the reference signal generation unit 22 and performs reference function multiplication in the case of short-distance observation to identify each direction of the reflected wave Rw. In the case of long-distance observation, the receiving unit output signal is frequency-converted by FFT processing, and each direction of the reflected wave Rw is identified. Thereafter, the vibration characteristics of each point of the observation object 4 are calculated by vibration processing.
  • the receiving unit output signals and the receiving signals output from the receiving units 8-11, 8-12,.
  • a two-dimensionalization process (S221) is performed using each reception unit output signal output from the units 8-21, 8-22,... 8-2n. That is, when the two-dimensional array receiving antenna 14b is used, the output signals of the receiving antennas 14-21, 14-22, ... 14-2n placed in the vertical axis direction and the reception signals placed in the horizontal axis direction are received.
  • the output signals of the antennas 14-11, 14-12,..., 14-1n are subjected to complex multiplication for each distance to generate a two-dimensional array of output signals.
  • the setting is made according to whether the observation object 4 is a short distance or a long distance (S222).
  • a reference function multiplication process is performed at a short distance (S223), and a 2DFFT process is performed at a long distance (S224). Vibration processing is performed on these processing results (S225), and imaging processing is executed (S226). Thereby, the vibration image of the observation object 4 and its specific position is obtained.
  • the antenna and the receiving system are arranged in an L shape as shown in FIG.
  • the antenna and the receiving system may be arranged in a T shape. In either case, three-dimensional imaging of the observation target 4 is possible.
  • the transmission antenna 12 and the reception antenna 14 are performed at the same time, the transmission antenna 12 and the reception antenna 14 are separated so as not to interfere with each other so that the transmission signal does not enter the reception side. Is done. Further, the azimuth resolution in the observed image is determined by the distance between the antennas on the side of the receiving antenna array 14 that is installed farthest away. The observable viewing angle is determined by each antenna beam width of each receiving antenna array 14.
  • the AZ angle and the EL angle determined by the reference function process or the two-dimensional FFT process and the receiving units 8-11, 8-12,. 16, 8-21, 8-22,..., 8-26, and the phase history of the reflected wave from the identified position is analyzed by frequency analysis using FFT processing.
  • the vibration characteristic at is obtained.
  • the two-dimensional array receiving antenna 14b has six receiving antennas 14-11, 14-12,..., 14-16 in the horizontal axis direction, six receiving antennas 14-21, 14-22 in the vertical axis direction,. ⁇ Assume that 14-26 is installed.
  • FIG. 22 shows a case where the output signals of the receiving units 8-11, 8-12,..., 8-16, 8-21, 8-22,.
  • the output signal at the lattice point (n, m) is generated.
  • the output signal in this case represents the signal intensity and phase at the lattice point, represents the phase plane of the reflected wave, and is a kind of hologram.
  • the number of grid points represents the number of grid points determined by the number of reception antennas 14-11, 14-12,... 14-16, 14-21, 14-22,.
  • the outputs of the receiving units 8-11, 8-12,..., 8-16 of the receiving antenna array in the horizontal axis direction are received as h AZ (R, n, t) and the vertical axis direction is received.
  • the outputs of the antenna array receiving units 8-21, 8-22,..., 8-26 are h EL (R, m, t).
  • n and m are the antenna numbers in the horizontal and vertical axes, respectively
  • R is the distance between the observation target 4 and the antenna.
  • a reference function for processing two-dimensional data is a product of a vertical reference function and a horizontal reference function.
  • the situation of the target at a specific distance in a specific direction can be analyzed.
  • the direction of the target can be identified by performing the two-dimensional FFT processing (2DFFT).
  • FIG. 23 shows an example of vibration analysis when the two-dimensional array receiving antenna 14b is used in the observation apparatus 2 of the pulse system or FMCW signal system.
  • a target signal represented by the amplitude and phase of the reflected signal is recorded together with the three-dimensional position information of the azimuth, EL, and distance.
  • the two-dimensional array receiving antenna 14b described above is used, and the reflected waves of all points of the individual structures in the observation target 4 are used. If the phase history is subjected to FFT processing and frequency analysis, the vibration characteristics of the entire observation object 4 are obtained.
  • FIG. 24 shows an example of the observation image display.
  • an image 66 of a large bridge reproduced by the signal processing unit 10 is displayed.
  • a gray scale 68 is superimposed on the image 66, and the gray scale 68 represents the vibration intensity distribution of each part of the bridge.
  • the dark portion shows that the vibration is weak and the light portion shows that the vibration is strong.
  • the shape of the observation target 4 and the gray scale display of the observation target 4 visualize the vibration mode and displacement in the observation target 4 and its specific part.
  • the vibration mode can be visually recognized from the light and dark state.
  • FIG. 25 shows an example of a processing procedure including the above-described range compression processing.
  • AD conversion processing is performed on each received signal (S33).
  • range compression processing is executed (S34).
  • two-dimensionalization processing S35
  • short distance / far distance determination S36
  • reference function multiplication processing S37
  • 2DFFT processing S38 in the case of long distance
  • Observation time determination S39
  • vibration processing S40
  • imaging processing S41
  • the position of the output signal from the observation target 4 is identified by multiplying the generated reference function 3,240 [point] by one of the output signals from the two-dimensional process.
  • the position of the output signal from the observation target 4 is identified by performing two-dimensional FFT on the output signal from the two-dimensionalization processing by two-dimensional FFT processing (2DFFT).
  • the minute vibration of the entire object and the period of its amplitude can be measured remotely and in a non-contact manner using radar technology.
  • One transmission unit 6 that transmits a signal toward the observation target, and a plurality of reception units 8-1, 8-2,..., 8-n that receive the reflected wave Rw reflected by the observation target 4.
  • the received signal is imaged, and further includes a signal processing unit 10 that calculates the planar vibration characteristics of the observation target 4 and an image display unit 16 that displays the measurement result.
  • the target point can be identified by azimuth and elevation, or azimuth and elevation, and distance.
  • vibrations and displacements of the observation target 4 such as buildings that extend in the height direction such as bridges and elevated roads can be measured, and the measurement results can be visualized.
  • the transmission signal is a pulse wave or FMCW signal wave
  • it can be classified into the distance of the reflection point by range compression processing. Classification according to the direction of the target point from the phase between each receiving antenna, imaging the reflection intensity of the target point in each direction and distance, and detecting and imaging minute fluctuations and vibrations from the phase change of the signal from that target point can do.
  • each reception unit can obtain an output signal (IQ) using a signal having the same phase as the transmission wave as a local signal.
  • the transmission signal is a pulse wave
  • the output of the reception unit is shifted by the propagation delay time to the target point, and an output signal (IQ) corresponding to the phase difference of the transmission wave is obtained.
  • the transmission signal is a linear FM (Frequency Modulation) chirp pulse
  • the received signal is subjected to pulse compression processing at the receiver and shifted by the propagation delay time to the measurement point of the observation target 4 as in the pulse method.
  • an output signal (IQ) corresponding to the phase difference of the transmission wave can be obtained.
  • the transmission signal is an FMCW signal
  • the received signal is frequency-converted with the transmission signal as a local signal and becomes a frequency component corresponding to a propagation delay.
  • This component signal is converted into the frequency domain by the FFT processing of the signal processing unit 10, and an output signal (IQ) corresponding to the phase difference between the reflection intensity of the target point at each distance and the transmission wave is obtained.
  • a reference function is generated and a multiplication process with the received signal is performed.
  • This reference function is generated by estimating the phase displacement corresponding to the distance of the observation object 4 and the AZ angle.
  • the position of the observation object 4 is specified by the correlation calculation of the reference function and the output signal of the reception unit, and the received signal from each identified observation point is collected as a time sequence as the vibration characteristic of the point, and the frequency characteristic is obtained by FFT processing. Desired.
  • the signal processing unit 10 When the observation target 4 is at a long distance, the signal processing unit 10 first performs two-dimensional processing on the output signal of the reception unit, and then performs an FFT operation on the time-sequence reception signal reflected from each point of the observation target Thus, the vibration characteristics at that point can be calculated.
  • the distance information is obtained by multiplying with a reference function in the case of a short distance, and is obtained by converting the received signal into the frequency domain by FFT in the case of a long distance.
  • the vibration characteristics of each point of the observation target 4 can be easily obtained by collecting the reflected waves from each identified observation position in a time sequence, converting the frequency, and analyzing it.
  • the signal processing unit 10 As shown in FIG. 5, information processing by a computer is used for vibration observation by including a processor 18 and the like.
  • the signal processing unit 10 may realize the above-described functions for realizing vibration observation with hardware.
  • FIG. 26 illustrates an example of hardware of the signal processing unit 10 according to the third embodiment.
  • the signal processing unit 10 shown in FIG. 26 includes a hardware two-dimensionalization unit 70, a short distance / long distance switching unit 72, a reference function multiplication unit 74, a 2D FFT unit 76, and a vibration processing unit 78.
  • Each function of the two-dimensionalization unit 70, the short-distance / long-distance switching unit 72, the reference function multiplication unit 74, the 2D FFT unit 76, and the vibration processing unit 78 implements the processing described above in hardware, Since there is no change, the explanation is omitted.
  • This example corresponds to the above-described two-dimensional array antenna 14b, and when the above-described one-dimensional array antenna 14a is used, the two-dimensionalization unit 70 may be omitted.
  • the observation image and the vibration image of the observation target 4 can be realized by direct processing by hardware, not by information processing by computer processing.
  • the CW signal system, pulse signal system, or FMCW signal system observation apparatus 2 is described in detail.
  • the observation device 2 may be configured by any of the CW signal method, the pulse signal method, and the FMCW signal method, vibration observation by all these methods may be possible.
  • FIG. 27 shows an observation apparatus 2-4 that enables vibration observation by the CW signal system, the pulse signal system, or the FMCW signal system.
  • the same parts as those in the above embodiment are given the same reference numerals.
  • the observation apparatus 2-4 includes a CW signal transmission / reception unit 80-1, a pulse signal transmission / reception unit 80-2, an FMCW signal transmission / reception unit 80-3, a signal system switching unit 82, and a control unit 84.
  • the CW signal transmission / reception unit 80-1 performs transmission / reception by the CW signal system as illustrated in FIG.
  • the pulse signal transmission / reception unit 80-2 performs transmission / reception by a pulse signal method.
  • the FMCW signal transmission / reception unit 80-3 performs transmission / reception by the FMCW signal system as illustrated in FIG.
  • the signal system switching unit 82 receives the reception signal from the CW signal transmission / reception unit 80-1 in the case of the CW signal system, and receives the reception signal from the pulse signal transmission / reception unit 80-2 in the case of the pulse signal system, and receives the FMCW signal system At this time, the reception signal from the FMCW signal transmission / reception unit 80-3 is received. The signal system switching unit 82 selects these received signals and provides them to the signal processing unit 10.
  • the signal processing unit 10 performs signal processing for vibration observation by the CW signal method, the pulse signal method, or the FMCW signal method.
  • the image display unit 16 receives an observation signal that is a processing result of the signal processing unit 10 together with a display representing the CW signal method, the pulse signal method, or the FMCW signal method, and displays an image of the CW signal method, the pulse signal method, or the FMCW signal method. indicate.
  • the control unit 84 corresponds to each mode of the CW signal system, the pulse signal system, or the FMCW signal system, and according to the selected mode, the CW signal transmission / reception unit 80-1, the pulse signal transmission / reception unit 80-2, and the FMCW signal transmission / reception unit 80-3 is operated to select signal switching of the signal system switching unit 82 and processing of the signal processing unit 10.
  • the control unit 84 may be configured by a computer.
  • a desired observation image can be generated by selectively using each mode of the CW signal system, the pulse signal system, or the FMCW signal system.
  • Each mode of CW signal system, pulse signal system or FMCW signal system can be selected according to the observation conditions such as the observation target 4 and the observation accuracy is selected by selecting the most suitable signal system without being affected by the observation conditions. Is increased.
  • the CW signal system, the pulse signal system, or the FMCW signal system is exemplified, but other signals may be used.
  • the reference signal generation unit 22 is provided in the signal processing unit 10, but the present invention is not limited to this.
  • a reference signal generation unit 22 is provided outside the signal processing unit 10, and the reference signal generated by the reference signal generation unit 22 is used as the signal processing unit 10, the transmission unit 6, or the reception units 8-1, 8-2,. n may be provided.
  • vibrations generated by a cause such as traffic or weather not only by a specific part of the observation target but also by the entire observation target are attached without attaching a radar wave reflector to the observation target. It can be measured in a completely non-contact manner, and can be used effectively and effectively for conservation measures for public facilities such as large bridges and elevated roads that are likely to deteriorate.

Abstract

 橋梁、高架道路などの構造物などの二次元または三次元に広がりを持つ観測対象の振動を観測し、その観測結果を可視化する。 観測対象(4)に向けて送信アンテナ(12)により送信信号を送信する送信部(6)と、前記観測対象からの反射波を複数の受信アンテナ(14-1、14-2、・・・14-n)で受け、受信アンテナ毎に受信部出力信号を生成する受信部(8-1、8-2、・・・8-n)と、前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する信号処理部(10)を備える。

Description

干渉型振動観測装置、振動観測プログラムおよび振動観測方法
 本発明はたとえば、地形や、橋梁、高架道路などの大型建造物に生じる変位や微小変動などの振動観測技術に関する。
 橋梁、高架道路などの構造物の強度や経年劣化の調査には、実際の交通などから受ける振動を観測し、その振動が持つ振幅や振動数などが解析されている。大型構造物の振動の観測には、その建造物の特定観測部位(ターゲット)に加速度計などの振動計測センサを取り付ける。ターゲットが増加すれば、振動計測センサを増加する。
 このようなセンサによる直接計測に代わり、マイクロ波を用いた遠隔計測法が知られている。この遠隔計測法では、建造物などにマイクロ波を照射し、その反射信号の解析により、数百m以上の遠隔地点から大型構造物の微小変位や動揺を計測することができる。斯かる計測法では、建物に生じている動揺周期の2倍以上の頻度で観測すれば、変位や動揺の状況を解析できる。
 このような計測に関し、複数の異なる波長のCW(Continuous Wave :無変調連続波)信号を振動する観測対象に照射し、その反射波を解析することで、対象の距離、振動と振幅を高精度に計測することが知られている(たとえば、特許文献1、特許文献2)。この方法では、観測対象の特定点の振動やその強度を計測しているに過ぎない。
 地滑りやダム堤体など、3次元的に広がりのある観測対象の微小変位の観測には、地上設置型合成開口レーダ(GB-SAR)を用いたシステムが知られている(たとえば、特許文献3)。このシステムでは、合成開口レーダ送受信部を移動させながら観測対象に電波を照射し、観測対象からの反射波を計測し、レール上の走査点で受信する信号の位相変化を用いた合成開口処理により方向と距離の2次元で観測対象点を識別し、走査ごとに得られる観測対象の位相値の変化から、観測対象のスラントレンジ方向の距離変化を検出している。
 レーダを用いてターゲットの三次元画像を撮像することが知られている(たとえば、特許文献4、特許文献5)。この三次元画像処理では、アンテナ及び受信部を2次元に展開し、各受信アンテナで受信した反射波の位相関係からターゲット方向を決定し、反射波の伝搬時間から距離が求められている。反射波が受けているドップラーシフトからターゲットの速度情報が計測されている。斯かる方法では、建造物のようにほぼ静止物体の振動計測をすることができない。
 このような計測技術に関し、非特許文献1および非特許文献2が知られている。
米国特許出願公開第2013/0139597号明細書 米国特許第8686362号明細書 米国特許第8384583号明細書 特開2006-177907号公報 特開昭62-502065号公報
Kuras P.、外2名、"APPLICATION OF INTERFEROMETRIC RADAR TO EXAMINATION OF ENGINEERING OBJECTS VIBRATION"、[online]、Faculty of Mining Surveying and Environmental Engineering AGH University of Science and Technology in Krakow、[ 平成26年6 月27日検索] 、インターネット〈URL:http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-PWAB-0005-0004/c/httpwww_rog _gik _pw_edu _plphocadownloadnr8724.pdf 〉 K A Tsolis、外1名、"Radar Vibrometry: Investigating the Potential of RF microwaves to measure vibrations"、[online]、University College London、[ 平成26年6 月27日検索] 、インターネット〈URL : http://www.ee.ucl.ac.uk/lcs/previous/LCS2004/34.pdf 〉
 既述の観測対象における微小な振動の遠隔計測では、各観測点を距離により分離して識別し、特定点における振動およびその強度を計測している。複数点の振動計測を同時に行うには、観測対象にレーダ反射器を取り付けて場所を特定し、反射強度および距離によりそれぞれの反射点を同定している。このような観測形態では、観測対象が二次元または三次元の広がりを持っている場合、その観測対象の全体における任意点の微小振動を同時に計測することはできないという課題がある。
 また、観測対象が巨大であれば、複数の観測位置に反射器を取り付けることは危険を伴うばかりか、気象状況などの影響を無視することができないなど、定常的な計測には困難を伴うという課題がある。
 そこで、本発明の目的は上記課題に鑑み、橋梁、高架道路などの構造物などの二次元または三次元に広がりを持つ観測対象の振動を観測し、その観測結果を可視化することにある。
 上記目的を達成するため、本発明の干渉型振動観測装置の一側面によれば、観測対象に向けて送信アンテナより送信信号を送信する送信部と、前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成する受信部と、前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する信号処理部とが備えられる。
 上記干渉型振動観測装置において、さらに、前記観測信号から前記観測対象を表す画像を表示する画像表示部とを備え、前記観測信号により前記画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳して前記画像表示部に表示させてもよい。
 上記干渉型振動観測装置において、さらに、前記信号処理部にまたは前記信号処理部の外部に前記送信部の前記送信信号、前記受信部の前記受信部出力信号、前記信号処理部の信号処理を同期させる基準信号を発生する信号発生部とを備えてもよい。
 上記干渉型振動観測装置において、前記送信部は、前記観測対象または該観測対象上の距離を検出するためのパルス信号、またはパルス圧縮のためにチャープ変調されたパルス信号を出力し、前記受信部は、基準信号と位相同期して前記受信部出力信号をパルス圧縮し、前記距離で前記観測対象の前記特定部位を分離してもよい。
 上記干渉型振動観測装置において、前記送信部は、前記観測対象または該観測対象上の距離を検出するためのFMCW信号を出力し、前記受信部は、基準信号と位相同期して前記受信部出力信号のFMCW信号を解析し、前記距離で前記観測対象の前記特定部位を分離してもよい。
 上記干渉型振動観測装置において、前記複数の受信アンテナは、線状の一次元配列、T型配列、L型配列などの二次元配列のいずれかを備え、前記受信部または前記信号処理部は、前記受信部出力信号の位相差により前記観測対象の方向を同定してもよい。
 上記干渉型振動観測装置において、前記複数の受信アンテナは、T型配列、L型配列などの二次元配列を備え、前記受信部または前記信号処理部は、前記観測対象の方位および仰角のいずれか一方または双方を算出してもよい。
 上記目的を達成するため、本発明の振動観測プログラムの一側面によれば、コンピュータにより観測対象の振動または変位を観測する振動観測プログラムであって、観測対象に向けて送信アンテナより送信信号を送信し、前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成し、前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する処理を前記コンピュータに実行させる。
 上記振動観測プログラムにおいて、さらに、前記観測信号から画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳する処理を前記コンピュータに実行させてもよい。
 上記目的を達成するため、本発明のコンピュータ読み取り可能な記録媒体の一側面によれば、コンピュータに観測対象の振動または変位を観測させるための振動観測プログラムを記録したコンピュータ読み取り可能な記録媒体であって、観測対象に向けて送信アンテナにより送信信号を送信し、前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成し、前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する処理を前記コンピュータに実行させるための振動観測プログラムを記録する。
 上記記録媒体において、さらに、前記観測信号から画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳する処理を前記コンピュータに実行させるための前記振動観測プログラムを記録してもよい。
 上記目的を達成するため、本発明の振動観測方法の一側面によれば、観測対象に向けて送信アンテナより送信信号を送信する工程と、前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成する工程と、前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する工程とを含んでいる。
 上記振動観測方法において、さらに、前記観測信号から画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳する工程とを含んでもよい。
 本発明の干渉型振動観測装置、振動観測プログラム、記録媒体または振動観測方法によれば、次のいずれかの効果が得られる。
 (1) 二次元または三次元に広がりのある観測対象に反射器を設けることなく、観測対象から得られる複数の受信信号を用いて観測対象の振動個所と振動特性を観測することができる。大型構造物などの全体または特定部位などの部分の振動状況を把握でき、この振動状況から構造物などの維持管理を迅速かつ正確に行うことができる。観測信号から振動要因を構造物側にあるか否か、橋梁、高架道路などの構造物では通行や風などの外部要因の有無を判定することができる。
 (2) 送信アンテナからの送信波などの放射ビームをスキャニングすることなく観測対象の全体に照射し、観測対象や特定部位からの反射波を複数の受信アンテナで受け、受信アンテナごとに得られる受信部出力信号をデジタルビームフォーミングするので、観測対象を表す画像を高解像度で実現でき、振動計測を一定時間ごとに画像化できる。これにより、振動観測や変位観測を高精度に行うことができる。
 (3) 観測対象の1または2以上の観測点の振動特性を、同定された各観測位置からの反射波を時間列に収集して周波数変換し、解析することにより求めることができ、観測精度を高めることができる。
 そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
第1の実施の形態に係る干渉型振動観測装置を示す図である。 干渉型振動観測の処理手順を示すフローチャートである。 第2の実施の形態に係る干渉型振動観測装置の構成例を示す図である。 一次元配置受信アンテナ、二次元配置受信アンテナの一例を示す図である。 信号処理部の一例を示す図である。 振動観測の処理手順の一例を示す図である。 干渉型振動観測装置の実施例1を示す図である。 観測対象の距離の観測原理を説明するための図である。 干渉型振動観測装置の実施例2を示す図である。 パルス信号方式の観測原理を説明する図である。 パルス圧縮処理を説明する図である。 干渉型振動観測装置の実施例3を示す図である。 FMCW信号を説明するための図である。 受信波の受信状態を示す図である。 受信波の受信状態を示す図である。 観測装置と観測対象のターゲットの配置関係を示す図である。 CW信号方式、一次元配列受信アンテナによる振動観測出力を説明するための図である。 パルス信号方式、FMCW信号方式、一次元配列受信アンテナによる振動観測出力を説明するための図である。 干渉型振動観測装置の実施例4を示す図である。 干渉型振動観測装置の実施例5を示す図である。 信号処理部の信号処理を示すフローチャートである。 二次元化処理出力を説明するための図である。 三次元的配置の観測対象の観測形態を説明するための図である。 画像表示部で生成された表示画像を示す図である。 信号処理の変形例を示すフローチャートである。 第3の実施の形態に係る信号処理部の構成例を示す図である。 第4の実施の形態に係る干渉型振動観測装置の構成例を示す図である。
〔第1の実施の形態〕
 図1は、第1の実施の形態に係る、干渉型振動観測装置(以下、単に「観測装置」と称する)を示している。図1に示す構成は一例であって、係る構成に本発明が限定されるものではない。
 この観測装置2は、橋梁などの観測対象4またはその特定の観測部位(ターゲット)に生じる振動観測に用いられる。この振動観測には観測対象4またはそのターゲットに生じる連続した振動、不規則な振動、断続変位などの振動、または変位の観測が含まれる。
 この観測装置2には、送信部6、受信部群8、信号処理部10が含まれる。送信部6は、たとえば、単一の送信アンテナ12を備え、この送信アンテナ12に送信信号fTを出力する。送信アンテナ12から観測対象4に向けて送信波Twが送信される。この送信波Twはたとえば、マイクロ波である。
 受信部群8は、2以上の受信部8-1、8-2・・・8-nを備える。各受信部8-1、8-2・・・8-nが個別に受信アンテナ14-1、14-2・・・14-nを備え、観測対象4からの反射波Rwを各受信アンテナ14-1、14-2・・・14-nで受け、受信アンテナ14-1、14-2・・・14-nごとに受信部出力信号として受信信号fRが得られ、信号処理部10に提供される。
 信号処理部10は、受信アンテナ14-1、14-2・・・14-nごとに受信部8-1、8-2・・・8-nで得られた各受信部出力信号を用いて、受信部出力信号間の位相差からアンテナ面に対する反射波の位相面を求めて反射波の到来方向および信号強度を同定し、その特定方向からの反射波の位相変動を算出し、観測対象4またはその特定部位の変位または振動を表す観測信号を生成する。観測対象4は、観測対象4の全体でもよいが、観測対象4における特定の観測部位つまり、ターゲットの振動変位を対象としてもよい。
 図2は、観測対象4の干渉型振動観測の処理手順の一例を示している。この処理手順は本発明の振動観測プログラムまたは振動観測方法の一例であり、信号処理部10または観測装置2に搭載されたコンピュータによって実行される情報処理の一例である。この振動観測プログラムはたとえば、コンピュータにより読み取り可能な記録媒体に格納される。
 この処理手順では、送信部6が観測対象4に向けて送信信号fTを送信アンテナ12より送信する(S11)。各受信アンテナ14-1、14-2・・・14-nで反射波Rwを受け、各受信部8-1、8-2・・・8-nに得られる受信信号fRから送信信号fTの送信タイミングに同期して既述の受信部出力信号 Y(t)が生成される(S12)。各受信部8-1、8-2・・・8-nから各受信部出力信号Y(t)が信号処理部10に提供され、信号処理部10では観測信号を生成するための信号処理を実行する(S13)。
 この信号処理(S13)には、受信アンテナ14-1、14-2・・・14-nごとに各受信部8-1、8-2・・・8-nに得られる受信部出力信号に次の処理が行われる。
 a)受信部出力信号間の位相差からアンテナ面に対する反射波の位相面を求め、反射波の到来方向および信号強度を同定する。
 b)その特定方向からの反射波の位相変動を算出し、観測対象4またはその特定部位の振動を表す観測信号を生成する(S14)。
<第1の実施の形態の効果>
 以上説明した第1の実施の形態によれば、次の効果が得られる。
 (1) 二次元または三次元に広がりのある観測対象4には反射器を付す必要がなく、観測対象4から得られた複数の受信信号を用いて観測対象4の振動個所と振動特性を観測できる。このため、大型構造物などの全体または部分の振動状況を把握でき、この振動状況から構造物などの維持管理を迅速かつ正確に行える。しかも、観測信号から振動要因を構造物側にあるか否か、橋梁、高架道路などの構造物では通行や風などの外部要因の有無の判定に用いることができる。
 (2) 送信アンテナ12からの送信信号fTを空間的にスキャニングすることなく、観測対象4の全体に照射し、各受信アンテナ14-1、14-2・・・14-nをデジタルビームフォーミングすればよく、観測対象4を表す画像を高解像度で実現でき、振動計測を一定時間ごとに画像化できる。これにより、振動観測や変位観測を高精度に行うことができる。なお、FMCWでは周波数をスキャンする。
 (3) 観測対象4の1または2以上のターゲットの振動特性を、同定された各観測位置からの反射波Rwによる受信信号fRを時間列に収集して周波数変換し、解析することにより求めることができ、観測精度を高めることができる。
 (4) 信号処理部10で生成した観測信号を用いれば、観測対象4またはその特定部位を表す画像を生成し、その振動を可視化することができる。この可視化により、観測対象4およびそのターゲットの振動を視認できる。
 (5) 観測対象4には地形の他、橋梁、高層ビル、高速道路などの大型建造物を用いることができ、これらの外観形状、その振動または変位を遠隔的に観測できる。
 (6) 観測対象4やそのターゲットに反射器などの装備を設置する必要がなく、観測対象4に反射器などの付随的な装備が不要であるから、そのための作業も不要となり、振動観測の安全性が高められる。
 (7) 送信信号fTにはたとえば、CW(Continuous Wave)信号、パルス信号、FMCW(Frequency Modulated Continuous Wave :周波数変調連続波)信号などのいずれを用いてもよい。
 (8) 受信アンテナ列14には複数の受信アンテナ14-1、14-2・・・14-nをたとえば、一次元配列、二次元配列としてもよく、これらの受信アンテナ配列によって得られる受信信号の信号解析により、観測対象4およびその特定部位の二次元画像または三次元画像を得ることができる。
〔第2の実施の形態〕
 図3は、第2の実施の形態に係る観測装置2を示している。図3において、図1と同一部分には同一符号を付してある。
 この実施の形態の観測装置2では、図1に示す観測装置2の信号処理部10の出力側に画像表示部16を備え、信号処理部10に得られる観測信号を用いて画像表示部16に観測画像を表示する。画像表示部16は、観測装置2の内部に設置してもよいし、パーソナルコンピュータなどの外部装置を用いて画像表示機能を実現してもよい。
 図4は、この実施の形態に用いられる受信アンテナ列14の一例を示している。受信アンテナ列14にはたとえば、図4のAに示すように、一次元配列受信アンテナ14aとして用いてもよいし、図4のBに示すように、二次元配列受信アンテナ14bとして用いてもよい。二次元配列受信アンテナ14bでは、水平方向に配列された複数の受信アンテナ14-11、14-12、・・・14-1nのアンテナ列と、垂直方向に配列された複数の受信アンテナ14-21、14-22、・・・14-2nのアンテナ列とを備える。これらアンテナ列はたとえば、直交配置とすればよい。
 これら一次元配列受信アンテナ14a、二次元配列受信アンテナ14bに対し、送信信号方式にはCW信号方式、パルス信号方式、FMCW信号方式の3つの方式の選択が可能である。一次元配列受信アンテナ14a、二次元配列受信アンテナ14bに送信信号方式を組み合わせると、表1に示す振動計測が可能である。
Figure JPOXMLDOC01-appb-T000001
 FMCW方式およびパルス方式では、方位と観測対象4までの距離で、観測対象4の識別分類が可能であり、同一方向にある複数の観測対象4の同時計測が可能である。
 そして、この実施の形態では、信号処理部10の出力側に画像表示部16が設置されている。この画像表示部16には信号処理部10から出力される観測信号が提供され、観測対象4とともにその特定部位の振動を表す画像が表示される。画像表示部16にはたとえば、パーソナルコンピュータの画像表示機能やディスプレイを用いればよい。
 信号処理部10はたとえば、図5に示すように、コンピュータで構成される。この例では、プロセッサ18、メモリ部20、基準信号生成部22、インターフェース部24、出力部26が備えられる。
 プロセッサ18は、メモリ部20に格納されているOS(Operating System)や振動観測プログラムを実行する情報処理を含み、振動観測に必要な信号処理や各種機能部の制御などを実行する。
 メモリ部20はコンピュータで読み取り可能な記録媒体の一例であり、たとえばRAM(Random Access Memory)やROM(Read Only Memory)を備えればよい。RAMは各種プログラムを実行するためのワークエリアを構成する。ROMはプログラムを記録する手段の一例であり、既述のOSや振動観測プログラムが格納され、振動観測に必要な各種データが格納される。ROMはたとえば、電気的に内容を書き換えることができるEEPROM(Electrically Erasable and Programmable Read Only Memory )、フラッシュメモリなどの半導体メモリであってもよい。
 また、メモリ部20はRAMやROMに限られずたとえば、磁気ディスク、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、SSD(solid state drive)などのコンピュータで読み取り可能な記録媒体であってもよい。
 基準信号生成部22はプロセッサ18により制御され、同期信号となる基準信号を発生する。この基準信号が送信部6および受信部8-1、8-2、・・・8-nに提供される。
 インターフェース部24には受信部8-1、8-2、・・・8-nから出力された受信部出力信号が取り込まれる。出力部26には振動観測プログラムの実行により得られる観測信号が出力される。
<振動観測処理>
 図6のAは、この観測装置2による振動観測処理の処理手順を示している。
 この処理手順では、送信部6から観測対象4に向け、送信アンテナ12から送信信号を送信する(S21)。これにより、観測対象4から反射波が得られ、この反射波を各受信アンテナ14-1、14-2、・・・14-nで受け、各受信部8-1、8-2、・・・8-nで受信部出力信号を生成する(S22)。各受信部8-1、8-2、・・・8-nに得られる受信部出力信号は受信部内でデジタル化されており、信号処理部10に提供される。さらに信号処理部10では各受信アンテナ14-1、14-2、・・・14-nを二次元配列アンテナ14bとしたときには二次元化処理が行われる(S23)。一次元配列アンテナ14Aを用いた場合には、二次元化処理(S23)を省略すればよい。
 この処理では、観測装置2の受信アンテナ14-1、14-2、・・・14-nと観測対象4までの距離が近距離か遠距離かの判定を行う(S24)。近距離であれば、参照関数乗算処理を行い(S25)、遠距離であれば、2DFFT(2-Dimensional Fast Fourier Transform:二次元高速フーリエ変換)処理を行う(S26)。S25またはS26に続き、振動解析のための観測時間が終了かを判断する(S27)。この観測時間の終了前(S27のNO)、S21に戻り、S21からS27までの処理を継続して実行する。この観測時間において、解析する最低振動数の1周期以上の期間に相当する画像を蓄積する。この観測時間が終了すれば(S27のYES)、参照関数乗算処理(S25)または2DFFT処理(S26)の出力に振動処理を施し(S28)、出力される観測信号により画像化処理を行う(S29)。これらの各処理は後述される。
<ポラメトリー機能>
 観測対象4やそのターゲットの形状、構造により垂直偏波または水平偏波に対し強力な反射特性が知られている。観測対象4の構造によっては、偏波が変換される場合もある。すべての観測対象4やそのターゲットの反射波Rwを計測し、観測対象4の振動や変位の観測精度を上げるには両偏波、変換された偏波も受信可能であることが望ましい。
 図6のBは、送信アンテナ12および受信アンテナ14-1、14-2・・・14-nに具備させるポラメトリー機能を示している。送信アンテナ12には水平(H)偏波、垂直(V)偏波の両偏波を切り替えて送信可能とし、受信アンテナ14-1、14-2・・・14-nでは、水平偏波、垂直偏波の同時受信を可能にする。つまり、送受信タイミングでは、繰返し周期ごとに各偏波を交互に送信し、両偏波を同時に受信する。
 図6のBにおいて、HおよびVの同時受信では、受信系および信号処理部10が同じ数(H系用、V系用)だけ必要になる。H系、V系の信号処理部10から出力される観測信号は画像表示部16で合成され、観測画像が表示されることになる。
<実施例1:CW信号方式>
 図7は、CW信号方式の観測装置2-1を示している。図7において、図3と同一部分には同一符号を付してある。
 信号処理部10にある基準信号生成部22は、周波数安定度の高い基準信号を生成し、送信部6、受信部8-1、8-2、・・・8-nに供給する。送信部6のCW信号生成部28は、基準信号生成部22から受けた基準信号を用いて送信周波数のCW信号を生成する。
 このCW信号は、電力増幅部30で所定レベルに増幅された後、方向性結合器32を通して送信アンテナ12に供給される。このCW信号が送信信号として観測対象4に向けて照射される。
 送信信号の一部が方向性結合器32で分岐されて分配回路34から各受信部8-1、8-2、・・・8-nに分配される。この送信信号が各受信部8-1、8-2、・・・8-nのローカル信号に使用される。
 送信アンテナ12から観測対象4に送信信号が照射されると、観測対象4から送信信号により反射波が生じ、この反射波が各受信アンテナ14-1、14-2、・・・14-nに入力され、受信アンテナ14-1、14-2、・・・14-nごとに受信信号が得られる。
 受信アンテナ14-1、14-2、・・・14-nで得られた受信信号は、LNA(Low Noise Amplifier :低雑音増幅器)36で増幅された後、周波数混合器(MIXER)38-1、38-2に加えられる。MIXER38-1では受信信号と、移相器40でπ/2だけ位相をシフトさせた送信信号とをミキシングする。MIXER38-2では受信信号と送信信号とをミキシングする。これにより、複素信号化(I,Q)したローカル信号で中間周波数に周波数変換が行われ、中間周波信号が得られる。各中間周波信号からLPF(Low Pass Filter :低域通過フィルタ)42-1、42-2により低域成分が抽出され、中間周波増幅部44-1、44-2で所定レベルまで増幅した後、アナログ・デジタル変換器(以下「A/D」と称する)46-1、46-2で基準信号に同期したタイミングでデジタル信号に変換された後、前処理部48に提供される。
 前処理部48では、1回の観測周期分、前記デジタル信号を積分し、雑音を低減する。これにより、各受信部8-1、8-2、・・・8-nの前処理部48の出力信号が信号処理部10に出力される。
 図8は、観測対象4における反射体4-1と、送信アンテナ12および受信アンテナ14-1、14-2、・・・14-nのいずれかの関係を示す。この場合、送信アンテナ12および受信アンテナ14-1、14-2、・・・14-nと反射体4-1の距離は、送信アンテナ12と受信アンテナ14-1、14-2、・・・14-n間の距離に比べて十分大きいとする。
 ここで、送信アンテナ12から反射体4-1の位置A点までの距離をRT 、同様に受信アンテナ14-1、14-2、・・・14-nから反射体4-1の位置A点までの距離をRR とする。
 反射体4-1が振幅ΔL、振動周期ω0 で振動しているとする。ここで、振動周期ω0 は1〔kHz〕程度以下の周波数とする。送信周波数をωc とすると、送信信号fT と受信信号fR は以下のように表わされる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 反射体4-1が振動しているとき、各受信アンテナ14-1、14-2、・・・14-nで得られる受信信号は、反射体4-1の振動の影響を受け、以下のようになる。
Figure JPOXMLDOC01-appb-M000003
 この受信信号をLNA36で増幅し、複素信号化(I,Q)したローカル信号で周波数変換し、LPF42-1、42-2で低域成分を抽出すると、既述の中間周波信号fifは、
Figure JPOXMLDOC01-appb-M000004
となる。この中間周波信号fifは、送信周波数ωcを振動周期ω0 の振幅で位相変調した信号形式になっている。
 この中間周波信号を中間周波増幅部44-1、44-2で増幅し、A/D46-1、46-2でデジタル信号に変換する。振動周期ω0 が1〔kHz〕以下のとき、A/D変換の周波数が2〔kHz〕であれば、観測対象4の振動を観測できる。2〔kHz〕より高いサンプル周波数でサンプルした場合には、データを前処理部48で積分して2〔kHz〕まで低減させればよい。これにより、S/N(Signal to Noise Ratio:信号対雑音比)を向上させることができる。
<実施例2:パルス信号方式>
 図9は、パルス信号方式の観測装置2-2を示している。図9において、図3と同一部分には同一符号を付してある。
 信号処理部10にある基準信号生成部22が周波数安定度の高い基準信号を生成し、送信部6および各受信部8-1、8-2、・・・8-nに供給する。
 この観測装置2-2の送信部6では、基準信号生成部22から提供される基準信号により、チャープ信号生成部50が線形チャープ信号を生成し、キャリア信号生成部52で送信周波数のキャリア信号を生成する。線形チャープ信号は、各MIXER54-1、54-2に加えられる。MIXER54-1では線形チャープ信号とキャリア信号とをミキシングする。MIXER54-2では線形チャープ信号と、移相器56でπ/2だけ位相をシフトさせたキャリア信号とをミキシングする。これにより、送信信号であるチャープパルス信号がキャリア信号で送信周波数に変換され、送信信号が得られる。この送信信号が電力増幅部58で所定のレベルに増幅された後、送信アンテナ12に供給され、観測対象4に向けて照射される。
 このパルス信号方式では、キャリア信号生成部52で生成したキャリア信号が分配回路34により各受信部8-1、8-2、・・・8-nに分配される。各受信部8-1、8-2、・・・8-nではこのキャリア信号がローカル信号に使用される。
 観測対象4からの反射波を各受信アンテナ14-1、14-2、・・・14-nで受け、各受信アンテナ14-1、14-2、・・・14-nから受信信号が得られる。各受信部8-1、8-2、・・・8-nでは、受信信号がローカル信号により周波数変換され、中間周波信号が得られる。中間周波信号は、所定のレベルまで増幅後、A/D変換器46-1、46-2でデジタル信号に変換される。このパルス信号方式において、各受信部8-1、8-2、・・・8-nは、既述のCW信号方式の観測装置2-1と同様であるので、同一符号を付しその説明を割愛する。
 このようなパルス信号方式の観測装置2-2では、一般的なレーダーと同様にパルス圧縮技術を使用でき、このパルス圧縮技術を用いれば、レンジ分解能を向上させることができる。
 図10は、パルス信号方式の送信信号の様子を示している。図10のAは送信信号の周波数変化、図10のBは送信信号の振幅変化を示している。
 このパルス信号方式では、送信信号f(t) が、チャープ率をkとすると、
Figure JPOXMLDOC01-appb-M000005
と表すことができる。
 このパルス信号方式において、CW信号方式の受信信号と同様に図8に示したように、振動している観測対象4の反射体4-1からの受信信号を求めてみる。
 送信アンテナ12から反射体4-1の位置A点までの距離をRT 、同様に受信アンテナ14-1、14-2、・・・14-nから反射体4-1の位置A点までの距離をRR とする。反射体4-1は振幅ΔL、振動周期ω0 で振動しているとする。ここで、振動周期ω0 は1〔kHz〕程度以下の周波数とする。
 送信周波数をFc とすると、受信信号fR は次のように表わされる。
Figure JPOXMLDOC01-appb-M000006
 この受信信号をLNA36で増幅し、キャリア信号を分離し、複素信号化したローカル信号で周波数変換した後、LPF42-1、42-2で低域成分を抽出すると、中間周波信号fifが得られる。
Figure JPOXMLDOC01-appb-M000007
 この中間周波信号fifを中間周波増幅部44-1、44-2で増幅し、A/D46-1、46-2でデジタル信号に変換し、前処理部48でチャープ信号のパルス圧縮を行った後、信号処理部10に出力する。
 図11は、前処理部48のパルス圧縮処理を示している。図11において、Aはパルス圧縮処理、Bはパルス圧縮処理で得られる出力を示している。
 このパルス圧縮処理は、チャープ信号f(t)および参照関数g(τ)の相関により行われる。参照関数g(τ)はチャープ信号f(t)における送信チャープ関数の共役関数であり、以下の式で表される。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 各受信アンテナ14-1、14-2、・・・14-nにおける受信信号の各レンジに対する処理は、CW信号方式の処理と同じである。ただし、観測対象4と受信アンテナ14-1、14-2、・・・14-nとの距離ごとに反射体4-1の方位検出処理が行われる。これは反射点であってもよい。
<実施例3:FMCW信号方式>
 図12は、FMCW信号方式の観測装置2-3を示している。図12において、図3または図7と同一部分には同一符号を付してある。
 このFMCW信号方式ではたとえば、FMCWレーダーと同様に送信信号周波数を線形FM信号として広帯域に走査してレンジ分解能を向上させることができる。
 信号処理部10にある基準信号生成部22は、周波数安定度の高い基準信号を生成し、送信部6、受信部8-1、8-2、・・・8-nに供給する。
 送信部6のFMCW信号生成部60は、基準信号生成部22から提供される基準信号をもとに、送信帯域幅を線形に周波数走査が施されたFMCW信号を生成する。
 このFMCW信号は、電力増幅部30で所定のレベルに増幅された後、方向性結合器32を通して送信アンテナ12に供給され、送信アンテナ12により観測対象4に向けて照射される。
 送信信号の一部は分配回路34に加えられ、この分配回路34で各受信部8-1、8-2、・・・8-nに分配される。この送信信号は、各受信部8-1、8-2、・・・8-nでローカル信号として使用される。
 FMCW信号方式では送信信号に連続波が用いられ、送信信号の送信および受信信号の受信が同時に行われる。送受信を同時に行うため、送信アンテナ12の送信信号が直接波として受信アンテナ14-1、14-2、・・・14-nに廻り込まないように対策する必要がある。たとえば、送信アンテナ12と各受信アンテナ14-1、14-2、・・・14-nとの間に距離を設定すればよい。つまり、送信アンテナ12と各受信アンテナ14-1、14-2、・・・14-nとが干渉しない程度の間隔を持たせた配置とすればよい。
 送信アンテナ12により観測対象4に照射された送信信号は観測対象4で反射し、その反射波を受信アンテナ14-1、14-2、・・・14-nで受け、受信アンテナ14-1、14-2、・・・14-nごとに受信信号が得られる。各受信信号は、LNA36で増幅された後、MIXER38でローカル信号(送信信号を分岐し、分配したもの)とミキシングされて周波数変換されて、中間周波信号に変換される。この中間周波信号からLPF42で低域成分が抽出され、この低域成分信号が所定のレベルまで中間周波増幅部44で増幅された後、A/D変換器46でデジタル信号に変換され、このデジタル信号が前処理部48に提供される。前処理部48では、提供されたデジタル信号からFFT処理によりレンジ空間に対応した周波数領域を持つデジタル信号に変換される。このデジタル信号が受信部出力信号として信号処理部10に提供される。
 図13は、送受信信号の様子を示している。図13において、Aは送受信信号の周波数変化、Bは受信部内のミキサー出力信号の周波数を示している。つまり、送受信アンテナから観測対象点までの往復距離だけ、受信信号が遅れるので、この受信信号遅れにより送信信号と受信信号間に周波数差が生じる。この周波数差がミキサー出力信号の周波数になる。
 FMCW信号方式の送信信号fT (t) は、チャープ率をkとすると次式で示される。
Figure JPOXMLDOC01-appb-M000010
 CW信号方式の受信信号と同様に図8に示すように、振動している観測対象4の反射体4-1からの受信波を求めてみる。送信アンテナ12から反射体4-1の位置A点までの距離をRT 、同様に受信アンテナ14-1、14-2、・・・14-nから反射体4-1の位置A点までの距離をRRとする。
 反射体4-1は振幅ΔL、振動周期ω0 で振動しているとする。ここで、振動周期ω0 は1〔kHz〕程度以下の周波数とする。送信周波数をFc 、チャープ率をkとすると、受信信号fR は以下のように表される。
Figure JPOXMLDOC01-appb-M000011
 この受信信号をLNA36で増幅した後、送信信号を分岐したローカル信号で周波数変換し、LPF42で低域部分を抜き出すと、以下のような中間周波信号fifとなる。
Figure JPOXMLDOC01-appb-M000012
 この中間周波信号fifを中間周波増幅部44で増幅、A/D46でデジタル信号に変換し、前処理部48では、FMCW信号をFFT(Fast Fourier Transform:高速フーリエ変換)により周波数変換することで、各距離の信号成分が抽出される。
Figure JPOXMLDOC01-appb-M000013
 各受信アンテナ14-1、14-2、・・・14-nで得られる受信信号の各レンジに対する処理は既述のCW信号方式での処理と同様である。ただし、このFMCW信号方式では、距離ごとに反射体4-1の方位検出処理を行う。この方位検出処理では、各受信アンテナ14-1、14-2、・・・14-nの各受信信号から方位合成を行う。
<方位合成>
 この方位合成について、図14を参照する。図14では、単一の送信部6と、6台の受信部8-1、8-2、・・・8-6を用いた観測装置2を想定している。
 送信アンテナ12から距離RT だけ離れた観測対象4に送信信号を照射する。観測対象4から得られる反射波は受信アンテナ14-1、14-2、・・・14-6に受信される。既述のCW信号方式、パルス信号方式、FMCW信号方式のいずれであっても、各受信部8-1、8-2、・・・8-6の出力信号は、観測対象4から送信アンテナ12、受信アンテナ14-1、14-2、・・・14-6までの総距離Rにより、
Figure JPOXMLDOC01-appb-M000014
で表される。但し、
Figure JPOXMLDOC01-appb-M000015
である。式(14)において、nは、受信アンテナ14-1、14-2、・・・14-6に付したアンテナ番号であり、1~6とする。
 振動周波数は低いものとし、その値は図13のAに示す繰返し周期PRT内で一定値とみなせるとすれば、式(14)は、
Figure JPOXMLDOC01-appb-M000016
に書き換えることができる。これらの受信部8-1、8-2、・・・8-6の出力信号は、信号処理部10で参照関数と相関処理される。これにより、信号処理部10では、方位分解能に応じた信号成分が抽出される。
 この方位分解能は次のように求めることができる。各受信アンテナ14-1、14-2、・・・14-6が等距離dで、1列状態であるとすれば、さらに両端にd/2の効果があると考えられる。この場合、受信アンテナ14-1、14-2、・・・14-6の実効的な全体の開口長Dは、
          D=5×d+d                        ・・・(16)
となる。
 このような全体の開口長Dを持つ受信アンテナ14-1、14-2、・・・14-6では、期待できる方位分解能θRES は送信信号の波長をλとすると、
          θRES =λ/D                      ・・・(17)
となる。送信アンテナ12および各受信アンテナ14-1、14-2、・・・14-6のそれぞれの開口長を等しいものとし、それぞれの開口長をdとすると、観測範囲θ0 は、
          θ=d0 /λ             ・・・(18)
で表される。
 CW信号方式では、距離の分離識別ができないので、一方向に単独の反射点しかない場合に使用可能である。
 受信アンテナ14-1、14-2、・・・14-6の中心位置から観測範囲θ0 、距離R0 の扇型線上の点について、方位分解能θRES ごとに参照関数g(n,θ)を生成する。この参照関数g(n,θ)は、
Figure JPOXMLDOC01-appb-M000017
で表される。ここで、Rx(R,n,θ)は送信アンテナ12から距離R、方位θにある反射点、さらにn番目の受信アンテナ14-nまでの総距離である。
 中間周波信号fif(R,n)と参照関数g(R,n,θ)の共役関数と相関処理することで、方位分解能ごとの信号h(R,θ)が抽出される。この信号h(R,θ)は、
Figure JPOXMLDOC01-appb-M000018
と表される。
 観測対象4にひとつの観測点としてターゲットを想定すると、このターゲットまでの距離が展開したアンテナの全体の開口長Dに比べて遠方であれば、ターゲットまでの送信信号波は無限遠から到来すると考えられる。この場合、参照関数処理はより簡単なFFTに置き換えることが可能である。一般的にはこの距離は遠方界と呼ばれる領域で、展開されたアンテナの全体の開口長をD、波長をλとすれば、
Figure JPOXMLDOC01-appb-M000019
となる。この場合、図15に示すように、各アンテナ間の位相差は、観測対象4までの距離に無関係で受信アンテナ14-1、14-2、・・・14-6のアンテナ面に対する角度で決定される。中間周波信号fif(n) をFFT処理すれば、周波数成分h(f)が方位方向の信号に変換される。FFT出力の周波数をfとすると、方位θは、
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 となり、観測対象4の反射体の信号を含む特定の方位の信号を時系列に解析することで、観測対象4の振動特性として、その振動周期、振動振幅を求めることができる。
<観測対象4の態様と観測装置2を用いた振動観測>
 観測対象4の態様と振動観測について、図16、図17および図18を参照する。図16は、なだらかな斜面上に二つの反射点としてターゲットA、Bが存在し、それぞれが方位A、方位Bに存在する場合を示している。
 図17は、CW信号方式の観測装置2-1を使用し、距離情報を含まない受信系出力を信号処理部10で処理した例を示している。この例では、方位Aと方位Bの各信号成分は各ターゲットA、Bの振動により時間軸上で変化している。
 図18は、図16に示すターゲットをパルス信号方式またはFMCW信号方式の受信部8-1、8-2・・・8-nで一次元配列受信アンテナ14aで観測した例を示している。
 この場合、1回観測ごとに方位と距離の二次元空間上にターゲットA、Bがマッピングされ、送受信のくり返し周波数がターゲットA、Bの振動周波数の2倍以上であれば、ターゲットA、Bの振動情報を含む位相データの解析により、観測対象4の振動特性を観測することができる。
<三次元合成>
 図19は、一次元配列受信アンテナ14aを用いた観測装置2の一例であり、この観測装置2では既述のCW信号方式、パルス信号方式またはFMCW信号方式のいずれであってもよい。図19において、図3と同一部分には同一符号を付してある。この場合、信号処理部10の出力側にある画像表示部16にはたとえば、パーソナルコンピュータ62が用いられている。パーソナルコンピュータ62のディスプレイ64には観測信号により生成された画像が表示される。この場合、画像表示部16から出力される制御信号が信号処理部10の基準信号生成部22に加えられ、基準信号の生成に用いられる。
 大型構造物などの観測対象4の高さ方向の位置同定を行う場合には、二次元配列受信アンテナ14bを用いて観測すればよい。観測対象4内にある個々の構造物の位置の同定は、受信アンテナ14-1、14-2、・・・14-nのアジマス(以下「AZ」と称する)角と、エレベーション(以下「EL」と称する)とで行うことができる。
 図20は、二次元配列受信アンテナ14bを用いた観測装置2の一例であり、この観測装置2も既述のCW信号方式、パルス信号方式またはFMCW信号方式のいずれであってもよい。図20において、図19と同一部分には同一符号を付してある。
 一次元配列受信アンテナ14aを用いた観測装置2では、図21のAに示すように、受信部8-1、8-2、・・・8-nから各受信部出力信号を受け、観測対象4が近距離か遠距離かによる設定を行う(S211)。近距離では参照関数乗算処理を行い(S212)、遠距離ではFFT処理を行う(S213)。これらの処理結果に振動処理を行い(S214)、画像化処理を実行する(S215)。これにより、観測対象4およびその特定位置の振動画像が得られる。
 この場合、一次元配列受信アンテナ14aでは、受信信号を参照関数乗算処理(S212)またはFFT処理(S213)により観測対象4からの反射波の方位を特定することができる。送信部6は、観測対象4に送信信号を発生すると同時に、受信部8-1、8-2・・8-nは送信信号と同期した受信タイミングを制御するためのローカル信号が分配される。そこで、基準信号生成部22は、送信部6、受信部8-1、8-2・・・8-nおよび信号処理部10の各部に同期信号を提供する。信号処理部10の各部は、基準信号生成部22からのタイミング信号を入力として、近距離観測の場合は参照関数乗算を実施し、反射波Rwの各方位を同定する。また、遠距離観測の場合は、FFT処理にて受信部出力信号を周波数変換し、反射波Rwの各方位を同定する。その後、振動処理にて観測対象4の各点の振動特性を算出する。
 二次元配列受信アンテナ14bを用いた観測装置2では、図21のBに示すように、受信部8-11、8-12、・・・8-1nから出力される各受信部出力信号、受信部8-21、8-22、・・・8-2nから出力される各受信部出力信号を用いて二次元化処理(S221)を行う。つまり、二次元配列受信アンテナ14bを用いた場合には、縦軸方向に置かれた受信アンテナ14-21、14-22、・・・14-2nの出力信号と横軸方向に置かれた受信アンテナ14-11、14-12、・・・14-1nの出力信号を距離ごとに複素乗算することにより二次元配列の出力信号が生成される。この場合も同様に、観測対象4が近距離か遠距離かによる設定を行う(S222)。近距離では参照関数乗算処理を行い(S223)、遠距離では2DFFT処理を行う(S224)。これらの処理結果に振動処理を行い(S225)、画像化処理を実行する(S226)。これにより、観測対象4およびその特定位置の振動画像が得られる。
 二次元配列受信アンテナ14bでは、図20に示すように、アンテナおよび受信系統をL型に配置する。この場合、アンテナおよび受信系統をT型に配置してもよい。いずれの場合も、観測対象4の三次元画像化が可能となる。
 受信部8-11、8-12、・・・8-1n、8-21、8-22、・・・8-2nとの動作タイミングは、既述の処理と同様に信号処理部10の基準信号生成部22で生成された基準信号をローカル信号に用いて制御される。また、信号処理部10では2次元化処理により観測対象4の各点の位置の同定並びに振動特性解析が行われる。
 この場合、送信アンテナ12の送信と受信アンテナ14の受信とが同時刻に行われるため、送信信号が受信側に廻り込まないように、送信アンテナ12と受信アンテナ14とが干渉しない程度に分離設置される。また、観測画像における方位分解能は、最も離れて設置された受信アンテナ列14側のアンテナ間距離により決定される。また観測可能な視野角は、各受信アンテナ列14の各アンテナビーム幅により決定される。
 したがって、二次元配列受信アンテナ14bを用いた観測処理では、参照関数処理、または二次元FFT処理により決定されたAZ角、EL角と各受信部8-11、8-12、・・・8-16、8-21、8-22、・・・8-26で処理された距離情報を使用し、同定された位置からの反射波の位相履歴をFFT処理による周波数解析により、観測対象4の全体における振動特性が得られる。
 二次元配列受信アンテナ14bを横軸方向に6基の受信アンテナ14-11、14-12、・・・14-16、縦軸方向に6基の受信アンテナ14-21、14-22、・・・14-26を配置した場合を想定する。
 図22は、この場合の受信部8-11、8-12、・・・8-16、8-21、8-22、・・・8-26の各受信部出力信号を二次元化する場合の模式図を示し、格子点(n,m)における出力信号が生成される。
 この場合の出力信号は、その格子点における信号強度と位相を表し、反射波の位相面を表しており、一種のホログラムとなっている。この格子点の数は、受信アンテナ14-11、14-12、・・・14-16、14-21、14-22、・・・14-26の設置数で決まる格子点数を表す。
 二次元配列受信アンテナ14bにおいて、横軸方向の受信アンテナ列の受信部8-11、8-12、・・・8-16の出力をhAZ(R,n,t)、縦軸方向の受信アンテナ列の受信部8-21、8-22、・・・8-26の出力をhEL(R,m,t)とする。ここでn、mはそれぞれ横軸方向、縦軸方向のアンテナ番号、Rは観測対象4とアンテナ間の距離とする。二次元化出力h(m,n,R,t)は
    h(m,n,R,t)= hAZ(R,n,t)×hEL(R,m,t)   ・・・(24)
 この場合、二次元データを処理する参照関数は、縦形の参照関数と、横系の参照関数の積となる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
  この参照関数の共役関数と二次元化処理された受信部出力の複素乗算和を求めることで特定方向の特定の距離におけるターゲットの状況を解析することができる。
Figure JPOXMLDOC01-appb-M000025

  一次元処理と同様に観測対象4が遠距離にある場合は、二次元FFT処理(2DFFT)を行うことで、そのターゲットの方向を同定することができる。
<振動解析>
 図23は、パルス方式またはFMCW信号方式の観測装置2において、二次元配列受信アンテナ14bを用いた場合の振動解析例を示している。
 この場合、観測ごとに方位とEL、距離の三次元の位置情報と共に反射信号の振幅と位相で表されるターゲットの信号が記録される。その各ターゲットの振幅位相情報を時系列に解析することで、観測範囲内の任意の位置の微小変位や、動揺、振動を計測することができる。
 大型構造物などの観測対象4の任意の点の振動を解析するには、既述の二次元配列受信アンテナ14bを使用し、観測対象4内にある個々の構造物の全ての点の反射波の位相履歴をFFT処理し、周波数解析すれば、観測対象4の全体における振動特性が求められる。
 <画像表示>
 図24は、観測画像表示の一例を示している。既述のパーソナルコンピュータ62のディスプレイ64には、信号処理部10で再生された大型橋梁の画像66が表示されている。この画像66上にはグレースケール68が重畳して表示され、このグレースケール68で橋梁各部の振動強度分布を表している。この例では、濃淡の濃い部分が振動が弱く、淡い部分は振動が強いことを示している。このような画像66から観測対象4の形状、そのグレースケール表示により観測対象4およびその特定部位における振動態様や変位が可視化され、この例では、濃淡状態から振動形態を視認することができる。
 <レンジ圧縮>
 図25は、既述のレンジ圧縮処理を含む処理手順の一例を示している。この処理手順では、図6のAに示す処理手順と同様に、送信(S31)、受信(S32)の処理の後、各受信信号に対してAD変換処理が行われる(S33)。このAD変換処理の後、レンジ圧縮処理が実行される(S34)。このレンジ圧縮処理の後、二次元化処理(S35)、近距離・遠距離の判定(S36)、近距離の場合には参照関数乗算処理(S37)、遠距離の場合には2DFFT処理(S38)、観測時間の判定(S39)、振動処理(S40)および画像化処理(S41)が実行される。これらの処理は既述の処理(図6)と同様であり、一次元配列受信アンテナ14aを用いた観測装置2では二次元化処理(S35)を省略すればよい。
<参照関数>
 参照関数は、図22に示す各格子点における計測したい距離分解能に応じてその“位置” からの反射波であった場合の出力信号を模擬する形で生成される。たとえば、計測距離が10〔m〕から100〔m〕の範囲で距離分解能1〔m〕とすると、各格子点の距離方向に(100-10)〔m〕/1〔m〕=90〔点〕、更に、格子点が6×6=36〔点〕、合計で90×36=3,240〔点〕の参照関数と成る。
 この参照関数の演算処理では、生成される参照関数3,240〔点〕と二次元化処理からの出力信号の一つとを乗算すれば、観測対象4からの出力信号の位置が同定される。
 観測対象4が、遠距離にある場合は、二次元FFT処理(2DFFT)で、二次元化処理からの出力信号を二次元FFTすれば、観測対象4からの出力信号の位置が同定される。
<第2の実施の形態の特徴点や効果>
 第2の実施の形態によれば、次のいずれかの効果が得られる。
 (1) 二次元または三次元の広がりを持つ観測対象4の形状の画像化と同時に対象全体の微小な振動およびその振幅の周期などを、レーダ技術により遠隔から且つ非接触で計測できる。
 (2) この観測装置2やその信号処理によれば、橋梁、ビル、高架道路などの大型建造物が、交通、気象、騒音などによって受ける振動特性を計測し、建造物の強度変化、保守の必要性を判断するための情報を提供できる。
 (3) 観測対象に向けて信号を送信する1つの送信部6と、観測対象4で反射した反射波Rwを受信する複数の受信部8-1、8-2、・・・8-nと受信した信号を画像化し、更に観測対象4の面的な振動特性を算出する信号処理部10と計測結果を表示する画像表示部16を有する。
 (4) 二次元的に展開されている構造物を主に計測し、受信アンテナが二次元配列されている場合は、方位と仰角、または方位と仰角と距離で対象点を識別でき、高層ビルや、橋梁、高架道路などの高さ方向に広がりのある建造物などの観測対象4の振動や変位を計測でき、その計測結果を可視化できる。
 (5) 送信信号がパルス波またはFMCW信号波であれば、レンジ圧縮処理で反射点の距離に分類できる。各受信アンテナ間の位相から対象点の方向で分類し、各方向、距離の対象点の反射強度を画像化、およびその対象点からの信号の位相変化から微小変動や、振動を検出、画像化することができる。
 (6) 観測対象4が近距離にある場合は、参照関数演算を行って対象点の反射強度と位相を算出し、観測対象4が遠距離にある場合は、FFTで行い、反射波の強度と位相情報を得ることができる。
 (7) 送信信号がCW波の場合、各受信部は送信波と同じ位相の信号をローカル信号とした出力信号(IQ)が得られる。送信信号がパルス波の場合は、受信部出力は対象点までの伝搬遅延時間だけシフトし、送信波の位相差に相当する出力信号(IQ)が得られる。
 (8) 送信信号がリニアFM(Frequency Modulation)チャープパルスである場合には、受信信号が受信部でパルス圧縮処理されて、パルス方式と同様に観測対象4の計測点までの伝搬遅延時間だけシフトし、送信波の位相差に相当する出力信号(IQ)を得ることができる。
 (9) 送信信号がFMCW信号である場合には、受信信号は送信信号をローカルとして周波数変換され、伝搬遅延に相当する周波数成分となる。この成分信号が信号処理部10のFFT処理により周波数領域に変換し、各距離の対象点の反射強度と送信波との位相差に相当する出力信号(IQ)が得られる。
 (10) 信号処理部10では、観測対象4が近距離の場合は、参照関数を生成し、受信信号との乗算処理を行う。この参照関数は、観測対象4の距離とAZ角度に応じた位相変位を推定することにより生成する。この参照関数と受信部出力信号の相関演算により観測対象4の位置を特定し、その点の振動特性として、同定された各観測点からの受信信号を時間列収集し、FFT処理により周波数特性が求められる。
 (11) 信号処理部10は、観測対象4が遠距離にある場合は、受信部出力信号を先ず、二次元化処理した後、観測対象各点から反射された時間列受信信号をFFT演算することによりその地点の振動特性を算出できる。
 (12) 画像表示部16は、信号処理部10で生成される観測信号により生成された画像上に、同じく信号処理部10で算出した観測対象各点の振動特性を重ね合わせて画像化できるので、観測対象4の全体振動の状況を可視化できる。
 (13) 従来のマイクロ波を使用した振動計と異なり反射器を観測対象4に付けることなく、構造物全体の形状の画像化とその画像上へ建造物の振動個所と振動特性を画像表示できる。このため、構造物の全体の振動状況把握を可能にし、構造物の維持管理を迅速かつ正確に行うことができる。
 (14) 距離情報は、近距離の場合、参照関数との乗算で求め、遠距離の場合は、受信信号をFFTで周波数領域に変換することで求めている。送信アンテナのビームをスキャンすることなく観測対象4の全体に送信波を照射し、受信アンテナから得られる反射波をデジタルビームフォーミングすることにより高解像度の画像と振動計測を一定時間ごとに画像化できる。
 (15) 観測対象4の各点の位置は、近距離の場合、受信信号と参照関数との乗算で、遠距離の場合は、受信信号をFFT演算で周波数領域へ変換することで容易に求めることができる。
 (16) 観測対象4の各点の振動特性は、同定された各観測位置からの反射波を時間列に収集し、周波数変換し、解析することにより容易に求めることができる。
 (17) 観測対象4にレーダ反射器を付けることなく、観測対象4の全体を画像として捉え、時系列観測した受信情報を周波数解析することで容易に構造物全体の振動特性を画像化することができる。
 (18) 観測対象4に反射器を取り付けることなく、また、観測対象4の特定部分のみならず観測対象全体が通行または気象などの原因により発している振動を完全非接触で計測することができ、大型橋梁、高架道路などの施設の老朽化対策などの保全管理に利用できる。
〔第3の実施の形態〕
 第2の実施の形態の信号処理部10では、図5に示すように、プロセッサ18などを備えることにより、振動観測にコンピュータによる情報処理を用いている。これに対し、信号処理部10は、振動観測を実現する既述の各機能をハードウェアで実現してもよい。
 図26は、第3の実施の形態に係る信号処理部10のハードウェアの一例を示している。図26に示す信号処理部10ではハードウェアで構成した二次元化部70、近距離・遠距離切替部72、参照関数乗算部74、2DFFT部76および振動処理部78を備える。二次元化部70、近距離・遠距離切替部72、参照関数乗算部74、2DFFT部76および振動処理部78の各機能は、既述した処理をハードウェアで実現しており、その内容に変更がないので、その説明を割愛する。この例は、既述の二次元配列アンテナ14bに対応するものであり、既述の一次元配列アンテナ14aを用いる場合には、二次元化部70は省略すればよい。
<第3の実施の形態の効果>
 第3の実施の形態によれば、コンピュータ処理による情報処理によらず、ハードウェアによる直接的な処理で観測対象4の観測画像および振動画像を実現することができる。
〔第4の実施の形態〕
 第2の実施の形態では、CW信号方式、パルス信号方式またはFMCW信号方式の観測装置2を詳述している。CW信号方式、パルス信号方式またはFMCW信号方式のいずれで観測装置2を構成してもよいが、これらすべての方式による振動観測を可能にしてもよい。
 図27は、CW信号方式、パルス信号方式またはFMCW信号方式による振動観測を可能にした観測装置2-4を示している。図27において、上記実施の形態と同一部分には同一符号を付してある。
 この観測装置2-4では、CW信号送受信部80-1、パルス信号送受信部80-2、FMCW信号送受信部80-3、信号方式切替部82および制御部84が備えられている。
 CW信号送受信部80-1は、図7に例示するように、CW信号方式による送受信を行う。パルス信号送受信部80-2は、図9に例示するように、パルス信号方式による送受信を行う。FMCW信号送受信部80-3は、図12に例示するように、FMCW信号方式による送受信を行う。
 信号方式切替部82は、CW信号方式の際、CW信号送受信部80-1からの受信信号を受け、パルス信号方式の際、パルス信号送受信部80-2からの受信信号を受け、FMCW信号方式の際、FMCW信号送受信部80-3からの受信信号を受ける。信号方式切替部82はこれらの受信信号を選択し、信号処理部10に提供する。
 信号処理部10は、CW信号方式、パルス信号方式またはFMCW信号方式による振動観測のための信号処理を行う。
 画像表示部16は、CW信号方式、パルス信号方式またはFMCW信号方式を表す表示とともに、信号処理部10の処理結果である観測信号を受け、CW信号方式、パルス信号方式またはFMCW信号方式の画像を表示する。
 制御部84は、CW信号方式、パルス信号方式またはFMCW信号方式の各モードに対応し、選択されたモードに応じてCW信号送受信部80-1、パルス信号送受信部80-2、FMCW信号送受信部80-3のいずれかを動作させ、信号方式切替部82の信号切替、信号処理部10の処理を選択する。制御部84は、コンピュータによって構成すればよい。
<第4の実施の形態の効果>
 (1) 第4の実施の形態によれば、CW信号方式、パルス信号方式またはFMCW信号方式の各モードを選択的に利用して所望の観測画像を生成することができる。
 (2) 観測対象4などの観測条件に応じてCW信号方式、パルス信号方式またはFMCW信号方式の各モードを選択でき、観測条件に影響を受けることなく、最も適した信号方式の選択によって観測精度が高められる。
〔他の実施の形態〕
 a)上記実施の形態では、CW信号方式、パルス信号方式またはFMCW信号方式の信号方式を例示したが、これ以外の信号を用いてもよい。
 b)観測対象として建造物を例示したが、侵入者などの監視などに利用してもよい。
 c)上記実施の形態では、信号処理部10の内部に基準信号生成部22を備えているが、本願発明はこれに限定されない。信号処理部10の外部に基準信号生成部22を備え、この基準信号生成部22が生成した基準信号を信号処理部10、送信部6または受信部8-1、8-2・・・8-nに提供してもよい。
 以上説明したように、振動または変位の観測装置の最も好ましい実施の形態などについて説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 以上説明したように本発明によれば、観測対象にレーダ波の反射器を取り付けることなく、また、観測対象の特定部分のみならず観測対象全体が通行または気象などの原因により発している振動を完全非接触で計測することができ、老朽化が危惧される大型橋梁、高架道路などの公共施設の保全対策に有効かつ効果的に利用することができる。
 2 観測装置
 4 観測対象
 6 送信部
 8 受信部群
 8-1、8-2・・・8-n 受信部
 10 信号処理部
 12 送信アンテナ
 14 受信アンテナ列
 14-1、14-2・・・14-n 受信アンテナ
 14-11、14-12・・・14-1n 受信アンテナ
 14-21、14-22・・・14-2n 受信アンテナ
 14a 一次元配列受信アンテナ
 14b 二次元配列受信アンテナ
 16 画像表示部
 18 プロセッサ
 20 メモリ部
 22 基準信号生成部
 24 インターフェース部
 26 出力部
 28 CW信号生成部
 30 電力増幅部
 32 方向性結合器
 34 分配回路
 36 LNA
 38-1、38-2 MIXER
 40 移相器
 42-1、42-2 LPF
 44、44-1、44-2 中間周波増幅部
 46、46-1、46-2 アナログ・デジタル変換器
 48 前処理部
 50 チャープ信号生成部
 52 キャリア信号生成部
 54-1、54-2 MIXER
 56 移相器
 58 電力増幅部
 60 FMCW信号生成部
 62 パーソナルコンピュータ
 64 ディスプレイ
 66 画像
 68 グレースケール
 70 二次元化部
 72 近距離・遠距離切替部
 74 参照関数乗算部
 76 2DFFT部
 78 振動処理部
 80-1 CW信号送受信部
 80-2 パルス信号送受信部
 80-3 FMCW信号送受信部
 82 信号方式切替部
 84 制御部
                                                                                

Claims (13)

  1.  観測対象に向けて送信アンテナにより送信信号を送信する送信部と、
     前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成する受信部と、
     前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する信号処理部と、
     を備えることを特徴とする、干渉型振動観測装置。
  2.  さらに、前記観測信号から前記観測対象を表す画像を表示する画像表示部とを備え、
     前記観測信号により前記画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳して前記画像表示部に表示させることを特徴とする、請求項1に記載の干渉型振動観測装置。
  3.  さらに、前記信号処理部にまたは前記信号処理部の外部に前記送信部の前記送信信号、前記受信部の前記受信部出力信号、前記信号処理部の信号処理を同期させる基準信号を発生する信号発生部と、
     を備えることを特徴とする、請求項1に記載の干渉型振動観測装置。
  4.  前記送信部は、前記観測対象または該観測対象上の距離を検出するためのパルス信号、またはパルス圧縮のためにチャープ変調されたパルス信号を出力し、
     前記受信部は、基準信号と位相同期して前記受信部出力信号をパルス圧縮し、前記距離で前記観測対象の前記特定部位を分離することを特徴とする、請求項1に記載の干渉型振動観測装置。
  5.  前記送信部は、前記観測対象または該観測対象上の距離を検出するためのFMCW信号を出力し、
     前記受信部は、基準信号と位相同期して前記受信部出力信号のFMCW信号を解析し、前記距離で前記観測対象の前記特定部位を分離することを特徴とする、請求項1に記載の干渉型振動観測装置。
  6.  前記複数の受信アンテナは、線状の一次元配列、T型配列、L型配列などの二次元配列のいずれかを備え、
     前記受信部または前記信号処理部は、前記受信部出力信号の位相差により前記観測対象の方向を同定することを特徴とする、請求項1に記載の干渉型振動観測装置。
  7.  前記複数の受信アンテナは、T型配列、L型配列などの二次元配列を備え、
     前記受信部または前記信号処理部は、前記観測対象の方位および仰角のいずれか一方または双方を算出することを特徴とする、請求項1に記載の干渉型振動観測装置。
  8.  コンピュータにより観測対象の振動または変位を観測する振動観測プログラムであって、
     観測対象に向けて送信アンテナにより送信信号を送信し、
     前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成し、
     前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する、
     処理を前記コンピュータに実行させるための振動観測プログラム。
  9.  さらに、前記観測信号から画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳する処理を前記コンピュータに実行させるための請求項8に記載の振動観測プログラム。
  10.  コンピュータに観測対象の振動または変位を観測させるための振動観測プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     観測対象に向けて送信アンテナにより送信信号を送信し、
     前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成し、
     前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する、
     処理を前記コンピュータに実行させるための振動観測プログラムを記録したコンピュータ読み取り可能な記録媒体。
  11.  さらに、前記観測信号から画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳する処理を前記コンピュータに実行させるための前記振動観測プログラムを記録した請求項10に記載のコンピュータ読み取り可能な記録媒体。
  12.  観測対象に向けて送信アンテナにより送信信号を送信する工程と、
     前記観測対象からの反射波を複数の受信アンテナで受け、受信アンテナ毎に受信部出力信号を生成する工程と、
     前記受信部出力信号間の位相差からアンテナ面に対する前記反射波の位相面を求めて前記反射波の到来方向および信号強度を同定し、その特定方向からの前記反射波の位相変動を算出し、前記観測対象またはその特定部位の振動を表す観測信号を生成する工程と、
     を含むことを特徴とする、振動観測方法。
  13.  さらに、前記観測信号から画像を生成し、前記観測対象の全体画像に前記観測対象中の振動分布を表す画像を重畳する工程と、
     を含むことを特徴とする、請求項12に記載の振動観測方法。
                                                                                    
PCT/JP2014/005066 2014-08-19 2014-10-03 干渉型振動観測装置、振動観測プログラムおよび振動観測方法 WO2016027296A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2015/003859 WO2016027422A1 (ja) 2014-08-19 2015-07-30 干渉型振動観測装置、振動観測プログラム、記録媒体、振動観測方法および振動観測システム
JP2016543800A JP6363209B2 (ja) 2014-08-19 2015-07-30 干渉型振動観測装置、振動観測プログラム、記録媒体、振動観測方法および振動観測システム
EP18214747.0A EP3486621B1 (en) 2014-08-19 2015-07-30 Interferometric vibration observation device, vibration observation program, recording medium, vibration observation method and vibration observation system
EP15834032.3A EP3184974B1 (en) 2014-08-19 2015-07-30 Interferometric vibration observation device, vibration observation program, recording medium, vibration observation method and vibration observation system
US15/427,573 US10718659B2 (en) 2014-08-19 2017-02-08 Interferometric vibration observation device, vibration observation program, recording medium, vibration observation method and vibration observation system
US16/897,431 US10989589B2 (en) 2014-08-19 2020-06-10 Interferometric vibration observation device, vibration observation program, recording medium, vibration observation method and vibration observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-166603 2014-08-19
JP2014166603 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016027296A1 true WO2016027296A1 (ja) 2016-02-25

Family

ID=55350278

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/005066 WO2016027296A1 (ja) 2014-08-19 2014-10-03 干渉型振動観測装置、振動観測プログラムおよび振動観測方法
PCT/JP2015/003859 WO2016027422A1 (ja) 2014-08-19 2015-07-30 干渉型振動観測装置、振動観測プログラム、記録媒体、振動観測方法および振動観測システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003859 WO2016027422A1 (ja) 2014-08-19 2015-07-30 干渉型振動観測装置、振動観測プログラム、記録媒体、振動観測方法および振動観測システム

Country Status (4)

Country Link
US (2) US10718659B2 (ja)
EP (2) EP3184974B1 (ja)
JP (1) JP6363209B2 (ja)
WO (2) WO2016027296A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040477A (ja) * 2015-08-17 2017-02-23 株式会社東芝 アンテナ装置及びレーダ装置
JP2017096868A (ja) * 2015-11-27 2017-06-01 株式会社東芝 アンテナ装置及びレーダ装置
US11914021B2 (en) 2018-03-30 2024-02-27 Alouette Technology Inc. Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436570B1 (en) * 2015-11-06 2019-10-08 Stc.Unm High speed Michelson interferometer microscope
JP6895269B2 (ja) * 2017-02-21 2021-06-30 株式会社竹中工務店 計測装置、健全性判定装置、及び建物管理システム
ES2663649A1 (es) * 2017-11-30 2018-04-16 Fundación Cartif Sistema y procedimiento para identificación, seguimiento y gestión de riesgos estructurales
US10746625B2 (en) * 2017-12-22 2020-08-18 Infineon Technologies Ag System and method of monitoring a structural object using a millimeter-wave radar sensor
WO2019186985A1 (ja) * 2018-03-29 2019-10-03 日本電気株式会社 振動計測システム、振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体
WO2019198534A1 (ja) * 2018-04-10 2019-10-17 シャープ株式会社 振動解析装置、振動解析装置の制御方法、振動解析プログラムおよび記録媒体
US10866317B2 (en) * 2018-09-17 2020-12-15 Apple Inc. Electronic device with co-located independent radar transceivers
JP7357836B2 (ja) 2019-12-17 2023-10-10 株式会社竹中工務店 画像処理装置及び画像処理プログラム
CN112924961B (zh) * 2020-01-13 2023-03-28 上海交通大学 基于微波感知的全场振动测量方法与系统
CN111351424B (zh) * 2020-03-31 2021-10-12 内蒙古雷远信息科技有限公司 形变测量方法和雷达系统
JP2021196254A (ja) * 2020-06-12 2021-12-27 株式会社アイシン 物体検出装置
CN112816977B (zh) * 2020-10-19 2023-04-28 上海交通大学 基于微波雷达的穹顶结构健康监测方法及系统
CN116710806A (zh) * 2020-12-24 2023-09-05 华为技术有限公司 无线网络中的协作环境感测
WO2023171750A1 (ja) * 2022-03-09 2023-09-14 三菱重工業株式会社 動画像データ取得装置、動画像データ取得システムおよび振動計測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221159A (ja) * 1997-02-12 1998-08-21 Toshiba Corp レ−ザドプラ方式振動分布測定装置
JP2013122385A (ja) * 2011-12-09 2013-06-20 Honda Elesys Co Ltd 方向検出装置、方向検出方法及び方向検出プログラム
JP2013167555A (ja) * 2012-02-16 2013-08-29 Ono Sokki Co Ltd 音響計測装置
WO2014051030A1 (ja) * 2012-09-28 2014-04-03 日本電気株式会社 センサ装置、振動検知システム、センサユニット、情報処理装置、振動検知方法、及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630051A (en) 1985-03-01 1986-12-16 Holodyne Ltd., 1986 Imaging doppler interferometer
JPH04331328A (ja) * 1991-04-02 1992-11-19 Daikin Ind Ltd 物体表面の振動分布解析方法とその装置
JPH11166972A (ja) * 1997-12-05 1999-06-22 Mitsubishi Electric Corp 合成開口レーダ装置
US7073384B1 (en) * 1999-08-23 2006-07-11 Stevens Institute Of Technology Method and apparatus for remote measurement of vibration and properties of objects
CA2383350A1 (en) * 1999-08-23 2001-03-01 The Trustees Of The Stevens Institute Of Technology Method and apparatus for remote measurement of vibration and properties of objects
JP4001806B2 (ja) * 2002-12-06 2007-10-31 財団法人鉄道総合技術研究所 構造物の振動特性の非接触計測による同定方法及び装置
JP4058421B2 (ja) * 2004-03-30 2008-03-12 株式会社東芝 振動計測装置及びその計測方法
JP4496954B2 (ja) 2004-12-24 2010-07-07 日本電気株式会社 干渉型レーダー
US8686362B2 (en) * 2009-05-01 2014-04-01 Uchicago Argonne, Llc Millimeter wave sensor for far-field standoff vibrometry
US8384583B2 (en) 2010-06-07 2013-02-26 Ellegi S.R.L. Synthetic-aperture radar system and operating method for monitoring ground and structure displacements suitable for emergency conditions
WO2013082620A1 (en) 2011-12-01 2013-06-06 University Of Florida Research Foundation, Inc. Wavelength division sensing rf vibrometer for accurate measurement of complex vibrations
WO2013105359A1 (ja) * 2012-01-10 2013-07-18 三菱電機株式会社 移動距離計測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221159A (ja) * 1997-02-12 1998-08-21 Toshiba Corp レ−ザドプラ方式振動分布測定装置
JP2013122385A (ja) * 2011-12-09 2013-06-20 Honda Elesys Co Ltd 方向検出装置、方向検出方法及び方向検出プログラム
JP2013167555A (ja) * 2012-02-16 2013-08-29 Ono Sokki Co Ltd 音響計測装置
WO2014051030A1 (ja) * 2012-09-28 2014-04-03 日本電気株式会社 センサ装置、振動検知システム、センサユニット、情報処理装置、振動検知方法、及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040477A (ja) * 2015-08-17 2017-02-23 株式会社東芝 アンテナ装置及びレーダ装置
JP2017096868A (ja) * 2015-11-27 2017-06-01 株式会社東芝 アンテナ装置及びレーダ装置
US11914021B2 (en) 2018-03-30 2024-02-27 Alouette Technology Inc. Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method

Also Published As

Publication number Publication date
US20170299427A1 (en) 2017-10-19
EP3486621A1 (en) 2019-05-22
WO2016027422A1 (ja) 2016-02-25
JPWO2016027422A1 (ja) 2017-06-29
US10989589B2 (en) 2021-04-27
EP3486621B1 (en) 2022-11-09
EP3184974A1 (en) 2017-06-28
JP6363209B2 (ja) 2018-07-25
EP3184974B1 (en) 2024-05-08
US10718659B2 (en) 2020-07-21
US20200326230A1 (en) 2020-10-15
EP3184974A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2016027296A1 (ja) 干渉型振動観測装置、振動観測プログラムおよび振動観測方法
CN107003411A (zh) 激光雷达装置
Gentile et al. Vibration-based structural health monitoring of stay cables by microwave remote sensing
JP2005503566A (ja) 表面下のレーダー画像化
CN108535730B (zh) 一种多普勒气象雷达解速度模糊方法和系统
JP2006308285A (ja) 干渉型レーダ
WO2011007828A1 (ja) Fm-cwレーダ装置、ドップラ速度測定方法
JP5462740B2 (ja) 水面形状計測装置、及び水面形状計測方法
RU2444760C1 (ru) Способ съемки нижней поверхности ледяного покрова
US11940580B2 (en) Heterogeneous subsurface imaging systems and methods
JP7125785B2 (ja) 速度計測装置、速度計測プログラム、記録媒体および速度計測方法
RU2452040C1 (ru) Способ параметрического приема волн различной физической природы в морской среде
Hosseiny et al. Structural displacement monitoring using ground-based synthetic aperture radar
Zhao et al. Dynamic deformation measurement of bridge structure based on GB-MIMO radar
JP6264194B2 (ja) レーダ装置
JP4037310B2 (ja) レーザレーダ装置およびそのビーム方向設定方法
RU160453U1 (ru) 3d георадиотомограф
RU2624607C1 (ru) Способ гидроакустической томографии полей атмосферы, океана и земной коры различной физической природы в морской среде
Pieraccini et al. Interferometric radar for testing large structures with a built-in seismic accelerometer
Gambi et al. Automotive radar application for structural health monitoring
JPWO2017018062A1 (ja) 水蒸気観測装置
JP2005189177A (ja) 風速ベクトル算出装置
JP5698942B2 (ja) フェーズドアレイ型ドップラーソーダーシステム
Wang et al. Accurate non-contact retrieval in micro vibration by a 100GHz radar.
Ji et al. A small array HFSWR system for ship surveillance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900312

Country of ref document: EP

Kind code of ref document: A1