CN116710806A - 无线网络中的协作环境感测 - Google Patents
无线网络中的协作环境感测 Download PDFInfo
- Publication number
- CN116710806A CN116710806A CN202080107903.3A CN202080107903A CN116710806A CN 116710806 A CN116710806 A CN 116710806A CN 202080107903 A CN202080107903 A CN 202080107903A CN 116710806 A CN116710806 A CN 116710806A
- Authority
- CN
- China
- Prior art keywords
- sensing
- observations
- receiving
- sense
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 claims abstract description 103
- 238000000034 method Methods 0.000 claims abstract description 71
- 230000005540 biological transmission Effects 0.000 claims description 30
- 230000011664 signaling Effects 0.000 claims description 30
- 230000007613 environmental effect Effects 0.000 claims description 22
- 230000036961 partial effect Effects 0.000 claims description 18
- 230000010354 integration Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 17
- 238000004891 communication Methods 0.000 description 54
- 238000010586 diagram Methods 0.000 description 17
- 230000001413 cellular effect Effects 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 238000013459 approach Methods 0.000 description 8
- 102100022869 Ras and EF-hand domain-containing protein Human genes 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000008054 signal transmission Effects 0.000 description 6
- 230000003068 static effect Effects 0.000 description 5
- 102100022887 GTP-binding nuclear protein Ran Human genes 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 241000854291 Dianthus carthusianorum Species 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000002592 echocardiography Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 125000002015 acyclic group Chemical group 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 241001025261 Neoraja caerulea Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000005019 pattern of movement Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
- G01S13/878—Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/74—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
- G01S13/76—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
- G01S13/765—Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/003—Transmission of data between radar, sonar or lidar systems and remote stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/003—Transmission of data between radar, sonar or lidar systems and remote stations
- G01S7/006—Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0006—Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开的一些实施例提供了一种用于感测设备(UE)与基站协作来感测环境的方式。该UE可以基于在所述环境中发送的感测信号获得观察,并将该观察提供给专用处理节点。该处理节点被配置为处理接收到的观察,以有条理地组合观察从而生成增强观察。除了将感测分发给多个UE外,对观察的处理也可以被分发。
Description
技术领域
本发明总体上涉及无线网络中的环境感测,并且在特定实施例中,涉及协作环境感测。
背景技术
在支持感测的通信网络中,发送点(TP)发送感测信号以获得与操作与TP通信的用户设备(UE)的环境有关的信息。
在一个示例中,感测信号可以是RADAR(无线电方位方向和测距)信号。术语RADAR不一定总是用全大写字母表示;“RADAR”、“Radar”和“radar”是等同的。Radar通常用于检测物体的存在和位置。使用一种类型的radar(被称为“脉冲radar”)的系统辐射能量脉冲,并从一个或多个目标接收脉冲的回波。系统基于从给定目标返回的回波确定给定目标的位姿。使用另一类型的radar(被称为“脉冲压缩radar”)的系统使用的能量与脉冲radar系统中使用的能量相同。但是,在脉冲压缩radar系统中,能量在时间和频率上被扩散,以降低瞬时辐射功率。
使用radar信号进行环境感测已有很长的历史,特别是在军事应用中。最近,使用radar信号感测的应用已扩展到车辆应用,以实现自适应巡航控制、避免碰撞和变道辅助。
另一类型的感测信号用于LIDAR(光探测和测距)中。最近,自动驾驶汽车的进步依靠LIDAR技术,以允许汽车感测汽车预期安全巡航的环境。
给定网络的元素可以利用在描述UE运行所在的无线环境的先验信息的上下文中关于UE的位置、行为、移动模式等的信息。但是,使用radar构建无线环境的射频地图可能被证明是一个极具挑战性的和开放性的问题。这个问题的困难可以被认为是由于感测元件的分辨率有限、环境的动态性以及需要估计其电磁特性和位置的物体数量庞大等因素造成的。
发明内容
本公开的一些实施例提供了一种用于感测设备(UE)与基站协作感测环境的方式。例如,感测环境可能涉及在三维(3D)空间中解析对象的细节。所述UE可以基于在所述环境中发送的感测信号获得观察,并将所述观察提供给专用处理节点。所述处理节点被配置为处理接收到的观察,以有条理地(coherently)组合所述观察,以生成增强观察。除了将该感测分发给多个UE外,观察的处理也可以被分发。
在3D空间中解析对象的细节涉及来自不同域中不同设备的观察的有条理的组合。使来自多个设备的发送同相,以在给定位置实现感测信号的建设性叠加(constructivesuper-position),这样有可能实现范围分辨率和交叉范围分辨率。适宜地,协作感测可以被视为减少感测开销和/或提高感测精度的一种方式。
根据本公开的一方面,提供了一种方法。所述方法包括:第一用户设备(UE)接收用于感测信号的定时信息;第一UE基于定时信息来接收感测信号的反射,作为执行环境感测操作的一部分;向处理节点发送接收到的反射的指示。
根据本公开的另一方面,提供了一种方法。该方法包括:由处理节点获得关于用于多个观察的传输资源的信息,该多个观察与相应多个用户设备(UE)相关联;由处理节点根据获得的关于传输资源的信息,从相应多个UE接收多个观察;以及处理接收到的多个观察,以用于生成增强观察。
根据本公开的又一方面,提供了一种方法。该方法包括:接收射频信号的反射,作为执行环境感测操作的一部分;从多个感测设备接收对应的多个远程观察,多个远程观察之中的每个远程观察与相应感测设备位置和相应感测设备朝向相关联;以及发送通过将本地观察与多个远程观察集成获得的增强观察,该本地观察是通过处理接收到的反射获得的。
根据本公开的再一方面,提供了一种方法。该方法包括:接收与对应的多个感测设备相关联的多个特定于感测的同步信息;接收与多个感测设备相关联的多个特定于感测的定位信息;接收射频信号的反射,作为执行环境感测操作的一部分;从多个感测设备接收对应的多个远程观察;发送通过将本地观察与多个远程观察集成获得的协同观察,本地观察是通过处理接收到的反射获得的。
根据本公开的进一步方面,提供了一种方法。该方法包括:接收射频信号的反射,作为执行环境感测操作的一部分;从感测设备接收包括部分推理结果的部分推理消息,该部分推理结果是通过处理多个观察获得的;发送通过将本地观察与部分推理结果集成获得的增强观察,本地观察是通过处理接收到的反射获得的。
根据本公开的又进一步方面,提供了一种方法。该方法包括:接收射频信号的反射,作为执行环境感测操作的一部分;从多个感测设备接收对应的多个远程观察;发送通过将本地观察与所述多个远程观察集成获得的包括部分推理结果的部分推理消息,本地观察是通过处理所述接收到的反射获得的。
附图说明
为了更全面地理解实施例及其优点,下面通过举例参考结合附图进行的以下描述,在附图中:
图1示出了可以执行本发明实施例的通信系统的简化示意图,该通信系统包括示例用户设备和示例基站;
图2示出了作为框图的本公开的方面的图1的示例用户设备;
图3示出了作为框图的本公开的方面的图1的示例基站;
图4示出了根据本公开的方面的向目标的一部分投射相应的感测波束的多个物理用户设备;
图5示出了根据本公开的方面的作为协作感测操作的一部分从单个用户设备的角度执行感测的方法中的示例性步骤;
图6示出了根据本公开的方面的在基站处执行的由多个感测设备配置协作感测的方法中的示例性步骤;
图7示出了根据本公开的方面的作为协作感测操作的一部分的从基站的角度执行感测的方法中的示例性步骤;
图8以流程图示出了根据本公开的各方面的当用户设备获得观察时用户设备与基站之间的交互;
图9以流程图示出了作为图8的流程图的备选方案的本公开的方的当用户设备获得观察时用户设备与基站之间的交互;
图10示出了根据本公开的方面的在基站170处执行的由多个用户设备配置协作感测的方法中的示例性步骤;
图11示出了根据本公开的方面的示例网络场景,其中三个基站和四个用户设备协作感测物体;
图12示出了根据本公开的方面的图11的感测场景的示例性感测图;
图13示出了根据本公开的方面提供的图11的感测场景的示例传输图;
图14示出了根据本公开的方面提供的图11的感测场景的示例处理图1400;
图15示出了根据本公开的方面提供的示性网络场景,其中三个基站和三个用户设备协作感测物体;
图16示出了等式的示例性展开,以示出单个矩阵元素。
具体实施方式
出于说明性目的,下文将结合附图更加详细地解释具体的示例性实施例。
本文中阐述的实施例表示信息足以执行请求保护的主题,并说明了执行这种主题的方法。根据附图阅读以下描述之后,本领域技术人员会理解所请求保护的主题的概念,并会认识到这些概念的应用在本文中并没有特别提及。应当理解,这些概念和应用在本发明和所附权利要求书的范围之内。
此外,应当理解,本文中公开的执行指令的任何模块、组件或设备可以包括或以其它方式接入一个或多个非瞬时性计算机/处理器可读存储介质,所述介质用于存储信息,例如计算机/处理器可读指令、数据结构、程序模块和/或其它数据。非瞬时性计算机/处理器可读存储介质的示例的非详尽列表包括磁带盒、磁带、磁盘存储器或其它磁存储设备;只读光盘(CD-ROM)、数字视频光盘或数字多功能光盘(DVD)、蓝光光盘TM等光盘,或其它光存储器;在任何方法或技术中实现的易失性和非易失性、可移动和不可移动介质、随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、闪存或其它存储技术。任何这些非瞬时性计算机/处理器存储介质可以是一种设备的一部分,也可以由一种设备接入或连接。用于实现本文中描述的应用或模块的计算机/处理器可读/可执行指令可以由这种非瞬时性计算机/处理器可读存储介质存储或以其它方式保存。
图1以示意图示出了示例性通信系统100。通常,通信系统100能够使多个无线或有线元件传输数据和其它内容。通信系统100的目的可以是通过广播、窄播、用户设备到用户设备等提供内容(语音、数据、视频、文本)。通信系统100可以通过共享带宽等资源高效地进行操作。
在本示例中,通信系统100包括第一用户设备(UE)110A、第二UE 110B和第三UE110C(单称或统称110)、第一无线接入网(RAN)120A和第二RAN 120B(单称或统称120)、核心网130、公共交换电话网(PSTN)140、互联网150和其它网络160。虽然在图1中示出了特定数量的这些部件或元件,但任何合理数量的这些组件或元件可以包括在通信系统100中。
UE 110用于在通信系统100中进行操作和/或通信。例如,UE 110用于通过无线通信信道进行发送和/或接收。每个UE 110表示任何合适的进行无线操作的终端用户设备,并且可以包括如下设备(或可以称为):无线发送/接收单元(WTRU)、移动站、移动用户单元、蜂窝电话、站点(STA)、机器类通信(MTC)设备、物联网(IoT)设备、个人数字助理(PDA)、智能手机、笔记本电脑、计算机、触摸板、无线传感器或消费型电子设备。
在图1中,第一RAN 120A包括第一基站170A,第二RAN包括第二基站170B(单称或统称170)。基站170也可以称为锚点或发送点(TP)。每个基站170都用于与一个或多个UE 110通过接口无线连接,以便能够接入任何其它基站170、核心网130、PSTN 140、互联网150和/或其它网络160。例如,基站170可以包括(或可以是)几种熟知设备中的一个或多个,例如基站收发站(BTS)、基站(NodeB)、演进型基站(evolved NodeB,eNodeB)、家庭基站(HomeeNodeB)、下一代基站(gNodeB)、发送接收点(TRP)、站点控制器、接入点(AP)或无线路由器。备选地或附加地,任何UE 110都可以用于与任何其它基站170、互联网150、核心网130、PSTN140、其它网络160或上述任意组合通过接口连接、接入或通信。通信系统100可以包括RAN,例如RAN 120B,其中,对应的基站170B通过互联网150接入核心网130,如图所示。
UE 110和基站170是通信设备的示例,这些通信设备可以用于实现本文中描述的部分或全部功能和/或实施例。在图1所示的实施例中,第一基站170A形成第一RAN 120A的一部分,第一RAN 120A可以包括其它基站(未示出)、一个或多个基站控制器(BSC)(未示出)、一个或多个无线网络控制器(RNC)(未示出)、中继节点(未示出)、元件(未示出)和/或设备(未示出)。任何基站170可以是如图所示的单独元件,也可以是分布在对应RAN 120中的多个元件,等等。同样地,第二基站170B是第二RAN 120B的一部分,第二RAN 120B可以包括其它基站、元件和/或设备。每个基站170在特定地理区或区域(有时被称为“小区”或“覆盖区域”)内发送和/或接收无线信号。小区可以进一步划分为小区扇区(sector),例如,基站170可以使用多个收发器向多个扇区提供服务。在一些实施例中,可以存在无线接入技术支持的已建立的微微小区或毫微微小区。在一些实施例中,多个收发器可以使用多输入多输出(MIMO)技术等用于每个小区。所示的RAN 120的数量只是示例性的。设计通信系统100时可以设想任意数量的RAN。
基站170使用射频(RF)无线通信链路、微波无线通信链路、红外线(infrared,IR)无线通信链路、可见光(visible light,VL)通信链路等无线通信链路,通过一个或多个空口190与一个或多个UE 110进行通信。空口190可以使用任何合适的无线接入技术。例如,通信系统100可以在空口190中实现一种或多种正交或非正交信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、空分多址(SDMA)、正交FDMA(OFDMA)或单载波FDMA(SC-FDMA)。
基站170可以实现通用移动通讯系统(UMTS)陆地无线接入(UTRA)以使用宽带CDMA(WCDMA)建立空口190。在这种情况下,基站170可以实现如高速分组接入(HSPA)、演进型HPSA(evolved HPSA,HSPA+)等协议,可选地包括高速下行分组接入(HSDPA)、高速上行分组接入(HSUPA)或两者兼有。或者,基站170可以通过LTE、LTE-A、LTE-B和/或5G新空口(NR),使用演进型UTMS陆地无线接入(E-UTRA)建立空口190。可以设想,通信系统100可以使用多信道接入功能,包括如以上所描述的方案。用于实现空口的其它无线技术包括IEEE 802.11、802.15、802.16、CDMA2000、CDMA20001X、CDMA2000 EV-DO、IS-2000、IS-95、IS-856、GSM、EDGE和GERAN。当然,也可以使用其它多址接入方案和无线协议。
RAN 120与核心网130进行通信,以向UE 110提供各种服务,例如语音通信服务、数据通信服务和其它通信服务。RAN 120和/或核心网130可以与一个或多个其它RAN(未示出)进行直接或间接通信,这些RAN可以或可以不直接由核心网130服务,并且可以或可以不与第一RAN 120A和/或第二RAN 120B使用相同的无线接入技术。核心网130还可以用作(i)RAN120之间和/或UE 110之间以及(ii)其它网络(例如PSTN 140、互联网150和其它网络160)之间的网关接入。
UE 110可以使用射频(RF)无线通信链路、微波无线通信链路、红外线(IR)无线通信链路、可见光(VL)通信链路等无线通信链路,通过一个或多个侧行链路(SL)空口180相互通信。SL空口180可以使用任何合适的无线接入技术,可以基本上类似于UE 110与一个或多个基站170进行通信的空口190,也可以基本上不同于空口190。例如,通信系统100可以在SL空口180中实现一个或多个信道接入方法,例如CDMA、TDMA、FDMA、SDMA、OFDMA或SC-FDMA。在一些实施例中,SL空口180可以至少部分地在非授权频谱上实现。
部分或全部UE 110可以包括使用不同无线技术和/或协议通过不同无线链路与不同无线网络进行通信的功能。UE 110可以通过有线通信信道与服务提供商或交换机(未示出)以及与互联网150进行通信,而不进行无线通信(或者另外进行无线通信)。PSTN 140可以包括用于提供传统电话业务(POTS)的电路交换电话网络。互联网150可以包括计算机网络和/或子网(内网),并包括互联网协议(IP)、传输控制协议(TCP)和用户数据报协议(UDP)等协议。UE 110可以是能够根据多种无线接入技术进行操作的多模设备,并包括支持多种无线接入技术所需的多个收发器。
图2和图3示出了可以实现根据本公开的方法和教导的示例性设备。具体地,图2示出了示例UE 110,图3示出了示例基站170。这些组件可用于图1的通信系统100中或任何其它合适的系统中。
如图2所示,UE 110包括至少一个UE处理单元200。UE处理单元200实现UE 110的各种处理操作。例如,UE处理单元200可以执行信号编码、数据处理、功率控制、输入/输出处理或任何其它使UE 110能够在通信系统100中操作的功能。UE处理单元200还可以被配置为实现上面详细描述的部分或全部功能和/或实施例。每个UE处理单元200包括任何合适的用于执行一个或多个操作的处理设备或计算设备。例如,每个UE处理单元200可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
UE 110还包括至少一个收发器202。收发器202被配置为对数据或其它内容进行调制,以便由至少一个天线或网络接口控制器(NIC)204发送。收发器202还用于对通过至少一个天线204接收的数据或其它内容进行解调。每个收发器202包括任何合适的用于生成进行无线或有线传输的信号和/或用于处理通过无线或有线方式接收到的信号的结构。每个天线204包括任何合适的用于发送和/或接收无线信号或有线信号的结构。UE 110中可以使用一个或多个收发器202。一个或多个天线204可以被用在UE 110中。虽然收发器202示出为单个功能单元,但还可以使用至少一个发送器和至少一个单独的接收器来实现。
UE 110还包括一个或多个输入/输出设备206或接口(诸如,连接到互联网150的有线接口)。输入/输出设备206支持与网络中的用户或其它设备进行交互。每个输入/输出设备206包括用于向用户提供信息或从用户接收信息的任何合适的结构,诸如扬声器、麦克风、小键盘、键盘、显示器或触摸屏,包括网络接口通信。
图3还示出了BS 170的可选组件,即,被配置用于执行本申请的各方面的感测管理功能360。感测管理功能360可以以硬件实现,也可以实现为由BS处理单元350执行的软件模块。
附加地,UE 110包括至少一个UE存储器208。UE存储器208存储ED 110使用、生成或收集的指令和数据。例如,UE存储器208可以存储用于实现上文所述的部分或全部功能和/或实施例并由一个或多个UE处理单元200执行的软件指令或模块。每个UE存储器208包括任何合适的一个或多个易失性和/或非易失性存储与检索设备。可以使用任何合适类型的存储器,例如,随机存取存储器(RAM)、只读存储器(ROM)、硬盘、光盘、用户识别模块(SIM)卡、记忆棒、安全数码(SD)卡等。
如图3所示,基站170包括至少一个BS处理单元350、至少一个发送器352、至少一个接收器354、一个或多个天线356、至少一个存储器358和一个或多个输入/输出设备或接口366。可以使用收发器(未示出)代替发送器352和接收器354。BS处理单元350实现基站170的各种处理操作,例如,信号编码、数据处理、功率控制、输入/输出处理或任何其它功能。BS处理单元350还可以被配置为实现上面详细描述的部分或全部功能和/或实施例。每个BS处理单元350包括任何合适的用于执行一个或多个操作的处理设备或计算设备。例如,每个BS处理单元350可以包括微处理器、微控制器、数字信号处理器、现场可编程门阵列或专用集成电路。
每个发送器352包括任何合适的用于生成进行无线或有线发送到一个或多个UE或其它设备的信号的结构。每个接收器354包括任何合适的用于处理从一个或多个UE或其它设备无线或有线接收的信号的结构。虽然至少一个发送器352和至少一个接收器354示出为单独的组件,但它们可以组合为收发器。每个天线356包括任何合适的用于发送和/或接收无线信号或有线信号的结构。虽然公共天线356在这里示出为与发送器352和接收器354耦合,但一个或多个天线356可以与一个或多个发送器352耦合,一个或多个单独的天线356可以与一个或多个接收器354耦合。每个存储器358都包括任何合适的一个或多个易失性和/或非易失性存储与检索设备,例如上文结合UE 110描述的那些设备。存储器358存储由基站170使用、生成或收集的指令和数据。例如,存储器358可以存储用于实现上文所述的部分或全部功能和/或实施例并由BS处理单元350执行的软件指令或模块。
每个输入/输出设备366支持与网络中的用户或其它设备进行交互。每个输入/输出设备366都包括任何合适的用于向用户提供信息或接收/提供来自用户的信息的结构,包括网络接口通信。
对环境执行的感测操作可以被认为是获得对环境的认知的操作。这种认知可以与环境中重要静态物体的位置、纹理或尺寸相关,或与环境中移动模式的其它一些信息相关。这种感测定义在一定程度上源于(root into)旧的RADAR领域。在环境感测的上下文中,radar可用于通过总是首先从固定平台发送射频波,其次处理发送射频波的返回回波,以对环境进行侦察。
经过几十年的发展,radar现在是一项成熟的技术,具有成熟的理论基础和可靠的记录。Radar设备用于机载、星载和地面环境,用于各种遥感应用。这种遥感应用涉及从通过地球表面成像进行搜索和监视到环境监测等各方面。所有这些遥感应用都有一个共同点:这些遥感应用都使用高度调谐且昂贵的系统,具有超准确和稳定的传感器,这种传感器具有极端的处理和通信能力,对需要经常校准和监测的位置和全球时间有准确的了解。除此之外,传统radar系统的成功运行还有其它必要条件:(i)对要感测的环境的视野不受阻挡;(ii)尽可能拒绝环境中意外杂物的反射。这两种情况往往限制radar在非地面应用的成功应用,在这些应用中,地面radar凝视天空/空间以探测一些巡航/聚集物体,或者机载radar凝视地球以探测地球表面的活动。
Radar技术预计将在未来的蜂窝网络中发挥重要作用,每个发送器、每个接收器和许多目标(也称为“物体”和“杂物”)中的每一个都以非常低的“仰角”位于地球上。众所周知,进行无线环境感测有许多好处。事实上,众所周知,无线环境的准确感测可以使在无线环境中运行的通信系统的不同方面得到改进。这些方面包括:带宽效率;功率效率;敏捷性;增强覆盖;减少延迟等。这些改进可以被视为源自通过准确环境感测获得的无线环境知识倾向于将通信实践从被动方法转变为主动方法的方式。在主动方法中,网络作出的决策是有益的,是“媒介意识”。
为了实现主动方法和由此产生的地面媒介意识的目标,问题可以表述为“地面网络的组成部分如何实现足够准确的环境感测?”虽然通过网络侧感测实现足够准确的环境感测似乎很简单,即将radar设备纳入网络基础设施,但可能显示解决这一问题存在复杂性。需要说明的是,网络基础设施可以被理解为采取发送/接收点的形式,通常缩短为“TRP”。更具体地,这种网络侧感测受到严重阻碍,即一些杂物(背景物体)的视图经常被一些其它杂物(前景物体)阻碍。发生此问题的原因是地面环境中的感测几何形状不理想,从感测信号的发送器/接收器(即TRP)的有利位置,大量的目标分散在三维(3D)空间中。这种拓扑的分支有两个方面:(i)有时网络侧感测系统可能无法检测和估计背景中特定目标的属性(例如位置);(ii)其它时候,网络侧感测系统可以检测背景物体的存在,但由于前景物体与背景物体之间的多次反弹反射,错误地估计背景物体的属性。
网络侧感测的另一个挑战是逃逸波束问题。在镜面反射是主要传播机制的射频上执行感测时,就会发生逃逸波束问题。在镜面反射中,入射信号在单个方向上反射。通常,对于镜面反射,入射角等于反射角。也就是说,从目标反射的波束的方向仅取决于入射角和该目标的暴露表面的朝向。
术语“单静态感测”被用于表示感测信号的发送器和感测信号反射的接收器并置的感测。当在存在镜面反射的情况下使用单静态感测时,接收器可以示出为能够在发送的信号和由目标反射的信号穿过相同的路径时检测目标。更广泛地,当发送的信号和由目标反射的信号落在感测波束宽度内时,接收器可以示出为能够检测目标。在故意锐化感测波束以避免接收来自意外杂物的反射和噪声的情况下,发送的信号和由目标反射的信号落在感测波束宽度内的可能性可能会变得相当小。
逃逸波束问题可能会因网络中感测TRP数量较少而加剧。逃逸波束问题也可能由于目标和TRP相对于彼此不移动而加剧。可能会有这样的论点,对于有许多TRP以窄发送波束和窄接收波束覆盖给定视野的情况,逃逸波束问题越来越少。此外,当感测TRP是移动平台时,很有可能在轨迹的某处,其波束一侧变得“垂直”于目标反射面,这增加了移动TRP接收反射信号的机会。
可以示出,增加发送的感测信号的频率具有许多优点。例如,可以使用频率在太赫兹范围内的感测信号执行感测。使用太赫兹范围内的频率,感测信号的反射可以示出为减弱或散射。这意味着,无论目标从哪个方向接收感测信号,反射都会向各个方向散射。因此,至少一些反射最终将在感测接收器处接收。尽管如此,在较高频率下进行感测的问题是严重的路径损耗和衰减。衰减可能是网络侧感测的一个重大障碍,因为目标通常远离感测TRP。因此,虽然初看起来网络侧感测似乎是一种实用的方法,但实际上,网络侧感测方法受到足够多的因素的阻碍,使该方法无效。
通过将感测的性能委派给UE,可以避免上述前景/背景问题。这是由于未来UE是分散在感测领域的具有中等感测能力的移动实体。预计这些UE将会有很多,并且预计至少一些UE会接近要感测的目标。如此,通常有合理的前景,即从给定TRP的有利位置位于背景中的目标位于一个或多个UE的前景中。
UE的移动性可以被认为是把双刃剑。好处是从不同角度捕捉感测场景的观察,坏处是缺乏对UE细节的准确了解。这些细节包括UE位置和UE定时。此外,UE可以被理解为具有低于网络中静态TRP的感测能力,从而允许相对于仅由静态TRP执行的感测的新的感测误差源。
本申请的方面涉及协作感测方案。在协作感测方案中,多个感测设备(UE和/或TRP)从不同的有利位置获得物体的感测观察。各种感测观察被有条理地组合以形成单个组合观察。组合观察可以示出为获得比任何单个感测设备可实现的分辨率更好的分辨率。
“原始”感测观察的有条理的组合涉及来自所有感测设备的以同相方式到达所需的目标的波形。换句话说,有条理的组合涉及波形在空间上处于特定位置的建设性叠加。有条理的组合也可能涉及波前在附近位点中的破坏性叠加。集成多个低分辨率感测观察以获得单个高分辨率感测观察的这种过程可以被认为是将多个物理感测设备取代为单个(但虚拟)超级感测设备,该超级感测设备的感测能力比单个物理感测设备中的任一个的感测能力显著提高。
本申请的方面可以在图4中所示的网络400的上下文中理解。在图4中,多个物理UE110A、110B、110C、110D示出为朝向目标402的一部分投射相应的感测波束410A、410B、410C、410D(单称或统称410)。在图4中,目标402是一个建筑。在3D空间中解析物体的细节涉及在不同域中对来自不同感测设备(例如,UE 110)的原始观察进行有条理的组合。每个感测波束410被理解为波束成形的产物,以将感测波束410引导到目标402上的特定点。
发送(或接收)波束成形的经典概念被理解为涉及单独调整在天线元件阵列中的每个天线元件处发送的信号的相位,使得在所需方向上的波前以建设性的方式叠加。给定波束将被转向的期望方向和给定天线元件阵列的几何形状,可以实现这种叠加。给定天线元件阵列的几何形状是为了得到使每个天线元件延迟(或相移)的程度以在远场获得建设性动量(momentum)。已知的角度radar系统的工作原理相同,因为角度radar系统使用照亮空间角段的天线阵列产生窄波束。Radar中的波束形成与通信中的波束形成之间的主要区别是,波的到达/离开角度在radar中是先验未知的,这一事实要求radar系统在空间的每个方向上引导波束。
具有全部并置的天线元件的角度radar系统可以示出为仅能够解析角度域中物体的细节,或能够区分两个单独的物体。在物体具有体积尺寸的3D空间中,单个角度radar系统可以示出为无法解析场景深度中的细节。更具体地,只期望角度radar系统能够区分“交叉范围”域中的细节。为了能够区分范围域中的物体,需要范围radar。以类似于角度radar的方式,范围radar使用信号频率分量的有条理的组合。范围radar和角度radar的组合可以示出为产生一个在范围和交叉范围域中都具有高分辨力的系统。
当感测天线元件不并置,而是分布在感测场中时,范围和交叉范围(cross-range)变得耦合。当从一个感测设备的角度的场景深度沿着另一个感测设备的方位角具有动量时,这种耦合发生,反之亦然。如此,使来自多个感测设备的传输同相,以在给定位置实现感测信号的建设性叠加位置,可以潜在地实现范围和交叉范围分辨率。这种同相涉及UE保持对任何可以“影响”感测信号相位的平凡和非平凡因素的感测并且考虑这些因素。在影响感测信号相位的因素中,重要因素包括:距离;天线方向图;天线朝向;时钟同步。例如,在不考虑时钟同步的情况下,两个具有不同时间概念的感测设备发送波形,这些波形以不同的相位到达所需的位点。同样,在不考虑距离差异的情况下,位于不同位置的两个感测设备发送波形,这些波形再次以不同的相位到达所需的位点。
总之,本申请的方面涉及通过布置感测设备之中的协作来实现改进的感测分辨率。与往常一样,感测设备获得感测波形的返回回波作为感测观察。感测设备中的一个随后可以接收来自其它感测设备的感测观察,以及相应的感测设备位置和相应的感测设备朝向。一个感测设备可以将本地获得的感测观察与多个远程获得的感测观察集成。通过这种集成,一个感测设备可以获得协作感测观察。
图5示出了作为协作感测努力的一部分的从单个UE 110的角度执行感测的方法中的示例性步骤。UE 110接收(步骤502)用于未来将由另一设备发送的感测信号的定时信息。通过对感测信号的定时的先验感知,UE 110接收(步骤504)感测信号的反射。然后,UE 110向处理节点发送(步骤506)接收到的反射的指示。接收到的反射的指示可以被理解为感测观察。
基站170可以被赋予安排和配置协作感测的任务。图6示出了在基站170处执行的由多个感测设备配置协作感测的方法中的示例性步骤。需要说明的是,在本申请的一些方面,所有感测设备都是UE 110。在本申请的其它方面中,一些感测设备是UE 110,一些感测设备是BS。
BS 170可以通过从网络中的UE 110收集(步骤602)能力报告来开始安排和配置协作感测的任务。在一个示例中,BS 170可以从给定网络中的所有UE 110收集(步骤602)能力报告。或者,在另一个示例中,BS 170可以仅从给定网络中的UE 110的子集(所谓的“候选”子集)收集(步骤602)能力报告。
例如,能力报告可以包括接近和位置报告(proximal and locational report,PLR)。PLR可以指示UE 110相对于彼此的相对接近度或它们在全球坐标系(globalcoordinate system,GCS)中的位置/姿态(朝向)。PLR可以示出为帮助网络指定特定的UE110进行感测任务,使得在指定的UE 110处获得的观察具有最小的冗余/重叠。
又例如,能力报告可以包括感觉能力报告(sensory capability report,SCR)。SCR可以指示UE 110的能力。这些能力可能包括:最大发送功率;可实现的角度分辨率;可实现的频谱分辨率;可实现的时间分辨率;以及同步参数。
又例如,能力报告可以包括可用性和同意报告(ACR)。ACR可以指示UE 110参与感测任务的可用性。此外,ACR可以指示每个UE 110同意参与感测任务的程度。
又例如,能力报告可以包括处理/能量能力报告(PECR)。每个UE 110获得的感测数据可以被处理为:(i)从感测数据中提取易于使用的信息;或(ii)压缩感测数据以用于发送到处理节点。UE 110的处理能力的指示使BS 170能够在将特定UE 110分配给处理组之前评估每个UE 110执行提取或压缩的能力。PECR可以向BS 170提供UE 110的处理能力的指示,以便BS 170可以适当地执行评估。
又例如,能力报告可以包括通信能力报告(CCR)。在UE处收集的感测数据必须在某个点被发送到其它UE 110或BS 170。只有当UE 110具有足够的能量储备用于这种任务,并且能够以适当的高数据速率发送时,这种通信才是可能的。
在接收(步骤602)能力报告之后,BS 170可以采取形成(步骤604)感测组的步骤。当形成(步骤604)感测组时,BS 170可以考虑在能力报告中接收的信息。感测组通常包括多个UE 110,以被赋予感测环境的一部分的任务。
可以基于在步骤602中收集的能力报告,选择在形成(步骤604)感测组时包括的特定UE 110。例如,对UE 110的先验空间信息、时间信息和感测能力的精度的置信度可以是将一些UE 110分配给感测组并排除一些其它UE 110的重要因素。需要说明的是,感测组的形成(步骤604)可以不由BS 170执行。事实上,感测组的形成(步骤604)可以由UE 110以分布式的方式执行。
在形成感测组的过程(步骤604)中涉及的信令包括:传感器选择声明(SSD)信令;传感器分配声明(SAD)信令;传感器重新定位/重新调整声明(SRD)信令;感测结果报告(SOR)信令。
选择UE 110包括在感测组中可以以照射场景同时最小化冗余为目标来执行。基于在步骤602中收集的UE能力和各种感测要求,BS 170或组头(cluster-head)可以使用SSD信令向某些UE 110发送(步骤606)指示,指示某些UE 110已被选择以被赋予感测场景的任务。
鉴于哪些UE 110已经包括在感测组中,BS 170可以配置各种感测参数。例如,感测参数可以包括波束方向、频率、时间、带宽、波形和发送功率。BS 170可以使用SAD信令向感测组中的UE 110发送特定于感测的的感测参数(步骤608)。
BS 170还可以采用SOR信令向UE 110发送(步骤610)将用于报告感测结果(观察)的资源的指示。资源可以包括:波束方向;频率;时间;带宽;波形;发送功率。
根据本申请的方面,鉴于步骤602接收到的能力报告,BS 170可以指令部分UE 110重新调整它们相应的位姿,以提高场景的对应视角。众所周知,UE 110的位姿与UE 110的位置、UE 110的速度和UE 110的朝向等特征相关。附加地或备选地,BS 170可以安排将一个或多个专用感测单元(dedicated sensing unit,DSU)调度到场景。DSU可以是空中无人机(例如,四直升机),用于充当视角不同于现有地面UE 110的视角的UE 110。不考虑感测设备(地面UE 110或DSU)的类型,BS 170可以使用SRD信令向特定感测设备发送指令(步骤612)。SRD信令可以包括:要重新定位到新目的地的感测设备的标识;新目的地的坐标集合;感测设备在新目的地所处的朝向;以及到达新目的地要行进的轨迹。
感测组可以可选地包括主感测设备和/或组头。主感测设备可以被指定用于组合观察。组头可以被指定用于在感测设备之间建立同步。如此,BS 170可以可选地指定(步骤614)主感测设备和组头中的一个或两个。
当确定UE 110中的哪个应该被指定(步骤614)作为主感测设备之后,可以使用几个选择准则。主感测设备可以被选择为处理能力大于其它UE 110的UE 110。主感测设备可以被选择为通信能力大于其它UE 110的UE 110。主感测设备可以被选择为在其它UE 110的上下文中具有较不严格的能量约束的UE 110。主感测设备也可以是相对于网络中的其它UE110具有有利几何形状的UE 110,以便将感测数据通信的开销最小化。
根据本申请的方面,在指定(步骤614)组头时,BS 170可以将选择UE 110包括在感测组中的任务委托给组头。在这种情况下,能力的收集(步骤602)和感测组的形成(步骤604)可以由组头而不是由BS 170执行。在这种情况下,特定BS 170可以通知最初将相应能力报告的UE 110发送到特定BS 170,以将其相应能力报告发送到指定的组头。
上文提到,拥有共同的时间概念是通过使用协作感测提高分辨率的重要前提。
在图6所示的方法中,一旦形成了感测组(步骤604),BS 170安排(步骤616)与UE110的同步。
部分地,BS 170可以确定(步骤618)所谓同步图的拓扑。拓扑可以是星型拓扑、树型拓扑、林型拓扑,或同步图的拓扑可以是全连接的网络拓扑。
同步图可以基于感测组中感测节点的拓扑确定,目的是使问题易于解决且具有适定性,同时最小化开销估计噪声。这些标准可以通过利用问题的先验知识来实现。
然后,鉴于在步骤616中确定的拓扑,BS 170可以配置(步骤620)各种参数接收参数。参数接收参数可以例如包括UE 110接收同步参数的时间、频率和/或波形的规定。BS170可以使用特定于感测的同步配置声明(SSCD)信令来向UE 110发送参数接收参数(步骤620)。
作为布置(步骤616)同步的一部分,BS 170可以以以下详细说明的方式确定(步骤622)同步参数。BS 170可以使用特定于感测的同步参数声明(SSPD)信令向UE 110发送(步骤624)在SSCD信令中指定的资源上的同步参数。
BS 170处的时钟可以被理解为由函数TBS(t)=t表示。给定UE 110处的时钟可以被理解为由第二函数TSD(t)=wt+θ表示,其中,w表示时钟偏斜,θ表示时钟偏置。BS 170在时间tBS发送的参考信号在时间tSD=tBS+τBS-UE到达给定UE 110,其中,τBS-UE是从给定BS 170到给定UE 110的单向传播延迟。
布置同步(步骤616)可以被理解为涉及BS 170,以使UE 110处的时钟调整,从而最小化每个UE 110处的相应时钟偏斜(w)和相应时钟偏置(θ)。由于感测组中的UE 110的时钟由不同的自由运行振荡器驱动,因此不同UE 110上的时钟可以预期相对于BS 170上的时钟具有不同的时钟偏斜和时钟偏置,这可以被视为感测组的“全局”时间。有时,当存在使相对于全局时间的时钟偏斜和时钟偏置最小化的目的时,可以安排特定于感测的同步过程(步骤616)。虽然特定于感测的同步过程被布置(步骤616)以处理感测组内的UE 110之间的不完全同步,但在本申请的这一方面中,假设对感测设备位姿的了解是可用的。
为了实现相对紧密的同步,BS 170可以指示组头在感测组中的所有UE 110之间或在感测组中的UE 110的子集之中布置(步骤616)特定于感测的同步。需要说明的是,组头可以是不同于作为主感测设备的UE 110的UE 110。或者,特定于感测的同步的安排(步骤616)可以由BS 170触发。本申请的方面涉及通过使用不同于当前蜂窝系统中使用的参考信号(例如,主同步信号(PSS)和辅助同步信号(SSS))的特定于感测的同步参考信号(RS)来实现相对紧密的同步。具体地,特定于感测的同步受益于宽带特定于感测的同步参考信号的利用,相比于当前蜂窝系统中使用的参考信号,这些宽带特定于感测的同步参考信号更重复地发送。宽带特定于感测的同步参考信号可以示出为提供信噪比(SNR)增益。此外,宽带特定于感测的同步参考信号可以示出为有助于间歇性和明确地跟踪时钟参数的偏差。
从数学上,将多个(例如,N)UE 110与全局时间(例如,组头或BS 170处的时钟的时间)同步的问题可以被认为涉及获得时钟偏斜向量w=[w1,…,wN]和时钟偏置向量θ=[θ1,…,θN]的估计,其中,N是感测组中的UE 110的数量。一旦获得了估计,每个UE 110的内部时钟可以被调整以最小化时钟偏斜,并被调整以最小化时钟偏置。这种调整可被认为类似于显示时间落后的摆钟的手动调整。在步骤624中,响应于接收BS 170发送的同步参数,可以在每个UE 110处进行调整。
在操作中,时钟参数(时钟偏斜、时钟偏置)的估计可以响应于网络中的BS 170泛洪(广播)宽带的特定于感测的同步参考信号而获得。
待解决以确定(步骤622)同步参数的特定于感测的同步问题的一个数学表示在等式(1)中给出,如下所示:
其中τUE-TRP是表示组中每个UE 110与TRP之间路径的已知信道延迟的参数向量,其中τUE-UE是表示组中每个UE与每个其它UE之间路径的已知信道延迟的参数向量,τUE-Object是表示组中每个UE 110与目标402之间路径的已知信道延迟的参数向量。字符,n,表示噪音。子矩阵A1、A2、A3、A4、A5也是已知的,并与发生泛洪的同步图的拓扑相关。
BS 170可以求解特定于感测的同步等式(1)以确定(步骤622)同步参数(时钟参数的估计[w,θ])。
一旦已通过求解特定于感测的同步等式(1)确定时钟参数的估计[w,θ](步骤622),则可以将时钟参数的估计[w,θ]发送(步骤624)到感测组中的每个UE 110。响应于接收到时钟参数的估计,UE 110可以将其时钟重新调整到全局时间。
图7示出了作为协作感测操作的一部分从BS 170或主感测设备(处理节点)的角度执行感测的方法中的示例性步骤。主感测设备接收(步骤702)在感测组中的UE 110处获得的观察。然后,主感测设备有条理地组合(步骤706)接收到的观察,从而形成增强观察。有条理地组合(步骤706)接收到的观察可以涉及空间域中的相位的有条理的组合以实现范围分辨率以及频域中的相位的有条理的组合以实现交叉范围分辨率。
备选地,在步骤622中确定的时钟参数的估计可以由主感测设备用于重新校准(步骤704)预先记录的原始感测观察。然后,重新校准的预先记录的原始感测观察被融合(步骤706)到一个增强观察中。
在该环境中,UE 110可以通过几种方式获得观察。一种这样的方式在图8中示出为流程图。根据图8的流程图,UE 110将能力报告发送(步骤802)到BS 170,在所述BS 170处接收(步骤602)能力报告,如鉴于图6所讨论。BS 170发送(步骤624)时钟参数的估计[w,θ],在UE 110处接收(步骤804)所述估计。然后,UE 110将感测信号发送(步骤806)到目标402(见图4)。当接收到(步骤808)感测信号的回波时,UE 110通过UL信号发送(步骤810)观察。BS170接收(步骤702)观察,并且可以在形成增强观察时使用该观察。
另一这种方式在图9中示出为流程图。根据图9的流程图,UE 110将能力报告发送(步骤902)到BS 170,在所述BS 170处接收(步骤602)能力报告,如鉴于图6所讨论。BS 170发送(步骤624)时钟参数的估计[w,θ],在UE 110处接收(步骤904)所述估计。然后,BS 170将感测信号发送到目标402(见图4)。当接收到(步骤908)感测信号的回波时,UE 110通过UL信号发送(步骤910)观察。BS 170接收(步骤702)观察,并且可以在形成增强观察时使用该观察。
为此在本申请中,已经假设UE 110在感测组内的相应位姿(位置与朝向的组合)是准确已知的。在感测设备的位置和朝向根本未知或已知精度不足够的情况下,UE 110提供的观察的有条理的组合(步骤706)会变得困难。
已知的蜂窝网络可以提供UE 110的相应位置的估计。但是,众所周知,蜂窝网络位置估计只能准确到一米左右。当仅依赖于已知蜂窝网络提供的位置估计时,与空间域中相位的有条理的组合以实现交叉范围分辨率和频域中相位的有条理的组合以实现范围分辨率相关的观察的有条理的组合(步骤706)的具体方面可能会被证明是困难的。
除了通过获得用于感测组内UE 110的相应位置的准确信息而实现的好处之外,还可以从用于感测组内UE 110的相应朝向的准确信息中实现进一步的好处。
UE 110的朝向信息通常不是由已知蜂窝网络的定位子系统提供的。由此可见,获得特定于感测的定位信息是本申请的一个方面。
为了使本申请的各个方面包括许多场景,假设时钟参数和感测设备位置都不是准确已知的。因此,本申请的方面涉及实现特定于感测的同步和获得特定于感测的位置信息以帮助协作感测。
图10示出了在基站170执行的配置由多个UE 110协作感测的方法中的示例性步骤。图10与图6略有不同,区别在于图10部分涉及实现特定于感测的同步和获得特定于感测的位置信息以帮助协作感测,而图6涉及在定位被假设为已知的情况下实现特定于感测的同步。
BS 170可以通过从网络中的UE 110收集(步骤1002)能力报告来开始安排和配置协作感测的任务。
在接收(步骤1002)能力报告之后,BS 170可以采取形成(步骤1004)感测组的步骤。当形成(步骤604)感测组时,BS 170可以考虑在能力报告中接收的信息。
在图10所示的方法中,一旦形成了感测组(步骤1004),BS 170安排(步骤1016)特定于感测的同步和特定于感测的位置信息以帮助协作感测。
部分地,BS 170可以确定(步骤1018)所谓同步图/定位参考信号传输图的拓扑。
然后,鉴于在步骤1016中确定的拓扑,BS 170可以配置(步骤1020)各种参数接收参数。参数接收参数可以例如包括UE 110接收同步/定位参数的时间、频率和/或波形的规定。
作为布置(步骤1016)同步的一部分,BS 170可以以以下详细说明的方式确定(步骤1022)同步/定位参数。BS 170可以将同步/定位参数发送(步骤1024)到UE 110。
根据本申请的方面,在协作感测会话可以开始之前执行布置(步骤1016)特定于感测的同步和获得特定于感测的位置信息。
一个或多个BS 170可以被指定为空间参考BS 170。空间参考BS 170发送定位参考信号。定位参考信号作为下行(downlink,DL)信号被UE 110接收。作为响应,在接收到定位参考信号时,给定UE 110在上行(uplink,UL)信号中将对定位参考信号的响应发送到空间参考BS 170。
为了避免参考信号传输开销,本文提出将同步参考信号与定位参考信号合并为一个统一参考信号。统一参考信号可以在BS 170处被发送,并且在UE 110处作为DL通信被接收。统一参考信号也可以在一个UE 110处被发送,并且在另一个UE 110处作为侧链(sidelink,SL)通信被接收。
统一参考信号可以基于多个条件与蜂窝网络中的用于同步和定位的现有参考信号区分开。
根据多个条件中的第一个,统一参考信号可以在比蜂窝网络中的用于同步和定位的现有参考信号更宽的带宽上发送。
根据多个条件中的第二个,统一参考信号可以以比蜂窝网络中的用于同步和定位的现有参考信号更高的重复频率发送。
根据多个条件中的第三个,统一参考信号可以在与其它小区静音的频带上发送,以便造成较小的加性干扰。
根据多个条件中的第四个,统一参考信号可以以比蜂窝网络中的用于同步和定位的现有参考信号更高的发送功率发送。
根据多个条件中的第五个,统一参考信号可以以不同于蜂窝网络中的用于同步和定位的现有参考信号波形的波形发送。
一起或个体地考虑,这些条件支持原始观察的有条理的组合(步骤706,图7)。
待解决以确定(步骤1022)同步/定位参数的特定于感测的同步和定位问题的一个数学表示在等式(2)中给出,如下所示:
其中τUE-TRP是表示组中的每个UE 110与TRP之间的未知直接路径延迟的参数向量,其中τUE-UE是表示组中的每个UE 110与每个其它UE 110之间的未知直接路径延迟的参数向量,τUE-Object是表示组中的每个UE 110与目标402之间的已知直接路径延迟的参数向量。子矩阵A1、A2、A3、A4、A5是已知的,并且与待发送统一参考信号的同步/定位参考信号传输图的拓扑直接相关。这些子矩阵的选择将由BS 170(或组头)进行,至少考虑三个因素:问题的适定性;估计的质量;以及开销的减少。
问题的适定性与这些子矩阵的选择相关,使得感测矩阵[A1|A2|A3|A4]在等式(2)给出的特定公式中是可逆的。
估计的质量与感测设备的选择相关。选择可以基于一个或多个因素,包括发送功率、可实现的分辨率和协议栈延迟。另一个因素是感测设备对其朝向和位置具有部分认知的程度,使得等式(2)中噪声的协方差n保持有界。如果UE 110的重新定位是可能的,则UE110的选择可以包括规划UE 110的运动。
开销的减少可以被理解为使对应的延迟减少。开销的减少与基于感测设备的通信/能量能力确定(步骤1018)同步/定位参考信号传输图的拓扑相关。BS 170对待用于发送统一参考信号的时间/频率/功率/周期资源进行配置。
如果问题要由处理节点(由BS 170或感测组头)集中解决,则BS 170将使用将等式(2)中的对应等式的系数发送到该BS 170(处理节点)所需的时间/频率/功率资源在同步/定位参考信号传输图上对UE 110进行配置。
需要说明的是,通过求解等式(2)获得(步骤1016)用于特定于感测的同步的估计和特定于感测的位置信息的估计的处理节点不一定是负责使用这些估计来有条理地组合(步骤706)在步骤702中从感测组中的UE 110接收到的感测观察结果的处理节点。
一旦求解特定于感测的同步和定位等式(2)的给定处理节点获得(步骤1022)时钟偏置估计、时钟偏斜估计和信道延迟估计[w,θ,τUE-TRP,τUE-UE],则给定处理节点将该估计发送(步骤1024)到主感测设备。在接收到估计后,主感测设备可以继续校准(步骤704)从UE110接收(步骤702)到的原始感测观察,从而产生一组校准的感测观察。然后,主感测设备可以将校准的感测观察融合(步骤706)为单个增强观察。
信令包括特定于感测的同步和定位配置声明(SSPCD)以及特定于感测的同步和定位参数声明(SSPPD)。
SSPCD包括用于将同步和位置估计发送(步骤1024)到主感测设备的时间资源和频率资源的规定。
BS 170使用SSPPD来使用SSPCD中指定的资源将时钟偏置估计、时钟偏斜估计和信道延迟估计[w,θ,τUE-TRP,τUE-UE]发送(步骤1024)到UE 110和/或组头。
特定于感测的同步和定位确定可以被示出为提高可以通过表示本申请的各方面的协作感测实现的分辨率增强的质量。在没有紧密同步和对UE 110在感测组中的位置和朝向的准确了解,实现有条理的组合(步骤706)似乎可能是困难的。联合解决同步和定位问题的另一个优点可以被实现为减少由单独解决同步和定位问题的单独参考信号的传输所引起的开销。
为此呈现的本申请的方面旨在通过有条理地组合(步骤706)由多个分散的候选UE110收集到的原始感测观察来提高感测分辨率。在本申请的替代性方面中,协作感测可以被视为减少感测开销和/或提高感测精度的方法。
一方面,“感测精度增益”可以被理解为系统对场景中物体的相应位置进行更准确预测的能力。另一方面,“感测分辨率增益”可以被理解为系统区分场景中两个间隔紧密的细节的能力。也就是说,感测精度增益与感测分辨率增益不同。感测分辨率增益可以被理解为比感测精度增益更难实现。
在本申请与协作感测相关的方面中,当同时处理多个相互关联的问题时,精度增益是可以实现的。这些多个相互关联的问题通常是分开处理的。这些多个相互关联的问题是同步、定位和感测(SPS)。解决这三个相互关联的问题的联合办法的重要基础源于它们之间的关系。
同步和定位是通信中已知的联合问题。定位和感测是机器人技术中已知的联合问题。由此可见,感测和同步是共同的问题。从这些推论中,可以看到所有三个子问题都有些纠缠不清,因此,最好联合解决。在这个新的框架中,协作感测是对感测所体现的内容的根本性改造。
虽然感测的经典形式只与获得对环境状态的认知相关,但现在感测可能被重新定义为获得对时间、环境状态和用户状态的认知。需要说明的是,这并不意味着如果不同时解决感测和同步,定位就总是不可能的。事实上,在许多情况下,可以提供从另一个子系统提取的地图,以在蜂窝定位子系统中定位用户。提供地图的另一子系统例如可以是卫星成像子系统。类似地,在其它情况下,同步可能已经由另一个子系统(例如,全球定位系统提供的时间)实现和提供。所提供的同步可用于感测。
本申请的方面涉及联合解决三个相互关联的问题。可以示出,通过使用相同的子系统来解决定位、同步和感测,通过同时解决这三个问题而不是依次解决,可以实现增益。该增益可以以节省带宽、时间和/或功率等网络资源的形式实现。同步和定位通常各自单独地取决于TRP与UE之间独立参考信号集的传输。可以示出,通过在TRP与UE之间仅传输一个参考信号集,并联合解决定位、同步和感测问题,在保护网络通信资源方面实现增益。
根据本申请的方面,UE 110之间的互连类型允许UE 110能够确定时间、环境和UE状态。在上文中已经讨论了UE 110被分配通过UL信号向BS 170发送(步骤810、910)感测信号的返回回波的观察的任务。响应于接收到(步骤702)观察,BS 170然后将观察有条理地组合(步骤706)到增强观察中。与这种集中式方法相反,协作感测可以被布置为允许UE 110之间的感测和通信链路,从而允许分布式方法。
在本申请的该方面中,UE 110基于UE 110在环境(例如,朝向目标402,图4)中发送的感测信号获得观察。此外,UE 110基于其它UE 110已经发送的感测信号获得观察。
也就是说,给定UE 110可以获得对已经在一个或多个其它UE 110处的视线侧链(SL)通信上发送的感测信号的观察。此外,给定UE还可以获得对已经由BS 170在DL通信上发送的感测信号的观察。
与取决于性质相似和名称不同的参考信号传输来解决三个子问题相比,SPS问题的联合方案涉及单一类型的参考信号的传输。在这里,单一类型的参考信号被称为为“统一”RS(U-RS)。U-RS在网络上传输(即,在UE、TRP和环境之间传输)。
图11示出了示例网络场景,其中三个BS 170-0、170-1、170-2(统称或单称为170)和四个UE 110-3、110-4、110-5、110-6可以协作感测一个或多个物体,例如物体1102。
可以认为协作感测的增益从图11中显而易见的。在欧几里德空间中,为了明确地定位UE 110,使用到多个BS 170的UL/DL感测互连。但是,由于UE 110之间的SL感测互连,每个UE 110通过UL/DL感测互连连接到一个BS 170就足够了。此外,UE 110之间的SL感测互连使BS 170能够了解UE 110的接近度。UE 110的接近度可以被认为是重要的信息来源,特别是当将来自环境的冗余观察的收集最小化时。
在图11中,在BS 170、UE 110与物体1102之间示出了单向感测链路和双向感测链路。示出了从BS 170-0到UE 110-3的单向感测链路。示出了从UE 110-3到UE 110-6的单向感测链路。示出了从BS 170-2到UE 110-4的单向感测链路。示出了UE 110-4与UE 110-6之间的双向感测链路。示出了从物体1102到UE 110-3的单向感测链路。示出了UE 110-3与UE110-4之间的双向感测链路。示出了UE 110-3与物体1102之间的双向感测链路。示出了UE110-3与UE 110-5之间的双向感测链路。示出了UE 110-5与物体1102之间的双向感测链路。示出了UE 110-5与BS 170-1之间的双向感测链路。
如上所述,可以基于在启动步骤中收集的能力报告形成感测组。需要说明的是,在步骤604(图6)和1004(图10)中形成感测组需要仅选择UE 110。相反,在图11的这种上下文中,感测组的形成可以扩展到包括BS 170。感测组定义的这种扩展可以被示出为可以使空间和时间参考信息发送到UE 110。
需要说明的是,感测组定义可以被限制为仅指定将涉及协作感测的UE 110的标识。也就是说,感测组定义不需要包括关于UE 110彼此互连的程度的信息。事实上,关于UE110彼此互连的程度的信息包括在感测图中。感测图可以被定义为表示环境中UE 110、BS170与物体1102之间的感测链路的有限、循环(或非循环)、有向、标记的图。
图12示出了用于图11中的感测场景的示例感测图1200。感测图1200的规定可以基于从UE 110收集到的能力报告和接近报告。此规定可以由BS 170或组头UE 110作出。可以基于相对于所有UE 110具有有利几何形状的特定UE 110或在处理和/或通信方面更有能力的特定UE 110决定将特定UE 110指定为组头。通过以这种方式决定特定UE 110,随后步骤的通信得到促进。一旦检测图1200已经建立,配置步骤随后进行,在该配置步骤中,感测组内的UE 110使用特定信令被告知它们在检测任务中的作用和它们的资源。
使用感测图1200并且鉴于感测配置参数,感测组内的UE 110通过在感测图1200上传输U-RS开始收集感测观察。给定UE 110传输U-RS可以基于在配置步骤中被提供给该给定UE 110的分配调度。感测会话可以被定义为感测组内的所有UE 110完成分配给它们的感测任务的周期。感测会话结束后,处理随后进行。处理可以涉及联合估计时钟参数和位置参数(步骤1022,图10)。感测数据的处理可以以分布式方式、半分布式方式或集中式方式执行。在处理以集中方式执行的情况下,感测组中的所有UE 110将其感测观察发送到中心设备(未示出),使得中心设备可以联合处理感测观察。在处理以分布式方式执行的情况下,感测组内的一些UE 110通过彼此交换(例如,使用消息传递算法)中间信念(intermediarybelief)来执行处理,直到收敛方案出现为止。在处理以半分布式方式执行的情况下,具有较高处理能力的几个候选UE 110以联合方式执行处理。无论处理的方式如何,UE 110在处理开始之前将其感测观察结果提前发送到一个或多个UE 110(用于半分布式处理方式)或中心设备(用于集中处理方式)。
这种传输受益于传输图的确定。传输图上的顶点表示UE 110,UE 110是感测观察的接收器,或是感测观察的发送器。两个顶点之间的边缘表示感测观察从一个UE 110被发送到另一UE 110进行处理。接收顶点不一定是目的顶点,但接收顶点可以是朝向另一个UE110的中继。通常,传输图是表示感测设备(UE 110和/或BS 170)之间的原始感测观察流的有限、非循环、有向图。图13示出了图11中的感测场景的示例性传输图1300。
在图12的感测曲线1200中,可以被理解为相对于其它UE 110具有降低的感测能力的UE 110-6不参与物体1102的感测。但是,在图13的传输图1300中,UE 110-6充当中继,以将感测观察从UE 110-3和UE 110-4发送到BS 170-2。需要说明的是,处理在BS 170-2中不一定以集中的方式执行;如下文所述,BS 170-2可以只是处理组中的多个处理器中的一个处理器。
当所有感测观察已经到达其指定目的地时,如传输图1300所指定,处理可以开始。处理可以被示出为受益于又一图(即处理图)的确定。简而言之,处理图规定哪些设备形成处理组以及该处理组中的设备如何彼此交换其中间信念。根据处理是以集中式方式、半分布式方式还是全分布式方式执行,处理图将有所不同。例如,当处理要以集中的方式(即,在单个BS 170)执行时,则处理图是空图。另一方面,当处理以分布式方式或以半分布式方式执行时,处理图将是有限、非循环(或循环)、有向图,该图反映具有处理组的处理器之间变换的感测观察(例如,部分推理结果)的流动。
图14示出了图11中的感测场景的示例性处理器1400。需要说明的是,UE 110-5、BS170-0和BS 170-1不是传输图1300中的参与者。但是,根据图14的处理曲线1400,BS 170-1将部分推理结果发送到UE 110-5和BS 170-0。类似地,UE 110-5将部分推理结果发送到UE110-6和BS 170-2。此外,BS 170-0将部分推理结果发送到UE 110-6和BS 170-2。
图15示出了作为图11的示例网络场景的备选方案的示例网络场景,其中三个BS170-0、170-1、170-2与三个UE 110-3、110-4、110-5协作以解决SPS问题,从而感测物体1502。
所谓SPS问题的联合公式可以表示为矩阵等式(3),如下所示:
其中时钟参数w=[w3,w4,w5]和θ=[θ3,θ4,θ5]表示UE 110-3、UE 110-4和UE 110-5的未知时钟偏斜参数和时钟偏置参数。未知向量τUE-TRP=[τ0,3,τ2,4,τ1,5]表示BS 170与UE110之间的距离。未知向量τUE-UE=[τ3,4,τ3,5,τ4,5]表示单个UE 110之间的距离,如感测图所指示的。最后,未知向量表示从每个UE 110到物体1502的距离。
图16示出了等式(3)的示例展开1600,以示出单个矩阵元素。
传输图和处理图的规定和分布中涉及的信令包括:发送器选择声明(TSG)信令;TSG资源集信令;交换感测资源集信令。
TSG信令包括关于UE 110是否被配置为保持感测信息(观察)或将观察中继到另一UE 110的指示。如果UE 110被配置为中继观察,则TSG信令还包括UE 110被配置为向其发送观察的UE 110的标识。
TSG资源集信令包括UE 110要调谐以接收TSG信令的时间资源集和频率资源集的指示。
交换感测资源集信令将用于感测被集中控制的情况。交换感测资源集信令包括时间资源、频率资源、波形资源、功率资源和/或带宽资源的指示,UE 110用于在这些资源上将观察结果发送给另一UE 110或网络实体。
在半分布式和分布式环境中,处理组的选择取决于处理组元素的处理和能量能力。如此,BS 170(或组头)可以在初始步骤从UE 110收集处理能力,以通知处理组的选择。在收集(步骤602,图6)能力报告的上下文中提到的PECR可以是从UE 110接收处理能力的适当方式。
在达成关于在处理组中包括/排除特定UE 110的决定时,BS 170将关于已经包括在处理组中的UE 110的处理角色的通知发送给这些UE 110。通知可采取以下形式:处理器选择声明(PSD);PSD资源分配;以及交换推理信息资源集。
BS 170可以将PSD发送到每个UE 110,以指示UE 110是被包括在处理组中还是被排除在处理组之外。PSD资源分配可以由BS 170用于通知每个UE 110期望接收PSD的时间和频率资源。交换推理信息资源集可以由BS 170用于通知每个UE 110关于将部分推理结果发送到处理组中的另一个节点的资源。资源例如可以包括时间资源、频率资源、波形资源、功率资源和带宽资源。
可以认为,由本申请的方面表示的协作感测很好地扩展到无线环境中的问题的范围,无线环境中具有许多要感测的物体和许多要估计的参数(变量)。还可以认为,由本申请的各方面表示的协作感测适宜地支持感测给定网络中的最深点。又可以认为,由本申请的各方面表示的协作感测通过分布式有条理的组合提高分辨率适宜地提高了感测的精度。甚至还可以认为,由本申请的各方面表示的协作感测适宜地对故障具有鲁棒性,因为“眼睛”(感测设备)和“肌肉”(处理)可以分布在给定的网络上。甚至还可以认为,由本申请的各方面表示的协作感测适宜地保护了隐私,因为对感测数据的处理可以分布式地执行。
应当理解,本文中提供的实施例方法中的一个或多个步骤可以由对应的单元或模块执行。例如,数据可以由发送单元或发送模块发送。数据可以由接收单元或接收模块接收。数据可以由处理单元或处理模块处理。相应的单元/模块可以是硬件、软件或其组合。例如,一个或多个单元/模块可以是集成电路,例如现场可编程门阵列(field programmablegate array,FPGA)或专用集成电路(application-specific integrated circuit,ASIC)。应当理解的是,如果这些模块是软件,则这些模块可以由处理器根据需要全部或部分检索,单独或集体检索用于处理,根据需要在一个或多个实例中检索,并且这些模块本身可以包括用于进一步部署和实例化的指令。
虽然在说明的实施例中示出了特征的组合,但并不需要结合所有的特征来实现本发明各种实施例的优点。换句话说,根据本发明一个实施例设计的系统或方法不一定包括附图中的任一个或者在附图中示意性示出的所有部分中示出的所有特征。此外,一个示例性实施例的选定特征可以与其它示例性实施例的选定特征组合。
虽然已参考说明性实施例描述了本发明,但此描述并不意图限制本发明。本领域技术人员在参考该描述后,将会明白说明性实施例的各种修改和组合以及本发明的其它实施例。因此,所附权利要求意图涵盖任何此类修改或实施例。
Claims (21)
1.一种方法,包括:
由第一用户设备(UE)接收用于感测信号的定时信息;
由所述第一UE基于所述定时信息接收所述感测信号的反射,作为执行环境感测操作的一部分;
向处理节点发送接收到的所述反射的指示。
2.根据权利要求1所述的方法,还包括由所述UE向所述处理节点发送能力消息。
3.根据权利要求1或2所述的方法,还包括由所述UE接收指示所述UE是感测设备组的一部分的控制信令。
4.根据权利要求1至3中任一项所述的方法,还包括:
接收执行特定于感测的同步操作的指令;
执行与所述多个感测设备之中的特定感测设备的同步操作。
5.根据权利要求1至4中任一项所述的方法,还包括:由所述第一UE发送用于执行所述环境感测操作的所述感测信号。
6.根据权利要求1至5中任一项所述的方法,其中所述感测信号是用于执行感测操作的射频波形。
7.一种方法,包括:
由处理节点获得关于用于多个观察的传输资源的信息,所述多个观察与相应多个用户设备(UE)相关联;
由所述处理节点根据获得的关于所述传输资源的所述信息,从所述相应多个UE接收所述多个观察;
处理接收到的所述多个观察,以用于生成增强观察。
8.根据权利要求7所述的方法,其中获得关于所述传输资源的所述信息包括:从基站接收控制信令,所述控制信令用于指示所述传输资源。
9.一种方法,包括:
接收射频信号的反射,作为执行环境感测操作的一部分;
从多个感测设备接收对应的多个远程观察,所述多个远程观察之中的每个远程观察关联于相应感测设备位置和相应感测设备朝向;
发送通过将本地观察与所述多个远程观察集成获得的增强观察,所述本地观察是通过处理接收到的所述反射获得的。
10.根据权利要求9所述的方法,还包括从所述多个感测设备中的特定感测设备接收能力消息。
11.根据权利要求10所述的方法,还包括形成感测设备组,所述形成部分地基于的是所述能力消息中承载的信息。
12.根据权利要求11所述的方法,还包括向所述特定感测设备发送消息,所述消息指示所述感测设备组包括所述特定感测设备。
13.根据权利要求9至12中任一项所述的方法,还包括:
接收执行特定于感测的同步操作的指令;
执行与所述多个感测设备之中的特定感测设备的特定于感测的同步操作。
14.根据权利要求9至13中任一项所述的方法,还包括接收配置消息,所述配置消息指示所述环境感测操作的细节,并且所述环境感测操作的所述执行是根据所述配置消息中指示的所述细节而进行的。
15.根据权利要求9至14中任一项所述的方法,还包括:
接收与所述多个感测设备之中的特定感测设备相关联的特定于感测的同步参数,以及对应于所述特定感测设备的特定远程观察;
其中在所述本地观察与所述多个远程观察的所述集成期间,所述特定于感测的同步参数被采用。
16.根据权利要求15所述的方法,其中所述特定于感测的同步参数包括时钟偏斜参数。
17.根据权利要求15所述的方法,其中所述特定于感测的同步参数包括时钟偏置参数。
18.一种方法,包括:
接收与对应的多个感测设备相关联的多个特定于感测的同步信息;
接收与所述多个感测设备相关联的多个特定于感测的定位信息;
接收射频信号的反射,作为执行环境感测操作的一部分;
从所述多个感测设备接收对应的多个远程观察;
发送通过将本地观察与所述多个远程观察集成获得的协作观察,所述本地观察是通过处理接收到的所述反射获得的。
19.一种方法,包括:
接收射频信号的反射,作为执行环境感测操作的一部分;
从感测设备接收包括部分推理结果的部分推理消息,所述部分推理结果是通过处理多个观察获得的;
发送通过将本地观察与所述部分推理结果集成获得的增强观察,所述本地观察是通过处理接收到的所述反射获得的。
20.一种方法,其特征在于,所述方法包括:
接收射频信号的反射,作为执行环境感测操作的一部分;
从多个感测设备接收对应的多个远程观察;
发送部分推理消息,所述部分推理消息包括通过将本地观察与所述多个远程观察集成而获得的部分推理结果,所述本地观察是通过处理接收到的所述反射获得的。
21.一种装置,包括:
存储指令的存储器;以及
处理器,所述处理器被配置为通过执行所述指令来执行根据权利要求1至20中任一项所述的方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/138879 WO2022133872A1 (en) | 2020-12-24 | 2020-12-24 | Collaborative environment sensing in wireless networks |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116710806A true CN116710806A (zh) | 2023-09-05 |
Family
ID=82158604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080107903.3A Pending CN116710806A (zh) | 2020-12-24 | 2020-12-24 | 无线网络中的协作环境感测 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230333242A1 (zh) |
EP (1) | EP4248237A4 (zh) |
CN (1) | CN116710806A (zh) |
WO (1) | WO2022133872A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12035201B2 (en) * | 2022-01-19 | 2024-07-09 | Qualcomm Incorporated | Determining communication nodes for radio frequency (RF) sensing |
WO2024073925A1 (en) * | 2022-11-18 | 2024-04-11 | Lenovo (Beijing) Ltd. | Cooperative sensing |
CN118250710A (zh) * | 2022-12-23 | 2024-06-25 | 维沃移动通信有限公司 | 感知协作方法、装置及通信设备 |
WO2024177541A1 (en) * | 2023-02-24 | 2024-08-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Sensing objects in an environment |
WO2024099606A1 (en) * | 2023-07-10 | 2024-05-16 | Lenovo (Singapore) Pte. Ltd. | Sensing node handover procedure |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004059341A1 (de) * | 2002-12-20 | 2004-07-15 | Daimlerchrysler Ag | Verfahren zum erfassen von umgebungsinformationen und zum bestimmen der lage einer parklücke |
US8953507B2 (en) * | 2010-02-11 | 2015-02-10 | Qualcomm Incorporated | Frequency and time domain range expansion |
US20150256764A1 (en) * | 2014-03-05 | 2015-09-10 | Guy M. Besson | Active-tracking based systems and methods for generating mirror image |
WO2016027296A1 (ja) * | 2014-08-19 | 2016-02-25 | アルウェットテクノロジー株式会社 | 干渉型振動観測装置、振動観測プログラムおよび振動観測方法 |
US10772021B2 (en) * | 2014-12-05 | 2020-09-08 | Qualcomm Incorporated | Low latency and/or enhanced component carrier discovery for services and handover |
US20170023659A1 (en) * | 2015-05-08 | 2017-01-26 | 5D Robotics, Inc. | Adaptive positioning system |
JP6239664B2 (ja) * | 2016-03-16 | 2017-11-29 | 株式会社デンソーアイティーラボラトリ | 周辺環境推定装置及び周辺環境推定方法 |
CN106291628B (zh) * | 2016-11-08 | 2019-01-08 | 上海海事大学 | 一种提取海面卫星导航反射信号的相干观测量的方法 |
EP3639057B1 (en) * | 2017-05-11 | 2021-11-03 | Huawei Technologies Co., Ltd. | Time-of-flight apparatus |
EP3665501A1 (en) * | 2017-08-11 | 2020-06-17 | Zoox, Inc. | Vehicle sensor calibration and localization |
EP3588128B1 (en) * | 2018-06-26 | 2022-08-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for detection and height and azimuth estimation of objects in a scene by radar processing using sparse reconstruction with coherent and incoherent arrays |
US11105912B2 (en) * | 2018-12-31 | 2021-08-31 | Celeno Communications (Israel) Ltd. | Coherent Wi-Fi radar using wireless access point |
-
2020
- 2020-12-24 EP EP20966445.7A patent/EP4248237A4/en active Pending
- 2020-12-24 WO PCT/CN2020/138879 patent/WO2022133872A1/en active Application Filing
- 2020-12-24 CN CN202080107903.3A patent/CN116710806A/zh active Pending
-
2023
- 2023-06-19 US US18/337,199 patent/US20230333242A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20230333242A1 (en) | 2023-10-19 |
EP4248237A1 (en) | 2023-09-27 |
EP4248237A4 (en) | 2024-05-08 |
WO2022133872A1 (en) | 2022-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113287349B (zh) | 使用与无线通信系统协作的感测系统的方法和装置 | |
JP7415039B2 (ja) | 無線ネットワーク内のユーザ装置の位置を特定するシステム及び方法 | |
CN116710806A (zh) | 无线网络中的协作环境感测 | |
WO2022109772A1 (en) | Sensing mode configuration for wireless sensing | |
CN115812159A (zh) | 通过使用自适应相变设备来确定用户设备的位置 | |
JP6162321B2 (ja) | ワイヤレス通信におけるチャンネル推定 | |
CN118450490A (zh) | 用于估计无线通信网络中信号遮蔽障碍物和信号反射器的位置的系统和方法 | |
CN112889225A (zh) | 基于定位似然性的波束形成器优化 | |
JP2018509811A (ja) | アンテナビーム情報の利用 | |
Yang et al. | Integrated sensing and communication with multi-domain cooperation | |
WO2022165686A1 (en) | Sensing-based device detection | |
CN111372195A (zh) | 移动通信网络中移动终端的位置追踪方法、设备及存储介质 | |
WO2023039915A1 (en) | Methods and apparatuses for concurrent environment sensing and device sensing | |
WO2024000424A1 (en) | Methods and apparatus for hierarchical cooperative positioning | |
WO2023184255A1 (en) | Methods and systems for sensing-based channel reconstruction and tracking | |
WO2024159395A1 (en) | Reconfigurable intelligent surface (ris) -assisted sensing in the presence of ris sidelobes | |
WO2023092396A1 (en) | Method and apparatus for signaling for beam management using chirp beams | |
WO2024178704A1 (en) | Random sample consensus (ransac) to enhance joint communications and sensing (jcs) | |
WO2024040558A1 (en) | Reconfigurable intelligence surface based (ris-based) radar sensing | |
WO2024113293A1 (en) | Surface portion indication in reflector-based sensing for far field and near field | |
WO2024174246A1 (en) | Devices, methods, and apparatuses for joint communication and sensing | |
WO2023231868A1 (zh) | 感知方式切换方法、装置、通信设备及存储介质 | |
WO2023279226A1 (en) | Channel estimation based beam determination in holographic multiple-in multiple-out system | |
US20240319322A1 (en) | Joint radio frequency (rf) sensing and energy harvesting | |
WO2024087048A1 (en) | Reconfigurable intelligent surface (ris) -based sensing with interference mitigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |