WO2016023314A1 - 一种发光二极管器件及光源模组及光源模块 - Google Patents
一种发光二极管器件及光源模组及光源模块 Download PDFInfo
- Publication number
- WO2016023314A1 WO2016023314A1 PCT/CN2014/093882 CN2014093882W WO2016023314A1 WO 2016023314 A1 WO2016023314 A1 WO 2016023314A1 CN 2014093882 W CN2014093882 W CN 2014093882W WO 2016023314 A1 WO2016023314 A1 WO 2016023314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conversion layer
- light
- emitting diode
- light emitting
- diode device
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 188
- 239000000463 material Substances 0.000 claims abstract description 74
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 68
- 239000000758 substrate Substances 0.000 claims description 16
- 238000000295 emission spectrum Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 230000005284 excitation Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 6
- 229920002050 silicone resin Polymers 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 5
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- 150000004645 aluminates Chemical class 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 139
- 238000009877 rendering Methods 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052693 Europium Inorganic materials 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910016066 BaSi Inorganic materials 0.000 description 2
- 229910004706 CaSi2 Inorganic materials 0.000 description 2
- 229910003564 SiAlON Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 229910004122 SrSi Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 101100476480 Mus musculus S100a8 gene Proteins 0.000 description 1
- 229910003668 SrAl Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/505—Wavelength conversion elements characterised by the shape, e.g. plate or foil
Definitions
- the present invention relates to a light emitting diode device, and in particular to a light emitting diode device comprising two conversion layers.
- the invention further relates to a light source module and a light source module comprising the above-described light emitting diode device.
- LEDs Light-emitting diodes
- LEDs are a type of semiconductor diode that converts electrical energy into light energy. Light-emitting diodes have been widely used in various industries due to their numerous advantages and the ability to form visible light of various colors. When applied to lighting, LEDs have the advantages of low operating voltage, good shock and shock resistance, high reliability and long life compared to incandescent bulbs and xenon lamps.
- the structure of the light emitting diode device of the prior art is various.
- a light emitting diode device for forming white light comprising at least three or more light emitting diode chips of red, green and blue colors and a control circuit thereof.
- the control circuit is configured to control the input power of the LED chip, thereby forming white light by adjusting the mixing ratio of the radiant flux of each of the different color LED chips.
- this structure is complicated and costly, and at least three LED chips and control circuits are required to produce the desired color.
- Another light emitting diode device for forming white light includes a light emitting diode chip and a mixed red, yellow and green phosphor powder coated on the outside of the light emitting diode chip. After the blue light emitted from the light emitting diode chip passes through the two kinds of phosphors, the converted light and a part of the unconverted light are mixed together to form white light. However, the yellow-green light converted by the yellow-green phosphor will be partially absorbed by the red phosphor and converted into red light. Thus, when the red light converted from yellow-green light passes through the yellow-green phosphor and is mixed with other light, a large error occurs between the ratio of red, blue, yellow-green and the preset ratio. This will reduce the light efficiency and will result in a lower color rendering index for the final white light.
- the index is a technical problem that a person skilled in the art needs to solve.
- the present invention proposes a light emitting diode device which can effectively increase its color rendering index and can form a desired light color by using one or more light emitting diode chips of the same color.
- the light emitting diode device of the present invention comprises: a light emitting diode chip for emitting visible light; two layers of a conversion layer capable of being excited by visible light emitted by the light emitting diode chip, wherein the first conversion layer covers the light emitting diode chip a light-emitting surface, a second conversion layer covering the light-emitting surface of the first conversion layer, and the first conversion layer and the second conversion layer each comprise a phosphor and a base material, and the light of the base material of the first conversion layer
- the refractive index is greater than or equal to the refractive index of the base material of the second conversion layer.
- the base material of the first conversion layer has a refractive index of 1.35 to 1.60
- the base material of the second conversion layer has a refractive index of 1.35 to 1.60
- the base material of the second conversion layer directly conforms to the surface of the base material of the first conversion layer.
- the phosphor of the first conversion layer is filled in a base material of the first conversion layer
- the phosphor of the second conversion layer is filled in a base material of the second conversion layer
- the light emitting diode chip emits blue light having a dominant wavelength of 440 to 470 nm
- the first conversion layer is a red conversion layer
- the second conversion layer is a yellow-green conversion layer, wherein the red conversion
- the layer absorbs a portion of the blue light and excites red light
- the yellow-green conversion layer absorbing a portion of the blue light and exciting yellow-green light
- light from the light-emitting diode chip, the red conversion layer, and the yellow-green conversion layer is mixed
- the light emitting diode device emits white light.
- the base material of the first conversion layer and the base material of the second conversion layer are both transparent resins, and the composition of the base material of the first conversion layer and the base material of the second conversion layer are both One or more of a silicone resin, an epoxy resin, and an acrylic resin are preferred.
- the red conversion layer includes a red phosphor
- the composition of the red phosphor includes at least one of: a nitride phosphor or a sulfide phosphor;
- the yellow-green conversion layer includes a yellow-green phosphor, and the composition of the yellow-green phosphor includes at least one of the following: a garnet-type phosphor, an oxynitride phosphor, or an aluminate phosphor.
- the red conversion layer has an excitation wavelength range of 200-610 nm, an emission spectrum dominant wavelength of 600-670 nm, the yellow-green conversion layer has an excitation wavelength range of 200-490 nm, and an emission spectrum dominant wavelength of 520. -575nm.
- the light emitting diode device is configured to adjust a color temperature of the emitted light by changing a weight ratio of the phosphor of the first conversion layer to the base material and a weight ratio of the phosphor of the second conversion layer to the base material. And change.
- the thickness of the red conversion layer is 0.1 mm, and the weight ratio of the red phosphor to the base material of the red conversion layer is 1:9;
- the thickness of the yellow-green conversion layer was 1.5 mm, and the weight ratio of the yellow-green phosphor to the matrix material of the yellow-green conversion layer was 3:17.
- the thickness of the red conversion layer is 0.1 mm, and the weight ratio of the red phosphor to the base material of the red conversion layer is 1:9; the yellow-green conversion The thickness of the layer was 1.5 mm, and the weight ratio of the yellow-green phosphor to the matrix material of the yellow-green conversion layer was 1:9.
- the light source module of the present invention comprises a substrate, and a light emitting diode device fixed on the substrate, wherein the light emitting diode device is the light emitting diode device according to any one of the above.
- a transparent sealing structure is provided on the outside of the light emitting diode device.
- the light source module of the present invention includes a light emitting diode device, and a package holder for packaging the light emitting diode device, wherein the light emitting diode device is the light emitting diode device according to any one of the above.
- FIG. 1 is a schematic structural view of a light emitting diode device of the present invention.
- FIG. 2 is a graph showing the light-emitting spectrum of warm white light formed by the present invention and a light-emitting diode device of the prior art.
- Fig. 3 is a graph showing the light-emitting spectrum that can be achieved by the light-emitting diode device of the present invention at a color temperature of 3000K.
- Fig. 4 is a graph showing the light-emitting spectrum which can be achieved by the light-emitting diode device of the present invention at a color temperature of 5000K.
- FIG. 5 is a schematic structural view of a light source module of the present invention.
- FIG. 6 is another schematic structural view of a light source module of the present invention.
- FIG. 7 is a schematic structural view of a light source module of the present invention.
- the light emitting diode device 10 of the present invention emits visible light by using the light emitting diode chip 1, and partially absorbs and excites the visible light by the first conversion layer 2 and the second conversion layer 3, thereby finally synthesizing light with a high color rendering index. color.
- the first conversion layer 2 covers the light-emitting surface of the light-emitting diode chip 1.
- the second conversion layer 3 covers the light-emitting surface of the first conversion layer 2 such that visible light emitted from the LED chip 1 passes through the first conversion layer 2 and then passes through the second conversion layer 3.
- the range of the excitation wavelength of the second conversion layer 3 is smaller than the range of the main wavelength of the converted emission spectrum passing through the first conversion layer 2 to prevent the second conversion layer 3 from absorbing and exciting the light converted by the first conversion layer 2 .
- the light-emitting surface of the light-emitting diode chip 1 is covered with a first conversion layer 2, and the light-emitting surface of the first conversion layer 2 is covered with a second conversion layer 3.
- the first conversion layer 2 and the second conversion layer 3 each include a phosphor and a base material.
- the phosphor in each of the conversion layers is used to absorb and excite the light that passes through.
- the matrix material in each of the conversion layers is transparent and is used to determine the refractive index of the light to which the conversion layer belongs.
- the refractive index of the first conversion layer 2 can be made greater than or equal to the refractive index of the second conversion layer 3 by selecting the base material.
- the refractive index of the base material 22 of the first conversion layer 2 is greater than the refractive index of the base material 32 of the second conversion layer 3
- most of the light emitted by the second conversion layer 3 enters the first conversion layer 2 It will be totally reflected on the interface of the first conversion layer 2 and cannot enter.
- the beneficial effect of reducing the light emitted by the second conversion layer 3 into the first conversion layer 2 to be secondarily excited can be achieved, so that the ratio between the finally formed mixed lights is closer to a preset ratio. In turn, the light efficiency and color rendering index are improved.
- the light refractive index of the base material of the first conversion layer 2 is greater than the light refractive index of the base material of the second conversion layer 3, the light passes through the first conversion layer 2 and the second conversion layer 3 in sequence, which is equivalent to light.
- the light-tight medium enters the light-dissipating medium.
- the invention only needs to use one light-emitting diode chip 1 or a plurality of light-emitting diode chips 1 of the same color to achieve the desired light color, and has a simple structure and low cost.
- the composition of the base material 22 of the first conversion layer 2 and the base material 32 of the second conversion layer 3 may preferably be one or more selected from the group consisting of silicone resins, epoxy resins, and acrylic resins.
- the silicone resin has relatively stable thermal oxygenity and good transparency.
- Epoxy resin has good heat resistance and low cost.
- the acrylic resin has good light resistance and aging resistance. Furthermore, these resin materials do not require high temperature curing and do not cause damage to the filled phosphor.
- the refractive index of the base material 22 of the first conversion layer 2 is preferably from 1.35 to 1.60.
- Base material of the second conversion layer 3 The refractive index of light of 32 is preferably from 1.35 to 1.60.
- the light refractive index of the material of the light-emitting diode chip 1 can be selected to be larger than the light refractive index of the base material of the first conversion layer 2.
- the refractive index of the general base material is between 1.35 and 1.60
- the refractive index of the base material 22 of the first conversion layer 2 and the refractive index of the base material 32 of the second conversion layer 3 are preferably selected. Between 1.35 - 1.60. Further, it is preferred that the refractive index of the base material 22 and the refractive index of the base material 32 are both 1.56.
- the refractive index of the first conversion layer 2 may be 1.60.
- the refractive index of the base material 22 of the first conversion layer 2 is equal to the refractive index of the base material 32 of the second conversion layer 3, the refractive index of the base material 22 of the first conversion layer 2 and the second conversion layer 3
- the light refractive index of the base material 32 may be any one of 1.35 - 1.60.
- the phosphor 21 of the first conversion layer 2 and the phosphor 31 of the second conversion layer 3 are both filled in the base material of the respective conversion layers.
- the base material can serve as a support for uniformly distributing the phosphor in the conversion layer, which can be efficiently converted as it passes through the respective conversion layers.
- the base material 32 of the second conversion layer 3 may directly conform to the surface of the base material 22 of the first conversion layer 2.
- the phosphor 31 of the second conversion layer 3 may be fixed on the base material 32 of the second conversion layer 3, for example, the phosphor 31 of the second conversion layer 3 is fixed to the light-emitting surface of the base material 32 of the second conversion layer 3. on.
- the light-emitting diode of the present invention will be specifically described below by taking the light-emitting diode device 10 for emitting white light as an example.
- the LED device 10 is mainly applied to a lighting application light source that requires a high color rendering index, for example, for lighting applications with high color rendering requirements such as medical lighting, museum lighting, and commodity lighting. It can also be applied to general lighting fixtures such as spotlights, downlights, bulbs, lamps, flats or ceiling lamps, or to exterior lighting, landscape lighting, signage and indicative lighting, stage lighting or vehicles. Indicating lighting such as lighting.
- the LED chip 1 can be a formal, flip-chip or other structure (e.g., a vertical structure) that is well known to those skilled in the art.
- the flip-chip LED chip 1 can be packaged with an LED flip-chip gold-free chip scale package.
- the light emitting diode chip 1 is used to emit blue light.
- the light-emitting surface of the light-emitting diode chip 1 is covered with a red conversion layer.
- the light-emitting surface of the red conversion layer is covered with a yellow-green conversion layer.
- the red conversion layer includes a red phosphor filled in the base material.
- the yellow-green conversion layer includes a yellow-green phosphor filled in a matrix material.
- the blue light emitting diode chip 1 has high efficiency, long life and low cost, and commercial products are very popular in the market, and white light is emitted.
- the LED device 10 is the most widely used.
- the red conversion layer When blue light enters the red conversion layer, part of the blue light is converted to red light by the red phosphor. When the unconverted blue light enters the yellow-green conversion layer, a part of it is converted into yellow-green light by the yellow-green phosphor. Finally, the blue light, the red light, and the yellow-green light are mixed and white light is formed, so that the light emitting diode device 10 emits white light.
- the white light finally formed by the light-emitting diode device 10 of the present invention can have a color rendering index of 90 or more.
- curve 5 shows the light-emitting spectrum of the existing light-emitting diodes in the prior art, in which part of the yellow-green light is reflected to the red conversion layer, and is absorbed by the red phosphor and converted to affect the light output. spectrum.
- Curve 4 shows the light emission spectrum of the light-emitting diode of the present invention, in which the yellow-green light reflected to the red conversion layer is less, and finally the smaller light-emitting spectrum is affected.
- the dominant wavelength of the blue light emitted by the LED chip 1 is 440-470 nm.
- the red conversion layer has an excitation wavelength range of 200-610 nm and an emission spectrum dominant wavelength of 600-670 nm.
- the yellow-green conversion layer has an excitation wavelength range of 200-490 nm and an emission spectrum dominant wavelength of 520-575 nm.
- the red light, the yellow-green light converted by the red conversion layer and the yellow-green conversion layer, and the partially unconverted blue light can be mixed to form white light.
- the excitation wavelength of the red conversion layer 2 is, for example, 610 nm
- the emission spectrum dominant wavelength can only be greater than 610 nm.
- the composition of the red phosphor includes at least one of the following phosphors: a nitride phosphor and a sulfide phosphor.
- a nitride phosphor and a sulfide phosphor Commercial products of nitride phosphors and sulfide phosphors are relatively common in the market, and are guaranteed in terms of source and quality.
- the composition of the red phosphor may be CaSi 2 O 2 N 2 :Eu, SrSi 2 O 2 N 2 :Eu, BaSi 2 O 2 N 2 :Eu, Ca- ⁇ -SiAlON, ZnS:Cu, Al, CaS : one or more of Eu, CaGa 2 S 4 :Eu and SrGa 2 S 4 :Eu.
- the composition of the yellow-green phosphor includes at least one of the following phosphors: a garnet-type phosphor, an oxynitride phosphor, and an aluminate phosphor.
- a garnet-type phosphor an oxynitride phosphor
- an aluminate phosphor an aluminate phosphor.
- Commercial products of garnet-type phosphors, oxynitride phosphors, and aluminate phosphors are very popular on the market and are relatively low in cost, thereby further reducing the cost of light-emitting diode devices.
- the composition of the yellow-green phosphor may be Y 3 Al 5 O 12 :Ce, (Y,Gd) 3 Al 5 O 12 :Ce, Tb 3 Al 3 O 12 :Ce, Ca 3 Sc 2 Si 3 O 12 :Ce, Lu 2 CaMg 2 (Si,Ge) 3 O 12 :Ce, CaSi 2 O 2 N 2 :Eu, SrSi 2 O 2 N 2 :Eu, BaSi 2 O 2 N 2 :Eu, Ca- ⁇ -SiAlON CaAl 12 O 19 :Mn, SrAl 2 O 4 :Eu, (Sr,Ba) 2 SiO 4 :Eu, Ca 3 SiO 4 Cl 2 :Eu, Sr 3 SiO 5 :Eu, Li 2 SrSiO 4 :Eu and Ca 3 Si 2 O 7 : one or more of Eu.
- the LED device 10 can also be used to emit white light of different color temperatures.
- the color temperature of the white light finally emitted by the LED device 10 is different, the light emission spectrum that can be achieved is also different.
- the color temperature of white light in FIG. 3 is 3000K (warm white light)
- the color temperature of white light in FIG. 4 is 5000K (cold white light)
- the light emission spectrum of the two is as shown in FIG. different.
- each of the conversion layers and the selection of the weight ratio of the phosphor to the substrate are mainly determined by the color temperature and size requirements of the light-emitting diode device, and the allowable combination is not particularly limited.
- the thickness of the red conversion layer may be 0.1 mm, and the weight ratio of the red phosphor to the base material of the red conversion layer is 1:9.
- the thickness of the yellow-green conversion layer may be 1.5 mm, and the weight ratio of the yellow-green phosphor to the matrix material of the yellow-green conversion layer is 3:17.
- the thickness of the red conversion layer may be 0.1 mm, and the weight ratio of the red phosphor to the base material of the red conversion layer is 1:9.
- the thickness of the yellow-green conversion layer may be 1.5 mm, and the weight ratio of the yellow-green phosphor to the matrix material of the yellow-green conversion layer is 1:9.
- the present invention also relates to a light source module.
- the light source module includes a substrate 100, and a light emitting diode device 10 fixed on the substrate 100.
- the light source module has a simple structure, low processing and manufacturing cost, and high color rendering index.
- the light emitting diode device 10 can be soldered on the substrate 100.
- the number of light emitting diode devices 10 can be specifically determined according to the needs of the luminous flux.
- the substrate 100 may be an aluminum substrate, a printed circuit board (PCB), a ceramic substrate, a flexible substrate, or the like.
- a ceramic substrate is preferable.
- a transparent sealing structure 101 may be covered on the outside of the LED device 10, wherein the sealing structure 101 can serve as a protective layer to protect the inner two layers. Conversion layer.
- the sealing structure 101 can also be designed as an optical component as a lens having a specific optical effect, such as a hemispherical lens or a free-form lens, to perform preset optical adjustment on the light-emitting effect of the two internal conversion layers. In this way, the light extraction performance of the light emitting diode device can be improved.
- the material of the sealing structure 101 may be one or more of the following: a polymer material such as a silicone resin, an epoxy resin, and an acrylic resin. Preferred herein is a silicone resin.
- the present invention further relates to a light source module.
- the light source module includes a light emitting diode device 10, and a package holder 102 for packaging the light emitting diode device 10.
- the light source module has a simple structure, low processing and manufacturing cost, and high color rendering index.
- the light emitting diode device 10 can be soldered to the package holder 102.
- the package holder 102 incorporating the light emitting diode device 10 can be soldered to the substrate 100 in a surface mount manner to be compatible with mainstream assembly manufacturing processes.
- the LED device of the invention has the advantages that: the mainstream blue chip and the phosphor are applied in the market, no special process and equipment are needed, and the production is easy; and the combination of multiple chips (such as red, yellow and blue chips) and the control of light mixing are not required, and the structure is simple.
- the cost is low; the reduced yellow-green light is reabsorbed by the red conversion layer, which more effectively controls the emission spectrum of the device and improves the color rendering index.
- Portions, and steps in the method may be centralized on a single computing device or distributed across a network of computing devices. Alternatively, they may be implemented in program code executable by a computing device. Thus, they may be stored in a storage device by a computing device, or they may be fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof may be implemented as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
提供了一种发光二极管器件、光源模组及光源模块。发光二极管器件(10)包括发光二极管芯片(1),其用于发出可见光;两层能够被发光二极管芯片(1)发出的可见光激发的转换层(2,3),其中,第一转换层(2)覆盖在发光二极管芯片(1)的出光面,第二转换层(3)覆盖在第一转换层(2)的出光面,并且第一转换层(2)和第二转换层(3)均包括荧光粉和基体材料,第一转换层(2)的基体材料的光折射率大于或等于第二转换层(3)的基体材料的光折射率。
Description
相关申请的交叉引用
本申请要求享有于2014年8月15日提交的名称为“一种发光二极管器件及光源模组及光源模块”的中国专利申请CN201410405260.7的优先权,该申请的全部内容通过引用并入本文中。
本发明涉及一种发光二极管器件,具体地涉及一种含有两层转换层的发光二极管器件。本发明还涉及一种包括上述发光二极管器件的光源模组和光源模块。
发光二极管(LED)是半导体二极管的一种,可以把电能转化成光能。由于发光二极管具有众多优点,并且能够形成各种颜色的可见光,因此已被广泛应用于各行各业。当被应用于照明时,与白炽灯泡和氖灯相比,发光二极管具有工作电压低、抗冲击和抗震性能好、可靠性高及寿命长等优点。
而且,现有技术中的发光二极管器件的结构有多种多样。
一种用于形成白光的发光二极管器件,至少包含红、绿、蓝颜色的三个或以上发光二极管芯片及其控制电路。其中,控制电路用于控制发光二极管芯片的输入电量,从而通过调控每个不同颜色发光二极管芯片的辐射通量的混合占比来形成白光。但是,这种结构复杂且成本高,最起码需要三颗发光二极管芯片及控制电路才能产生所需的光色。
另一种用于形成白光的发光二极管器件包括发光二极管芯片和涂设在发光二极管芯片外侧的混合红色、黄绿色两种颜色的荧光粉。从发光二极管芯片发出的蓝光经过两种荧光粉后,被转换的光和部分没有被转换的光一起混合形成白光。但是,黄绿色荧光粉转换的黄绿光会有部分被红色荧光粉再次吸收并转换为红光。这样,当由黄绿光转换为的红光穿过黄绿色荧光粉,并与其他光混合时,会使红、蓝、黄绿的配比与预先设定的配比之间产生较大的误差,从而会降低光效,而且会导致最终白光的显色指数(color rendering index)较低。
因此,如何能够在无需使用不同颜色芯片的情况下,有效提高发光二极管器件的显色
指数,是本领域技术人员需要解决的技术问题。
发明内容
针对上述问题,本发明提出了一种发光二极管器件,可以有效地提高它的显色指数,并且利用一颗或多颗同颜色的发光二极管芯片即可形成所需的光色。
本发明的发光二极管器件,包括:发光二极管芯片,其用于发出可见光;两层能够被所述发光二极管芯片发出的可见光激发的转换层,其中,第一转换层覆盖在所述发光二极管芯片的出光面,第二转换层覆盖在所述第一转换层的出光面,并且所述第一转换层和第二转换层均包括荧光粉和基体材料,所述第一转换层的基体材料的光折射率大于或等于所述第二转换层的基体材料的光折射率。
在一个实施例中,所述第一转换层的基体材料的光折射率为1.35至1.60,所述第二转换层的基体材料的光折射率也为1.35至1.60。
在一个实施例中,所述第二转换层的基体材料直接贴合在所述第一转换层的基体材料的表面。
在一个实施例中,所述第一转换层的荧光粉填充在所述第一转换层的基体材料中,所述第二转换层的荧光粉填充在所述第二转换层的基体材料中。
在一个实施例中,所述发光二极管芯片发出主波长为440至470nm的蓝光,并且所述第一转换层为红色转换层,所述第二转换层为黄绿色转换层,其中所述红色转换层吸收部分蓝光并激发出红光,所述黄绿色转换层吸收部分所述蓝光并激发出黄绿光,来自所述发光二极管芯片、所述红色转换层和所述黄绿色转换层的光混合,使所述发光二极管器件发出白光。
在一个实施例中,所述第一转换层的基体材料和所述第二转换层的基体材料均为透明树脂,所述第一转换层的基体材料和第二转换层的基体材料的成分均优先选用有机硅树脂、环氧树脂和丙烯酸类树脂中的一种或多种。
在一个实施例中,所述红色转换层包括红色荧光粉,所述红色荧光粉的成分包括下述中的至少一种:氮化物荧光体或硫化物荧光体;
所述黄绿色转换层包括黄绿色荧光粉,所述黄绿色荧光粉的成分包括下述中的至少一种:石榴石型荧光体、氮氧化物荧光体或铝酸盐荧光体。
在一个实施例中,所述红色转换层的激发波长范围为200-610nm,发射光谱主波长为600-670nm,所述黄绿色转换层的激发波长范围为200-490nm,发射光谱主波长为520-575nm。
在一个实施例中,所述发光二极管器件构造成所发出的光的色温通过改变所述第一转换层的荧光粉与基体材料的重量比和第二转换层的荧光粉与基体材料的重量比而改变。
在一个实施例中,当发光二极管器件发出3000K色温的白光时,所述红色转换层的厚度为0.1mm,所述红色荧光粉与红色转换层的基体材料的重量比为1∶9;所述黄绿色转换层的厚度为1.5mm,所述黄绿色荧光粉与黄绿色转换层的基体材料的重量比为3∶17。
在一个实施例中,当发光二极管器件发出5000K色温,所述红色转换层的厚度为0.1mm,所述红色荧光粉与红色转换层的基体材料的重量比为1∶9;所述黄绿色转换层的厚度为1.5mm,所述黄绿色荧光粉与黄绿色转换层的基体材料的重量比为1∶9。
本发明的光源模组,包括基板,以及固定在所述基板上的发光二极管器件,其中所述发光二极管器件为上述中任一项所述的发光二极管器件。
在一个实施例中,在发光二极管器件的外侧设有透明的密封结构。
本发明的光源模块,包括发光二极管器件,以及用于封装所述发光二极管器件的封装支架,其中所述发光二极管器件为上述中任一项所述的发光二极管器件。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。
图1为本发明的发光二极管器件的一种结构示意图。
图2为本发明与现有技术的发光二极管器件所形成的暖白光的出光光谱的曲线图。
图3为在3000K色温下,本发明的发光二极管器件所能达成的出光光谱的曲线图。
图4为在5000K色温下,本发明的发光二极管器件所能达成的出光光谱的曲线图。
图5为本发明的光源模组的一种结构示意图。
图6为本发明的光源模组的另一种结构示意图。
图7为本发明的光源模块的结构示意图。
为使本发明的目的、技术方案和优点更加清楚,以下结合附图对本发明作进一步地详细说明。
如图1所示,本发明的发光二极管器件10,利用发光二极管芯片1发出可见光,并使部分可见光被第一转换层2和第二转换层3吸收并激发,最终合成高显色指数的光色。
具体地,第一转换层2覆盖在发光二极管芯片1的出光面。第二转换层3覆盖在第一转换层2的出光面,从而使得从发光二极管芯片1发出的可见光先经过第一转换层2,然后再经过第二转换层3。
其中该第二转换层3的激发波长的范围小于经过第一转换层2的转换后的发射光谱主波长的范围,以防止第二转换层3吸收并激发经第一转换层2转换后的光。同时在发光二极管芯片1的出光面均覆盖有第一转换层2,在第一转换层2的出光面均覆盖有第二转换层3。这样,可以有效地防止从第二转换层3发出的光返回第一转换层2并再激发而导致的发光二极管器件10发出的光的显色指数较低的情形出现。
另外,第一转换层2和第二转换层3均包括有荧光粉和基体材料。每个转换层中的荧光粉均用于吸收并激发所经过的光。每个转换层中的基体材料均为透明的,其用于决定所属转换层的光折射率。这样,可以通过选择基体材料使第一转换层2的光折射率大于或等于第二转换层3的光折射率。
在第一转换层2的基体材料22的光折射率大于第二转换层3的基体材料32的光折射率的条件下,大部分第二转换层3发出的光要进入第一转换层2时,会在第一转换层2的介面上被全反射而不能进入。这样可以达到减少第二转换层3所发射的光进入第一转换层2被二次激发的有益效果,从而会使最终形成的混合光之间的配比更为接近预先设定的配比,进而提高光效和显色指数。纵使在第一转换层2的基体材料22的光折射率等于第二转换层3的基体材料32的光折射率的条件下,从第二转换层3发出的光重返第一转换层2被二次激发的概率,也会低于现有技术惯常地将混合两种颜色的荧光粉涂设在发光二极管芯片1外侧以进行转换的方案。
此外,当第一转换层2的基体材料的光折射率大于第二转换层3的基体材料的光折射率,光依次经过第一转换层2和第二转换层3时,相当于光是从光密介质中进入光疏介质。这样,可以减少光被第二转换层3的基体材料32的界面反射的量,从而会使最终形成的混合光之间的配比更为接近预先设定的配比,进而进一步提高光效和显色指数。而且,本发明只需使用一颗发光二极管芯片1或多颗同颜色的发光二极管芯片1即可达到所需的光色,结构简单,成本较低。
该第一转换层2的基体材料22和第二转换层3的基体材料32的成分均可以优先选用有机硅树脂、环氧树脂和丙烯酸类树脂中的一种或多种。有机硅树脂的热氧性较为稳定,而且透明度较好。环氧树脂的耐热性好,而且成本较低。丙烯酸类树脂的耐光性及抗老化性能较好。再者,这些树脂材料无需使用高温固化,不会对填充的荧光粉造成损害。
第一转换层2的基体材料22的光折射率优选为1.35-1.60。第二转换层3的基体材料
32的光折射率优选为1.35-1.60。在一般情况下,发光二极管芯片1的材料的光折射率可以选择为大于第一转换层2的基体材料的光折射率。当光从发光二极管芯片1进入第一转换层2时,光就相当于从光密介质进入光疏介质,从而可以增大第一转换层2的透射率。而且,由于一般的基体材料的光折射率均在1.35-1.60之间,因此优先选用第一转换层2的基体材料22的光折射率和第二转换层3的基体材料32的光折射率均在1.35-1.60之间。并且优先选用基体材料22的光折射率和基体材料32的光折射率均为1.56。
当第二转换层3的基体材料32的光折射率为1.35时,第一转换层2的光折射率可以为1.60。并且第一转换层2的基体材料22的光折射率与第二转换层3的基体材料32的光折射率相等时,第一转换层2的基体材料22的光折射率和第二转换层3的基体材料32的光折射率可以为1.35-1.60中的任意一个数值。
此外,第一转换层2的荧光粉21和第二转换层3的荧光粉31均填充在各自所属转换层的基体材料中。这样,基体材料可以作为支撑让荧光粉均匀地分布在转换层中,当光在穿过各转换层时能有效地被转换。第二转换层3的基体材料32可以直接贴合在第一转换层2的基体材料22的表面。如此设置,发光二极管的结构简单,便于加工和安装,而且还可以减少从第一转换层2发出的光在经过其他介质时产生的能量损耗,从而可以进一步提高效率及最终的显色指数。
当然,还可以在第一转换层2和第二转换层3之间设置透明的基体材料。或者第二转换层3的荧光粉31也可以固定在第二转换层3的基体材料32上,例如,第二转换层3的荧光粉31固定在第二转换层3的基体材料32的出光面上。
下面以用于发出白光的发光二极管器件10为例,具体介绍本发明的发光二极管。该发光二极管器件10主要应用在需要高显色指数的照明应用光源,例如应用于医疗照明、博物馆照明、商品照明等显色性需求较高的照明应用。也可以将其应用于射灯、筒灯、球炮灯、灯管、平板灯或者吸顶灯等一般照明灯具,或应用于建筑物外观照明、景观照明、标识与指示性照明、舞台照明或者车辆指示类照明等照明灯上。
此外,发光二极管芯片1可以为本领域技术人员所熟知的正装、倒装或其他结构(例如垂直结构)。另外,倒装的发光二极管芯片1封装时可以选用发光二极管倒装无金线芯片级封装。
在一个实施例中,发光二极管芯片1用于发出蓝光。在发光二极管芯片1的出光面覆盖着红色转换层。在红色转换层的出光面覆盖着黄绿色转换层。红色转换层包括填充在基体材料中的红色荧光粉。黄绿色转换层包括填充在基体材料中的黄绿色荧光粉。发蓝光的发光二极管芯片1的效率高、寿命长、成本低,商业产品在市场上非常普遍,而且发白光
的发光二极管器件10的应用最广。
当蓝光进入到红色转换层时,部分蓝光会被红色荧光粉转换为红光。当未被转换的蓝光进入到黄绿色转换层时,又会有一部分被黄绿色荧光粉转换为黄绿光。最终蓝光、红光及黄绿光混合并形成白光,从而使发光二极管器件10发出白光。
通过上述方式设置发光二极管器件10时,从图2中可以看出,本发明的发光二极管器件10所能达到的辐射通量分布与现有技术中的发光二极管器件10所达到的辐射通量分布相差明显。本发明的发光二极管器件10最终形成的白光的显色指数可以达到90以上。在图2中,曲线5(虚线)表示的是现有技术中已有发光二极管的出光光谱,其中,部分黄绿色光被反射到红色转换层,并被红色荧光粉吸收并转换所影响的出光光谱。曲线4(实线)表示的是本发明的发光二极管的出光光谱,其中,被反射到红色转换层的黄绿色光较少,最终被影响较小的出光光谱。
进一步地,优先选用发光二极管芯片1发出的蓝光的主波长为440-470nm。优先选用红色转换层的激发波长范围为200-610nm,发射光谱主波长为600-670nm。黄绿色转换层的激发波长范围为200-490nm,发射光谱主波长为520-575nm。这样,可以使经红色转换层和黄绿色转换层转换的红光、黄绿光,以及部分没被转换的蓝光混合后形成白光。如本领域技术人员所公知的,当红色转换层2的激发波长例如为610nm时,发射光谱主波长只能大于610nm。
此外,红色荧光粉的成分包括下述荧光体中的至少一种:氮化物荧光体和硫化物荧光体。氮化物荧光体和硫化物荧光体的商业产品在市场上比较普遍,对来源及质量较有保证。具体地,红色荧光粉的成分可以为CaSi2O2N2:Eu、SrSi2O2N2:Eu、BaSi2O2N2:Eu、Ca-α-SiAlON、ZnS:Cu,Al、CaS:Eu、CaGa2S4:Eu和SrGa2S4:Eu中的一种或多种。
黄绿色荧光粉的成分包括下述荧光体中的至少一种:石榴石型荧光体、氮氧化物荧光体和铝酸盐荧光体。石榴石型荧光体、氮氧化物荧光体和铝酸盐荧光体的商业产品在市场上非常普遍,而且成本较低,从而可以进一步降低发光二极管器件的成本。具体地,黄绿色荧光粉的成分可以为Y3Al5O12:Ce、(Y,Gd)3Al5O12:Ce、Tb3Al3O12:Ce、Ca3Sc2Si3O12:Ce、Lu2CaMg2(Si,Ge)3O12:Ce、CaSi2O2N2:Eu、SrSi2O2N2:Eu、BaSi2O2N2:Eu、Ca-α-SiAlON、CaAl12O19:Mn、SrAl2O4:Eu、(Sr,Ba)2SiO4:Eu、Ca3SiO4Cl2:Eu、Sr3SiO5:Eu、Li2SrSiO4:Eu和Ca3Si2O7:Eu中的一种或多种。
该发光二极管器件10还可以用于发出不同色温的白光。当发光二极管器件10最终发出的白光的色温不同时,其能达到的出光光谱也有所不同。如图3和图4所示,图3中白光的色温为3000K(暖白光),图4中白光的色温为5000K(冷白光),两者的出光光谱
不同。
各转换层的厚度及其荧光粉与基体材料的重量比的选择,主要取决于所述发光二极管器件的色温及尺寸要求而作出不同的配搭,容许的组合没有特别限制。
当发光二极管器件10发出3000K色温的白光时,红色转换层的厚度可以为0.1mm,红色荧光粉与红色转换层的基体材料的重量比为1∶9。黄绿色转换层的厚度可以为1.5mm,黄绿色荧光粉与黄绿色转换层的基体材料的重量比为3∶17。
当发光二极管器件10发出5000K色温,红色转换层的厚度可以为0.1mm,红色荧光粉与红色转换层的基体材料的重量比为1∶9。黄绿色转换层的厚度可以为1.5mm,黄绿色荧光粉与黄绿色转换层的基体材料的重量比为1∶9。
如图5所示,本发明还涉及一种光源模组。光源模组包括基板100,以及固定在基板100上的发光二极管器件10。该光源模组的结构简单,加工制造成本低,而且显色指数较高。具体地,发光二极管器件10可以焊接在基板100上。发光二极管器件10的数量可以根据光通量的需要具体决定。基板100可以是铝基板、印刷电路板(PCB)、陶瓷基板或柔性基板等。此处优选为陶瓷基板。
如图6所示,当将发光二极管器件10焊接在基板100上后,可以在发光二极管器件10的外侧盖上透明的密封结构101,其中该密封结构101可作为保护层,保护其内部两层转换层。同时该密封结构101亦可作为光学部件被设计成具有特定光学效果的透镜,如半球形透镜或自由曲面透镜等,以对其内部两层转换层的出光效果进行预设光学调整。这样,可以提高发光二极管器件的光提取性能。
密封结构101的材料可以是下述中的一种或多种:有机硅树脂、环氧树脂和丙烯酸类树脂等高分子材料。此处优选为有机硅树脂。
如图7所示,本发明另外涉及一种光源模块。光源模块包括发光二极管器件10,以及用于封装发光二极管器件10的封装支架102。该光源模块的结构简单,加工制造成本低,而且显色指数较高。具体地,发光二极管器件10可以焊接在封装支架102上。装有发光二极管器件10的封装支架102可以以表面贴装的方式焊接在基板100上,以能够与主流装配生产工艺兼容。
本发明的发光二极管器件的优点在于:应用市场主流蓝光芯片及荧光粉,无需特殊工艺及设备,易于生产;且无需结合多种芯片(如红、黄、蓝芯片)及控制混光,结构简单成本低;减少激发的黄绿光被红色转换层再吸收,更有效的控制器件的发射光谱,提升了显色指数。
本领域的技术人员应该明白,上述的本申请实施例所提供的装置和/或系统的各组成
部分,以及方法中的各步骤,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。可选地,它们可以用计算装置可执行的程序代码来实现。从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明技术方案而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
Claims (14)
- 一种发光二极管器件,包括:发光二极管芯片,其用于发出可见光;两层能够被所述发光二极管芯片发出的可见光激发的转换层,其中,第一转换层覆盖在所述发光二极管芯片的出光面,第二转换层覆盖在所述第一转换层的出光面,并且所述第一转换层和第二转换层均包括荧光粉和基体材料,所述第一转换层的基体材料的光折射率大于或等于所述第二转换层的基体材料的光折射率。
- 根据权利要求1所述的发光二极管器件,其特征在于,所述第一转换层的基体材料的光折射率为1.35至1.60,所述第二转换层的基体材料的光折射率也为1.35至1.60。
- 根据权利要求1或2所述的发光二极管器件,其特征在于,所述第二转换层的基体材料直接贴合在所述第一转换层的基体材料的表面。
- 根据权利要求1-3中任一项所述的发光二极管器件,其特征在于,所述第一转换层的荧光粉填充在所述第一转换层的基体材料中,所述第二转换层的荧光粉填充在所述第二转换层的基体材料中。
- 根据权利要求1-4中任一项所述的发光二极管器件,其特征在于,所述发光二极管芯片发出主波长为440至470nm的蓝光,并且所述第一转换层为红色转换层,所述第二转换层为黄绿色转换层,其中所述红色转换层吸收部分蓝光并激发出红光,所述黄绿色转换层吸收部分所述蓝光并激发出黄绿光,来自所述发光二极管芯片、所述红色转换层和所述黄绿色转换层的光混合,使所述发光二极管器件发出白光。
- 根据权利要求1-5中任一项所述的发光二极管器件,其特征在于,所述第一转换层的基体材料和所述第二转换层的基体材料均为透明树脂,所述第一转换层的基体材料和第二转换层的基体材料的成分均优先选用有机硅树脂、环氧树脂和丙烯酸类树脂中的一种或多种。
- 根据权利要求5所述的发光二极管器件,其特征在于,所述红色转换层包括红色荧光粉,所述红色荧光粉的成分包括下述中的至少一种:氮化物荧光体或硫化物荧光体;所述黄绿色转换层包括黄绿色荧光粉,所述黄绿色荧光粉的成分包括下述中的至少一种:石榴石型荧光体、氮氧化物荧光体或铝酸盐荧光体。
- 根据权利要求5或7所述的发光二极管器件,其特征在于,所述红色转换层的激发波长范围为200-610nm,发射光谱主波长为600-670nm,所述黄绿色转换层的激发波长范围为200-490nm,发射光谱主波长为520-575nm。
- 根据权利要求1-8中任一项所述的发光二极管器件,其特征在于,所述发光二极 管器件构造成所发出的光的色温通过改变所述第一转换层的荧光粉与基体材料的重量比和第二转换层的荧光粉与基体材料的重量比而改变。
- 根据权利要求7所述的发光二极管器件,其特征在于,当发光二极管器件发出3000K色温的白光时,所述红色转换层的厚度为0.1mm,所述红色荧光粉与所述红色转换层的基体材料的重量比为1∶9,所述黄绿色转换层的厚度为1.5mm,所述黄绿色荧光粉与黄绿色转换层的基体材料的重量比为3∶17。
- 根据权利要求7所述的发光二极管器件,其特征在于,当发光二极管器件发出5000K色温,所述红色转换层的厚度为0.1mm,所述红色荧光粉与红色转换层的基体材料的重量比为1∶9,所述黄绿色转换层的厚度为1.5mm,所述黄绿色荧光粉与黄绿色转换层的基体材料的重量比为1∶9。
- 一种光源模组,包括基板,以及固定在所述基板上的发光二极管器件,其中所述发光二极管器件为权利要求1-11中任一项所述的发光二极管器件。
- 根据权利要求12所述的光源模组,其特征在于,在发光二极管器件的外侧设有透明的密封结构。
- 一种光源模块,包括发光二极管器件,以及用于封装所述发光二极管器件的封装支架,其中所述发光二极管器件为权利要求1-11中任一项所述的发光二极管器件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410405260.7A CN104241506A (zh) | 2014-08-15 | 2014-08-15 | 一种发光二极管器件及光源模组及光源模块 |
CN201410405260.7 | 2014-08-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016023314A1 true WO2016023314A1 (zh) | 2016-02-18 |
Family
ID=52229228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/093882 WO2016023314A1 (zh) | 2014-08-15 | 2014-12-15 | 一种发光二极管器件及光源模组及光源模块 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104241506A (zh) |
WO (1) | WO2016023314A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019141480A1 (de) * | 2018-01-22 | 2019-07-25 | Osram Opto Semiconductors Gmbh | Optoelektronisches bauteil |
TWI738847B (zh) * | 2016-10-04 | 2021-09-11 | 日商東麗股份有限公司 | 光源單元以及使用其的顯示器與照明裝置 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111883635B (zh) * | 2015-12-30 | 2023-06-30 | 晶元光电股份有限公司 | 发光装置以及其制造方法 |
CN106992239B (zh) * | 2016-01-20 | 2019-11-26 | 江苏诚睿达光电有限公司 | 一种基于异质双光转换片的led封装体元件及其制造方法 |
CN106025046A (zh) * | 2016-06-06 | 2016-10-12 | 苏州东善微光光电技术有限公司 | 光波长高转换结构和方法 |
US10203547B2 (en) | 2016-06-16 | 2019-02-12 | Hisense Electric Co., Ltd. | Quantum dot light emitting device, backlight module, and liquid crystal display device |
CN105911766A (zh) * | 2016-06-16 | 2016-08-31 | 青岛海信电器股份有限公司 | 量子点发光装置、背光模组及液晶显示装置 |
CN109638144A (zh) * | 2018-11-16 | 2019-04-16 | 佛山市国星光电股份有限公司 | 发光器件及具有其的灯具 |
CN109659421A (zh) * | 2018-11-16 | 2019-04-19 | 佛山市国星光电股份有限公司 | 发光器件及具有其的灯具 |
US12051677B2 (en) | 2019-03-07 | 2024-07-30 | Hangzhou Hanhui Optoelectronic Technology Co., Ltd. | High voltage LED chip set, LED light source for plant light supplementation and illuminating device |
CN111668360B (zh) * | 2019-03-07 | 2021-06-04 | 杭州汉徽光电科技有限公司 | 倒装式高压led晶片组、植物补光用led光源及光照设备 |
CN109904300A (zh) * | 2019-03-15 | 2019-06-18 | 索罗紫光(上海)科技有限公司 | 一种车灯光源器件和车灯模组 |
CN114664994A (zh) * | 2020-12-22 | 2022-06-24 | 光宝光电(常州)有限公司 | 发光二极管结构 |
CN114242873A (zh) * | 2021-12-17 | 2022-03-25 | 中山市木林森电子有限公司 | 一种高光效双层覆膜csp封装结构及其制作工艺 |
CN115799434B (zh) * | 2023-01-31 | 2023-05-12 | 天津德高化成新材料股份有限公司 | 一种健康照明背光源及其制备方法 |
CN118016783A (zh) * | 2024-02-07 | 2024-05-10 | 天津德高化成新材料股份有限公司 | 一种医用背光源及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740705A (zh) * | 2009-12-02 | 2010-06-16 | 深圳市众明半导体照明有限公司 | 一种暖白光led及其制备方法 |
CN103489997A (zh) * | 2012-06-09 | 2014-01-01 | 王树生 | Led及led制作方法 |
JP2014082416A (ja) * | 2012-10-18 | 2014-05-08 | Sharp Corp | 発光装置 |
CN204067435U (zh) * | 2014-08-15 | 2014-12-31 | 常州市武进区半导体照明应用技术研究院 | 一种发光二极管器件及光源模组及光源模块 |
-
2014
- 2014-08-15 CN CN201410405260.7A patent/CN104241506A/zh active Pending
- 2014-12-15 WO PCT/CN2014/093882 patent/WO2016023314A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740705A (zh) * | 2009-12-02 | 2010-06-16 | 深圳市众明半导体照明有限公司 | 一种暖白光led及其制备方法 |
CN103489997A (zh) * | 2012-06-09 | 2014-01-01 | 王树生 | Led及led制作方法 |
JP2014082416A (ja) * | 2012-10-18 | 2014-05-08 | Sharp Corp | 発光装置 |
CN204067435U (zh) * | 2014-08-15 | 2014-12-31 | 常州市武进区半导体照明应用技术研究院 | 一种发光二极管器件及光源模组及光源模块 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI738847B (zh) * | 2016-10-04 | 2021-09-11 | 日商東麗股份有限公司 | 光源單元以及使用其的顯示器與照明裝置 |
WO2019141480A1 (de) * | 2018-01-22 | 2019-07-25 | Osram Opto Semiconductors Gmbh | Optoelektronisches bauteil |
US11493702B2 (en) | 2018-01-22 | 2022-11-08 | Osram Oled Gmbh | Optoelectronic component |
Also Published As
Publication number | Publication date |
---|---|
CN104241506A (zh) | 2014-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016023314A1 (zh) | 一种发光二极管器件及光源模组及光源模块 | |
JP5818778B2 (ja) | リモートルミネセンス材料を用いた照明デバイス | |
US10204888B2 (en) | LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion | |
US8698388B2 (en) | Lighting apparatus providing increased luminous flux while maintaining color point and CRI | |
US9897276B2 (en) | Reduced phosphor lighting devices | |
US8779455B2 (en) | Semiconductor light-emitting device, semiconductor light-emitting system and illumination fixture | |
US10443791B2 (en) | LED module having planar sectors for emitting different light spectra | |
EP2650934A1 (en) | Light-emitting device | |
US10084119B2 (en) | Light-emitting device | |
WO2011132716A1 (ja) | 半導体発光装置及び半導体発光装置の製造方法 | |
JP2009545888A (ja) | 光放出蛍光体を包含するled照明配置 | |
JP2011510445A (ja) | Ledと発光材料を有する透過性支持体とを備える照明装置 | |
CN102859258A (zh) | 通过荧光体分离的增强显色指数发射器 | |
KR20160079973A (ko) | 광원 모듈 | |
KR101144754B1 (ko) | 백색 발광장치 및 이의 제조방법 | |
JP6583572B2 (ja) | 発光装置 | |
JP2013012778A (ja) | 照明器具 | |
JP2013207241A (ja) | 半導体発光装置、半導体発光システムおよび照明器具 | |
JP6798772B2 (ja) | 照明装置 | |
TWI431813B (zh) | Light emitting diode components | |
TW201303202A (zh) | 發光二極體燈泡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14899877 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.04.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14899877 Country of ref document: EP Kind code of ref document: A1 |