WO2016021881A1 - 공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치 - Google Patents

공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치 Download PDF

Info

Publication number
WO2016021881A1
WO2016021881A1 PCT/KR2015/008035 KR2015008035W WO2016021881A1 WO 2016021881 A1 WO2016021881 A1 WO 2016021881A1 KR 2015008035 W KR2015008035 W KR 2015008035W WO 2016021881 A1 WO2016021881 A1 WO 2016021881A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
resonator
resonance
switch
wireless power
Prior art date
Application number
PCT/KR2015/008035
Other languages
English (en)
French (fr)
Inventor
황종태
신현익
이동수
이종훈
전상오
송익규
김대호
이준
Original Assignee
주식회사 맵스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 맵스 filed Critical 주식회사 맵스
Priority to CN201580042394.XA priority Critical patent/CN106575888A/zh
Priority to US15/502,062 priority patent/US10476308B2/en
Publication of WO2016021881A1 publication Critical patent/WO2016021881A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/301CMOS common drain output SEPP amplifiers
    • H03F3/3011CMOS common drain output SEPP amplifiers with asymmetrical driving of the end stage
    • H03F3/3015CMOS common drain output SEPP amplifiers with asymmetrical driving of the end stage using a common source driving stage, i.e. inverting stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • H03H3/0077Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients by tuning of resonance frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/243A series resonance being added in series in the input circuit, e.g. base, gate, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/391Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/541Transformer coupled at the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45512Indexing scheme relating to differential amplifiers the FBC comprising one or more capacitors, not being switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45594Indexing scheme relating to differential amplifiers the IC comprising one or more resistors, which are not biasing resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45604Indexing scheme relating to differential amplifiers the IC comprising a input shunting resistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Definitions

  • the present invention relates to a magnetic resonance wireless power transmission technology, and more particularly to a wireless power transmission technology using magnetic resonance.
  • FIG. 1 is a block diagram of a general magnetic resonance wireless power transmission system.
  • a magnetic resonance wireless power transmission system 1 includes a power transmission unit (hereinafter referred to as a PTU) 10 and a PTU that wirelessly supply a power signal through magnetic resonance. 10) a power receiving unit (hereinafter referred to as PRU) 12 for receiving a power signal from.
  • a PTU power transmission unit
  • PTU power transmission unit
  • PRU power receiving unit
  • the PTU 10 includes a power amplifier 100 and a resonator 110.
  • the power amplifier 100 includes NMOS transistors M1 and M2 101 and 102, and the resonator 110 includes a transistor Cs 111 and an inductor L 112.
  • the power amplifier 100 is limited to Class-D, but may be replaced with Class-AB or Class-B.
  • the power amplifier is driven at drive frequency fdrv 103. Therefore, the output of the power amplifier 100 composed of M1, M2 (101, 102) is a square wave shape that varies between the supply voltage VSUP 104 and the ground voltage 105 at the driving frequency fdrv (103). to be.
  • the driving frequency fdrv is determined to be 6.78 MHz.
  • the output of power amplifier 100 is applied to resonator 110 composed of capacitor Cs 111 and inductor L 112.
  • L 112 denotes an equivalent inductance of the TX antenna
  • Resr 113 is a parasitic resistance component of the antenna.
  • the resonant frequencies f R and PTU of the PTU resonator 110 are expressed by Equation 1 below.
  • the resonant frequencies f R and PTU are controlled to be the same as the driving frequency fdrv. In some cases, the resonant frequencies f R and PTU are slightly smaller than the driving frequency fdrv in order to increase the efficiency of the power amplifier 100.
  • transistors M1 and M2 101 and 102 can perform zero-voltage switching (ZVS) operation, which can greatly improve switching losses.
  • ZVS zero-voltage switching
  • the PRU 12 receiving the wireless power signal includes a resonator 120 composed of a capacitor Cs1 122 and an inductor L1 124 serving as an antenna, a rectifier 130 composed of diodes D1 to D4, and And a DC-DC converter 140. Since the output of the rectifier 130 is a rectified voltage, a capacitor CRECT is used to convert it to a DC voltage. The load 150 is driven after converting the DC voltage VRECT generated by the capacitor CRECT to a voltage suitable for the load 150 using the DC-DC converter 140.
  • the DC-DC converter 140 may use a linear type LDO, a regulator, or the like, or may use a switching type switching converter, a charge pump, or the like, but is not limited thereto. As shown in FIG.
  • the rectifier 130 may be a full-wave rectifier type, but may be implemented using a half-wave rectifier.
  • the rectifier 130 may be implemented using passive element diodes D1 to D4 as shown in FIG. 1, but may also be implemented as an active rectifier using an active element.
  • the resonance frequency of the PRU resonator 120 is determined as shown in Equation 2.
  • Magnetic resonance occurs when the resonance frequencies of the resonators 110 and 120 of the PTU 10 and the PRU 12 are the same and the two antennas 112 and 124 are in close proximity. At this time, energy is transferred from the antenna 112 of the PTU to the antenna 124 of the PRU.
  • the resonant frequencies are different from each other, it is very important to match the resonant frequencies of the resonators 110 and 120 of the PTU 10 and the PRU 12 because energy transmission is not smooth.
  • a method of tuning passive elements L and C is generally used.
  • the method of adjusting the passive element is to adjust L and C physically, so it is difficult to cope with the case where the productivity decreases and the L and C values change due to external factors.
  • the PTU 10 In terms of efficiency, it is most efficient for the PTU 10 to transmit as much power as the PRU 12 requires. However, if too much energy is transmitted, the VRECT voltage of the PRU 12 may rise excessively to destroy the rectifier 130 and the DC-DC converter 140, and if the energy transmission is too small, the load 150 may occur. Cannot supply the desired power. Therefore, the PTU 10 receives feedback of the requirements of the PRU 12 to control the output power.
  • the A4WP communicates between the PTU 10 and the PRU 12 using Bluetooth communication. There are three methods for controlling power in the PTU 10.
  • the driving frequency of the power amplifier 100 is changed, and the energy supplied to the PTU resonator 110 may be changed, thereby enabling power control.
  • Resonant inverters, inductive wireless power transfer methods such as the Qi and PMA (Power Matters Alliance) methods use this method.
  • Qi and PMA Power Matters Alliance
  • the power amplifier intermittent control method is a method in which the average power applied to the resonator 110 is controlled by operating or not operating the power amplifier 100. It is a kind of burst switching operation. Near field communication (NFC) and the like are transmitting power in this manner.
  • NFC Near field communication
  • the radiated frequency occurs with a predetermined width.
  • the allowable frequency is about 6.78 ⁇ 15 kHz, so this control is possible, but care must be taken not to exceed this bandwidth.
  • FIG. 2 is a block diagram of a magnetic resonance wireless power transmission system using a power amplifier power supply voltage control scheme.
  • the power supply voltage VSUP 250 of the power amplifier 220 is controlled by using a DC-DC converter 240 positioned between the power supply 200 and the power amplifier 220. 260 may control the energy supplied.
  • the above-described method may be referred to as the most flexible method because the structure of the power amplifier 220 may be used even if the structure of the power amplifier 220 is not class-D.
  • there is a separate cost for configuring the DC-DC converter 240 and there is a concern that the loss of the DC-DC converter 240 reduces the overall efficiency of the wireless power transfer system.
  • FIG. 3 is a circuit diagram of a wireless power transmitter for controlling a supply power by controlling a switch element.
  • energy is transferred to the resonant tank using the inductor and the capacitors 300 and 310, and the energy is changed to DC through the diodes 320 and 330, and the energy is supplied to the load 360 using the control circuit 340.
  • the control circuit 340 controls the switch element 350 to control the power supplied to the load 360.
  • FIG. 4 is a configuration diagram of a wireless power transmitter using a resonance frequency control method using a clock signal.
  • the N1 410 is operated as a resistor so that the Vout 400 is a desired voltage, and the N1 410 is controlled by a switch using a separate clock signal 420 to control the Vout ( 400).
  • This method adjusts the energy received by the resonant tank by changing the resonant frequency of the resonator.
  • a method for actively controlling a resonance frequency in a wireless power transmission system is proposed.
  • a wireless power transmitter includes a power amplifier for amplifying a wireless power signal by using a driving frequency signal, a resonance tank, and magnetic resonance of a wireless power signal output from the power amplifier by using a resonance frequency of the resonance tank. And a resonant controller configured to adjust the resonant frequency of the resonator by controlling the duty ratio by using a resonator for wirelessly transmitting through the resonator and a frequency signal applied to the resonator.
  • the resonator includes a first capacitor, an inductor connected in series with the first capacitor, a second capacitor connected in parallel with the inductor and connected in series with the first capacitor, and a switch connected in series with the second capacitor.
  • the resonant frequency may be adjusted according to a section in which the second capacitor is charged by the duty ratio control for.
  • the resonance controller generates a switch driving signal using a frequency applied to the resonator or a frequency generated from the resonator, and drives a switch of the resonator using the switch driving signal, but actively controls the amount of capacitance every cycle through the duty ratio control of the switch.
  • the resonance frequency can be adjusted.
  • the resonance controller may control the duty ratio of the switch by varying the adjustment voltage applied to the gate of the switch.
  • the resonance controller may amplify the adjustment voltage to control the duty ratio of the switch.
  • the resonance controller may extract a frequency component from a signal applied to the resonator or a signal generated from the resonator, and directly change the duty ratio of the extracted frequency signal.
  • the resonance controller adjusts the resonance frequency
  • the magnitude of the current supplied by the output terminal of the power amplifier may be adjusted by the driving frequency to adjust the power supply of the power amplifier.
  • the resonance frequency may be adjusted electrically. That is, instead of adjusting the passive element to match the resonant frequency, the resonance frequency can be adjusted using only an electrical signal without changing the passive element.
  • Resonant frequency adjustment and power control are possible without changing the drive frequency fdrv, making it suitable for standards such as A4WP and without the need for a separate DC-DC converter. Since the power control is possible even when the resonant frequency of the resonant tank is distorted at a desired frequency, it is possible to control in response to the inductance distribution of the antenna or the resonator capacitor distribution. Thus, a highly reproducible wireless power transfer system can be implemented. Furthermore, by adjusting the resonance frequency, the energy supplied to the resonator may be changed to control the power supplied to the PRU.
  • FIG. 1 is a block diagram of a general magnetic resonance wireless power transmission system
  • FIG. 2 is a block diagram of a magnetic resonance wireless power transmission system using a power amplifier power supply voltage control scheme
  • FIG. 3 is a circuit diagram of a wireless power transmitter for controlling supply power by controlling a switch element
  • FIG. 4 is a configuration diagram of a wireless power transmitter using a resonant frequency control method using a clock signal
  • FIG. 5 is a circuit diagram of a Class-D power amplifier with a series resonant tank
  • FIG. 6 is a circuit diagram of a wireless power transmitter adjusting a resonance frequency by changing a capacitor Cs value of a resonator.
  • FIG. 7 is a circuit diagram of a wireless power transmitter having a CCL resonant tank
  • FIG. 8 is a circuit diagram illustrating a resonant frequency adjusting method using a parallel capacitor Cs2 in the wireless power transmitter having the CCL resonant tank of FIG. 7.
  • FIG. 9 is a circuit diagram of a wireless power transmitter for explaining a resonance frequency adjusting method using a capacitor bank and a switch array.
  • FIG. 10 is a circuit diagram for explaining adjustment of a resonant frequency using switching
  • FIG. 11 is a circuit diagram of a wireless power transmitter for adjusting resonance frequency according to an embodiment of the present invention.
  • FIG. 12 is a circuit diagram of a wireless power transmitter showing an example of resonance frequency adjustment and supply power adjustment through duty control according to an embodiment of the present invention
  • FIG. 13 is a circuit diagram of a wireless power transmitter for adjusting a resonant frequency by controlling cycle-by-cycle average capacitance of the TYPE-I method according to the first embodiment of the present invention
  • FIG. 14 is a waveform diagram illustrating a change in the charging period of the capacitor Cs2 according to the adjustment voltage Vtune (Vtune1 ⁇ Vtune2) in the TYPE-I wireless power transmitter of FIG. 13.
  • 15 is a circuit diagram of a wireless power transmitter for forming a high variable voltage range with a low voltage according to an embodiment of the present invention
  • FIG. 16 is a circuit diagram of a wireless power transmitter adjusting a resonance frequency by controlling cycle-by-cycle average capacitance using a direct duty change of a TYPE-II scheme according to a second embodiment of the present invention. a) and the Vtune waveform diagram (b),
  • 17 is a configuration diagram of a wireless power transmission system including a full bridge PTU and a PRU using the TYPE-I scheme according to the first embodiment of the present invention
  • FIG. 18 illustrates a class-D output current and an output voltage of a power amplifier according to a regulated voltage Vtune in a wireless power transmission system having the full bridge circuit of FIG. 17 according to an embodiment of the present disclosure.
  • Voltage waveform
  • 19 is a waveform diagram of the VRECT voltage of the PRU according to the adjustment voltage Vtune adjustment
  • FIG. 20 is a circuit diagram illustrating a wireless power transfer system using average capacitance control of a TYPE-II scheme according to a second embodiment of the present invention
  • 21 is a waveform diagram showing a simulation result of the TYPE-II wireless power transmission system of FIG.
  • FIG. 22 is a waveform diagram illustrating a relationship between power and duty (D) supplied to a PRU in a TYPE-II wireless power transmission system according to a second embodiment of the present invention
  • FIG. 23 is a circuit diagram of a wireless power transmitter capable of expanding an adjusting range by using a plurality of adjusting circuits and a plurality of capacitors, according to an exemplary embodiment
  • 24 is a circuit diagram of a power receiver according to an embodiment of the present invention.
  • 25 is a waveform diagram illustrating power supplied to a load RL according to an embodiment of the present invention.
  • the wireless power transfer system of the present invention adjusts the resonant frequency using an active resonant frequency tuning method.
  • a method of controlling the duty ratio using a frequency component applied to the resonator itself or a frequency component generated from the resonator is used.
  • the same frequency signal is extracted from a signal applied to the resonator or a signal generated from the resonator. From this signal, the duty ratio representing the width of the pulse is controlled to actively adjust the resonance frequency.
  • the resonant frequency adjustment method using the duty control is used, even if the resonance characteristic between the power supply unit (hereinafter referred to as PTU) and the power receiving unit (hereinafter referred to as PRU) is adjusted, This is possible. It is also possible to control the power supplied from the PTU to the PRU. Furthermore, the resonant frequency adjustment and power control are possible without changing the driving frequency fdrv, which is suitable for standards such as A4WP and can be controlled without a separate DC-DC converter. Since the power control is possible even when the resonant frequency of the resonant tank is distorted at a desired frequency, it is possible to control in response to the inductance distribution of the antenna or the resonator capacitor distribution. Thus, a highly reproducible wireless power transfer system can be implemented.
  • FIG. 5 is a circuit diagram of a Class-D power amplifier with a series resonant tank.
  • the transistors M1 and M2 502 and 504 of the Class-D power amplifier 500 may use the capacitor Cs 522 by alternately turning on / off by the driving frequency fdrv 506. ) And an inductor L 524 to supply energy to the series resonant tank 520.
  • the resonance frequency is expressed by Equation 3, and the resonance frequency is generally adjusted to be equal to or slightly lower than the driving frequency fdrv.
  • the antenna can be modeled with an inductor L 524, and Resr 526 is an equivalent parasitic resistance component of the antenna.
  • the resonance frequency of the PTU must be synchronized with the driving frequency fdrv and the resonance frequency of the PRU.
  • capacitor Cs 522 and inductor L 524 have scattering characteristics, it is not easy to maintain a constant resonance frequency, and in some cases, physical adjustment is performed by changing the values of capacitor Cs 522 and inductor L 524. This is necessary.
  • FIG. 6 is a circuit diagram of a wireless power transmitter adjusting a resonance frequency by changing a capacitor Cs value of a resonator.
  • the inductor L 600 since the inductor L 600 has a physical shape, it is not easy to change the inductor L 600 to adjust the resonant frequency, and thus the size of the inductor L 600 is larger than that of the inductor L 600. Adjusting the capacitor Cs 610 may be a more convenient method.
  • the resonant frequency can be changed by changing the capacitor Cs 610, which is the same effect as changing the capacitor Cs 610 by changing the total amount of capacitance by shorting or opening using a plurality of capacitors and a plurality of switches. do.
  • the capacitor Cs adjustment method is conceptually one of the simplest and most reliable control methods, but since the voltage at both terminals of the capacitor Cs 610 is changed from time to time, not fixed voltage, it is not easy to implement this method using a semiconductor switch. It's work. In addition, since a large number of passive elements and switches are required, production cost increases.
  • FIG. 7 is a circuit diagram of a wireless power transmitter having a CCL resonant tank.
  • the capacitor Cs1 710 is connected in series with the antenna 730, and the capacitor Cs2 720 is connected in parallel with the antenna 730 to form a CCL resonant tank 700.
  • the resonant frequency f R is determined by the capacitors Cs1, Cs2 (710, 720).
  • FIG. 8 is a circuit diagram illustrating a resonant frequency adjusting method using a parallel capacitor Cs2 in the wireless power transmitter having the CCL resonant tank of FIG. 7.
  • the resonant frequency may be changed by varying the parallel capacitor Cs2 810. At this time, since one node of the capacitor Cs2 810 is determined as the ground 820, it is easy to implement a control circuit.
  • FIG. 9 is a circuit diagram of a wireless power transmitter for explaining a resonant frequency adjusting method using a capacitor bank and a switch array.
  • resonance frequencies may be adjusted using a plurality of capacitors Cs2, Cs3, and Cs4 (900, 910, 920) and a plurality of switches (S1, S2, S3) 930, 940, and 950.
  • the resonance frequency may be adjusted within the range as shown in Equation 5 below.
  • FIG. 10 is a circuit diagram for explaining adjustment of a resonance frequency using switching.
  • the switch can operate with a variable resistor depending on the voltage applied to the gate of the switch.
  • the resistance of the MOSFET is infinite, no current flows into the capacitor Cs2, so the capacitor Cs2 behaves as if it is not present.
  • the resonant frequency is determined by the capacitor Cs1 and the inductor L.
  • the capacitor Cs2 is reflected in the resonance to determine the resonance frequency f R as shown in Equation 6.
  • the resonance frequency f R can be adjusted within the range as shown in Equation 7.
  • the resonance frequency can be adjusted in the above-described manner, a problem arises in that the Q (quality factor) of the resonant tank falls due to the resistance component of the MOSFET. In other words, a portion of the applied energy of the resonator is consumed by the MOSFET resistance. In order to solve this problem, a switching method may be used.
  • a capacitor Cs1, Cs2 (1040, 1050) and an inductor L 1060 are provided by a power amplifier 1000 having an Mtune 1070 used as a switch and configured of transistors M1 and M2 1010 and 1020.
  • Energy is supplied to the resonator 1030 composed of Energy transfer is most efficient when the drive frequency fdrv and the resonant frequency of the resonator 1030 coincide.
  • the resonant frequency of the resonator 1030 may be adjusted using the clock signal Vclk 1080 applied to the switch Mtune 1070.
  • FIG. 11 is a circuit diagram of a wireless power transmitter for adjusting the resonance frequency according to an embodiment of the present invention.
  • the wireless power transmitter includes a power amplifier 1100, a resonator 1110, and a resonance controller 1120.
  • the power amplifier 1100 includes NMOS transistors M1 and M2 1101 and 1102.
  • the power amplifier 1100 is limited to Class-D, but may be replaced with Class-AB or Class-B.
  • the power amplifier 1100 is driven at the driving frequency fdrv 1103. Accordingly, the output of the power amplifier 1100 composed of M1 and M2 1101 and 1102 is changed between the supply voltage VSUP 1104 and the ground voltage 1105 at the driving frequency fdrv 1103. It is square wave form.
  • the resonator 1110 constitutes a resonant tank, and wirelessly transmits a wireless power signal output from the power amplifier 1100 to the PRU through magnetic resonance using the resonant frequency of the resonant tank.
  • the resonator 1110 is a capacitor Cs1 1111, an inductor 1113 connected in series with the capacitor Cs1 1111, a capacitor Cs2 1112 connected in parallel with the inductor 1113 and in series with the capacitor Cs1 1111, and a capacitor Cs2 ( And a switch 1114 in series with 1112.
  • the resonance controller 1120 adjusts the resonance frequency of the resonator 1110 by controlling the duty ratio by using the frequency applied to the resonator 1110 or the frequency signal generated by the resonator 1110.
  • the resonance controller 1120 adjusts the resonance frequency of the resonator 1110 by controlling the switch 1114 connected in series with the capacitor Cs2 1112. At this time, the switch 1114 is not used as a resistor. Therefore, the Q degradation problem due to power consumption generated when the switch 1114 is used as a resistor does not occur.
  • the resonance controller 1120 does not use a separate frequency as a frequency for driving the switch 1114, but generates a switch driving signal from a frequency applied to the resonator 1110 or a frequency generated by the resonator 1110.
  • the adjustment of the resonance frequency does not use a method of changing the switching frequency of the switch in FIG. 10, but uses a method of controlling the duty ratio of the switch.
  • Duty ratio is pulse occupancy U, which is the ratio of pulse width (TD) and pulse repetition period (Tp) of an arbitrary pulse in a periodic pulse train.
  • the pulse occupancy U is TD / Tp.
  • the resonator driving frequency and the switch driving frequency may be modulated, thereby solving the problem of radiating energy in a wide spectrum.
  • FIG. 12 is a circuit diagram of a wireless power transmitter showing an example of resonance frequency adjustment and supply power adjustment through duty control according to an embodiment of the present invention.
  • the switch SW when the switch SW is in the on state (a), resonance is generated by the capacitors Cs1 and Cs2. On the contrary, when the switch SW is in the off state (b), the resonance frequency is determined by the Cs1. If the driving frequency of the switch SW is the same as fdrv and the duty ratio is adjusted, for example, if the duty ratio is adjusted to 100%, the switch operates in the on state (a), and if the duty ratio is set to 0%, the switch is turned on. It is equivalent to operating in the off state (b).
  • the duty ratio is between 0 and 100% (c)
  • the degree of contribution of the capacitors Cs1 and Cs2 to the resonant tank is changed within one period so that a phenomenon such as resonant frequency is shifted as shown in FIG. do.
  • the magnitude of the current Iout supplied by the output terminal of the power amplifier also changes according to the driving frequency fdrv. Therefore, by adjusting the duty, the resonance frequency can be adjusted, and further, the power supply of the power amplifier can be changed.
  • FIG. 13 is a circuit diagram of a wireless power transmitter adjusting a resonant frequency by controlling cycle-by-cycle average capacitance of the TYPE-I method according to the first embodiment of the present invention.
  • 13 is a waveform diagram showing a change in the charging period of the capacitor Cs2 according to the adjustment voltage Vtune (Vtune1 ⁇ Vtune2) in the TYPE-I type wireless power transmitter.
  • the present invention actively changes the capacitance amount every cycle of the frequency applied to the resonator or the frequency signal induced by the resonator. Therefore, it can be referred to as resonance frequency adjustment by cycle-by-cycle capacitance control.
  • the inductor voltage VL 1300 changes in a form similar to a sine wave of the driving frequency fdrv 1320 every cycle (1400 of FIG. 14). If the adjustment voltage applied to the gate of the switch Mtune 1330 is called Vtune 1310 and the adjustment voltage Vtune 1310 is greater than or equal to the threshold voltage VT, the switch Mtune (3) increases as the inductor voltage VL 1300 increases from zero. Capacitor Cs2 1340 is charged through 1330 (1420, 1440 of FIG. 14). VCs2 1370, the voltage of capacitor Cs2 1340, increases equal to inductor voltage VL 1300.
  • the switch Mtune 1330 When the inductor voltage VL 1300 becomes larger than Vtune-VT, the switch Mtune 1330 is turned off, so the capacitor Cs2 1340 is no longer charged (1410, 1430 of FIG. 14). In contrast, when the inductor voltage VL 1300 is greater than zero and less than Vtune-VT, the capacitor Cs2 1340 is involved in resonance. When the inductor voltage VL 1300 is higher than that, only the capacitor Cs1 1350 is involved in resonance. Thus, the time during which capacitor Cs2 1340 is involved in resonance within one period is controlled according to adjustment voltage Vtune 1310. Since the higher the adjustment voltage Vtune 1310, the longer the time for the capacitor Cs2 1340 to engage in resonance (1440 of FIG. 14), the resonance frequency is lowered.
  • the above-described method is very simple and efficient, and the frequency can be changed. Since the driving loss is not generated when the switch Mtune is turned on / off, low power driving is possible and does not affect the Q of the resonator.
  • the adjustable voltage Vtune 1310 may also be sufficiently high to secure the frequency variable range. That is, the range of the adjustment voltage Vtune 1310 may be affected by the peak of the inductor voltage VL 1300. Therefore, when Q is very large and the supply voltage VSUP 1360 of the power amplifier is high, since the adjustment voltage Vtune 1310 also needs a high voltage, a variable range of the high adjustment voltage Vtune 1310 may be required depending on the entire system.
  • 15 is a circuit diagram of a wireless power transmitter for forming a high variable voltage range with a low voltage according to an embodiment of the present invention.
  • a resistor Rc 1510, a diode D1 1520, a capacitor CL 1530, a resistor R1, R2 (1540, 1550), an op amp 1560, and a MOSFET Ms 1570 are illustrated.
  • the antenna voltage VL 1590 may be much higher than the power supply voltage VSUP 1592 when Q is high.
  • Antenna voltage VL 1590 charges capacitor CL 1530 with resistor Rc 1510 and diode D1 1520.
  • the capacitor CL 1530 may be charged up to the maximum voltage of the antenna voltage VL 1590.
  • Resistor R1, R2 (1540, 1550), Op amp (1560), MOSFET Ms (1570) act as a shunt regulator.
  • the MOSFET Ms 1570 absorbs and consumes energy of the capacitor CL 1530.
  • the gate voltage Vgate 1594 can be amplified.
  • the maximum amplification amount may be determined according to the peak voltage of the antenna voltage VL 1590.
  • the resistor Rc 1510 may be determined to be a very large value since the energy of the capacitor CL 1530 is consumed little when the switch Mtune 1500 is driven. Thus, the Q reduction of the resonant tank can be ignored.
  • FIG. 16 is a circuit diagram of a wireless power transmitter adjusting a resonance frequency by controlling cycle-by-cycle average capacitance using a direct duty change of a TYPE-II scheme according to a second embodiment of the present invention. a) and the Vtune waveform diagram (b).
  • a TYPE-II wireless power transmitter uses a device such as an inverter to extract a frequency component from a signal applied to a resonator and change a duty (D) of the extracted frequency signal. Add circuitry to control switch Mtune. Also in this case, the resonant frequency can be changed similarly to the TYPE-I method. This method does not require a high voltage generator structure as shown in FIG. 13 since no high voltage is required, but drive loss may occur in driving the switch Mtune. However, the drive loss does not drop the Q of the resonator.
  • the resonance frequency can be adjusted through the duty control of the TYPE-I and TYPE-II wireless power supplies.
  • the Iout supplied by the power amplifier varies at the driving frequency fdrv as the resonance frequency is adjusted. That is, although the resonant frequency of the resonator can be adjusted by the proposed method, it means that the energy supplied to the resonator can be changed.
  • the power supplied to the PRU can be controlled using the two methods described above. In this case, power control is possible without a separate DC-DC converter, so the system can be easily implemented.
  • the resonance frequency can be changed. Since it can be adjusted, even if there is dispersion of a resonator element, a system with high reproducibility can be implemented.
  • 17 is a configuration diagram of a wireless power transmission system including a full bridge PTU and a PRU using the TYPE-I scheme according to the first embodiment of the present invention.
  • switches M3, M4 (1730, 1740) are added to a power amplifier of a PTU in order to supply up to four times higher power at a lower power supply voltage VSUP 1700, and thus, switches M1, M2, and M3.
  • the resonant tank includes two switches Mtune 1770 and 1780 connected in parallel with two capacitors Cs2 1750 and 1760 connected in parallel as shown in FIG. 17.
  • FIG. 18 illustrates a class-D output current and an output voltage of a power amplifier according to a regulated voltage Vtune in a wireless power transmission system having the full bridge circuit of FIG. 17 according to an embodiment of the present disclosure.
  • Voltage and FIG. 19 is a waveform diagram of the VRECT voltage of the PRU according to the adjustment voltage Vtune adjustment.
  • FIG. 18 Simulation results of changing the adjustment voltage Vtune between 1 and 5 using the above-described parameters are shown in FIG. 18.
  • the duty ratio decreases when the adjustment voltage Vtune decreases, the resonance frequency increases, the output current of the Class-D power amplifier increases, and vice versa. That is, more energy is supplied to the PRU when the regulated voltage Vtune is low.
  • the lower rectified voltage Vtune increases the rectifier voltage VRECT on the PRU side, and the higher rectified voltage Vtune decreases the rectifier voltage VRECT.
  • the above-described simulation is not limited to just one embodiment for demonstrating the effect of the present invention.
  • FIG. 20 is a circuit diagram illustrating a wireless power transfer system using average capacitance control of a TYPE-II method according to a second embodiment of the present invention
  • FIG. 21 is a simulation of the wireless power transfer system of the TYPE-II method of FIG. 20.
  • the waveform diagram shows the result.
  • MT1, MT2 (2000, 2010) operates as a switch, and since the switch driving frequency is extracted from the input of the resonator, it is equal to the driving frequency fdrv.
  • the capacitor Cs1 (2020, 2030) is slightly smaller so that the resonance frequency of the resonator is higher than the driving frequency fdrv when the MT1 / 2 (2000, 2010) is off.
  • the duty adjusting the duty from 0 to 0.8, if D is low, the resonator resonant frequency is higher than the drive frequency fdrv, so the output current phase of the power amplifier is faster than the output voltage. Therefore, as shown in FIG. 21, a phenomenon occurs in which the power amplifier power supply voltage VSUP becomes higher for the resonator current before the power amplifier output falls to low. In this case, the power amplifier performs hard switching, resulting in poor efficiency and heat generation.
  • FIG. 22 is a waveform diagram illustrating a relationship between power and duty (D) supplied to a PRU in a TYPE-II wireless power transmission system according to a second embodiment of the present invention.
  • the horizontal axis represents duty D and the vertical axis represents PRU power.
  • the above-described simulation is not limited to just one embodiment for demonstrating the effect of the present invention.
  • the resonance frequency can be adjusted electrically. That is, in the wireless power transmission system, matching of the resonator between the PTU and the PRU is very important. Instead of adjusting the passive element to match the resonant frequency, the resonance frequency can be adjusted using only an electrical signal without changing the passive element. Furthermore, the power can be adjusted. That is, since it is possible to adjust the resonant frequency electrically, it is possible to control the amount of current supplied to the resonator of the PTU, thereby enabling power control.
  • FIG. 23 is a circuit diagram of a wireless power transmitter capable of expanding an adjusting range using a plurality of adjusting circuits and a plurality of capacitors according to an exemplary embodiment.
  • an adjustment range may be extended by using a plurality of adjustment circuits 2300-1,..., 2300-n and a plurality of capacitors 2310-1,..., 2310-n.
  • the driving of class-D is considered in consideration of the efficiency of the power amplifier. However, if the efficiency is not very important, the conventional linear amplifier structure is replaced with class-A, class-AB, and class-B.
  • the invention proposed also can operate on the same principle.
  • FIG. 24 is a circuit diagram of a PRU according to an embodiment of the present invention.
  • the configuration of the resonant tank may be applied to the PRU as well as the PTU.
  • the PRU 24 includes a resonator 2400, a rectifier 2410 and a load 2450.
  • Resonator 2400 includes two capacitors Cs1 2402, inductor L 2404, two capacitors Cs2 2406, and two switches Mtune 2408.
  • Rectifier 2410 is composed of diodes D1-D4.
  • the output of rectifier 2410 is a full-wave rectified voltage and therefore uses capacitor CRECT 2420 to convert it to a DC voltage.
  • the DC voltage VRECT 2430 generated by the capacitor CRECT 2420 is converted into a voltage suitable for the load 2450 by using a DC-DC converter to drive the load 2450.
  • the adjustment voltage Vtune When power is controlled by configuring the TYPE-I structure of the first embodiment described above with reference to FIG. 13 in the resonant tank of the PRU, the adjustment voltage Vtune is applied to the gate of the switch Mtune 2408.
  • the adjustment voltage Vtune may be amplified by 8 times and applied to the gate of the switch Mtune 2408. Since the regulated voltage Vtune is controlled from 0 to 1V, the voltage applied to the switch Mtune 2408 becomes 0 to 8V.
  • 25 is a waveform diagram illustrating power supplied to a load RL according to an embodiment of the present invention.
  • the horizontal axis represents the adjustment voltage Vtune
  • the vertical axis represents the power [W] supplied to the load RL.
  • the output power supplied to the load can be controlled as shown in FIG. 25 by adjusting the adjustment voltage Vtune.
  • the above-described simulation is not limited to just one embodiment for demonstrating the effect of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Amplifiers (AREA)

Abstract

공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치가 개시된다. 본 발명의 일 실시 예에 따른 무선 전력 전송장치는 구동 주파수 신호를 이용하여 무선 전력신호를 증폭하는 전력 증폭기와, 공진 탱크를 구성하고 공진 탱크의 공진 주파수를 이용하여 전력 증폭기에서 출력된 무선 전력신호를 자기공명을 통해 무선 송신하는 공진기와, 공진기에 인가된 주파수 또는 공진기에서 발생한 주파수 신호를 이용하여 듀티 비를 제어하여 공진기의 공진 주파수를 조정하는 공진 제어부를 포함한다.

Description

공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치
본 발명은 자기공명 무선 전력 전송기술에 관한 것으로, 보다 상세하게는 자기공명을 이용한 무선 전력 전송기술에 관한 것이다.
도 1은 일반적인 자기공명 무선 전력 전송 시스템의 구성도이다.
도 1을 참조하면, 자기공명 무선 전력 전송 시스템(1)은 무선으로 전력신호를 자기공명(magnetic resonance)을 통해 공급하는 전력 공급장치(Power Transmitting Unit: 이하 PTU라 칭함)(10)와 PTU(10)로부터 전력신호를 수신하는 전력 수신장치(Power Receiving Unit: 이하 PRU라 칭함)(12)를 포함한다.
PTU(10)는 전력 증폭기(power amp)(100)와 공진기(110)를 포함한다. 전력 증폭기(100)는 NMOS 트랜지스터 M1,M2(101,102)를 포함하고, 공진기(110)는 트랜지스터 Cs(111)와 인덕터 L(112)를 포함한다. 도 1에서는 전력 증폭기(100)를 Class-D로 한정하여 도시하였으나, Class-AB, Class-B로 대체될 수 있다. 전력 증폭기는 구동 주파수 fdrv(103)로 구동된다. 따라서, M1,M2(101,102)로 구성된 전력 증폭기(100)의 출력은 구동 주파수 fdrv(103)로 전원전압(supply voltage) VSUP(104)과 접지전압(ground voltage)(105) 사이에서 변하는 구형파 형태이다. 공진형 무선 전력 전송규격인 A4WP(Alliance for Wireless Power)에서는 구동 주파수 fdrv가 6.78MHz로 결정되어 있다. 전력 증폭기(100)의 출력은 커패시터 Cs(111)와 인덕터 L(112)로 구성된 공진기(110)에 인가된다. 이때 L(112)은 송신 안테나(TX antenna)의 등가 인덕턴스를 의미하고, Resr(113)은 안테나의 기생 저항 성분이다. PTU 공진기(110)의 공진 주파수 fR,PTU는 수학식 1과 같다.
Figure PCTKR2015008035-appb-M000001
일반적으로 공진 주파수 fR,PTU는 구동 주파수 fdrv와 동일하도록 제어하며, 경우에 따라 전력 증폭기(100)의 효율을 증가시키기 위해 공진 주파수 fR,PTU를 구동 주파수 fdrv보다 약간 작게 하는 경우도 있다. 이 조건이 충족되면 트랜지스터 M1,M2(101,102)는 제로 전압 스위칭(zero-voltage switching: ZVS) 동작을 할 수 있기 때문에 스위칭 손실(switching loss)을 크게 개선할 수 있다.
한편, 무선 전력신호를 수신하는 PRU(12)는 커패시터 Cs1(122)와 안테나 역할을 하는 인덕터 L1(124)로 구성된 공진기(120)와, 다이오드 D1~D4로 구성된 정류기(rectifier)(130)와, DC-DC 변환기(DC-DC converter)(140)를 포함한다. 정류기(130)의 출력은 정류된 전압이므로 이것을 DC 전압으로 변환하기 위해 커패시터 CRECT를 이용한다. 커패시터 CRECT에 의해 생성된 DC 전압 VRECT를 DC-DC 변환기(140)를 사용하여 부하(Load)(150)에 적합한 전압으로 변환한 후에 부하(150)를 구동하게 된다. DC-DC 변환기(140)는 리니어(linear) 형태인 LDO, 레귤레이터(regulator) 등을 사용할 수도 있고, 스위칭 형태인 스위칭 컨버터, 충전 펌프(charge pump) 등을 사용할 수도 있으나 이에 한정되지는 않는다. 도 1에 도시된 바와 같이, 정류기(130)는 전파 정류형일 수 있으나, 반파 정류기를 사용하여도 구현이 가능하다. 정류기(130)는 도 1에 도시된 바와 같이 수동소자 다이오드 D1~D4를 이용하여 구현할 수도 있으나, 능동소자를 사용한 능동 정류기(active rectifier)로도 구현이 가능하다.
PRU 공진기(120)의 공진 주파수는 수학식 2와 같이 결정된다.
Figure PCTKR2015008035-appb-M000002
PTU(10)와 PRU(12)의 각 공진기(110,120)의 공진 주파수가 서로 동일하고 두 안테나(112,124)가 가까운 거리에 있으면 자기공명(magnetic resonance)이 발생한다. 이때 PTU의 안테나(112)로부터 PRU의 안테나(124)로 에너지가 전달되게 된다.
만약 공진 주파수가 서로 상이한 경우 에너지 전송이 원활히 되지 않으므로 PTU(10)와 PRU(12)의 각 공진기(110,120)의 공진 주파수를 일치시키는 것이 매우 중요하다. PTU(10)와 PRU(12)의 공진 특성을 일치시키기 위해 일반적으로 수동소자 L, C를 조정(tuning)하는 방법을 사용한다. 그러나 수동소자를 조정하는 방법은 물리적으로 L과 C를 조정하는 것이므로 생산성이 떨어지고 외부 요인에 의해 L과 C값이 변하는 경우에 대응하기가 쉽지 않다.
효율성 관점에서는 PTU(10)가 PRU(12)에서 요구하는 전력만큼을 전송하는 것이 가장 효율적이다. 그러나 너무 많은 에너지를 전송하는 경우에는 PRU(12)의 VRECT 전압이 과도하게 상승하여 정류기(130)와 DC-DC 변환기(140)를 파괴할 수 있고, 에너지 전송이 너무 적은 경우에는 부하(150)에 원하는 전력을 공급할 수 없게 된다. 따라서, PTU(10)는 PRU(12)의 요구사항을 피드백 받아서 출력 전력을 제어하게 된다. A4WP에서는 블루투스(bluetooth) 통신을 이용하여 PTU(10)와 PRU(12) 사이에 통신을 하게 된다. PTU(10)에서 전력을 제어하는 방법은 크게 세 가지 방법이 있을 수 있다.
(1) 구동 주파수 제어
(2) 전력 증폭기 간헐 제어(Burst switching control)
(3) 전력 증폭기 전원전압 제어
구동 주파수 제어방식은 전력 증폭기(100)의 구동 주파수를 변경하는 것으로, PTU 공진기(110)에 공급되는 에너지를 변경할 수 있으므로 전력 제어가 가능하다. 공진형 인버터, 유도형 무선 전력 전송방식인 Qi나 PMA(Power Matters Alliance) 방식이 이러한 방식을 사용하고 있다. 그러나, A4WP와 같은 표준에서는 구동 주파수가 고정되어 있으므로 이와 같은 제어가 어렵다.
전력 증폭기 간헐 제어방식은 전력 증폭기(100)를 동작하거나 동작시키지 않게 함으로써 공진기(110)에 인가되는 평균 전력이 제어되게 하는 방식이다. 일종의 버스트 스위칭(burst switching) 동작이라 할 수 있다. 근거리 무선통신(NFC) 등이 이러한 방식으로 전력을 전송하고 있다. 이 방식은 전력 증폭기(100)의 구동 주파수와 버스트(burst) 주파수가 변조되는 형태로 주파수 스펙트럼(spectrum)이 발생하므로 방사되는 주파수가 일정 폭을 갖고 발생한다고 볼 수 있다. A4WP에서는 허용되는 주파수가 6.78±15kHz 정도이므로 이러한 제어를 할 수는 있으나, 이 대역폭을 넘어서지 않도록 유의해야 한다.
도 2는 전력 증폭기 전원전압 제어방식을 사용하는 자기공명 무선 전력 전송 시스템의 구성도이다.
도 2를 참조하면, 전원(Supply)(200)과 전력 증폭기(220) 사이에 위치하는 DC-DC 변환기(240)를 이용하여 전력 증폭기(220)의 전원전압 VSUP(250)을 제어하여 공진기(260)에 공급되는 에너지를 조절할 수 있다. 전술한 방식은 전력 증폭기(220)의 구조가 class-D가 아니더라도 사용 가능한 구조이므로 가장 유연한 방식이라 할 수 있다. 그러나 DC-DC 변환기(240)를 구성하기 위한 별도의 비용이 발생하고 DC-DC 변환기(240)의 손실이 무선 전력 전송 시스템의 전체 효율을 감소시킬 우려가 있다.
도 3은 스위치 소자를 제어하여 공급 전력을 제어하는 무선 전력 전송장치의 회로도이다.
도 3을 참조하면, 인덕터와 커패시터(300,310)를 이용한 공진 탱크로 에너지를 전달받아 다이오드(320,330)를 통해 DC로 변경한 후 제어회로(340)를 이용하여 부하(360)에 에너지를 공급한다. 이 경우, 제어회로(340)가 스위치 소자(350)를 제어하여 부하(360)에 공급되는 전력을 제어한다.
도 4는 클록 신호를 이용한 공진 주파수 제어방식을 사용하는 무선 전력 전송장치의 구성도이다.
도 4를 참조하면, Vout(400)이 원하는 전압이 되도록 N1(410)을 저항으로 동작시키기도 하고 별도의 클록 신호(clock signal)(420)를 사용하여 N1(410)을 스위치로 제어하여 Vout(400)을 제어하기도 한다. 이 방식은 공진기의 공진 주파수를 변화시켜서 공진 탱크로 수신되는 에너지를 조절하는 방식이다.
일 실시 예에 따라, 무선 전력 전송 시스템에서 공진 주파수를 능동적으로 제어할 수 있는 방법을 제안한다.
일 실시 예에 따른 무선 전력 전송장치는 구동 주파수 신호를 이용하여 무선 전력신호를 증폭하는 전력 증폭기와, 공진 탱크를 구성하고 공진 탱크의 공진 주파수를 이용하여 전력 증폭기에서 출력된 무선 전력신호를 자기공명을 통해 무선 송신하는 공진기와, 공진기에 인가된 주파수 또는 공진기에서 발생한 주파수 신호를 이용하여 듀티 비를 제어하여 공진기의 공진 주파수를 조정하는 공진 제어부를 포함한다.
공진기는 제1 커패시터와, 제1 커패시터와 직렬 연결된 인덕터와, 인덕터와는 병렬 연결되고 제1 커패시터와는 직렬 연결된 제2 커패시터와, 제2 커패시터와 직렬 연결된 스위치를 포함하며, 공진 제어부를 통해 스위치에 대한 듀티 비 제어에 의해 제2 커패시터가 충전되는 구간에 따라 공진 주파수가 조정될 수 있다.
공진 제어부는 공진기에 인가된 주파수 또는 공진기에서 발생한 주파수를 이용하여 스위치 구동신호를 생성하고 스위치 구동신호를 이용하여 공진기의 스위치를 구동하되 스위치의 듀티 비 제어를 통해 매 주기마다 커패시턴스 양을 능동적으로 제어하여 공진 주파수를 조정할 수 있다. 이때, 공진 제어부는 스위치의 게이트에 인가되는 조정전압을 가변하여 스위치의 듀티 비를 제어할 수 있다. 공진 제어부는 조정전압을 증폭하여 스위치의 듀티 비를 제어할 수 있다.
공진 제어부는 공진기에 인가된 신호 또는 공진기에서 발생한 신호로부터 주파수 성분을 추출하고 추출된 주파수 신호의 듀티 비를 직접 변경할 수 있다.
공진 제어부는 공진 주파수를 조정함에 따라 구동 주파수에 의해 전력 증폭기의 출력단이 공급하는 전류의 크기가 조정되어 전력 증폭기의 공급 전력을 조정할 수 있다.
일 실시 예에 따르면, 전기적으로 공진 주파수를 조정할 수 있다. 즉, 수동소자를 조정해서 공진 주파수를 일치시키는 것이 아니라, 수동소자의 변경 없이 전기적 신호만으로 공진 주파수 조정이 가능하다. 구동 주파수 fdrv를 변경하지 않고도 공진 주파수 조정 및 전력 제어가 가능하므로 A4WP와 같은 표준에 적합하며 별도의 DC-DC 변환기가 없어도 제어가 가능하다. 공진 탱크의 공진 주파수가 원하는 주파수에서 틀어져 있는 경우에도 전력 제어가 가능하므로, 안테나의 인덕턴스 산포나 공진기 커패시터 산포에 대응하여 제어할 수 있다. 따라서, 재현성이 높은 무선 전력 전송 시스템을 구현할 수 있다. 나아가 공진 주파수를 조정함에 따라 공진기에 공급되는 에너지를 변경하여 PRU에 공급되는 전력을 제어할 수 있다.
도 1은 일반적인 자기공명 무선 전력 전송 시스템의 구성도,
도 2는 전력 증폭기 전원전압 제어 방식을 사용하는 자기공명 무선 전력 전송 시스템의 구성도,
도 3은 스위치 소자를 제어하여 공급 전력을 제어하는 무선 전력 전송장치의 회로도,
도 4는 클록 신호를 이용한 공진 주파수 제어방식을 사용하는 무선 전력 전송장치의 구성도,
도 5는 직렬 공진 탱크를 가진 Class-D 전력 증폭기의 회로도,
도 6은 공진기의 커패시터 Cs 값을 변경하여 공진 주파수를 조정하는 무선 전력 전송장치의 회로도,
도 7은 CCL 공진 탱크를 가진 무선 전력 전송장치의 회로도,
도 8은 도 7의 CCL 공진 탱크를 가진 무선 전력 전송장치에서 병렬 커패시터 Cs2를 이용한 공진 주파수 조정방법을 설명하기 위한 회로도,
도 9는 커패시터 뱅크(capacitor bank)와 스위치 어레이(switch array)를 이용한 공진 주파수 조정 방법을 설명하기 위한 무선 전력 전송장치의 회로도,
도 10은 스위칭을 이용한 공진 주파수의 조정을 설명하기 위한 회로도,
도 11은 본 발명의 일 실시 예에 따른 공진 주파수 조정을 위한 무선 전력 전송장치의 회로도,
도 12는 본 발명의 일 실시 예에 따른 듀티 제어를 통한 공진 주파수 조정 및 공급 전력 조정 예를 보여주는 무선 전력 전송장치의 회로도,
도 13은 본 발명의 제1 실시 예에 따른 TYPE-Ⅰ 방식의 매 주기 평균 커패시턴스(Cycle-by-cycle average capacitance) 제어에 의해 공진 주파수를 조정하는 무선 전력 전송장치의 회로도,
도 14는 도 13의 TYPE-Ⅰ 방식의 무선 전력 전송장치에서의 조정전압 Vtune(Vtune1 < Vtune2) 조정에 따른 커패시터 Cs2의 충전 기간의 변화를 도시한 파형도,
도 15는 본 발명의 일 실시 예에 따른 저전압으로 높은 가변 전압 범위를 형성하기 위한 무선 전력 전송장치의 회로도,
도 16은 본 발명의 제2 실시 예에 따른 TYPE-Ⅱ 방식의 직접 듀티 변경을 이용한 매 주기 평균 커패시턴스(Cycle-by-cycle average capacitance) 제어에 의해 공진 주파수를 조정하는 무선 전력 전송장치의 회로도(a)와 Vtune 파형도(b),
도 17은 본 발명의 제1 실시 예에 따른 TYPE-Ⅰ 방식을 이용한 풀 브리지 PTU와 PRU를 포함하는 무선 전력 전송 시스템의 구성도,
도 18은 본 발명의 일 실시 예에 따른 도 17의 풀 브리지 회로를 가진 무선 전력 전송 시스템에서 조정전압 Vtune 조정에 따른 전력 증폭기의 출력 전류(Class-D Output Current) 및 출력 전압(Class-D Output Voltage)의 파형도,
도 19는 조정전압 Vtune 조정에 따른 PRU의 VRECT 전압의 파형도,
도 20은 본 발명의 제2 실시 예에 따른 TYPE-Ⅱ 방식의 평균 커패시턴스 제어를 이용한 무선 전력 전송 시스템을 도시한 회로도,
도 21은 도 20의 TYPE-Ⅱ 방식의 무선 전력 전송 시스템의 모의 실험 결과를 도시한 파형도,
도 22는 본 발명의 제2 실시 예에 따른 TYPE-Ⅱ 방식의 무선 전력 전송 시스템에서 PRU에 공급되는 전력(power)과 듀티(duty: D)의 관계를 도시한 파형도,
도 23은 본 발명의 일 실시 예에 따른 복수 개의 조정회로와 복수 개의 커패시터를 이용하여 조정 범위 확대가 가능한 무선 전력 전송장치의 회로도,
도 24는 본 발명의 일 실시 예에 따른 전력 수신장치의 회로도,
도 25는 본 발명의 일 실시 예에 따른 부하 RL에 공급되는 전력을 도시한 파형도이다.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시 예들을 상세히 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 무선 전력 전송 시스템은 능동 공진 주파수 조정(tuning) 방법을 사용하여 공진 주파수(resonant frequency)를 조정한다. 공진 주파수 조정을 위해 별도의 클록 신호(clocking signal)를 사용하지 않고, 공진기 자체에 인가되는 주파수 성분 또는 공진기에서 발생하는 주파수 성분을 이용하여 듀티 비(duty ratio)를 제어하는 방식을 사용한다. 예를 들어, 별도의 클록 신호를 사용하여 전력 증폭기 또는 전력 수신장치의 공진 탱크(resonant tank)의 공진 주파수를 제어하는 것이 아니라, 공진기에 인가된 신호 또는 공진기에서 발생하는 신호로부터 동일한 주파수 신호를 추출하고 이 신호로부터 펄스의 폭을 나타내는 듀티 비를 제어하여 능동적으로 공진 주파수를 조정한다.
전술한 듀티 제어를 통한 공진 주파수 조정방법을 사용하면, 전력 공급장치(Power Transmitting Unit: 이하 PTU라 칭함)와 전력 수신장치(Power Receiving Unit: 이하 PRU라 칭함) 사이의 공진 특성이 틀어진 경우에도 조정이 가능하다. 또한, PTU에서 PRU로 공급되는 전력을 제어하는 것도 가능하다. 나아가, 구동 주파수 fdrv를 변경하지 않고도 공진 주파수 조정 및 전력 제어가 가능하므로 A4WP와 같은 표준에 적합하며 별도의 DC-DC 변환기가 없어도 제어가 가능하다. 공진 탱크의 공진 주파수가 원하는 주파수에서 틀어져 있는 경우에도 전력 제어가 가능하므로, 안테나의 인덕턴스 산포나 공진기 커패시터 산포에 대응하여 제어할 수 있다. 따라서, 재현성이 높은 무선 전력 전송 시스템을 구현할 수 있다.
이하, 도 5 내지 도 10을 참조로 하여 본 발명의 배경이 되는 이론을 설명하고, 도 11 내지 도 25를 참조로 하여 본 발명의 듀티 제어를 이용하여 공진 주파수를 조정하는 무선 전력 전송 시스템 및 공진 주파수 조정방법에 대해 상세히 후술한다.
도 5는 직렬 공진 탱크를 가진 Class-D 전력 증폭기의 회로도이다.
도 5를 참조하면, Class-D 전력 증폭기(500)의 트랜지스터 M1,M2(502,504)는 구동 주파수 fdrv(506)에 의해 온(on)/오프(off)를 교번하는 방식을 통해 커패시터 Cs(522)와 인덕터 L(524)로 구성된 직렬 공진 탱크(520)에 에너지를 공급한다. 공진 주파수는 수학식 3과 같으며, 공진 주파수는 구동 주파수 fdrv와 동일하거나 약간 낮은 정도가 되도록 조정하는 것이 일반적이다.
Figure PCTKR2015008035-appb-M000003
안테나는 인덕터 L(524)로 모델링 가능하고, Resr(526)은 안테나가 가지고 있는 기생저항 성분을 등가화한 것이다. PRU에 고효율로 에너지를 전송하기 위해서는 PTU의 공진 주파수가 구동 주파수 fdrv 및 PRU의 공진 주파수와 동기화되어야 한다. 그러나 커패시터 Cs(522)와 인덕터 L(524)은 산포 특성을 가지므로 일정한 공진 주파수를 유지하는 것이 쉽지 않고, 경우에 따라 커패시터 Cs(522)와 인덕터 L(524)의 값을 변경하여 물리적인 조정이 필요하게 된다.
도 6은 공진기의 커패시터 Cs 값을 변경하여 공진 주파수를 조정하는 무선 전력 전송장치의 회로도이다.
도 6을 참조하면, 인덕터 L(600)은 물리적인 형태가 정해져 있으므로 공진 주파수 조정을 위해 인덕터 L(600)을 변경하기는 쉽지 않고 크기도 큰 편이므로, 인덕터 L(600)을 조정하는 것보다 커패시터 Cs(610)를 조정하는 것이 좀 더 간편한 방법이라 할 수 있다. 커패시터 Cs(610)를 변경하면 공진 주파수를 변경할 수 있는데, 복수 개의 커패시터와 복수 개의 스위치를 이용하여 단락하거나 개방함으로써 커패시턴스(capacitance) 총량을 변경하여 커패시터 Cs(610)를 변화시킨 것과 동일한 효과가 나게 한다. 커패시터 Cs 조정방식은 개념적으로는 매우 간단하고도 확실한 제어 방법 중 하나이지만, 커패시터 Cs(610)의 양 단자 전압이 고정된 전압이 아니라 수시로 변하므로 반도체 스위치를 이용하여 이러한 방식을 구현하는 것은 쉽지 않은 일이다. 또한, 다수의 수동소자와 스위치가 필요하게 되므로 생산 단가가 상승하는 문제도 발생한다.
도 7은 CCL 공진 탱크를 가진 무선 전력 전송장치의 회로도이다.
도 7을 참조하면, 커패시터 Cs1(710)은 안테나(730)와 직렬 연결되고, 커패시터 Cs2(720)는 안테나(730)와 병렬 연결되어 CCL 형태의 공진 탱크(700)를 구성한다.
이때 공진 주파수 fR은 다음 수학식 4과 같이 변화된다.
Figure PCTKR2015008035-appb-M000004
공진 주파수 fR은 커패시터 Cs1,Cs2(710,720)에 의해 결정된다.
도 8은 도 7의 CCL 공진 탱크를 가진 무선 전력 전송장치에서 병렬 커패시터 Cs2를 이용한 공진 주파수 조정방법을 설명하기 위한 회로도이다.
도 8을 참조하면, CCL 공진 탱크(800)를 가진 무선 전력 전송장치에서 병렬 커패시터 Cs2(810)를 가변시켜서 공진 주파수를 변경할 수 있다. 이때, 커패시터 Cs2(810)의 한쪽 노드가 접지(ground)(820)로 결정되어 있으므로 제어 회로 구현이 용이하다.
도 9는 커패시터 뱅크(capacitor bank)와 스위치 어레이(switch array)를 이용한 공진 주파수 조정 방법을 설명하기 위한 무선 전력 전송장치의 회로도이다.
도 9를 참조하면, 다수의 커패시터(Cs2,Cs3,Cs4)(900,910,920)와 다수의 스위치(S1,S2,S3)(930,940,950)를 이용하여 공진 주파수 조정이 가능하다. 이때 공진 주파수는 다음 수학식 5와 같은 범위 내에서 조정이 가능하다.
Figure PCTKR2015008035-appb-M000005
수학식 5를 참조하면, 공진 주파수가 가장 높을 때는 모든 스위치(S1,S2,S3)(930,940,950)가 오프 되었을 때고, 가장 낮을 때는 모든 스위치(S1,S2,S3)(930,940,950)가 온 되었을 때이다. 전술한 방식을 통해 간단하게 주파수를 조정할 수 있지만, 많은 소자가 필요한 것이 단점이다. 특히 인덕터(960)의 전압은 공진 주파수 근처에서 매우 높을 수 있기 때문에, 스위치 (S1,S2,S3)(930,940,950)는 오프 시 높은 내압을 견딜 수 있어야 하므로 높은 내압을 갖는 소자가 되어야 한다.
도 10은 스위칭을 이용한 공진 주파수의 조정을 설명하기 위한 회로도이다.
스위치를 MOSFET과 같은 소자를 사용하는 경우, 스위치는 스위치의 게이트(gate)에 인가되는 전압에 따라 가변 저항으로 동작할 수 있다. 즉, MOSFET의 저항이 무한대라면 커패시터 Cs2로 전류가 흐르지 않으므로 커패시터 Cs2는 없는 것처럼 동작한다. 이 경우, 공진 주파수는 커패시터 Cs1과 인덕터 L에 의해 결정된다. 이에 비해, MOSFET의 저항이 0이라면 커패시터 Cs2가 공진에 반영되어 수학식 6과 같은 공진 주파수 fR가 결정된다.
Figure PCTKR2015008035-appb-M000006
MOSFET의 저항을 변경시킴에 따라 수학식 7과 같은 범위 내에서 공진 주파수 fR를 조정할 수 있다.
Figure PCTKR2015008035-appb-M000007
전술한 방식으로 공진 주파수를 조정할 수 있음은 명확하지만, MOSFET의 저항 성분에 의해 공진 탱크의 Q(quality factor)가 떨어지는 문제가 발생한다. 즉, 공진기의 인가된 에너지의 일부가 MOSFET 저항에 의해 소모되는 현상이 발생하게 된다. 이러한 문제를 해결하기 위해 스위칭 이용한 방식을 적용하기도 한다.
도 10을 참조하면, 스위치로 사용되는 Mtune(1070)을 구비하고, 트랜지스터 M1,M2(1010,1020)로 구성된 전력 증폭기(1000)에 의해 커패시터 Cs1,Cs2(1040,1050)와 인덕터 L(1060)로 구성된 공진기(1030)에 에너지가 공급된다. 구동 주파수 fdrv와 공진기(1030)의 공진 주파수가 일치할 때 에너지 전송이 가장 효율적이다. 이를 위해 공진기(1030)의 공진 주파수를 스위치 Mtune(1070)에 가해지는 클록 신호 Vclk(1080)를 이용하여 조정할 수 있다.
그런데 전술한 방식으로 공진 주파수를 조정하는 경우 구동 주파수와 클록 신호 Vclk(1080)가 동기화되지 않는 경우 커패시터 Cs2(1050)를 충전/방전할 때 과도한 피크(peak) 전류가 발생하기도 하고 잡음이 증가할 수도 있다. 또한, 공진기(1030)에 공급되는 에너지 관점에서 보았을 때, 전력 증폭기(1000)를 동작시키거나 동작시키지 않으므로 에너지를 제어하는 방법과 큰 차이가 없게 된다. 또한, 공진기(1030)를 통해 PRU로 에너지가 전송될 때 클록 신호 Vclk(1080)의 주파수가 구동 주파수 fdrv와 변조되는 현상이 나타나므로 넓은 스펙트럼에 방사 에너지가 존재하게 된다. 이러한 방사 에너지는 전파 관리 규격상 문제가 될 소지가 있다.
도 11은 본 발명의 일 실시 예에 따른 공진 주파수 조정을 위한 무선 전력 전송장치의 회로도이다.
도 11을 참조하면, 무선 전력 전송장치는 전력 증폭기(1100), 공진기(1110) 및 공진 제어부(1120)를 포함한다.
전력 증폭기(1100)는 NMOS 트랜지스터 M1,M2(1101,1102)를 포함한다. 도 1에서는 전력 증폭기(1100)를 Class-D로 한정하여 도시하였으나, Class-AB, Class-B로 대체될 수 있다. 전력 증폭기(1100)는 구동 주파수 fdrv(1103)로 구동된다. 따라서, M1,M2(1101,1102)로 구성된 전력 증폭기(1100)의 출력은 구동 주파수 fdrv(1103)로 전원전압(supply voltage) VSUP(1104)과 접지전압(ground voltage)(1105) 사이에서 변하는 구형파 형태이다.
공진기(1110)는 공진 탱크를 구성하고, 공진 탱크의 공진 주파수를 이용하여 전력 증폭기(1100)에서 출력된 무선 전력신호를 자기공명을 통해 PRU에 무선 송신한다. 공진기(1110)는 커패시터 Cs1(1111), 커패시터 Cs1(1111)과 직렬 연결된 인덕터(1113), 인덕터(1113)와는 병렬 연결되고 커패시터 Cs1(1111)과는 직렬 연결된 커패시터 Cs2(1112), 커패시터 Cs2(1112)와 직렬 연결된 스위치(1114)를 포함한다.
공진 제어부(1120)는 공진기(1110)에 인가된 주파수 또는 공진기(1110)에서 발생한 주파수 신호를 이용하여 듀티 비를 제어하여 공진기(1110)의 공진 주파수를 조정한다. 구체적으로, 공진 제어부(1120)는 커패시터 Cs2(1112)와 직렬 연결된 스위치(1114)를 제어하여 공진기(1110)의 공진 주파수를 조정한다. 이때, 스위치(1114)를 저항으로 사용하지 않는다. 따라서, 스위치(1114)를 저항으로 사용할 때 발생하는 전력 소모에 따른 Q 저하 문제가 발생하지 않는다. 또한, 공진 제어부(1120)는 별도의 주파수를 스위치(1114)를 구동하는 주파수로 사용하는 것이 아니라, 공진기(1110)에 인가된 주파수 또는 공진기(1110)에서 발생한 주파수로부터 스위치 구동신호를 생성한다. 그리고 공진 주파수의 조정은 도 10에서의 스위치의 스위칭 주파수를 변경하는 방식을 사용하는 것이 아니라, 스위치의 듀티 비(duty ratio)를 제어하는 방식을 사용한다. 듀티 비는 펄스 점유율 U로서, 주기 펄스 열에서 임의 펄스의 펄스 폭(TD)과 펄스 반복 주기(Tp)의 비. 즉, 펄스 점유율 U는 TD/Tp이다.
듀티 비 제어 방식에 따르면 공진기의 전류가 매 주기마다 제어되므로 공진기의 전류는 일정한 형태를 가지게 된다. 따라서, 도 10에서의 스위칭을 이용한 공진 주파수 조정에서 공진기 구동 주파수와 스위치 구동 주파수가 변조되어 넓은 스펙트럼에서 에너지가 방사되는 문제를 해결할 수 있다.
도 12는 본 발명의 일 실시 예에 따른 듀티 제어를 통한 공진 주파수 조정 및 공급 전력 조정 예를 보여주는 무선 전력 전송장치의 회로도이다.
도 12를 참조하면, 스위치 SW가 on 상태(a)라면 공진은 커패시터 Cs1과 Cs2에 의해 발생하고, 반대로 스위치 SW가 off 상태(b)라면 공진 주파수는 Cs1에 의해 결정된다. 스위치 SW의 구동 주파수를 fdrv로 동일하게 하고 듀티 비를 조정하면, 예를 들어 듀티 비를 100%로 조정하면 스위치가 on된 상태(a)로 동작하고, 듀티 비를 0%로 조정하면 스위치가 off된 상태(b)로 동작하는 것과 같다. 이때, 듀티 비가 0~100% 사이(c)이면 한 주기 내에 커패시터 Cs1과 Cs2가 공진 탱크에 기여하는 정도가 달라져서 도 12의 (d)에 도시된 바와 같이 공진 주파수가 이동되는 것과 같은 현상이 나타나게 된다. 나아가, 도 12의 (d)에 도시된 바와 같이 공진 주파수가 변함에 따라 구동 주파수 fdrv에 의해 전력 증폭기의 출력단이 공급하는 전류 Iout의 크기도 변화된다. 따라서, 듀티를 조정함으로써 공진 주파수를 조정할 수 있고, 나아가 전력 증폭기의 공급 전력도 변화시킬 수 있게 된다.
도 13은 본 발명의 제1 실시 예에 따른 TYPE-Ⅰ 방식의 매 주기 평균 커패시턴스(Cycle-by-cycle average capacitance) 제어에 의해 공진 주파수를 조정하는 무선 전력 전송장치의 회로도이고, 도 14는 도 13의 TYPE-Ⅰ 방식의 무선 전력 전송장치에서의 조정전압 Vtune(Vtune1 < Vtune2) 조정에 따른 커패시터 Cs2의 충전 기간의 변화를 도시한 파형도이다.
도 13을 참조하면, 본 발명은 공진기에 인가되는 주파수 또는 공진기에서 유도된 주파수 신호의 매 주기마다 커패시턴스 양을 능동적으로 변경한다. 따라서, 매 주기 평균 커패시턴스 제어(Cycle-by-cycle capacitance control)에 의한 공진 주파수 조정이라 할 수 있다.
도 13 및 도 14를 참조하면, 매 주기마다 인덕터 전압 VL(1300)은 구동 주파수 fdrv(1320)의 정현파와 유사한 형태로 변화한다(도 14의 1400). 스위치 Mtune(1330)의 게이트에 인가되는 조정전압을 Vtune(1310)이라 하고 조정전압 Vtune(1310)이 문턱 전압(VT) 이상이라고 한다면, 인덕터 전압 VL(1300)이 0에서 증가함에 따라 스위치 Mtune(1330)을 통해 커패시터 Cs2(1340)가 충전된다(도 14의 1420,1440). 커패시터 Cs2(1340)의 전압인 VCs2(1370)는 인덕터 전압 VL(1300)과 동일하게 증가한다. 인덕터 전압 VL(1300)이 Vtune-VT 보다 커지게 되면, 스위치 Mtune(1330)이 오프되게 되므로 커패시터 Cs2(1340)는 더 이상 충전되지 않는다(도 14의 1410,1430). 이에 비해 인덕터 전압 VL(1300)이 0보다 크고 Vtune-VT 보다 작은 경우 커패시터 Cs2(1340)가 공진에 관여하며, 인덕터 전압 VL(1300)이 그 이상일 때는 커패시터 Cs1(1350)만 공진에 관여한다. 따라서, 한 주기 내에서 커패시터 Cs2(1340)가 공진에 관여하는 시간이 조정전압 Vtune(1310)에 따라 제어된다. 조정전압 Vtune(1310)이 높을수록 커패시터 Cs2(1340)가 공진에 관여하는 시간이 커지므로(도 14의 1440) 공진 주파수는 낮아지게 되고, 반대로 조정전압 Vtune(1310)이 낮아지게 되면 커패시터 Cs2(1340)가 공진에 관여하는 시간이 작아지므로(도 14의 1420) 공진 주파수가 높아지게 된다. 따라서, 조정전압 Vtune(1310)으로 스위치 Mtune(1330)의 듀티 비를 제어한 것이 된다.
전술한 방식은 매우 간단하면서 효율적으로 주파수 가변이 가능하고 스위치 Mtune을 온/오프할 때 별도의 구동 손실(driving loss)이 발생하지 않으므로 저전력 구동이 가능하며 공진기의 Q에 영향을 주지 않는다. 다만, 인덕터 전압 VL(1300)의 피크 전압이 매우 큰 경우 조정전압 Vtune(1310)도 충분히 높아야만 주파수 가변 범위가 확보될 수 있다. 즉, 조정전압 Vtune(1310)의 범위가 인덕터 전압 VL(1300)의 피크에 영향을 받을 수 있다. 따라서, Q가 매우 크고 전력 증폭기의 공급 전압 VSUP(1360)이 높은 경우 조정전압 Vtune(1310)도 높은 전압이 필요하므로 전체 시스템에 따라 높은 조정전압 Vtune(1310)의 가변 범위가 필요할 수도 있다.
도 15는 본 발명의 일 실시 예에 따른 저전압으로 높은 가변 전압 범위를 형성하기 위한 무선 전력 전송장치의 회로도이다.
도 15를 참조하면, 스위치 Mtune(1500) 이외에 저항 Rc(1510), 다이오드 D1(1520), 커패시터 CL(1530), 저항 R1,R2(1540,1550), Op amp(1560), MOSFET Ms(1570)를 추가하여 저전압의 조정전압 Vtune(1580)으로 높은 가변 전압 범위를 형성할 수 있다. 안테나 전압 VL(1590)은 Q가 높은 경우 전압이 전원전압 VSUP(1592)보다 훨씬 높을 수 있다. 안테나 전압 VL(1590)은 저항 Rc(1510)과 다이오드 D1(1520)으로 커패시터 CL(1530)을 충전한다. 커패시터 CL(1530)은 안테나 전압 VL(1590)의 최대 전압까지 충전이 가능하다. 저항 R1,R2(1540,1550), Op amp(1560), MOSFET Ms(1570)는 션트 레귤레이터(shunt regulator)로 동작한다. 스위치 Mtune(1500)의 게이트에 인가되는 게이트 전압 Vgate(1594)가 다음의 수학식 8을 만족하면, 커패시터 CL(1530)의 에너지를 MOSFET Ms(1570)가 흡수하여 소모한다.
Figure PCTKR2015008035-appb-M000008
따라서, 게이트 전압 Vgate(1594)를 증폭할 수 있다. 이때 최대 증폭량은 안테나 전압 VL(1590)의 피크 전압에 따라 결정될 수 있다. 이러한 회로를 사용하면 낮은 조정전압 Vtune(1580)으로도 스위치 Mtune(1500)이 동작하는 듀티 비를 비교적 자유롭게 가변시킬 수 있다. 스위치 Mtune(1500)이 구동될 때 커패시터 CL(1530)의 에너지를 거의 소모하지 않으므로 저항 Rc(1510)을 매우 큰 값으로 결정할 수도 있다. 따라서, 공진 탱크의 Q 감소는 무시할 수 있다.
도 16은 본 발명의 제2 실시 예에 따른 TYPE-Ⅱ 방식의 직접 듀티 변경을 이용한 매 주기 평균 커패시턴스(Cycle-by-cycle average capacitance) 제어에 의해 공진 주파수를 조정하는 무선 전력 전송장치의 회로도(a)와 Vtune 파형도(b)이다.
도 16을 참조하면, TYPE-Ⅱ 방식의 무선 전력 전송장치는 공진기에 인가되는 신호로부터 인버터와 같은 소자를 활용하여 주파수 성분을 추출해 내고 추출된 주파수 신호의 듀티(D)를 변화시킬 수 있는 듀티 제어회로를 추가하여 스위치 Mtune을 제어한다. 이 경우도 TYPE-Ⅰ방식과 유사하게 공진 주파수를 변화시킬 수 있다. 이 방식은 고 전압이 필요 없으므로 도 13에 도시된 바와 같은 고 전압 발생기 구조가 필요하지 않으나, 스위치 Mtune을 구동함에 있어서 구동 손실이 발생할 수 있다. 그러나, 구동 손실이 공진기의 Q를 떨어뜨리는 것은 아니다.
전술한 바와 같이, TYPE-Ⅰ 방식과 TYPE-Ⅱ 방식의 무선 전력 공급장치의 듀티 제어를 통해 공진 주파수를 조정할 수 있음을 설명하였다. 또한, 공진 주파수를 조정함에 따라 구동 주파수 fdrv에서 전력 증폭기가 공급하는 Iout이 변동함을 설명하였다. 즉, 제안하는 방법으로 공진기의 공진 주파수를 조정할 수도 있지만, 이를 통해 공진기에 공급되는 에너지를 변경할 수 있다는 의미가 된다. 따라서, 전술한 두 가지 방법을 이용하여 PRU에 공급되는 전력을 제어할 수 있음을 알 수 있다. 이 경우, 별도의 DC-DC 변환기가 없이 전력 제어를 할 수 있으므로 간편하게 시스템을 구현할 수 있으며, 공진 탱크의 인턱터나 커패시터의 산포에 의해 공진 주파수가 구동 주파수 fdrv에 비해 많이 틀어져 있는 경우에도 공진 주파수를 조정할 수 있으므로, 공진기 소자의 산포가 있다 하더라도 재현성이 높은 시스템을 구현할 수 있다.
도 17은 본 발명의 제1 실시 예에 따른 TYPE-Ⅰ 방식을 이용한 풀 브리지 PTU와 PRU를 포함하는 무선 전력 전송 시스템의 구성도이다.
도 17을 참조하면, 낮은 전원전압 VSUP(1700)에서 최대 4배 높은 전력을 공급할 수 있도록 하기 위해, PTU의 전력 증폭기에 스위치 M3,M4(1730,1740)를 추가하여, 스위치 M1,M2,M3,M4(1710,1720,1730,1740)에 의한 풀 브리지(full-bridge) 전력 증폭기를 구현한다. 그리고 공진 탱크는 도 17에 도시된 바와 같이 병렬 연결된 2개의 커패시터 Cs2(1750,1760)와 병렬 연결된 2개의 스위치 Mtune(1770,1780)을 포함한다.
도 18은 본 발명의 일 실시 예에 따른 도 17의 풀 브리지 회로를 가진 무선 전력 전송 시스템에서 조정전압 Vtune 조정에 따른 전력 증폭기의 출력 전류(Class-D Output Current) 및 출력 전압(Class-D Output Voltage)의 파형도이고, 도 19는 조정전압 Vtune 조정에 따른 PRU의 VRECT 전압의 파형도이다.
풀 브리지 회로를 모의 실험하기 위해 공진기 소자 및 전원 파라미터를 다음과 같이 가정한다.
- VUSP=5V
- PRU 출력 power= 1W
- PTU 공진 탱크: L=400nH, Cs1=2.8nF, Cs2=2nF, fdrv=6.78MHz
- PRU 공진 탱크: L1=100nH, Cs=5.5nF
- L과 L1의 결합계수(Coupling coefficient): 0.7
전술한 파라미터들을 이용하여 조정전압 Vtune을 1 ~ 5 사이에서 변화시키면서 모의 실험한 결과는 도 18에 도시된 바와 같다. 도 18을 참조하면, 조정전압 Vtune이 감소하면 듀티 비가 작아지는 형태이므로 공진 주파수가 증가하고 Class-D 전력 증폭기의 출력 전류가 증가하게 되며 반대의 경우 작아지게 된다. 즉, 조정전압 Vtune이 낮을 때 더 많은 에너지가 PRU로 공급된다. 도 19에 도시된 바와 같이 조정전압 Vtune이 낮을수록 PRU 측의 정류기 전압 VRECT는 증가하고, 조정전압 Vtune이 높을수록 정류기 전압 VRECT는 감소하게 됨을 모의 실험을 통해 확인할 수 있다. 한편, 전술한 모의 실험은 본 발명의 효과를 입증하기 위한 일 실시 예일 뿐 이에 한정되지는 않는다.
도 20은 본 발명의 제2 실시 예에 따른 TYPE-Ⅱ 방식의 평균 커패시턴스 제어를 이용한 무선 전력 전송 시스템을 도시한 회로도이고, 도 21은 도 20의 TYPE-Ⅱ 방식의 무선 전력 전송 시스템의 모의 실험 결과를 도시한 파형도이다.
도 20을 참조하면, MT1,MT2(2000,2010)는 스위치로 동작하며 스위치 구동 주파수는 공진기의 입력에서 추출하였으므로 구동 주파수 fdrv와 동일하다.
일 실시 예에 따라 TYPE-Ⅱ 방식에서 커패시터 Cs1(2020,2030) 값은 약간 작게 하여 MT1/2(2000,2010)가 오프일 때 공진기의 공진 주파수가 구동 주파수 fdrv보다 높도록 설정한다. 듀티를 0 ~ 0.8까지 조정하면서 모의 실험해보면, D가 낮은 경우 공진기 공진 주파수가 구동 주파수 fdrv보다 높으므로 전력 증폭기의 출력 전류 위상이 출력 전압보다 빠르게 된다. 따라서, 도 21에 도시된 바와 같이 전력 증폭기 출력이 low로 떨어지기 전에 공진기 전류에 위해 전력 증폭기 전원전압 VSUP보다 높아지는 현상이 발생한다. 이때는 전력 증폭기가 하드 스위칭(hard switching)을 하게 되므로 효율이 나빠지고 열이 발생하게 된다. D를 증가하면 공진기의 공진 주파수가 낮아지므로 출력 전류의 위상의 지연이 증가하게 되고 일정 수준 이상이 되면 출력 전류의 위상이 출력 전압의 위상보다 느려지게 되므로 공진기의 전류에 의해 전력 증폭기는 zero-voltage switching(ZVS) 동작을 하게 된다. ZVS 동작을 하면 발열이 줄어들어 효율이 높아지며 EMI 잡음이 작아지는 특성이 얻을 수 있게 된다. 한편, 전술한 모의 실험은 본 발명의 효과를 입증하기 위한 일 실시 예일 뿐 이에 한정되지는 않는다.
도 22는 본 발명의 제2 실시 예에 따른 TYPE-Ⅱ 방식의 무선 전력 전송 시스템에서 PRU에 공급되는 전력(power)과 듀티(duty: D)의 관계를 도시한 파형도이다.
도 22에 있어서, 가로 축은 듀티(D)를, 세로 축은 PRU 전력을 나타낸다. D=0에서 D를 증가하면 공진 주파수가 낮아지면서 D=0.3 근처에서 전력 최고점이 발생한다. 즉, D < 0.3이면, 공진 주파수가 구동 주파수 fdrv보다 높은 상태이며, 이때는 전력 증폭기가 하드 스위칭(hard switching)을 하게 된다. D=0.3이 되면 완전 매칭(matching)된 상태가 되며, 그 이상에서는 전력 증폭기가 ZVS 동작을 할 수 있으면서 전력을 제어할 수 있는 상태로 진입하게 된다. 한편, 전술한 모의 실험은 본 발명의 효과를 입증하기 위한 일 실시 예일 뿐 이에 한정되지는 않는다.
이상의 모의 실험을 통해 본 발명의 효과를 간접적으로 입증할 수 있었다. 정리하면 다음과 같은 효과를 가진다. 우선, 전기적으로 공진 주파수를 조정할 수 있다. 즉, 무선 전력 전송 시스템에서는 PTU와 PRU 사이의 공진기의 매칭이 매우 중요한데, 수동소자를 조정해서 공진 주파수를 일치시키는 것이 아니라, 수동소자의 변경 없이 전기적 신호만으로 공진 주파수 조정이 가능하다. 나아가, 전력을 조정할 수 있다. 즉, 공진 주파수를 전기적으로 조정하는 것이 가능하므로 이를 이용하여 PTU의 공진기에 공급되는 전류량을 제어할 수 있으므로 전력 제어가 가능하다.
도 23은 본 발명의 일 실시 예에 따른 복수 개의 조정회로와 복수 개의 커패시터를 이용하여 조정 범위 확대가 가능한 무선 전력 전송장치의 회로도이다.
도 23을 참조하면, 복수 개의 조정회로(2300-1,…,2300-n)와 복수 개의 커패시터(2310-1,…,2310-n)를 이용하여 조정 범위를 확대할 수 있다. 도 23에서는 전력 증폭기의 효율을 고려하여 class-D로 구동하는 것을 예를 들었지만, 효율이 그다지 중요하지 않은 경우라면, 기존의 선형 증폭기 구조인 class-A, class-AB, class-B로 대체하여도 제안하는 발명은 동일한 원리로 동작할 수 있다.
도 24는 본 발명의 일 실시 예에 따른 PRU의 회로도이다.
도 24를 참조하면, 공진 탱크의 구성은 PTU뿐만 아니라 PRU에도 적용이 가능하다. PRU(24)는 공진기(2400), 정류기(rectifier)(2410) 및 부하(load)(2450)를 포함한다.
공진기(2400)는 2개의 커패시터 Cs1(2402), 인덕터 L(2404), 2개의 커패시터 Cs2(2406), 2개의 스위치 Mtune(2408)을 포함한다. 정류기(2410)는 다이오드 D1~D4로 구성된다. 정류기(2410)의 출력은 전파 정류된 전압이므로 이것을 DC 전압으로 변환하기 위해 커패시터 CRECT(2420)를 이용한다. 커패시터 CRECT(2420)에 의해 생성된 DC 전압 VRECT(2430)를 DC-DC 변환기를 사용하여 부하(Load)(2450)에 적합한 전압으로 변환한 후에 부하(2450)를 구동하게 된다.
PRU의 공진 탱크에 도 13을 참조로 하여 전술한 제1 실시 예의 TYPE-Ⅰ 구조를 구성하여 전력을 제어하는 경우, 조정전압 Vtune을 스위치 Mtune(2408)의 게이트에 인가한다. 이때, 도 24를 참조하면, 조정전압 Vtune은 8배 증폭되어 스위치 Mtune(2408)의 게이트에 인가되게 할 수 있다. 조정전압 Vtune은 0 ~ 1V로 제어하였으므로 스위치 Mtune(2408)에 인가된 전압은 0 ~ 8V가 된다.
도 25는 본 발명의 일 실시 예에 따른 부하 RL에 공급되는 전력을 도시한 파형도이다.
도 25에서 가로 축은 조정전압 Vtune을, 세로 축은 부하 RL에 공급된 전력[W]을 나타낸다. 도 23에 도시된 바와 같이 조정전압 Vtune을 조정함에 따라 부하에 공급된 출력 전력은 도 25에 도시된 바와 같이 제어가 가능하다. 한편, 전술한 모의 실험은 본 발명의 효과를 입증하기 위한 일 실시 예일 뿐 이에 한정되지는 않는다.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (8)

  1. 구동 주파수 신호를 이용하여 무선 전력신호를 증폭하는 전력 증폭기;
    공진 탱크를 구성하고 공진 탱크의 공진 주파수를 이용하여 상기 전력 증폭기에서 출력된 무선 전력신호를 자기공명을 통해 무선 송신하는 공진기; 및
    상기 공진기에 인가된 주파수 또는 상기 공진기에서 발생한 주파수 신호를 이용하여 듀티 비를 제어하여 상기 공진기의 공진 주파수를 조정하는 공진 제어부;
    를 포함하는 것을 특징으로 하는 무선 전력 전송장치.
  2. 제 1 항에 있어서, 상기 공진기는
    제1 커패시터;
    상기 제1 커패시터와 직렬 연결된 인덕터;
    상기 인덕터와는 병렬 연결되고 상기 제1 커패시터와는 직렬 연결된 제2 커패시터; 및
    상기 제2 커패시터와 직렬 연결된 스위치; 를 포함하며,
    상기 공진 제어부를 통해 상기 스위치에 대한 듀티 비 제어에 의해 상기 제2 커패시터가 충전되는 구간에 따라 공진 주파수가 조정되는 것을 특징으로 하는 무선 전력 전송장치.
  3. 제 1 항에 있어서, 상기 공진 제어부는
    상기 공진기에 인가된 주파수 또는 상기 공진기에서 발생한 주파수를 이용하여 스위치 구동신호를 생성하고 스위치 구동신호를 이용하여 상기 공진기의 스위치를 구동하되 스위치의 듀티 비 제어를 통해 매 주기마다 커패시턴스 양을 능동적으로 제어하여 공진 주파수를 조정하는 것을 특징으로 하는 무선 전력 전송장치.
  4. 제 3 항에 있어서, 상기 공진 제어부는
    상기 스위치의 게이트에 인가되는 조정전압을 가변하여 상기 스위치의 듀티 비를 제어하는 것을 특징으로 하는 무선 전력 전송장치.
  5. 제 4 항에 있어서, 상기 공진 제어부는
    조정전압을 증폭하여 상기 스위치의 듀티 비를 제어하는 것을 특징으로 하는 무선 전력 전송장치.
  6. 제 3 항에 있어서, 상기 공진 제어부는
    상기 공진기에 인가된 신호 또는 상기 공진기에서 발생한 신호로부터 주파수 성분을 추출하고 추출된 주파수 신호의 듀티 비를 직접 변경하는 것을 특징으로 하는 무선 전력 전송장치.
  7. 제 1 항에 있어서, 상기 공진 제어부는
    공진 주파수를 조정함에 따라 구동 주파수에 의해 전력 증폭기의 출력단이 공급하는 전류의 크기가 조정되어 전력 증폭기의 공급 전력을 조정하는 것을 특징으로 하는 무선 전력 전송장치.
  8. 제 1 항에 있어서, 상기 전력 증폭기는
    풀 브리지 구조인 것을 특징으로 하는 무선 전력 전송장치.
PCT/KR2015/008035 2014-08-06 2015-07-31 공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치 WO2016021881A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580042394.XA CN106575888A (zh) 2014-08-06 2015-07-31 能够调整谐振频率的磁共振无线功率传输装置
US15/502,062 US10476308B2 (en) 2014-08-06 2015-07-31 Magnetic resonance wireless power transmission device capable of adjusting resonance frequency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0101301 2014-08-06
KR1020140101301A KR101631669B1 (ko) 2014-08-06 2014-08-06 공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치

Publications (1)

Publication Number Publication Date
WO2016021881A1 true WO2016021881A1 (ko) 2016-02-11

Family

ID=55264094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008035 WO2016021881A1 (ko) 2014-08-06 2015-07-31 공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치

Country Status (4)

Country Link
US (1) US10476308B2 (ko)
KR (1) KR101631669B1 (ko)
CN (1) CN106575888A (ko)
WO (1) WO2016021881A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663806B (zh) * 2018-02-12 2019-06-21 富達通科技股份有限公司 感應式電源供應系統之供電模組及其訊號偵測方法
US10186971B1 (en) * 2016-03-01 2019-01-22 Navitas Semiconductor, Inc. Full bridge power amplifier with coupled ZVS tanks for wireless power transfer
KR101846954B1 (ko) 2016-06-13 2018-04-10 주식회사 맵스 임피던스 변화에 자동 조정 가능한 무선 전력 송신기
WO2017217716A1 (ko) * 2016-06-13 2017-12-21 주식회사 맵스 임피던스 변화에 자동 조정 가능한 무선 전력 송신기
TWI604678B (zh) * 2016-09-07 2017-11-01 國立暨南國際大學 Radio transmission system
US10432009B2 (en) * 2016-12-07 2019-10-01 Shenzhen Yichong Wireless Power Technology Co. Ltd Open loop tuning method for efficiency optimization in electric toothbrush wireless charging system
CN110168896B (zh) * 2017-02-04 2021-07-06 Abb瑞士股份有限公司 Dc到dc变流器和控制方法
US10910877B2 (en) * 2017-02-17 2021-02-02 Shenzhen Yichong Wireless Power Technology Co. Ltd Combined voltage and frequency tuning for efficiency optimization
WO2018169223A1 (ko) * 2017-03-13 2018-09-20 주식회사 맵스 자기 전압 제어형 정류장치를 가진 무선전력 시스템 및 그 통신방법
KR101948714B1 (ko) * 2017-03-13 2019-02-15 주식회사 맵스 자기 전압 제어형 정류장치를 가진 무선전력 시스템 및 그 통신방법
US11038374B2 (en) * 2017-04-18 2021-06-15 Infineon Technologies Austria Ag Flexible bridge amplifier for wireless power
KR101984140B1 (ko) * 2017-05-12 2019-05-30 주식회사 맵스 전하 펌프 기반의 무선전력 수신기
CN110601679A (zh) * 2018-06-12 2019-12-20 苏州芯算力智能科技有限公司 一种谐振系统的占空比调整装置及方法
JP7441829B2 (ja) * 2018-09-26 2024-03-01 ヤンク テクノロジーズ,インコーポレーテッド 並列同調増幅器
CN109462289B (zh) * 2018-09-30 2020-10-23 华为技术有限公司 一种无线充电接收电路、控制方法和终端设备
WO2020091042A1 (ja) * 2018-11-02 2020-05-07 ニチコン株式会社 無線給電装置
DE102018129315A1 (de) * 2018-11-21 2020-05-28 Bayerische Motoren Werke Aktiengesellschaft Schaltanordnung mit einstellbarer Kapazität
JP2023523717A (ja) * 2020-04-22 2023-06-07 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 電力レシーバのためのリアルタイム共振適合のための装置および方法
CN111806259A (zh) * 2020-05-26 2020-10-23 中国电力科学研究院有限公司 一种无线充电系统及充电保护方法
US20230327650A1 (en) * 2020-08-27 2023-10-12 Etherdyne Technologies, Inc. Continuously variable active reactance systems and methods
US20220149661A1 (en) * 2020-11-09 2022-05-12 Aira, Inc. Free-boost class-e amplifier
US11469724B2 (en) 2020-11-09 2022-10-11 Aira, Inc. Free-boost class-e amplifier
CN113203967B (zh) * 2021-04-27 2023-07-18 上海辰光医疗科技股份有限公司 一种化学腐蚀法调节磁共振射频线圈频率的方法
CN113472094A (zh) * 2021-08-13 2021-10-01 上海伏达半导体有限公司 无线充电发射装置、谐振电路、品质因数的检测方法及处理器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169137A1 (en) * 2010-12-29 2012-07-05 Gianpaolo Lisi Resonant system for wireless power transmission to multiple receivers
US20120287985A1 (en) * 2011-05-09 2012-11-15 Panasonic Corporation Wireless power and data transmission system, power transmitting apparatus, and power receiving apparatus
US20130020862A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Regulation control and energy management scheme for wireless power transfer
KR20140034982A (ko) * 2012-09-11 2014-03-21 삼성전자주식회사 무선 전력 전송 시스템의 공진기 제어 장치 및 방법
KR20140053282A (ko) * 2011-08-04 2014-05-07 위트리시티 코포레이션 튜닝 가능한 무선 전력 아키텍처

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023908A1 (en) * 1992-05-10 1993-11-25 Auckland Uniservices Limited A non-contact power distribution system
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
US9071063B2 (en) * 2010-09-02 2015-06-30 Advantest Corporation Wireless power receiving apparatus
US9178369B2 (en) * 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US9472958B2 (en) * 2012-07-18 2016-10-18 WIPQTUS Inc. Wireless power system
JP6382818B2 (ja) * 2012-09-11 2018-08-29 フィリップス アイピー ベンチャーズ ビー ヴィ 無線電力制御
CN104756391B (zh) * 2012-11-02 2018-03-02 丹麦科技大学 自激振荡谐振电力转换器
JP6395535B2 (ja) * 2014-03-31 2018-09-26 ローム株式会社 受電装置、送電装置及び非接触給電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169137A1 (en) * 2010-12-29 2012-07-05 Gianpaolo Lisi Resonant system for wireless power transmission to multiple receivers
US20120287985A1 (en) * 2011-05-09 2012-11-15 Panasonic Corporation Wireless power and data transmission system, power transmitting apparatus, and power receiving apparatus
US20130020862A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Regulation control and energy management scheme for wireless power transfer
KR20140053282A (ko) * 2011-08-04 2014-05-07 위트리시티 코포레이션 튜닝 가능한 무선 전력 아키텍처
KR20140034982A (ko) * 2012-09-11 2014-03-21 삼성전자주식회사 무선 전력 전송 시스템의 공진기 제어 장치 및 방법

Also Published As

Publication number Publication date
US20170229921A1 (en) 2017-08-10
CN106575888A (zh) 2017-04-19
US10476308B2 (en) 2019-11-12
KR101631669B1 (ko) 2016-06-17
KR20160017560A (ko) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2016021881A1 (ko) 공진 주파수 조정이 가능한 자기공명 무선 전력 전송장치
WO2014062023A1 (ko) 무선 전력 송수신 장치
KR101623838B1 (ko) 전력 수신장치 및 무선전력 전송시스템
US7248120B2 (en) Stacked transistor method and apparatus
JP6160880B2 (ja) 無線電力伝送装置
WO2016052865A1 (ko) 무선전력전송 시스템
WO2012111969A2 (en) Apparatus and method for high efficiency variable power transmission
EP3198704A1 (en) Wireless power transmitter and wireless power receiver
Shinoda et al. Voltage-boosting wireless power delivery system with fast load tracker by ΔΣ-modulated sub-harmonic resonant switching
TWI705639B (zh) 無線電力電路、無線接收電力的方法及接收器電路
TW201325009A (zh) 送電裝置、受電裝置、非接觸式電力傳送系統、及在非接觸式電力傳送系統的送電電力之控制方法
US11791662B2 (en) Wireless power receiver configurable for LDO or buck operation
Gougheri et al. Self-regulated reconfigurable voltage/current-mode inductive power management
US20190067997A1 (en) Wireless power transmitting apparatus and method thereof
Moon et al. Design of a 5-W power receiver for 6.78 MHz resonant wireless power transfer system with power supply switching circuit
WO2016153208A1 (ko) 무선 전력 수신기
EP3118963B1 (en) Wireless power receiver
US20220416582A1 (en) Bidirectional power transfer system, method of operating the same, and wireless power system
WO2018097474A1 (ko) 무선 전력 수신 기능 및 무선 신호 송신 기능을 포함하는 전자장치
US9819215B2 (en) Wireless charging system
US10852327B1 (en) Digitally self-calibrated zero-voltage switching (ZVS) detection system
WO2023055039A1 (ko) 임피던스 매칭 회로를 포함하는 무선 전력 송신 장치 및 무선 전력 송신 방법
WO2018169223A1 (ko) 자기 전압 제어형 정류장치를 가진 무선전력 시스템 및 그 통신방법
KR101948714B1 (ko) 자기 전압 제어형 정류장치를 가진 무선전력 시스템 및 그 통신방법
WO2013168919A1 (en) Apparatus and method for wirelessly receiving power, and apparatus and method for wirelessly transmitting power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830177

Country of ref document: EP

Kind code of ref document: A1