WO2016021670A1 - Transparent conductor, liquid crystal display device and method for producing transparent conductor - Google Patents

Transparent conductor, liquid crystal display device and method for producing transparent conductor Download PDF

Info

Publication number
WO2016021670A1
WO2016021670A1 PCT/JP2015/072298 JP2015072298W WO2016021670A1 WO 2016021670 A1 WO2016021670 A1 WO 2016021670A1 JP 2015072298 W JP2015072298 W JP 2015072298W WO 2016021670 A1 WO2016021670 A1 WO 2016021670A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductor
conductive layer
coating composition
layer
group
Prior art date
Application number
PCT/JP2015/072298
Other languages
French (fr)
Japanese (ja)
Inventor
達也 大堀
康功 久留島
義真 常田
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to CN201580042371.9A priority Critical patent/CN106575053A/en
Publication of WO2016021670A1 publication Critical patent/WO2016021670A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductor, a liquid crystal display device, and a method for producing a transparent conductor.
  • a display device used for a smartphone or the like has a layer configuration in which an adhesive layer, a conductive layer, and a polarizing layer are sequentially laminated on a glass substrate.
  • the conductive layer is formed using a material such as ITO (indium tin oxide) in order to prevent malfunction of the display device due to electromagnetic wave noise generated near the display device.
  • ITO indium tin oxide
  • polishing glass substrates by means such as chemical polishing and mechanical polishing.
  • scratches such as dimples may occur on the surface of the glass substrate by polishing.
  • an ITO layer is provided on a glass substrate with scratches such as dimples, the refractive index difference between the glass substrate and the ITO layer is large, so that the scratches are easily visible, and as a result, the display quality deteriorates.
  • productivity yield
  • production cost is increased.
  • the thickness of the glass substrate after polishing treatment is uneven, if an ITO layer is provided as it is, the in-plane variation in film thickness increases, which hinders further improvement in performance of display devices.
  • An object of this invention is to provide the transparent conductor which can form a conductive layer easily with uniform thickness, and was excellent in the point of productivity or manufacturing cost.
  • the present inventors have replaced the material used for the conductive layer with a coating composition containing a conductive polymer from ITO, which has been conventionally used, and further changed the coating composition to The present invention has found that by providing the conductive layer formed on the polarizing layer instead of the glass substrate, it is possible to easily form a conductive layer having a uniform thickness and solve the problems of productivity and manufacturing cost. Was completed.
  • the transparent conductor of the present invention is A transparent conductor in which an adhesive layer, a polarizing layer and a conductive layer are sequentially laminated on at least one surface of a polished glass substrate,
  • the conductive layer is formed using a coating composition containing a conductive polymer, and has a surface resistivity of 10 2 to 10 5 ⁇ / ⁇ .
  • the pencil hardness of the conductive layer is preferably H or higher.
  • the conductive layer preferably has a surface resistivity after holding for 1000 hours in an environment of 80 ° C. and a relative humidity of 85% that is 5 times or less of the surface resistivity before holding.
  • the coating composition preferably further contains at least one selected from the group consisting of alkoxysilane oligomers, (meth) acrylates, and melamine resins as a binder.
  • the coating composition has a boiling point of 100 ° C. or more as a conductivity improver, and has at least one sulfinyl group, at least one amide group or at least two hydroxyl groups in the molecule. It is preferable that the compound which has is further included.
  • the coating composition further includes a compound having a lactone ring substituted with two hydroxyl groups and / or a compound having two or more phenolic hydroxyl groups as a water-soluble antioxidant. It is preferable.
  • the liquid crystal display device of the present invention includes the transparent conductor of the present invention.
  • the liquid crystal display device of the present invention is preferably an IPS liquid crystal display device.
  • the method for producing a transparent conductor of the present invention uses (i) a coating composition containing a conductive polymer after forming an adhesive layer and a polarizing layer on at least one surface of a polished glass substrate. To further form a conductive layer, or (Ii) A glass substrate in which a conductive layer is formed on a polarizing layer using a coating composition containing a conductive polymer, and then the surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. It is characterized by being adhered to a material.
  • the coating composition of the present invention is used for forming a conductive layer in the transparent conductor of the present invention.
  • a conductive layer can be easily formed with a uniform thickness, and a transparent conductor excellent in productivity and manufacturing cost can be obtained.
  • electromagnetic wave noise is shielded, and at the same time, there is an effect of preventing dust from adhering to the polarizing layer and preventing damage to the polarizing layer during display device assembly. be able to.
  • the transparent conductor of the present invention is a transparent conductor in which an adhesive layer, a polarizing layer and a conductive layer are sequentially laminated on at least one surface of a polished glass substrate,
  • the conductive layer is formed using a coating composition containing a conductive polymer (hereinafter also simply referred to as a coating composition), and has a surface resistivity of 10 2 to 10 5 ⁇ / ⁇ .
  • the material for the glass substrate is not particularly limited, and commercially available materials can be used. Examples of commercially available materials include alkali-free glass, and aluminosilicate glass and aluminoborosilicate glass are particularly preferable.
  • the polishing treatment of the glass substrate is not particularly limited, and means usually used in this field such as chemical polishing and mechanical polishing can be used. Although it does not specifically limit as a method of chemical polishing, For example, the method etc. which immerse a commercially available glass base material in etching liquid, and melt
  • CMP chemical mechanical polishing
  • the arithmetic average roughness (Ra) of the surface of the glass substrate is not particularly limited, but is preferably 20 nm or less, more preferably 15 nm or less, and further preferably 10 nm or less. If the arithmetic average roughness (Ra) exceeds 20 nm, transparency may not be maintained. Although the minimum of arithmetic average roughness (Ra) is not specifically limited, For example, it is 0.7 nm. In the present invention, the arithmetic average roughness (Ra) means that measured by an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the thickness of the glass substrate after the polishing treatment is not particularly limited, but is preferably 10 to 10,000 ⁇ m, and more preferably 25 to 5000 ⁇ m. Further, the total light transmittance of the glass substrate is not particularly limited as long as it is 60% or more, but it is preferably 70% or more, and more preferably 80% or more.
  • the haze of a glass base material is not specifically limited, It is preferable that it is 3% or less, and it is more preferable that it is 1% or less. In addition, although the minimum of haze is not specifically limited, For example, it is 0.01%.
  • the pressure-sensitive adhesive layer is formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. It does not specifically limit as an adhesive, A conventionally well-known thing can be used, Specifically, for example, (meth) obtained by homopolymerizing or copolymerizing various (meth) acrylic acid ester monomers.
  • Acrylic resins ethylene / vinyl acetate copolymer resins, silicone resins such as silicone rubber having a dimethylsiloxane skeleton, polyurethane resins obtained by polyaddition of polyol and polyisocyanate, natural rubber, styrene-isoprene-styrene block Copolymer (SIS block copolymer), Styrene-butadiene-styrene block copolymer (SBS block copolymer), Styrene-ethylene / butylene-styrene block copolymer (SEBS block copolymer), Styrene-butadiene Rubber, polybutadiene, polyisoprene, polyisobuty Emissions, butyl rubber, rubber-based resins such as chloroprene rubber.
  • SIS block copolymer Styrene-butadiene-styrene block copolymer
  • SBS block copolymer Styrene-ethylene /
  • (meth) acrylic resins, silicon resins, and polyurethane resins which are particularly excellent in chemical stability, have a high degree of freedom in chemical structure design, and can easily adjust adhesive strength, are preferable. Furthermore, (meth) acrylic resin and polyurethane resin are also preferable in that they are particularly excellent in transparency.
  • a conventionally known method can be used. For example, a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive is applied to a glass substrate and crosslinked or heat-dried, or crosslinked or heat-dried. And a method of transferring the adhesive layer to the glass substrate.
  • the pressure-sensitive adhesive composition may contain a crosslinking agent in addition to the pressure-sensitive adhesive.
  • a method for applying the pressure-sensitive adhesive composition conventionally known methods can be used. Specifically, for example, a roll coating method, a gravure coating method, a reverse coating method, a roll brush method, a spray coating method, an air coating method, and the like. A knife coating method or the like can be used.
  • the polarizing layer is not particularly limited as long as it includes at least a polarizing film.
  • a polarizing plate can be used.
  • a polarizing plate is a member used in an image display device such as a liquid crystal display device (LCD) or an electroluminescence display device (ELD), and one having a transparent protective film on one side or both sides is generally used.
  • the structure is reinforced to prevent characteristic changes.
  • a conventionally known polarizing film can be used as the polarizing film.
  • a polarizing film in which a dichroic dye such as iodine is adsorbed and oriented can be used on a stretched polyvinyl alcohol-based resin film.
  • the polyvinyl alcohol resin can be obtained by saponifying a polyvinyl acetate resin.
  • the thickness of the polarizing film is not particularly limited, but is generally 5 to 80 um.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, diacetyl cellulose
  • examples thereof include cellulose polymers such as triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin), and polycarbonate polymers.
  • polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Examples include polymer blends. Among these, cellulose polymers such as triacetyl cellulose are preferable from the viewpoints of polarization characteristics and durability.
  • the transparent protective film which consists of the same polymer material may be used by the front and back, and the transparent protective film which consists of a different polymer material etc. may be used.
  • the thickness of the transparent protective film is not particularly limited, but is preferably 1 to 10,000 ⁇ m, and more preferably 5 to 5000 ⁇ m. Moreover, the total light transmittance of a transparent protective film is although it does not specifically limit, It is preferable that it is 60% or more, and it is more preferable that it is 80% or more.
  • the method for forming the polarizing layer is not particularly limited, and examples thereof include a method in which a transparent protective film is adhered to one or both sides of the polarizing film via an adhesive or the like.
  • a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer may be used.
  • an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl-based latex adhesive, a polyurethane-based adhesive examples include polyester adhesives and epoxy adhesives.
  • the conductive layer is formed using a coating composition containing a conductive polymer and has a surface resistivity of 10 2 to 10 5 ⁇ / ⁇ .
  • a coating composition containing a conductive polymer By forming the conductive layer using a coating composition containing a conductive polymer, adverse effects on the polarizing film that may be a concern when the ITO layer is formed by sputtering (heat load or pressure load during sputtering)
  • the conductive layer can be formed on the polarizing layer without worrying about the deterioration of the polarizing film due to the above.
  • the coating composition is not particularly limited as long as it contains a conductive polymer.
  • the conductive polymer is a compound for imparting conductivity to the conductive layer.
  • the conductive polymer is not particularly limited, and a conventionally known conductive polymer can be used. Specific examples thereof include polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof. Can be mentioned. These may be used alone or in combination of two or more. Among these, a conductive polymer including at least one thiophene ring in the molecule is preferable in that a molecule having high conductivity can be easily formed by including a thiophene ring in the molecule.
  • the conductive polymer may form a complex with a dopant such as polyanion.
  • poly (3,4-disubstituted thiophene) is more preferable because it is extremely excellent in conductivity and chemical stability.
  • the coating composition contains poly (3,4-disubstituted thiophene) or a complex of poly (3,4-disubstituted thiophene) and polyanion (dopant), it can be performed at a low temperature and in a short time. A conductive layer can be formed, and productivity is also excellent.
  • the polyanion is a conductive polymer dopant, and the content thereof will be described later.
  • the poly (3,4-disubstituted thiophene) is particularly preferably poly (3,4-dialkoxythiophene) or poly (3,4-alkylenedioxythiophene).
  • poly (3,4-dialkoxythiophene) or poly (3,4-alkylenedioxythiophene) the following formula (I):
  • R 1 and R 2 each independently represent a hydrogen atom or a C 1-4 alkyl group, or, when R 1 and R 2 are bonded, a C 1-4 alkylene group.
  • the C 1-4 alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group.
  • the C 1-4 alkylene group is not particularly limited, and examples thereof include a methylene group, 1,2-ethylene group, 1,3-propylene group, 1, 4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, etc. Can be mentioned. Among these, a methylene group, 1,2-ethylene group, and 1,3-propylene group are preferable, and a 1,2-ethylene group is more preferable.
  • a part of hydrogen may be substituted.
  • polythiophene having a C 1-4 alkylene group poly (3,4-ethylenedioxythiophene) is particularly preferable.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is preferably 500 to 100,000, more preferably 1,000 to 50,000, and most preferably 1500 to 20,000. When the weight average molecular weight is less than 500, the viscosity required for the coating composition cannot be ensured, and the conductivity of the conductive layer for the transparent conductor may be lowered.
  • the dopant is not particularly limited, but a polyanion is preferable.
  • the polyanion forms a complex by forming an ion pair with the polythiophene (derivative), and the polythiophene (derivative) can be stably dispersed in water.
  • a poly anion For example, carboxylic acid polymers (for example, polyacrylic acid, polymaleic acid, polymethacrylic acid, etc.), sulfonic acid polymers (for example, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyisoprene) Sulfonic acid etc.).
  • carboxylic acid polymers and sulfonic acid polymers are also copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable monomers such as aromatic vinyl compounds such as acrylates, styrene, vinyl naphthalene, etc. It may be. Among these, polystyrene sulfonic acid is particularly preferable.
  • the polystyrene sulfonic acid preferably has a weight average molecular weight of 20,000 to 500,000, and more preferably 40,000 to 200,000. If polystyrene sulfonic acid having a molecular weight outside this range is used, the dispersion stability of the polythiophene-based conductive polymer in water may decrease.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC).
  • the composite of the conductive polymer and the polyanion is preferably a composite of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid because it is particularly excellent in transparency and conductivity. .
  • the conductivity of the conductive polymer is not particularly limited, but is preferably 0.01 S / cm or more and 0.05 S / cm or more from the viewpoint of imparting sufficient conductivity to the conductive layer. More preferred.
  • the content of the conductive polymer in the coating composition is not particularly limited, but is preferably 0.01 to 50.0 mg / m 2 when the conductive layer is formed, and preferably 0.1 to 10.0 mg / m 2. Is more preferred. Is less than 0.01 mg / m 2, the existing ratio of the conductive polymer in the conductive layer is reduced, the conductivity of the conductive layer may not be sufficiently secured, whereas, the 50.0 mg / m 2 This is because if it exceeds, the proportion of the conductive polymer in the conductive layer increases, which may cause adverse effects on the strength and film formability of the conductive layer.
  • R 3 and R 4 each independently represent a hydrogen atom or a C 1-4 alkyl group, or, when R 3 and R 4 are bonded, C 1-4 alkylene
  • the C 1-4 alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group.
  • the C 1-4 alkylene group is not particularly limited, and examples thereof include a methylene group, 1,2-ethylene group, 1,3- Propylene group, 1,4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3 -Propylene groups, etc.
  • Methylene group, 1,2-ethylene, 1,3-propylene group are preferred, 1,2-ethylene group is more preferred alkyl groups .C 1-4, and an alkylene group of C 1-4, the A part of hydrogen may be substituted.
  • a monomer is oxidatively polymerized by a chemical polymerization method using various oxidizing agents. Since the chemical polymerization method is simple and capable of mass production, it is a method suitable for an industrial production method as compared with the conventional electrolytic polymerization method.
  • the oxidizing agent which uses a sulfonic acid compound as an anion, and makes an expensive transition metal a cation etc. is mentioned.
  • the expensive transition metal ions constituting this oxidant include Cu 2+ , Fe 3+ , Al 3+ , Ce 4+ , W 6+ , Mo 6+ , Cr 6+ , Mn 7+ and Sn 4+ .
  • Fe 3+ and Cu 2+ are preferable.
  • the oxidizing agent having a transition metal as a cation include FeCl 3 , Fe (ClO 4 ) 3 , K 2 CrO 7 , alkali perborate, potassium permanganate, copper tetrafluoroborate and the like. It is done.
  • the oxidizing agent other than the oxidizing agent having a transition metal as a cation include alkali persulfate, ammonium persulfate, and H 2 O 2 .
  • hypervalent compounds represented by hypervalent iodine reactants can be mentioned. These may be used alone or in combination of two or more.
  • the amount of dopant such as polyanion used is preferably 50 to 2000 parts by weight and more preferably 100 to 1000 parts by weight with respect to 100 parts by weight of 3,4-dialkoxythiophene.
  • a conductive polymer that has a low surface resistivity when formed into a conductive layer.
  • a conductive polymer capable of achieving a low surface resistivity can be produced by, for example, a method described in Japanese Patent No. 4077675.
  • the coating composition may optionally contain other components in addition to the conductive polymer as long as the object of the present invention is not impaired.
  • other components include, but are not limited to, binders, conductivity improvers, metal nanowires, solvents, crosslinking agents, catalysts, surfactants and / or leveling agents, water-soluble antioxidants, antifoaming agents, rheology A control agent, a thickener, a neutralizing agent, etc. are mentioned.
  • binder By mix
  • a binder For example, a polyester-type resin, a polyacrylic acid-type resin, a polyurethane, an epoxy resin, an acrylic resin, an alkoxysilane oligomer, a polyolefin-type resin, (meth) acrylate, a melamine resin etc. are mentioned. These may be used alone or in combination of two or more.
  • the polyester-based resin is not particularly limited as long as it is a polymer compound obtained by polycondensation of a compound having two or more carboxyl groups in the molecule and a compound having two or more hydroxyl groups.
  • examples thereof include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. These may be used alone or in combination of two or more.
  • the polyacrylic acid resin is not particularly limited, and examples thereof include polyacrylic acid and sodium polyacrylate. These may be used alone or in combination of two or more.
  • the polyurethane is not particularly limited as long as it is a polymer compound obtained by copolymerizing an isocyanate group-containing compound and a hydroxyl group-containing compound.
  • ester / ether polyurethane, ether polyurethane, polyester polyurethane , Carbonate polyurethane, acrylic polyurethane and the like may be used alone or in combination of two or more.
  • the epoxy resin is not particularly limited.
  • a bisphenol A type a bisphenol F type, a phenol novolak type, a tetrakis (hydroxyphenyl) ethane type or a tris (hydroxyphenyl) methane type which is a polyfunctional type having a large number of benzene rings.
  • Biphenyl type triphenolmethane type, naphthalene type, orthonovolak type, dicyclopentadiene type, aminophenol type, alicyclic epoxy resin, silicone epoxy resin and the like. These may be used alone or in combination of two or more.
  • the acrylic resin is not particularly limited, and examples thereof include (meth) acrylic resins and vinyl ester resins.
  • the acrylic resin may be a polymer containing a polymerizable monomer having an acid group such as a carboxyl group, an acid anhydride group, a sulfonic acid group, and a phosphoric acid group as a constituent monomer. Or a copolymer of a polymerizable monomer having an acid group and a copolymerizable monomer. These may be used alone or in combination of two or more.
  • the (meth) acrylic resin may be polymerized with a copolymerizable monomer as long as it contains a (meth) acrylic monomer as a main constituent monomer (for example, 50 mol% or more). It is sufficient that at least one of the (meth) acrylic monomer and the copolymerizable monomer has an acid group.
  • the (meth) acrylic resin include an acid group-containing (meth) acrylic monomer [(meth) acrylic acid, sulfoalkyl (meth) acrylate, sulfonic acid group-containing (meth) acrylamide, etc.] or a combination thereof.
  • (meth) acrylic resins (meth) acrylic acid- (meth) acrylic acid ester polymers (acrylic acid-methyl methacrylate copolymer, etc.), (meth) acrylic acid- (meth) acrylic acid An ester-styrene copolymer (such as acrylic acid-methyl methacrylate-styrene copolymer) is preferred.
  • the alkoxysilane oligomer is, for example, a high molecular weight alkoxysilane formed by condensation of alkoxysilane monomers represented by the following formula (III), and has a siloxane bond (Si—O—Si). Examples include oligomers having one or more in one molecule.
  • SiR 4 (III) (In the formula, R is hydrogen, a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, an alkyl group which may have a substituent, or a phenyl group which may have a substituent. At least one of R is an alkoxy group having 1 to 4 carbon atoms or a hydroxyl group)
  • the structure of the alkoxysilane oligomer is not particularly limited, and may be linear or branched. Moreover, as an alkoxysilane oligomer, the compound represented by Formula (III) may be used independently, and 2 or more types may be used together.
  • the weight average molecular weight of the alkoxysilane oligomer is not particularly limited, but is preferably more than 152 and 4000 or less, and more preferably 500 to 2500. Here, the weight average molecular weight is a value measured by gel permeation chromatography (GPC).
  • the polyolefin resin is not particularly limited, and examples thereof include chlorinated polypropylene, non-chlorinated polypropylene, chlorinated polyethylene, and non-chlorinated polyethylene. These may be used alone or in combination of two or more.
  • (meth) acrylate Although it does not specifically limit as (meth) acrylate, for example, polyfunctional (meth) acrylate, urethane (meth) acrylate resin, etc. are mentioned.
  • the polyfunctional (meth) acrylate include epoxy (meth) acrylate resin, bifunctional or higher polyester (meth) acrylate, polyether (meth) acrylate, carboxyl-modified reactive poly (meth) acrylate, and the like.
  • the urethane (meth) acrylate resin include compounds obtained by reacting a hydroxy group-containing (meth) acrylate and a polyisocyanate.
  • hydroxy group-containing (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, pentaerythritol triacrylate, diester Examples include pentaerythritol pentaacrylate and trimethylolpropane diacrylate. These may be used alone or in combination of two or more.
  • R 5 to R 10 are represented by H or CH 2 OR 11 , and R 11 represents H or a C 1-4 alkyl group.
  • the melamine resin in which all the substituents R 5 to R 10 are hydrogen atoms is an imino melamine resin
  • the melamine resin in which all the substituents R 5 to R 10 are CH 2 OH is a methylol melamine resin
  • the substituent R A melamine resin having a structure in which 5 to R 10 are all CH 2 OR 11 and R 11 is substituted with a C 1-4 alkyl group is a full ether type melamine resin.
  • Melamine resins having a structure in which two of the three substituents are mixed in one molecule are classified as iminomethylol type, methylol ether type or imino ether type, and the melamine resin in which all are mixed is the iminomethylol ether type.
  • R 5 to R 10 are represented by CH 2 OR 11 and R 11 is a C 1-4 alkyl group
  • examples of the C 1-4 alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the melamine resin may be an oligomer self-condensed with formula (III) as a basic skeleton. These melamine resins may be used alone or in combination of two or more.
  • the coating composition preferably contains at least one selected from the group consisting of alkoxysilane oligomers, (meth) acrylates, and melamine resins as a binder.
  • alkoxysilane oligomers preferably contains at least one selected from the group consisting of alkoxysilane oligomers, (meth) acrylates, and melamine resins as a binder.
  • the transparent conductor of the present invention is characterized in that the conductive layer is provided on the polarizing layer.
  • the conductive layer is arranged farthest from the glass base material, compared with the conventional layer configuration, It will be placed in an environment that is susceptible to external influences such as moisture, oxygen, and ultraviolet rays in the atmosphere.
  • a conductive polymer is used as the conductive component of the conductive layer.
  • the conductive polymer is an organic compound, resistance to environmental factors such as heat, atmospheric moisture, oxygen, and ultraviolet rays is particularly low. Normally, the conductivity of the conductive layer deteriorates with time due to these environmental factors.
  • a binder particularly at least one binder selected from the group consisting of alkoxysilane oligomers, (meth) acrylates and melamine resins, is used.
  • the content is not particularly limited, but is preferably 80% by weight or less, more preferably 60% by weight or less in the coating composition.
  • the content exceeds 80% by weight, the dispersibility is deteriorated, the viscosity becomes too high, and the applicability of the coating composition may be lowered.
  • Conductivity improver By adding a conductivity improver to the coating composition, the conductivity of the conductive layer formed using the coating composition can be improved. In addition, when using a conductivity improver, compared to the case without using a conductivity improver, the amount of the conductive polymer can be reduced while maintaining the surface resistivity. As a result, there is an advantage that transparency can be improved. is there. In the transparent conductor of the present invention, in order to obtain sufficient electromagnetic wave noise shielding performance in the conductive layer, it is preferable to add a conductivity improver to the coating composition.
  • the coating composition for forming a conductive layer in the transparent conductor of the present invention has a boiling point of 100 ° C. or higher as a conductivity improver, It is preferable to include a compound having at least one sulfinyl group, at least one amide group or at least two hydroxyl groups.
  • the compound having a boiling point of 100 ° C. or more and having at least one sulfinyl group, at least one amide group or at least two hydroxyl groups in the molecule is not particularly limited, and examples thereof include the following compounds: A compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group in the molecule; A compound having a boiling point of 100 ° C. or higher and having at least one amide group in the molecule; A compound having a boiling point of 100 ° C. or higher and having at least two hydroxyl groups in the molecule; A compound having a boiling point of 100 ° C.
  • Examples of the compound having a boiling point of 100 ° C. or more and having at least one sulfinyl group, at least one amide group or at least two hydroxyl groups in the molecule include dimethyl sulfoxide, N, N-dimethylacetamide, N— Methylformamide, N, N-dimethylformamide, acetamide, N-ethylacetamide, N-phenyl-N-propylacetamide, benzamide, N-methylpyrrolidone, ⁇ -lactam, ⁇ -lactam, ⁇ -lactam, ⁇ -caprolactam, lauro Lactam, ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, ⁇ -thiodiglycol, triethylene glycol, tripropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1 , 3-butanediol, 1,6-hexanediol,
  • polythiophene-based conductive polymers are usually often used as a complex with a dopant (for example, poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid. Complex).
  • a dopant for example, poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid. Complex.
  • polythiophene-based conductive polymers are used in the form of aqueous dispersions.
  • polythiophene exhibits strong hydrophobicity, it reacts with hydrophilic solvents (water or a mixed solvent of water and organic solvents). It is said that the polythiophene molecule exists as a core-shell structure in which a polythiophene molecule is a nucleus (core) and a dopant is a shell (shell).
  • core nucleus
  • a dopant is a shell
  • the hydrophilicity of the entire system including the conductive polymer is lowered (hydrophobicity is increased), so the repulsive action between the conductive polymer and the solvent is weakened.
  • the core-shell structure tends to collapse.
  • the above-mentioned boiling point is 100 ° C. or higher and the compound has at least one sulfinyl group in the molecule, the boiling point is 100 ° C.
  • the conductivity increases, while the transparency tends to decrease due to coloring, but the conductivity is improved when achieving a certain level of conductivity.
  • an agent it has an advantage that transparency can be improved while ensuring conductivity as compared with the case where the agent is not used.
  • the content is not particularly limited, but is preferably 0.01 to 100,000 parts by weight, preferably 0.1 to 10,000 parts by weight based on 100 parts by weight of the solid content of the conductive polymer. Part by weight is more preferred, and 1 to 5000 parts by weight is even more preferred.
  • Water-soluble antioxidant By adding a water-soluble antioxidant to the coating composition, it is possible to improve the moisture and heat resistance of the conductive layer formed using the coating composition, and to moderate the progress of the conductive deterioration of the conductive layer over time. it can.
  • the water-soluble antioxidant is not particularly limited, and examples thereof include a reducing water-soluble antioxidant and a non-reducing water-soluble antioxidant. These may be used alone or in combination of two or more.
  • reducing water-soluble antioxidants include L-ascorbic acid, sodium L-ascorbate, potassium L-ascorbate, D (-)-isoascorbic acid (erythorbic acid), sodium erythorbate, potassium erythorbate
  • a compound having a lactone ring substituted with two hydroxyl groups such as: maltose, lactose, cellobiose, xylose, arabinose, glucose, fructose, galactose, mannose and other monosaccharides or disaccharides (excluding sucrose); Flavonoids such as rutin, myricetin, quercetin, kaempferol, sanmerin (registered trademark) Y-AF; gallic acid, methyl gallate, propyl gallate, tannic acid, curcumin, rosmarinic acid, chlorogenic acid, hydroquinone, 3,4,5 -bird Compounds having two or more phenolic hydroxyl group such as Dorokishi
  • Non-reducing water-soluble antioxidants include, for example, oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate.
  • oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate. The compound which absorbs the ultraviolet-ray which causes this is mentioned.
  • L-ascorbic acid sodium L-ascorbate, L-ascorbic acid More preferred is at least one selected from the group consisting of potassium, D ( ⁇ )-isoascorbic acid, gallic acid, methyl gallate, propyl gallate and tannic acid.
  • the conductive polymer when the conductive polymer is an aqueous dispersion, the conductive polymer has a core-shell structure, resulting in a problem that sufficient conductivity is not exhibited.
  • the core-shell structure of the conductive polymer has a polythiophene (in the case of using a complex of polythiophene and dopant as the conductive polymer) that is important for achieving conductivity, and the surrounding oxidation component ( It also plays a role in protecting against oxygen derived from the atmosphere and radicals generated by heat and ultraviolet rays.
  • the transparent conductor of the present invention has a boiling point of 100 ° C. or higher in the molecule.
  • Conductivity such as a compound having at least one sulfinyl group, a compound having a boiling point of 100 ° C. or more and having at least one amide group in the molecule, and a compound having a boiling point of 100 ° C. or more and having two or more hydroxyl groups in the molecule
  • An improver is preferably used.
  • the transparent conductor of the present invention since the conductive layer using the conductive polymer is provided on the polarizing layer, the influence of the decrease in conductivity due to the oxidizing component is significant, and no conductivity improver is used. Compared to the case, the decrease in conductivity proceeds rapidly. Therefore, in the transparent conductor of the present invention, the use of a water-soluble antioxidant is particularly effective in moderately reducing the conductivity of the conductive layer and maintaining a certain level of conductivity over a long period of time.
  • the above-mentioned compound having a lactone ring substituted with two hydroxyl groups and / or a compound having two or more phenolic hydroxyl groups are common in that they have higher acidity than other water-soluble antioxidants.
  • the above-mentioned conductivity improvers a compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group in the molecule, a compound having a boiling point of 100 ° C.
  • the transparent conductor of the present invention must have high transparency and good appearance.
  • water-soluble antioxidants compounds having a lactone ring substituted with two hydroxyl groups, phenolic hydroxyl groups A compound having two or more of them is preferably used because it interacts with the polythiophene-based conductive polymer and the binder, so that it easily stays in the conductive layer and hardly deteriorates in appearance due to bleeding out.
  • the coating composition contains a water-soluble antioxidant
  • its content is not particularly limited, but is preferably 0.001 to 500 parts by weight, preferably 0.01 to 500 parts by weight with respect to 100 parts by weight of the solid content of the conductive polymer. 300 parts by weight are more preferable, and 0.05 to 200 parts by weight are even more preferable.
  • Metal nanowires By mix
  • the solvent is not particularly limited.
  • water alcohols such as methanol, ethanol, 2-propanol, and 1-propanol
  • ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol
  • ethylene glycol monomethyl Glycol ethers such as ether, diethylene glycol monomethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether
  • Glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate
  • propylene glycol, dipropylene glycol such as tripropylene glycol Propylene glycols
  • propylene such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene
  • the solvent is preferably water, an organic solvent, or a mixed solvent of water and an organic solvent.
  • the content of water is not particularly limited, but is preferably 70% by weight or less, and more preferably 50% by weight or less in the coating composition. When content exceeds 70 weight%, a viscosity will fall and the applicability
  • solvent does not remain in the conductive layer formed using the coating composition.
  • solvent those in which all components of the coating composition are completely dissolved (ie, “solvent”) and those in which insoluble components are dispersed (ie, “dispersion medium”). Are described as “solvents”.
  • Crosslinking agent By blending a crosslinking agent, the binder can be crosslinked, and the strength of the conductive layer formed using the coating composition can be further improved.
  • a crosslinking agent For example, crosslinking agents, such as a melamine type, a polycarbodiimide type, a polyoxazoline type, a polyepoxy type, a polyisocyanate type, a polyacrylate type, are mentioned. These crosslinking agents may be used independently and may use 2 or more types together.
  • the content is not particularly limited, but is preferably 30% by weight or less, more preferably 20% by weight or less in the coating composition.
  • the catalyst for crosslinking the binder is not particularly limited, and examples thereof include a photopolymerization initiator and a thermal polymerization initiator.
  • the coating composition contains an acrylic resin as a binder, it is preferable to use a photopolymerization initiator.
  • the leveling property of the coating composition can be improved, and a uniform conductive layer can be formed by using such a coating composition.
  • thickener By blending a thickener in the coating composition, the viscosity and rheological properties of the coating composition can be adjusted.
  • a thickener For example, polyacrylic acid-type resin, a cellulose ether resin, polyvinylpyrrolidone, a polyurethane, a carboxy vinyl polymer, polyvinyl alcohol etc. are mentioned.
  • thickeners examples include CARBOPOL ETD-2623 (crosslinkable polyacrylic acid, manufactured by BF Goodrich), GE-167 (N-vinylacetamide and acrylic acid copolymer, Showa Denko Co., Ltd.) Company), Jurimer (polyacrylic acid, manufactured by Nippon Pure Chemicals Co., Ltd.), polyvinylpyrrolidone K-90 (polyvinylpyrrolidone, manufactured by Nippon Shokubai Co., Ltd.), and the like. These may be used alone or in combination of two or more.
  • the conductive layer is formed on the polarizing layer. More specifically, the conductive layer is formed by applying a coating composition on the polarizing layer. Since the coating composition has a high affinity for the film constituting the polarizing layer, a more uniform conductive layer can be formed. Further, since the coating composition is applied to the film, it can be produced in a roll-to-roll manner, the productivity is improved, and the display device can be easily increased in area.
  • a method for forming the conductive layer using the coating composition is not particularly limited, and examples thereof include a method in which the coating composition is applied on the polarizing layer, followed by heat treatment, light irradiation treatment, and the like.
  • a method for applying the coating composition on the polarizing layer is not particularly limited, and examples thereof include a roll coating method, a bar coating method, a dip coating method, a spin coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor.
  • a coating method or the like can be used. Among these, the spray coating method is particularly preferable.
  • a layer such as a primer layer may be formed on the polarizing layer in advance, and the coating composition may be applied on the layer.
  • coat a coating composition after giving surface treatment to the surface of a polarizing layer beforehand as needed.
  • the surface treatment is not particularly limited, and examples thereof include corona treatment, plasma treatment, itro treatment, and flame treatment.
  • a conductive layer can be formed on the polarizing layer by subjecting the coating composition applied on the polarizing layer to a heat treatment, a light irradiation treatment, or the like.
  • the heat treatment is not particularly limited and may be performed by a known method.
  • the heat treatment may be performed using a blow oven, an infrared oven, a vacuum oven, or the like.
  • a coating composition contains a solvent
  • a solvent is removed by heat processing.
  • heat processing is not specifically limited, It is preferable to perform on 150 degreeC or less temperature conditions.
  • the material of the base material to be used is limited.
  • a base material made of a material generally used for a transparent electrode film such as a PET film, a polycarbonate film, or an acrylic film cannot be used. .
  • the temperature of the heat treatment is preferably 50 to 140 ° C, more preferably 60 to 130 ° C.
  • the treatment time for the heat treatment is not particularly limited, but is preferably 0.1 to 60 minutes, more preferably 0.5 to 30 minutes.
  • the light irradiation treatment is not particularly limited, but mainly ultraviolet rays, visible light, electron beams, ionizing radiation, etc. are used.
  • ultraviolet rays emitted from a light source such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, or a metal halide lamp can be used.
  • the irradiation amount of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the pencil hardness of the conductive layer is not particularly limited, but is preferably H or more. The reason is that sufficient film resistance can be obtained when a transparent conductor is used.
  • the thickness of the conductive layer is not particularly limited, but is preferably 0.01 to 1.0 ⁇ m, and more preferably 0.05 to 0.5 ⁇ m. The reason is that transparency, pencil strength, and moist heat resistance can be maintained while having sufficient electromagnetic wave noise shielding properties.
  • the surface resistivity of the conductive layer is not particularly limited as long as it is 10 2 to 10 5 ⁇ / ⁇ , but it is preferably 100 to 3000 ⁇ / ⁇ .
  • the surface resistivity exceeds 10 5 ⁇ / ⁇ , the conductive layer may not exhibit sufficient electromagnetic wave noise shielding properties.
  • the conductive layer preferably has a surface resistivity after holding for 1000 hours in an environment of 80 ° C. and a relative humidity of 85% that is not more than 5 times the surface resistivity before holding. If the surface resistivity after holding exceeds 5 times the surface resistivity before holding, electromagnetic wave noise may not be shielded.
  • the transparent conductor of the present invention may have a structure in which other layers having various functions are arbitrarily laminated in addition to the glass substrate, the adhesive layer, the polarizing layer, and the conductive layer described above. Although it does not specifically limit as another layer, For example, a hard-coat layer, a glare-proof layer, a low reflection layer, etc. are mentioned. The order of stacking these other layers is not particularly limited as long as the function as the transparent conductor is not impaired.
  • the total light transmittance of the transparent conductor of the present invention is not particularly limited, but is preferably 50% or more, more preferably 60% or more, and further preferably 80% or more. On the other hand, the upper limit is 100%.
  • the haze of the transparent conductor of the present invention is not particularly limited, but is preferably 1.0% or less, more preferably 0.8% or less, and further preferably 0.5% or less.
  • the transparent conductor of the present invention is suitably used for a liquid crystal display device, particularly an IPS liquid crystal display device.
  • the liquid crystal display device of the present invention includes the transparent conductor of the present invention. Since the liquid crystal display device of the present invention includes the transparent conductor of the present invention, the manufacturing cost and time can be suppressed, and the occurrence of problems due to charging is small.
  • the liquid crystal display device of the present invention is preferably an IPS liquid crystal display device. This is because the influence of electromagnetic noise on the operation of the display device, particularly the IPS liquid crystal, is significant.
  • the method for producing the transparent conductor of the present invention is as follows. (I) after forming an adhesive layer and a polarizing layer on at least one surface of a polished glass substrate, further forming a conductive layer using a coating composition containing a conductive polymer, or (Ii) A glass substrate in which a conductive layer is formed on a polarizing layer using a coating composition containing a conductive polymer, and then the surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. It is characterized by being adhered to a material.
  • ⁇ Manufacturing method (i)> an adhesive layer and a polarizing layer are formed on at least one surface of a polished glass substrate, and then a conductive layer is further formed using a coating composition containing a conductive polymer.
  • the method for forming the adhesive layer, the method for forming the polarizing layer, and the method for forming the conductive layer using the coating composition are all as described above.
  • ⁇ Manufacturing method (ii)> After forming a conductive layer using a coating composition containing a conductive polymer on a polarizing layer, a surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. Adhere to the substrate.
  • the method for forming the conductive layer on the polarizing layer using the coating composition is as described above.
  • As a method of adhering the surface of the polarizing layer opposite to the surface on which the conductive layer is formed to the polished glass substrate through the adhesive layer it is common to perform adhesion by pressing, but if necessary Heat may be applied.
  • the transparent conductor of the present invention can be produced easily and inexpensively with a small number of steps.
  • Materials used 1-1 Glass substrate / glass substrate subjected to polishing treatment (produced by chemically polishing non-alkali glass (Corning, EAGLE XG) with an etching solution)
  • Adhesive layer (adhesive) ⁇ Acrylic resin (Nagase ChemteX, SG790) (Crosslinking agent) ⁇ Isocyanate compound (Nihon Polyurethane, Coronate HL)
  • Polarizing layer transparent protective film
  • Triacetyl cellulose (TAC) film Konica Minolta, KC8UX2MW, thickness 80 ⁇ m
  • Cycloolefin resin (COP) film manufactured by Nippon Zeon Co., Ltd., ZEONOR, thickness 60 ⁇ m
  • Polyvinyl alcohol film Nippon Gosei Co., Ltd., thickness 75 ⁇ m
  • UV curable epoxy adhesive made by ADEKA, KR series
  • Conductive layer conductive polymer
  • PEDOT / PSS manufactured by Heraeus, Clevios PH1000
  • Binder ⁇ Polyester resin (manufactured by Nagase ChemteX Corporation, Gabsen ES-210) ⁇ Alkoxysilane oligomer (manufactured by Fuso Chemical Industry Co., Ltd., N-POS) ⁇ Alkoxysilane oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-402) ⁇ (Meth) acrylate (Daiichi Kogyo Seiyaku Co., Ltd., New Frontier R-1150D) ⁇ Acrylic resin (Toagosei Co., Ltd., Jurimer AT-510, solid content 30%) ⁇ Melamine resin (Mitsui Cyanamid Co., Ltd., Cymel 300) (Conductivity improver) ⁇ Ethylene glycol (Wako Pure Chemical Industries, Ltd.
  • SR Surface resistivity
  • the surface resistivity after holding is the surface resistivity before holding. 3 to 1.5 times greater than or equal to 2.0 and less than or equal to 3: Surface resistivity after holding is greater than 2.0 times and less than or equal to 3.0 times surface resistivity before holding 2: Surface after holding Resistivity is more than 3.0 times and less than 5.0 times the surface resistivity before holding 1: The surface resistivity after holding is more than 5.0 times the surface resistivity before holding
  • Pencil hardness The pencil hardness of the conductive layer was measured using a pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) according to the test method of JIS-K5600-5-4.
  • Electromagnetic wave noise shielding properties were measured in the frequency range of 1 to 100 MHz by the KEC method and evaluated according to the following criteria.
  • Adhesion cross cut test
  • JIS K 5400 JIS K 5400, a cross cut test was performed and evaluated according to the following criteria. 5: The result of the cross cut test is 10 points 4: The result of the cross cut test is 9 points 3: The result of the cross cut test is 8 points 2: The result of the cross cut test is 7 points 1: Cross-cut test result is 6 points or less
  • Examples 1 to 3, 5, 6, 8 to 53 Each component was mixed in the weight ratio described in Tables 1 to 4 to prepare an adhesive composition.
  • the obtained pressure-sensitive adhesive composition was applied to one side of a polished glass substrate with an applicator so that the film thickness after drying was 15 ⁇ m, and dried at 120 ° C. for 2 minutes. An adhesive layer was formed on top.
  • stretching a polyvinyl alcohol film 5 times in iodine aqueous solution it was dried at 50 degreeC for 4 minute (s), and the polarizing film was produced.
  • TAC triacetyl cellulose
  • This polarizing layer was bonded to the aforementioned adhesive layer. Furthermore, each component was mixed in the weight ratios described in Tables 1 to 4 to prepare a coating composition, and then applied onto the polarizing layer prepared above using a bar coater (manufactured by Yasuda Seiki Seisakusho) A conductive layer was formed by heat treatment at 100 ° C. for 1 minute using a drier (Tokyo Rika Kikai Co., Ltd., WFO-401 type) to obtain a transparent conductor.
  • a bar coater manufactured by Yasuda Seiki Seisakusho
  • Example 4 A transparent conductor was obtained in the same manner as in Example 1 except that a cycloolefin resin (COP) film was used instead of the TAC film.
  • COP cycloolefin resin
  • Example 7 The polyvinyl alcohol film was stretched 5 times in an aqueous iodine solution and then dried at 50 ° C. for 4 minutes to produce a polarizing film.
  • a triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer.
  • TAC triacetyl cellulose
  • a conductive layer was formed on the polarizing layer by heat treatment at 100 ° C.
  • the transparent conductor was obtained by bonding the polarizing layer to the glass substrate via the adhesive layer on the surface opposite to the surface on which the conductive layer was formed.
  • Example 1 An ITO layer was formed by sputtering ITO on the polished glass substrate. Moreover, each component was mixed by weight ratio described in Table 4, and an adhesive composition was produced, it apply
  • a triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer. Furthermore, this polarizing layer was bonded to the above-mentioned adhesive layer to obtain a transparent conductor.
  • TAC triacetyl cellulose
  • Example 2 A transparent conductor was obtained in the same manner as in Example 1 except that the coating composition obtained by mixing each component at the weight ratio shown in Table 4 was used.
  • Example 3 A coating composition obtained by mixing each component at a weight ratio shown in Table 4 on a polished glass substrate was applied using a slit coater, and a blown constant temperature dryer (manufactured by Tokyo Rika Kikai Co., Ltd.). , WFO-401 type) was heated at 100 ° C. for 1 minute to form a conductive layer. Moreover, each component was mixed by the weight ratio described in Table 4, the adhesive composition was produced, and it apply
  • a triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer.
  • a transparent conductor was obtained by pasting this polarizing layer on the adhesive layer described above.
  • the surface resistivity (SR) was measured by the above-described method, and the moisture resistance, pencil hardness, in-plane variation, electromagnetic wave noise were measured. The shielding property, appearance of the transparent conductor, adhesion, and weather resistance were evaluated. The results are shown in Tables 1 to 4.
  • Tables 1 to 4 For reference, the total light transmittance (without glass substrate, adhesive layer and polarizing film) is applied on the transparent protective film using a bar coater (manufactured by Yasuda Seiki Seisakusho).
  • Tables 1 to 4 also show the results of measuring Tt) and haze using a haze computer (HGM-2B, manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7150.

Abstract

The purpose of the present invention is to provide a transparent conductor which is excellent in terms of productivity and production cost, and wherein a conductive layer is able to be easily formed with a uniform thickness. A transparent conductor according to the present invention is obtained by sequentially laminating, on at least one surface of a polished glass base, an adhesive layer, a polarizing layer and a conductive layer. The conductive layer is formed using a coating composition containing a conductive polymer, and has a surface resistivity of 102-105 Ω/□.

Description

透明導電体、液晶表示装置及び透明導電体の製造方法Transparent conductor, liquid crystal display device, and method of manufacturing transparent conductor
本発明は、透明導電体、液晶表示装置及び透明導電体の製造方法に関する。 The present invention relates to a transparent conductor, a liquid crystal display device, and a method for producing a transparent conductor.
従来、スマートフォン等に用いられる表示デバイスは、ガラス基材上に粘着層、導電層及び偏光層が順に積層された層構成となっている。このうち、導電層は、表示デバイス近傍で発生する電磁波ノイズに起因する表示デバイスの動作不良を防ぐために、ITO(酸化インジウムスズ)といった材料を用いて形成される。近年、化学研磨や機械研磨といった手段によりガラス基材を研磨処理することで、表示デバイスのさらなる薄型化・軽量化が進められている。 Conventionally, a display device used for a smartphone or the like has a layer configuration in which an adhesive layer, a conductive layer, and a polarizing layer are sequentially laminated on a glass substrate. Among these, the conductive layer is formed using a material such as ITO (indium tin oxide) in order to prevent malfunction of the display device due to electromagnetic wave noise generated near the display device. In recent years, further reduction in thickness and weight of display devices has been promoted by polishing glass substrates by means such as chemical polishing and mechanical polishing.
一方で、ガラス基材表面には研磨処理することによりディンプル等の傷が生じることがある。ディンプル等の傷が生じたガラス基材上にITO層を設けた場合、ガラス基材とITO層との屈折率差が大きいために傷が視認されやすい状態となり、その結果、表示品質が低下することがあった。一般に、表示品質を工業的に一定水準に維持するために、傷が生じたガラス基材は廃棄されているが、生産性(歩留まり)が低下したり生産コストが増大する問題が生じていた。
また、研磨処理した後のガラス基材は厚みが不均一となるため、そのままITO層を設けた場合、膜厚の面内バラツキが大きくなる結果、表示デバイスのさらなる高性能化を図る上で障害となっていた。
さらに、通常、ITO層を設ける場合スパッタリングが行われるが、スパッタリングの際に熱負荷が掛かるため基材が耐熱性のものに限定される、スパッタリングに大掛かりな装置を要するため製造コストが高い、といった問題が生じていた。
このような問題に対して、例えば、ガラス基材と透明導電膜との間に屈折率調節層を積層することで傷を視認されにくくすることが試みられているが(例えば、特許文献1)、屈折率調節層を別に設ける必要があるため、未だ製造コストを低減する余地が残されていた。
On the other hand, scratches such as dimples may occur on the surface of the glass substrate by polishing. When an ITO layer is provided on a glass substrate with scratches such as dimples, the refractive index difference between the glass substrate and the ITO layer is large, so that the scratches are easily visible, and as a result, the display quality deteriorates. There was a thing. In general, in order to maintain the display quality at a certain level industrially, the scratched glass substrate is discarded, but there has been a problem that productivity (yield) is reduced and production cost is increased.
In addition, since the thickness of the glass substrate after polishing treatment is uneven, if an ITO layer is provided as it is, the in-plane variation in film thickness increases, which hinders further improvement in performance of display devices. It was.
Furthermore, sputtering is usually performed when an ITO layer is provided. However, since a thermal load is applied during sputtering, the base material is limited to a heat-resistant material, and manufacturing costs are high because a large apparatus is required for sputtering. There was a problem.
For such a problem, for example, an attempt has been made to make the scratches less visible by laminating a refractive index adjusting layer between a glass substrate and a transparent conductive film (for example, Patent Document 1). However, since it is necessary to provide a refractive index adjusting layer separately, there is still room for reducing the manufacturing cost.
特開2013-114086号公報JP 2013-114086 A
本発明は、均一な厚みで導電層を容易に形成可能であり、かつ、生産性や製造コストの点で優れた透明導電体を提供することを目的とする。 An object of this invention is to provide the transparent conductor which can form a conductive layer easily with uniform thickness, and was excellent in the point of productivity or manufacturing cost.
本発明者らは、上記課題を解決するため鋭意検討した結果、導電層に用いる材料を従来より用いられるITOから導電性高分子を含むコーティング組成物に置き換えた上で、さらに、コーティング組成物を用いて形成する導電層をガラス基材上でなく、偏光層上に設けることにより、均一な厚みの導電層を容易に形成しつつ、生産性や製造コストの問題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have replaced the material used for the conductive layer with a coating composition containing a conductive polymer from ITO, which has been conventionally used, and further changed the coating composition to The present invention has found that by providing the conductive layer formed on the polarizing layer instead of the glass substrate, it is possible to easily form a conductive layer having a uniform thickness and solve the problems of productivity and manufacturing cost. Was completed.
すなわち、本発明の透明導電体は、
研磨処理されたガラス基材の少なくとも一方の面に、粘着層、偏光層及び導電層が順に積層された透明導電体であって、
導電層は、導電性高分子を含むコーティング組成物を用いて形成され、表面抵抗率が10~10Ω/□であることを特徴とする。
That is, the transparent conductor of the present invention is
A transparent conductor in which an adhesive layer, a polarizing layer and a conductive layer are sequentially laminated on at least one surface of a polished glass substrate,
The conductive layer is formed using a coating composition containing a conductive polymer, and has a surface resistivity of 10 2 to 10 5 Ω / □.
本発明の透明導電体において、導電層の鉛筆硬度がH以上であることが好ましい。 In the transparent conductor of the present invention, the pencil hardness of the conductive layer is preferably H or higher.
本発明の透明導電体において、導電層は、80℃、相対湿度85%の環境に1000時間保持した後の表面抵抗率が、保持する前の表面抵抗率の5倍以下であることが好ましい。 In the transparent conductor of the present invention, the conductive layer preferably has a surface resistivity after holding for 1000 hours in an environment of 80 ° C. and a relative humidity of 85% that is 5 times or less of the surface resistivity before holding.
本発明の透明導電体において、コーティング組成物は、バインダーとして、アルコキシシランオリゴマー、(メタ)アクリレート及びメラミン樹脂からなる群より選択される少なくとも1つをさらに含むことが好ましい。 In the transparent conductor of the present invention, the coating composition preferably further contains at least one selected from the group consisting of alkoxysilane oligomers, (meth) acrylates, and melamine resins as a binder.
本発明の透明導電体において、コーティング組成物は、導電性向上剤として、沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、少なくとも1つのアミド基又は少なくとも2つのヒドロキシル基を有する化合物をさらに含むことが好ましい。 In the transparent conductor of the present invention, the coating composition has a boiling point of 100 ° C. or more as a conductivity improver, and has at least one sulfinyl group, at least one amide group or at least two hydroxyl groups in the molecule. It is preferable that the compound which has is further included.
本発明の透明導電体において、コーティング組成物は、水溶性酸化防止剤として、2個の水酸基で置換されたラクトン環を有する化合物、及び/又は、フェノール性水酸基を2個以上有する化合物をさらに含むことが好ましい。 In the transparent conductor of the present invention, the coating composition further includes a compound having a lactone ring substituted with two hydroxyl groups and / or a compound having two or more phenolic hydroxyl groups as a water-soluble antioxidant. It is preferable.
本発明の液晶表示装置は、本発明の透明導電体を備えたことを特徴とする。 The liquid crystal display device of the present invention includes the transparent conductor of the present invention.
本発明の液晶表示装置は、IPS方式液晶表示装置であることが好ましい。 The liquid crystal display device of the present invention is preferably an IPS liquid crystal display device.
本発明の透明導電体の製造方法は、(i)研磨処理されたガラス基材の少なくとも一方の面上に、粘着層及び偏光層を形成した後、導電性高分子を含むコーティング組成物を用いて導電層をさらに形成するか、又は、
(ii)偏光層上に導電性高分子を含むコーティング組成物を用いて導電層を形成した後、導電層が形成された面とは反対の面を粘着層を介して研磨処理されたガラス基材に接着させることを特徴とする。
The method for producing a transparent conductor of the present invention uses (i) a coating composition containing a conductive polymer after forming an adhesive layer and a polarizing layer on at least one surface of a polished glass substrate. To further form a conductive layer, or
(Ii) A glass substrate in which a conductive layer is formed on a polarizing layer using a coating composition containing a conductive polymer, and then the surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. It is characterized by being adhered to a material.
本発明のコーティング組成物は、本発明の透明導電体における導電層を形成するために用いられることを特徴とする。 The coating composition of the present invention is used for forming a conductive layer in the transparent conductor of the present invention.
本発明により、均一な厚みで導電層を容易に形成可能であり、かつ、生産性や製造コストの点で優れた透明導電体を得ることができる。加えて、偏光層上に導電層を設けることにより、電磁波ノイズを遮蔽すると同時に、偏光層に埃が付着することや表示デバイス組み立ての際等に偏光層に傷が生じることを防止する効果も得ることができる。 According to the present invention, a conductive layer can be easily formed with a uniform thickness, and a transparent conductor excellent in productivity and manufacturing cost can be obtained. In addition, by providing a conductive layer on the polarizing layer, electromagnetic wave noise is shielded, and at the same time, there is an effect of preventing dust from adhering to the polarizing layer and preventing damage to the polarizing layer during display device assembly. be able to.
<<透明導電体>>
本発明の透明導電体は、研磨処理されたガラス基材の少なくとも一方の面に、粘着層、偏光層及び導電層が順に積層された透明導電体であって、
導電層は、導電性高分子を含むコーティング組成物(以下、単にコーティング組成物ともいう)を用いて形成され、表面抵抗率が10~10Ω/□であることを特徴とする。
<< Transparent conductor >>
The transparent conductor of the present invention is a transparent conductor in which an adhesive layer, a polarizing layer and a conductive layer are sequentially laminated on at least one surface of a polished glass substrate,
The conductive layer is formed using a coating composition containing a conductive polymer (hereinafter also simply referred to as a coating composition), and has a surface resistivity of 10 2 to 10 5 Ω / □.
<ガラス基材>
ガラス基材の材料としては、特に限定されるものではなく、市販の材料を用いることができる。市販の材料としては、例えば、無アルカリガラス等が挙げられ、特に、アルミノ珪酸塩ガラス及びアルミノホウ珪酸塩ガラスが好ましい。
<Glass base material>
The material for the glass substrate is not particularly limited, and commercially available materials can be used. Examples of commercially available materials include alkali-free glass, and aluminosilicate glass and aluminoborosilicate glass are particularly preferable.
ガラス基材の研磨処理としては、特に限定されるものではなく、化学研磨や機械研磨といった当該分野にて通常使用される手段を用いることができる。
化学研磨の方法としては、特に限定されないが、例えば、エッチング液に市販のガラス基材を浸し、化学反応によって、表面を溶解する方法等が挙げられる。
また、化学研磨と同時に機械研磨を行う方法としては、特に限定されないが、例えば、酸化セリウムを用いた化学的機械的研磨(CMP)等が挙げられる。
The polishing treatment of the glass substrate is not particularly limited, and means usually used in this field such as chemical polishing and mechanical polishing can be used.
Although it does not specifically limit as a method of chemical polishing, For example, the method etc. which immerse a commercially available glass base material in etching liquid, and melt | dissolve the surface by chemical reaction etc. are mentioned.
Further, the method of performing mechanical polishing simultaneously with chemical polishing is not particularly limited, and examples thereof include chemical mechanical polishing (CMP) using cerium oxide.
ガラス基材の表面の算術平均粗さ(Ra)は、特に限定されないが、20nm以下であることが好ましく、15nm以下であることがより好ましく、10nm以下であることがさらに好ましい。算術平均粗さ(Ra)が20nmを超えると、透明性を維持することが出来なくなることがある。算術平均粗さ(Ra)の下限は特に限定されないが、例えば、0.7nmである。なお、本発明において、算術平均粗さ(Ra)とは、原子間力顕微鏡(AFM)により測定したものをいう。 The arithmetic average roughness (Ra) of the surface of the glass substrate is not particularly limited, but is preferably 20 nm or less, more preferably 15 nm or less, and further preferably 10 nm or less. If the arithmetic average roughness (Ra) exceeds 20 nm, transparency may not be maintained. Although the minimum of arithmetic average roughness (Ra) is not specifically limited, For example, it is 0.7 nm. In the present invention, the arithmetic average roughness (Ra) means that measured by an atomic force microscope (AFM).
研磨処理後のガラス基材の厚みは、特に限定されないが、10~10000μmであることが好ましく、25~5000μmであることがより好ましい。また、ガラス基材の全光線透過率は、60%以上である限り特に限定されないが、70%以上であることが好ましく、80%以上であることがより好ましい。ガラス基材のヘイズは、特に限定されないが、3%以下であることが好ましく、1%以下であることがより好ましい。なお、ヘイズの下限は特に限定されないが、例えば、0.01%である。 The thickness of the glass substrate after the polishing treatment is not particularly limited, but is preferably 10 to 10,000 μm, and more preferably 25 to 5000 μm. Further, the total light transmittance of the glass substrate is not particularly limited as long as it is 60% or more, but it is preferably 70% or more, and more preferably 80% or more. Although the haze of a glass base material is not specifically limited, It is preferable that it is 3% or less, and it is more preferable that it is 1% or less. In addition, although the minimum of haze is not specifically limited, For example, it is 0.01%.
<粘着層>
粘着層は、粘着剤を含有する粘着剤組成物を用いて形成される。粘着剤としては、特に限定されず、従来公知のものを使用することでき、具体的には、例えば、各種の(メタ)アクリル酸エステルモノマーを単独重合又は共重合させて得られた(メタ)アクリル系樹脂、エチレン/酢酸ビニル共重合系樹脂、ジメチルシロキサン骨格を有するシリコーンゴムなどのシリコン系樹脂、ポリオールとポリイソシアネートを重付加して得られるポリウレタン系樹脂、天然ゴム、スチレン-イソプレン-スチレンブロック共重合体(SISブロック共重合体)、スチレン-ブタジエン-スチレンブロック共重合体(SBSブロック共重合体)、スチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBSブロック共重合体)、スチレン-ブタジエンゴム、ポリブタジエン、ポリイソプレン、ポリイソブチレン、ブチルゴム、クロロプレンゴム等のゴム系樹脂等が挙げられる。これらの中では、特に化学的安定性に優れ、化学構造設計の自由度が高く、粘着力の調整が容易な、(メタ)アクリル系樹脂、シリコン系樹脂、ポリウレタン系樹脂が好ましい。さらに、(メタ)アクリル系樹脂、及び、ポリウレタン系樹脂は、特に透明性に優れる点でも好ましい。
<Adhesive layer>
The pressure-sensitive adhesive layer is formed using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. It does not specifically limit as an adhesive, A conventionally well-known thing can be used, Specifically, for example, (meth) obtained by homopolymerizing or copolymerizing various (meth) acrylic acid ester monomers. Acrylic resins, ethylene / vinyl acetate copolymer resins, silicone resins such as silicone rubber having a dimethylsiloxane skeleton, polyurethane resins obtained by polyaddition of polyol and polyisocyanate, natural rubber, styrene-isoprene-styrene block Copolymer (SIS block copolymer), Styrene-butadiene-styrene block copolymer (SBS block copolymer), Styrene-ethylene / butylene-styrene block copolymer (SEBS block copolymer), Styrene-butadiene Rubber, polybutadiene, polyisoprene, polyisobuty Emissions, butyl rubber, rubber-based resins such as chloroprene rubber. Among these, (meth) acrylic resins, silicon resins, and polyurethane resins, which are particularly excellent in chemical stability, have a high degree of freedom in chemical structure design, and can easily adjust adhesive strength, are preferable. Furthermore, (meth) acrylic resin and polyurethane resin are also preferable in that they are particularly excellent in transparency.
粘着層の形成方法としては、従来公知の方法を使用することができ、例えば、粘着剤を含有する粘着剤組成物をガラス基材に塗布し、架橋又は加熱乾燥する方法、架橋又は加熱乾燥させた粘着層をガラス基材に転写する方法等が挙げられる。なお、粘着剤組成物は、粘着剤の他に架橋剤を含有していても良い。
粘着剤組成物を塗布する方法としては、従来公知の方法を使用することができ、具体的には、例えば、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法等を用いることができる。
As a method for forming the pressure-sensitive adhesive layer, a conventionally known method can be used. For example, a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive is applied to a glass substrate and crosslinked or heat-dried, or crosslinked or heat-dried. And a method of transferring the adhesive layer to the glass substrate. The pressure-sensitive adhesive composition may contain a crosslinking agent in addition to the pressure-sensitive adhesive.
As a method for applying the pressure-sensitive adhesive composition, conventionally known methods can be used. Specifically, for example, a roll coating method, a gravure coating method, a reverse coating method, a roll brush method, a spray coating method, an air coating method, and the like. A knife coating method or the like can be used.
<偏光層>
偏光層としては、少なくとも偏光フィルムを備えていれば特に限定されず、例えば、偏光板等を用いることができる。偏光板は、液晶表示装置(LCD)、エレクトロルミネッセンス表示装置(ELD)等の画像表示装置に使用する部材であり、片面又は両面に透明保護フィルムを有するものが一般的に用いられ、偏光フィルムを補強し特性変化を防ぐ構造となっている。
<Polarizing layer>
The polarizing layer is not particularly limited as long as it includes at least a polarizing film. For example, a polarizing plate can be used. A polarizing plate is a member used in an image display device such as a liquid crystal display device (LCD) or an electroluminescence display device (ELD), and one having a transparent protective film on one side or both sides is generally used. The structure is reinforced to prevent characteristic changes.
偏光フィルムとしては、従来公知の偏光フィルムを使用することができ、例えば、延伸されたポリビニルアルコール系樹脂フィルムに、ヨウ素等の二色性色素が吸着配向された偏光フィルム等を使用することができる。ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。偏光フィルムの厚さは特に限定されないが、一般的に5~80umである。 A conventionally known polarizing film can be used as the polarizing film. For example, a polarizing film in which a dichroic dye such as iodine is adsorbed and oriented can be used on a stretched polyvinyl alcohol-based resin film. . The polyvinyl alcohol resin can be obtained by saponifying a polyvinyl acetate resin. The thickness of the polarizing film is not particularly limited, but is generally 5 to 80 um.
透明保護フィルムの材質としては、透明性、機械的強度、熱安定性、水分遮断性、等方性等に優れるものが好ましく、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は前記ポリマーのブレンド物等が挙げられる。これらの中では、偏光特性や耐久性等の点により、トリアセチルセルロース等のセルロース系ポリマーが好ましい。 As the material of the transparent protective film, those having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like are preferable, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, diacetyl cellulose, Examples thereof include cellulose polymers such as triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene polymers such as polystyrene and acrylonitrile / styrene copolymer (AS resin), and polycarbonate polymers. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Examples include polymer blends. Among these, cellulose polymers such as triacetyl cellulose are preferable from the viewpoints of polarization characteristics and durability.
なお、偏光フィルムの両面に透明保護フィルムを設ける場合、その表裏で同じポリマー材料からなる透明保護フィルムを用いても良く、異なるポリマー材料等からなる透明保護フィルムを用いても良い。 In addition, when providing a transparent protective film on both surfaces of a polarizing film, the transparent protective film which consists of the same polymer material may be used by the front and back, and the transparent protective film which consists of a different polymer material etc. may be used.
透明保護フィルムの厚みは、特に限定されないが、1~10000μmであることが好ましく、5~5000μmであることがより好ましい。また、透明保護フィルムの全光線透過率は、特に限定されないが、60%以上であることが好ましく、80%以上であることがより好ましい。 The thickness of the transparent protective film is not particularly limited, but is preferably 1 to 10,000 μm, and more preferably 5 to 5000 μm. Moreover, the total light transmittance of a transparent protective film is although it does not specifically limit, It is preferable that it is 60% or more, and it is more preferable that it is 80% or more.
偏光層を形成する方法としては、特に限定されないが、例えば、偏光フィルムの片面又は両面に接着剤等を介して透明保護フィルムを密着させる方法等が挙げられる。接着剤としては、粘着層を構成する粘着剤を用いてもよく、他にも、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系接着剤、ポリウレタン系接着剤、ポリエステル系接着剤、エポキシ系接着剤等が挙げられる。 The method for forming the polarizing layer is not particularly limited, and examples thereof include a method in which a transparent protective film is adhered to one or both sides of the polarizing film via an adhesive or the like. As the adhesive, a pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer may be used. Besides, an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl-based latex adhesive, a polyurethane-based adhesive, Examples include polyester adhesives and epoxy adhesives.
<導電層>
導電層は、導電性高分子を含むコーティング組成物を用いて形成され、表面抵抗率が10~10Ω/□である。
導電層を、導電性高分子を含むコーティング組成物を用いて形成することで、ITO層をスパッタリングにより形成する場合に懸念されるような偏光フィルムへの悪影響(スパッタリングの際の熱負荷や圧力負荷による偏光フィルムの劣化)を心配することなく、導電層を偏光層上に形成することができる。
<Conductive layer>
The conductive layer is formed using a coating composition containing a conductive polymer and has a surface resistivity of 10 2 to 10 5 Ω / □.
By forming the conductive layer using a coating composition containing a conductive polymer, adverse effects on the polarizing film that may be a concern when the ITO layer is formed by sputtering (heat load or pressure load during sputtering) The conductive layer can be formed on the polarizing layer without worrying about the deterioration of the polarizing film due to the above.
コーティング組成物は、導電性高分子を含むものであれば特に限定されない。 The coating composition is not particularly limited as long as it contains a conductive polymer.
(導電性高分子)
導電性高分子は、導電層に導電性を付与するための配合物である。導電性高分子としては特に限定されず、従来公知の導電性高分子を用いることができ、具体例としては、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレン、ポリナフタレン、及びこれらの誘導体が挙げられる。これらは単独で用いても良いし、2種以上を併用してもよい。中でも、チオフェン環を分子内に含むことで導電性が高い分子ができやすい点で、分子内にチオフェン環を少なくとも1つ含む導電性高分子が好ましい。導電性高分子は、ポリ陰イオン等のドーパントと複合体を形成していてもよい。
(Conductive polymer)
The conductive polymer is a compound for imparting conductivity to the conductive layer. The conductive polymer is not particularly limited, and a conventionally known conductive polymer can be used. Specific examples thereof include polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, polynaphthalene, and derivatives thereof. Can be mentioned. These may be used alone or in combination of two or more. Among these, a conductive polymer including at least one thiophene ring in the molecule is preferable in that a molecule having high conductivity can be easily formed by including a thiophene ring in the molecule. The conductive polymer may form a complex with a dopant such as polyanion.
分子内にチオフェン環を少なくとも1つ含む導電性高分子の中でも、導電性や化学的安定性に極めて優れている点で、ポリ(3,4-二置換チオフェン)がより好ましい。また、コーティング組成物がポリ(3,4-二置換チオフェン)、又は、ポリ(3,4-二置換チオフェン)とポリ陰イオン(ドーパント)との複合体を含有する場合、低温かつ短時間で導電層を形成することができ、生産性にも優れることとなる。なお、ポリ陰イオンは導電性高分子のドーパントであり、その内容については後述する。 Of the conductive polymers containing at least one thiophene ring in the molecule, poly (3,4-disubstituted thiophene) is more preferable because it is extremely excellent in conductivity and chemical stability. Further, when the coating composition contains poly (3,4-disubstituted thiophene) or a complex of poly (3,4-disubstituted thiophene) and polyanion (dopant), it can be performed at a low temperature and in a short time. A conductive layer can be formed, and productivity is also excellent. The polyanion is a conductive polymer dopant, and the content thereof will be described later.
ポリ(3,4-二置換チオフェン)としては、ポリ(3,4-ジアルコキシチオフェン)又はポリ(3,4-アルキレンジオキシチオフェン)が特に好ましい。ポリ(3,4-ジアルコキシチオフェン)又はポリ(3,4-アルキレンジオキシチオフェン)としては、以下の式(I): The poly (3,4-disubstituted thiophene) is particularly preferably poly (3,4-dialkoxythiophene) or poly (3,4-alkylenedioxythiophene). As poly (3,4-dialkoxythiophene) or poly (3,4-alkylenedioxythiophene), the following formula (I):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
で示される反復構造単位からなる陽イオン形態のポリチオフェンが好ましい。
ここで、R及びRは相互に独立して水素原子又はC1-4のアルキル基を表すか、又は、R及びRが結合している場合にはC1-4のアルキレン基を表す。C1-4のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
また、R及びRが結合している場合、C1-4のアルキレン基としては、特に限定されないが、例えば、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1-メチル-1,2-エチレン基、1-エチル-1,2-エチレン基、1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基等が挙げられる。これらの中では、メチレン基、1,2-エチレン基、1,3-プロピレン基が好ましく、1,2-エチレン基がより好ましい。C1-4のアルキル基、及び、C1-4のアルキレン基は、その水素の一部が置換されていても良い。C1-4のアルキレン基を有するポリチオフェンとしては、ポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。
A polythiophene in a cationic form consisting of repeating structural units represented by
Here, R 1 and R 2 each independently represent a hydrogen atom or a C 1-4 alkyl group, or, when R 1 and R 2 are bonded, a C 1-4 alkylene group. Represents. The C 1-4 alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. .
In addition, when R 1 and R 2 are bonded, the C 1-4 alkylene group is not particularly limited, and examples thereof include a methylene group, 1,2-ethylene group, 1,3-propylene group, 1, 4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3-propylene group, etc. Can be mentioned. Among these, a methylene group, 1,2-ethylene group, and 1,3-propylene group are preferable, and a 1,2-ethylene group is more preferable. In the C 1-4 alkyl group and the C 1-4 alkylene group, a part of hydrogen may be substituted. As the polythiophene having a C 1-4 alkylene group, poly (3,4-ethylenedioxythiophene) is particularly preferable.
導電性高分子の重量平均分子量は、特に限定されないが、500~100000であることが好ましく、1000~50000であることがより好ましく、1500~20000であることが最も好ましい。重量平均分子量が500未満であると、コーティング組成物とした場合に要求される粘度を確保することができないことや、透明導電体とした場合の導電層の導電性が低下することがある。 The weight average molecular weight of the conductive polymer is not particularly limited, but is preferably 500 to 100,000, more preferably 1,000 to 50,000, and most preferably 1500 to 20,000. When the weight average molecular weight is less than 500, the viscosity required for the coating composition cannot be ensured, and the conductivity of the conductive layer for the transparent conductor may be lowered.
ドーパントは特に限定されないが、ポリ陰イオンが好ましい。ポリ陰イオンは、ポリチオフェン(誘導体)とイオン対をなすことにより複合体を形成し、ポリチオフェン(誘導体)を水中に安定に分散させることができる。ポリ陰イオンとしては、特に限定されないが、例えば、カルボン酸ポリマー類(例えば、ポリアクリル酸、ポリマレイン酸、ポリメタクリル酸等)、スルホン酸ポリマー類(例えば、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリイソプレンスルホン酸等)等が挙げられる。これらのカルボン酸ポリマー類及びスルホン酸ポリマー類はまた、ビニルカルボン酸類及びビニルスルホン酸類と他の重合可能なモノマー類、例えば、アクリレート類、スチレン、ビニルナフタレン等の芳香族ビニル化合物との共重合体であっても良い。これらの中では、ポリスチレンスルホン酸が特に好ましい。 The dopant is not particularly limited, but a polyanion is preferable. The polyanion forms a complex by forming an ion pair with the polythiophene (derivative), and the polythiophene (derivative) can be stably dispersed in water. Although it does not specifically limit as a poly anion, For example, carboxylic acid polymers (for example, polyacrylic acid, polymaleic acid, polymethacrylic acid, etc.), sulfonic acid polymers (for example, polystyrene sulfonic acid, polyvinyl sulfonic acid, polyisoprene) Sulfonic acid etc.). These carboxylic acid polymers and sulfonic acid polymers are also copolymers of vinyl carboxylic acids and vinyl sulfonic acids with other polymerizable monomers such as aromatic vinyl compounds such as acrylates, styrene, vinyl naphthalene, etc. It may be. Among these, polystyrene sulfonic acid is particularly preferable.
ポリスチレンスルホン酸は、重量平均分子量が20000~500000であることが好ましく、40000~200000であることがより好ましい。分子量がこの範囲外のポリスチレンスルホン酸を使用すると、ポリチオフェン系導電性高分子の水に対する分散安定性が低下する場合がある。なお、重量平均分子量はゲル透過クロマトグラフィー(GPC)にて測定した値である。 The polystyrene sulfonic acid preferably has a weight average molecular weight of 20,000 to 500,000, and more preferably 40,000 to 200,000. If polystyrene sulfonic acid having a molecular weight outside this range is used, the dispersion stability of the polythiophene-based conductive polymer in water may decrease. The weight average molecular weight is a value measured by gel permeation chromatography (GPC).
導電性高分子とポリ陰イオンとの複合体としては、透明性及び導電性に特に優れることから、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体であることが好ましい。 The composite of the conductive polymer and the polyanion is preferably a composite of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid because it is particularly excellent in transparency and conductivity. .
導電性高分子の導電率は、特に限定されないが、導電層に十分な導電性を付与する観点からは、0.01S/cm以上であることが好ましく、0.05S/cm以上であることがより好ましい。 The conductivity of the conductive polymer is not particularly limited, but is preferably 0.01 S / cm or more and 0.05 S / cm or more from the viewpoint of imparting sufficient conductivity to the conductive layer. More preferred.
コーティング組成物における導電性高分子の含有量は特に限定されないが、導電層とした際に、0.01~50.0mg/mとなる量が好ましく、0.1~10.0mg/mとなる量がより好ましい。0.01mg/m未満では、導電層中の導電性高分子の存在割合が少なくなり、導電層の導電性を十分に確保することができない場合があり、一方、50.0mg/mを超えると、導電層中の導電性高分子の存在割合が多くなり、導電層の強度、成膜性に悪影響を与える原因となる場合があるからである。 The content of the conductive polymer in the coating composition is not particularly limited, but is preferably 0.01 to 50.0 mg / m 2 when the conductive layer is formed, and preferably 0.1 to 10.0 mg / m 2. Is more preferred. Is less than 0.01 mg / m 2, the existing ratio of the conductive polymer in the conductive layer is reduced, the conductivity of the conductive layer may not be sufficiently secured, whereas, the 50.0 mg / m 2 This is because if it exceeds, the proportion of the conductive polymer in the conductive layer increases, which may cause adverse effects on the strength and film formability of the conductive layer.
導電性高分子の製造方法の一例として、式(I)で表されるポリチオフェンとドーパントとの複合体の水分散体の製造方法について説明する。下記式(II)で表される3,4-ジアルコキシチオフェン As an example of a method for producing a conductive polymer, a method for producing an aqueous dispersion of a complex of polythiophene represented by formula (I) and a dopant will be described. 3,4-dialkoxythiophene represented by the following formula (II)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは相互に独立して水素原子又はC1-4のアルキル基を表すか、又は、R及びRが結合している場合にはC1-4のアルキレン基を表す。C1-4のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基等が挙げられる。また、R及びRが結合している場合、C1-4のアルキレン基としては、特に限定されないが、例えば、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1-メチル-1,2-エチレン基、1-エチル-1,2-エチレン基、1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基等が挙げられる。これらの中では、メチレン基、1,2-エチレン基、1,3-プロピレン基が好ましく、1,2-エチレン基がより好ましい。C1-4のアルキル基、及び、C1-4のアルキレン基は、その水素の一部が置換されていても良い。)を、ドーパントの存在下で、酸化剤を用いて、水系溶媒中で酸化重合させる工程を経て製造される。 (Wherein R 3 and R 4 each independently represent a hydrogen atom or a C 1-4 alkyl group, or, when R 3 and R 4 are bonded, C 1-4 alkylene) The C 1-4 alkyl group is not particularly limited, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. In addition, when R 3 and R 4 are bonded, the C 1-4 alkylene group is not particularly limited, and examples thereof include a methylene group, 1,2-ethylene group, 1,3- Propylene group, 1,4-butylene group, 1-methyl-1,2-ethylene group, 1-ethyl-1,2-ethylene group, 1-methyl-1,3-propylene group, 2-methyl-1,3 -Propylene groups, etc. Among these, , Methylene group, 1,2-ethylene, 1,3-propylene group are preferred, 1,2-ethylene group is more preferred alkyl groups .C 1-4, and an alkylene group of C 1-4, the A part of hydrogen may be substituted.) Is produced through a step of oxidative polymerization in an aqueous solvent using an oxidizing agent in the presence of a dopant.
ポリチオフェンの製造では、単量体を、各種酸化剤を用いた化学重合法により、酸化重合する。化学重合法は、簡便で大量生産が可能なため、従来の電解重合法と比べ工業的製法に適した方法である。 In the production of polythiophene, a monomer is oxidatively polymerized by a chemical polymerization method using various oxidizing agents. Since the chemical polymerization method is simple and capable of mass production, it is a method suitable for an industrial production method as compared with the conventional electrolytic polymerization method.
化学重合法に用いる酸化剤としては特に限定されないが、例えば、スルホン酸化合物をアニオンとし、高価数の遷移金属をカチオンとする酸化剤等が挙げられる。この酸化剤を構成する高価数の遷移金属イオンとしては、Cu2+、Fe3+、Al3+、Ce4+、W6+、Mo6+、Cr6+、Mn7+及びSn4+が挙げられる。これらの中では、Fe3+及びCu2+が好ましい。遷移金属をカチオンとする酸化剤の具体例としては、例えば、FeCl、Fe(ClO、KCrO、過ホウ酸アルカリ、過マンガン酸カリウム、四フッ化ホウ酸銅等が挙げられる。また、遷移金属をカチオンとする酸化剤以外の酸化剤としては、過硫酸アルカリ、過硫酸アンモニウム、H等が挙げられる。さらに、超原子価ヨウ素反応剤に代表される超原子価化合物が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 Although it does not specifically limit as an oxidizing agent used for a chemical polymerization method, For example, the oxidizing agent which uses a sulfonic acid compound as an anion, and makes an expensive transition metal a cation etc. is mentioned. Examples of the expensive transition metal ions constituting this oxidant include Cu 2+ , Fe 3+ , Al 3+ , Ce 4+ , W 6+ , Mo 6+ , Cr 6+ , Mn 7+ and Sn 4+ . Among these, Fe 3+ and Cu 2+ are preferable. Specific examples of the oxidizing agent having a transition metal as a cation include FeCl 3 , Fe (ClO 4 ) 3 , K 2 CrO 7 , alkali perborate, potassium permanganate, copper tetrafluoroborate and the like. It is done. Examples of the oxidizing agent other than the oxidizing agent having a transition metal as a cation include alkali persulfate, ammonium persulfate, and H 2 O 2 . Furthermore, hypervalent compounds represented by hypervalent iodine reactants can be mentioned. These may be used alone or in combination of two or more.
ポリ陰イオンなどのドーパントの使用量は、3,4-ジアルコキシチオフェン100重量部に対して、50~2000重量部であることが好ましく、100~1000重量部であることがより好ましい。 The amount of dopant such as polyanion used is preferably 50 to 2000 parts by weight and more preferably 100 to 1000 parts by weight with respect to 100 parts by weight of 3,4-dialkoxythiophene.
本発明の透明導電体において、導電層に十分な電磁波ノイズ遮蔽性能を付与するためには、導電層とした際に低い表面抵抗率となる導電性高分子を用いることが好ましい。低い表面抵抗率を達成可能な導電性高分子は、例えば、特許第4077675号公報等に記載の方法により製造することが可能である。 In the transparent conductor of the present invention, in order to impart sufficient electromagnetic wave noise shielding performance to the conductive layer, it is preferable to use a conductive polymer that has a low surface resistivity when formed into a conductive layer. A conductive polymer capable of achieving a low surface resistivity can be produced by, for example, a method described in Japanese Patent No. 4077675.
コーティング組成物は、導電性高分子以外に、本発明の目的を損なわない範囲内で、任意に他の成分を含有していても良い。他の成分としては、特に限定されないが、例えば、バインダー、導電性向上剤、金属ナノワイヤ、溶媒、架橋剤、触媒、界面活性剤及び/又はレベリング剤、水溶性酸化防止剤、消泡剤、レオロジーコントロール剤、増粘剤、中和剤等が挙げられる。 The coating composition may optionally contain other components in addition to the conductive polymer as long as the object of the present invention is not impaired. Examples of other components include, but are not limited to, binders, conductivity improvers, metal nanowires, solvents, crosslinking agents, catalysts, surfactants and / or leveling agents, water-soluble antioxidants, antifoaming agents, rheology A control agent, a thickener, a neutralizing agent, etc. are mentioned.
(バインダー)
コーティング組成物にバインダーを配合することにより、コーティング組成物中の配合物同士を結合させ、より確実に導電層を形成することができる。バインダーとしては、特に限定されないが、例えば、ポリエステル系樹脂、ポリアクリル酸系樹脂、ポリウレタン、エポキシ樹脂、アクリル樹脂、アルコキシシランオリゴマー、ポリオレフィン系樹脂、(メタ)アクリレート、メラミン樹脂等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
(binder)
By mix | blending a binder with a coating composition, the compound in a coating composition can be couple | bonded and a conductive layer can be formed more reliably. Although it does not specifically limit as a binder, For example, a polyester-type resin, a polyacrylic acid-type resin, a polyurethane, an epoxy resin, an acrylic resin, an alkoxysilane oligomer, a polyolefin-type resin, (meth) acrylate, a melamine resin etc. are mentioned. These may be used alone or in combination of two or more.
ポリエステル系樹脂としては、2つ以上のカルボキシル基を分子内に有する化合物と2つ以上のヒドロキシル基を有する化合物とを重縮合して得られた高分子化合物であれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 The polyester-based resin is not particularly limited as long as it is a polymer compound obtained by polycondensation of a compound having two or more carboxyl groups in the molecule and a compound having two or more hydroxyl groups. Examples thereof include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. These may be used alone or in combination of two or more.
ポリアクリル酸系樹脂としては、特に限定されないが、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 The polyacrylic acid resin is not particularly limited, and examples thereof include polyacrylic acid and sodium polyacrylate. These may be used alone or in combination of two or more.
ポリウレタンとしては、イソシアネート基を有する化合物とヒドロキシル基を有する化合物とを共重合させて得られた高分子化合物であれば特に限定されず、例えば、エステル・エーテル系ポリウレタン、エーテル系ポリウレタン、ポリエステル系ポリウレタン、カーボネート系ポリウレタン、アクリル系ポリウレタン等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 The polyurethane is not particularly limited as long as it is a polymer compound obtained by copolymerizing an isocyanate group-containing compound and a hydroxyl group-containing compound. For example, ester / ether polyurethane, ether polyurethane, polyester polyurethane , Carbonate polyurethane, acrylic polyurethane and the like. These may be used alone or in combination of two or more.
エポキシ樹脂としては、特に限定されないが、例えば、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、ベンゼン環を多数有した多官能型であるテトラキス(ヒドロキシフェニル)エタン型又はトリス(ヒドロキシフェニル)メタン型、ビフェニル型、トリフェノールメタン型、ナフタレン型、オルソノボラック型、ジシクロペンタジエン型、アミノフェノール型、脂環式等のエポキシ樹脂、シリコーンエポキシ樹脂等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 The epoxy resin is not particularly limited. For example, a bisphenol A type, a bisphenol F type, a phenol novolak type, a tetrakis (hydroxyphenyl) ethane type or a tris (hydroxyphenyl) methane type which is a polyfunctional type having a large number of benzene rings. , Biphenyl type, triphenolmethane type, naphthalene type, orthonovolak type, dicyclopentadiene type, aminophenol type, alicyclic epoxy resin, silicone epoxy resin and the like. These may be used alone or in combination of two or more.
アクリル樹脂としては、特に限定されないが、例えば、(メタ)アクリル系樹脂、ビニルエステル系樹脂等が挙げられる。これらのアクリル樹脂としては、例えば、カルボキシル基、酸無水物基、スルホン酸基、燐酸基等の酸基を有する重合性単量体を構成モノマーとして含む重合体であればよく、例えば、酸基を有する重合性単量体の単独又は共重合体、酸基を有する重合性単量体と共重合性単量体との共重合体等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 The acrylic resin is not particularly limited, and examples thereof include (meth) acrylic resins and vinyl ester resins. The acrylic resin may be a polymer containing a polymerizable monomer having an acid group such as a carboxyl group, an acid anhydride group, a sulfonic acid group, and a phosphoric acid group as a constituent monomer. Or a copolymer of a polymerizable monomer having an acid group and a copolymerizable monomer. These may be used alone or in combination of two or more.
(メタ)アクリル系樹脂は、(メタ)アクリル系単量体を主たる構成モノマー(例えば、50モル%以上)として含んでいれば共重合性単量体と重合していてもよく、この場合、(メタ)アクリル系単量体及び共重合性単量体のうち、少なくとも一方が酸基を有していればよい。(メタ)アクリル系樹脂としては、例えば、酸基を有する(メタ)アクリル系単量体[(メタ)アクリル酸、スルホアルキル(メタ)アクリレート、スルホン酸基含有(メタ)アクリルアミド等]又はその共重合体、酸基を有していてもよい(メタ)アクリル系単量体と、酸基を有する他の重合性単量体[他の重合性カルボン酸、重合性多価カルボン酸又は無水物、ビニル芳香族スルホン酸等]及び/又は共重合性単量体[例えば、(メタ)アクリル酸アルキルエステル、グリシジル(メタ)アクリレート、(メタ)アクリロニトリル、芳香族ビニル単量体等]との共重合体、酸基を有する他の重合体単量体と(メタ)アクリル系共重合性単量体[例えば、(メタ)アクリル酸アルキルエステル、ヒドロキシアルキル(メタ)アクリレート、グリシジル(メタ)アクリレート、(メタ)アクリロニトリル等]との共重合体、ロジン変性ウレタンアクリレート、特殊変性アクリル樹脂、ウレタンアクリレート、エポキシアクリレート、ウレタンアクリレートエマルジョン等が挙げられる。 The (meth) acrylic resin may be polymerized with a copolymerizable monomer as long as it contains a (meth) acrylic monomer as a main constituent monomer (for example, 50 mol% or more). It is sufficient that at least one of the (meth) acrylic monomer and the copolymerizable monomer has an acid group. Examples of the (meth) acrylic resin include an acid group-containing (meth) acrylic monomer [(meth) acrylic acid, sulfoalkyl (meth) acrylate, sulfonic acid group-containing (meth) acrylamide, etc.] or a combination thereof. Polymer, (meth) acrylic monomer optionally having acid group, and other polymerizable monomer having acid group [other polymerizable carboxylic acid, polymerizable polyvalent carboxylic acid or anhydride Vinyl aromatic sulfonic acid, etc.] and / or copolymerizable monomers [for example, (meth) acrylic acid alkyl ester, glycidyl (meth) acrylate, (meth) acrylonitrile, aromatic vinyl monomer, etc.] Polymer, other polymer monomer having an acid group and (meth) acrylic copolymerizable monomer [for example, (meth) acrylic acid alkyl ester, hydroxyalkyl (meth) acrylate, Rishijiru (meth) acrylate, copolymers of (meth) acrylonitrile, etc.], rosin-modified urethane acrylate, special modified acrylic resins, urethane acrylates, epoxy acrylates, and urethane acrylates emulsion and the like.
これらの(メタ)アクリル系樹脂の中では、(メタ)アクリル酸-(メタ)アクリル酸エステル重合体(アクリル酸-メタクリル酸メチル共重合体等)、(メタ)アクリル酸-(メタ)アクリル酸エステル-スチレン共重合体(アクリル酸-メタクリル酸メチル-スチレン共重合体等)等が好ましい。 Among these (meth) acrylic resins, (meth) acrylic acid- (meth) acrylic acid ester polymers (acrylic acid-methyl methacrylate copolymer, etc.), (meth) acrylic acid- (meth) acrylic acid An ester-styrene copolymer (such as acrylic acid-methyl methacrylate-styrene copolymer) is preferred.
アルコキシシランオリゴマーとしては、例えば、下記式(III)により表されるアルコキシシランのモノマー同士が縮合することで形成される高分子量化されたアルコキシシランであり、シロキサン結合(Si-O-Si)を1分子内に1個以上有するオリゴマー等が挙げられる。
SiR   (III)
(式中、Rは、水素、水酸基、炭素数1~4のアルコキシ基、置換基を有しても良いアルキル基、又は、置換基を有しても良いフェニル基である。但し、4つのRのうち少なくとも1個は炭素数1~4のアルコキシ基又は水酸基である)
The alkoxysilane oligomer is, for example, a high molecular weight alkoxysilane formed by condensation of alkoxysilane monomers represented by the following formula (III), and has a siloxane bond (Si—O—Si). Examples include oligomers having one or more in one molecule.
SiR 4 (III)
(In the formula, R is hydrogen, a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, an alkyl group which may have a substituent, or a phenyl group which may have a substituent. At least one of R is an alkoxy group having 1 to 4 carbon atoms or a hydroxyl group)
アルコキシシランオリゴマーの構造は特に限定されず、直鎖状であっても良く、分岐状でも良い。また、アルコキシシランオリゴマーとしては、式(III)により表される化合物を単独で用いても良いし、2種以上を併用しても良い。アルコキシシランオリゴマーの重量平均分子量は特に限定されないが、152より大きく4000以下であることが好ましく、500~2500であることがより好ましい。ここで、重量平均分子量はゲル透過クロマトグラフィー(GPC)にて測定した値である。 The structure of the alkoxysilane oligomer is not particularly limited, and may be linear or branched. Moreover, as an alkoxysilane oligomer, the compound represented by Formula (III) may be used independently, and 2 or more types may be used together. The weight average molecular weight of the alkoxysilane oligomer is not particularly limited, but is preferably more than 152 and 4000 or less, and more preferably 500 to 2500. Here, the weight average molecular weight is a value measured by gel permeation chromatography (GPC).
ポリオレフィン系樹脂としては、特に限定されないが、例えば、塩素化ポリプロピレン、非塩素化ポリプロピレン、塩素化ポリエチレン、非塩素化ポリエチレン等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 The polyolefin resin is not particularly limited, and examples thereof include chlorinated polypropylene, non-chlorinated polypropylene, chlorinated polyethylene, and non-chlorinated polyethylene. These may be used alone or in combination of two or more.
(メタ)アクリレートとしては、特に限定されないが、例えば、多官能(メタ)アクリレート、ウレタン(メタ)アクリレート樹脂等が挙げられる。多官能(メタ)アクリレートとしては、エポキシ(メタ)アクリレート樹脂、2官能以上のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、カルボキシル変性型反応性ポリ(メタ)アクリレート等が挙げられる。また、ウレタン(メタ)アクリレート樹脂としては、例えば、ヒドロキシ基含有(メタ)アクリレートとポリイソシアネートとを反応させて得られる化合物等が挙げられる。ヒドロキシ基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート及びトリメチロールプロパンジアクリレート等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 Although it does not specifically limit as (meth) acrylate, For example, polyfunctional (meth) acrylate, urethane (meth) acrylate resin, etc. are mentioned. Examples of the polyfunctional (meth) acrylate include epoxy (meth) acrylate resin, bifunctional or higher polyester (meth) acrylate, polyether (meth) acrylate, carboxyl-modified reactive poly (meth) acrylate, and the like. Examples of the urethane (meth) acrylate resin include compounds obtained by reacting a hydroxy group-containing (meth) acrylate and a polyisocyanate. Examples of the hydroxy group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, pentaerythritol triacrylate, diester Examples include pentaerythritol pentaacrylate and trimethylolpropane diacrylate. These may be used alone or in combination of two or more.
メラミン樹脂としては、特に限定されないが、例えば、下記一般式(IV)で表わされる化合物が挙げられる。 Although it does not specifically limit as a melamine resin, For example, the compound represented by the following general formula (IV) is mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式中、R~R10はH又はCHOR11で表され、R11はH又はC1-4のアルキル基を表す。 In the formula, R 5 to R 10 are represented by H or CH 2 OR 11 , and R 11 represents H or a C 1-4 alkyl group.
置換基R~R10がすべて水素原子であるメラミン樹脂がイミノ型メラミン樹脂であり、置換基R~R10がすべてCHOHであるメラミン樹脂がメチロール型メラミン樹脂であり、置換基R~R10がすべてCHOR11であり、R11がC1-4のアルキル基で置換された構造のメラミン樹脂がフルエーテル型メラミン樹脂である。また、3つの置換基のうち2つが1分子中に混在した構造のメラミン樹脂は、イミノメチロール型、メチロールエーテル型又はイミノエーテル型に分類され、すべてが混在したメラミン樹脂がイミノメチロールエーテル型である。R~R10がCHOR11で表され、かつ、R11がC1-4のアルキル基である場合、C1-4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等がある。メラミン樹脂は、式(III)を基本骨格として自己縮合したオリゴマーであっても良い。これらのメラミン樹脂は、単独で用いても良いし、2種以上を併用してもよい。 The melamine resin in which all the substituents R 5 to R 10 are hydrogen atoms is an imino melamine resin, the melamine resin in which all the substituents R 5 to R 10 are CH 2 OH is a methylol melamine resin, and the substituent R A melamine resin having a structure in which 5 to R 10 are all CH 2 OR 11 and R 11 is substituted with a C 1-4 alkyl group is a full ether type melamine resin. Melamine resins having a structure in which two of the three substituents are mixed in one molecule are classified as iminomethylol type, methylol ether type or imino ether type, and the melamine resin in which all are mixed is the iminomethylol ether type. . When R 5 to R 10 are represented by CH 2 OR 11 and R 11 is a C 1-4 alkyl group, examples of the C 1-4 alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group. There are groups. The melamine resin may be an oligomer self-condensed with formula (III) as a basic skeleton. These melamine resins may be used alone or in combination of two or more.
コーティング組成物は、バインダーとして、アルコキシシランオリゴマー、(メタ)アクリレート及びメラミン樹脂からなる群より選択される少なくとも1つを含むことが好ましい。その理由は、これらのバインダーは導電層において緻密な構造を形成するため、十分な鉛筆硬度と耐湿熱性を確保できるからである。 The coating composition preferably contains at least one selected from the group consisting of alkoxysilane oligomers, (meth) acrylates, and melamine resins as a binder. The reason is that since these binders form a dense structure in the conductive layer, sufficient pencil hardness and heat-and-moisture resistance can be ensured.
本発明の透明導電体は、導電層を偏光層上に有する点に特徴を有するが、導電層は、ガラス基材から最も離れた配置となるため、従来の層構成の場合と比べ、熱や大気中の水分・酸素、紫外線といった外部からの影響を受けやすい環境下に置かれることとなる。本発明の透明導電体では、導電層の導電成分として導電性高分子を用いるが、導電性高分子は有機化合物ゆえ、熱や大気中の水分・酸素、紫外線といった環境因子への耐性は特に低く、通常、これらの環境因子により導電層の導電性は経時的に劣化する。本発明の透明導電体では、導電層を形成するためのコーティング組成物において、バインダー、特に、アルコキシシランオリゴマー、(メタ)アクリレート及びメラミン樹脂からなる群より選択される少なくとも1つのバインダーを導電性高分子と組み合わせて用いることで、塗膜(導電層)中に緻密な架橋構造(架橋ネットワーク)が付与される結果、外部からの物理的な刺激に耐え得る十分な鉛筆硬度を発揮する一方で、上述の緻密な架橋構造が環境因子の攻撃から導電性高分子を保護する結果、一定期間経過した後もなお各種用途での使用に耐え得る水準の導電性を維持することが可能である。 The transparent conductor of the present invention is characterized in that the conductive layer is provided on the polarizing layer. However, since the conductive layer is arranged farthest from the glass base material, compared with the conventional layer configuration, It will be placed in an environment that is susceptible to external influences such as moisture, oxygen, and ultraviolet rays in the atmosphere. In the transparent conductor of the present invention, a conductive polymer is used as the conductive component of the conductive layer. However, since the conductive polymer is an organic compound, resistance to environmental factors such as heat, atmospheric moisture, oxygen, and ultraviolet rays is particularly low. Normally, the conductivity of the conductive layer deteriorates with time due to these environmental factors. In the transparent conductor of the present invention, in the coating composition for forming the conductive layer, a binder, particularly at least one binder selected from the group consisting of alkoxysilane oligomers, (meth) acrylates and melamine resins, is used. As a result of providing a dense cross-linked structure (cross-linked network) in the coating film (conductive layer) by using in combination with molecules, while exhibiting sufficient pencil hardness that can withstand physical stimulation from the outside, As a result of the above-described dense cross-linking structure protecting the conductive polymer from attack by environmental factors, it is possible to maintain a level of conductivity that can withstand use in various applications even after a certain period of time.
コーティング組成物がバインダーを含有する場合、その含有量は、特に限定されないが、コーティング組成物中80重量%以下であることが好ましく、60重量%以下であることがより好ましい。含有量が80重量%を超えると、分散性が悪化し、粘度が高くなり過ぎ、コーティング組成物の塗布性が低下することがある。 When the coating composition contains a binder, the content is not particularly limited, but is preferably 80% by weight or less, more preferably 60% by weight or less in the coating composition. When the content exceeds 80% by weight, the dispersibility is deteriorated, the viscosity becomes too high, and the applicability of the coating composition may be lowered.
(導電性向上剤)
コーティング組成物に導電性向上剤を配合することにより、コーティング組成物を用いて形成した導電層の導電性を向上させることができる。また、導電性向上剤を使用する場合、導電性向上剤を使用しない場合と比較して、表面抵抗率を維持しつつ導電性高分子の配合量を少なく出来る結果、透明性を改善できる利点がある。
本発明の透明導電体において、導電層にて十分な電磁波ノイズ遮蔽性能を得るためには、コーティング組成物に導電性向上剤を配合することが好ましい。
(Conductivity improver)
By adding a conductivity improver to the coating composition, the conductivity of the conductive layer formed using the coating composition can be improved. In addition, when using a conductivity improver, compared to the case without using a conductivity improver, the amount of the conductive polymer can be reduced while maintaining the surface resistivity. As a result, there is an advantage that transparency can be improved. is there.
In the transparent conductor of the present invention, in order to obtain sufficient electromagnetic wave noise shielding performance in the conductive layer, it is preferable to add a conductivity improver to the coating composition.
導電性向上剤としては種々ものが知られているが、本発明の透明導電体における導電層を形成するためのコーティング組成物は、導電性向上剤として、沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、少なくとも1つのアミド基又は少なくとも2つのヒドロキシル基を有する化合物を含むことが好ましい。 Various conductivity improvers are known, but the coating composition for forming a conductive layer in the transparent conductor of the present invention has a boiling point of 100 ° C. or higher as a conductivity improver, It is preferable to include a compound having at least one sulfinyl group, at least one amide group or at least two hydroxyl groups.
沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、少なくとも1つのアミド基又は少なくとも2つのヒドロキシル基を有する化合物としては、特に限定されず、例えば、以下の化合物が挙げられる:
・沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基を有する化合物;
・沸点が100℃以上であって、分子内に、少なくとも1つのアミド基を有する化合物;
・沸点が100℃以上であって、分子内に、少なくとも2つのヒドロキシル基を有する化合物;
・沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、及び、少なくとも1つのアミド基を有する化合物;
・沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、及び、少なくとも2つのヒドロキシル基を有する化合物; 
・沸点が100℃以上であって、分子内に、少なくとも1つのアミド基、及び、少なくとも2つのヒドロキシル基を有する化合物;並びに
・沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、少なくとも1つのアミド基、及び、少なくとも2つのヒドロキシル基を有する化合物。
The compound having a boiling point of 100 ° C. or more and having at least one sulfinyl group, at least one amide group or at least two hydroxyl groups in the molecule is not particularly limited, and examples thereof include the following compounds:
A compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group in the molecule;
A compound having a boiling point of 100 ° C. or higher and having at least one amide group in the molecule;
A compound having a boiling point of 100 ° C. or higher and having at least two hydroxyl groups in the molecule;
A compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group and at least one amide group in the molecule;
A compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group and at least two hydroxyl groups in the molecule;
A compound having a boiling point of 100 ° C. or higher and having at least one amide group and at least two hydroxyl groups in the molecule; and a boiling point of 100 ° C. or higher and having at least one sulfinyl in the molecule A compound having a group, at least one amide group, and at least two hydroxyl groups.
沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、少なくとも1つのアミド基又は少なくとも2つのヒドロキシル基を有する化合物としては、例えば、ジメチルスルホキシド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-エチルアセトアミド、N-フェニル-N-プロピルアセトアミド、ベンズアミド、N-メチルピロリドン、β-ラクタム、γ-ラクタム、δ-ラクタム、ε-カプロラクタム、ラウロラクタム、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、β-チオジグリコール、トリエチレングリコール、トリプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、カテコール、シクロヘキサンジオール、シクロヘキサンジメタノール、グリセリン、エリトリトール、インマトール、ラクチトール、マルチトール、マンニトール、ソルビトール、キシリトール、スクロース等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。 Examples of the compound having a boiling point of 100 ° C. or more and having at least one sulfinyl group, at least one amide group or at least two hydroxyl groups in the molecule include dimethyl sulfoxide, N, N-dimethylacetamide, N— Methylformamide, N, N-dimethylformamide, acetamide, N-ethylacetamide, N-phenyl-N-propylacetamide, benzamide, N-methylpyrrolidone, β-lactam, γ-lactam, δ-lactam, ε-caprolactam, lauro Lactam, ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, β-thiodiglycol, triethylene glycol, tripropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1 , 3-butanediol, 1,6-hexanediol, neopentyl glycol, catechol, cyclohexanediol, cyclohexanedimethanol, glycerin, erythritol, immitol, lactitol, maltitol, mannitol, sorbitol, xylitol, sucrose and the like. These may be used alone or in combination of two or more.
導電性高分子のうち、例えば、ポリチオフェン系導電性高分子は、通常、ドーパントとの複合体として用いられることが多い(例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との複合体)。一般に、ポリチオフェン系導電性高分子は水分散体の形で用いられるが、ポリチオフェンは強い疎水性を示すことから、親水性の溶媒(水又は水と有機溶媒との混合溶媒)との間で反発作用が働き、溶媒中で、ポリチオフェン分子が核(コア)、ドーパントが殻(シェル)のコア-シェル構造となって存在するとされている。しかしながら、コア-シェル構造の導電性高分子をそのまま導電層に用いても、導電性を示すポリチオフェンが絶縁性のドーパントに取り囲まれているため、十分な導電性は発揮されにくい。 Of the conductive polymers, for example, polythiophene-based conductive polymers are usually often used as a complex with a dopant (for example, poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid. Complex). In general, polythiophene-based conductive polymers are used in the form of aqueous dispersions. However, since polythiophene exhibits strong hydrophobicity, it reacts with hydrophilic solvents (water or a mixed solvent of water and organic solvents). It is said that the polythiophene molecule exists as a core-shell structure in which a polythiophene molecule is a nucleus (core) and a dopant is a shell (shell). However, even when a conductive polymer having a core-shell structure is used as it is for the conductive layer, sufficient conductivity is hardly exhibited because the polythiophene exhibiting conductivity is surrounded by the insulating dopant.
一方で、一般に、導電性向上剤を用いた場合、導電性高分子を含む系全体の親水性が低下する(疎水性が高まる)ため、導電性高分子と溶媒との間の反発作用は弱まり、コア-シェル構造が崩れやすくなる。導電性向上剤の中でも、上述の沸点が100℃以上で分子内に少なくとも1つのスルフィニル基を有する化合物、沸点が100℃以上で分子内に少なくとも1つのアミド基を有する化合物、及び、沸点が100℃以上で分子内に2つ以上のヒドロキシル基を有する化合物の3つについては、導電性高分子と溶媒との間の反発作用の低減に加え、溶媒中でのポリチオフェンの安定化等に寄与することから、特に導電性向上効果が高い。そのため、IPS方式液晶表示装置のノイズカット膜といった高い導電性が要求される用途では、これらの導電性向上剤が好適に使用される。 On the other hand, in general, when a conductivity improver is used, the hydrophilicity of the entire system including the conductive polymer is lowered (hydrophobicity is increased), so the repulsive action between the conductive polymer and the solvent is weakened. The core-shell structure tends to collapse. Among the conductivity improvers, the above-mentioned boiling point is 100 ° C. or higher and the compound has at least one sulfinyl group in the molecule, the boiling point is 100 ° C. or higher and the compound has at least one amide group in the molecule, and the boiling point is 100 Three of the compounds having two or more hydroxyl groups in the molecule at a temperature of ℃ or higher contribute to the stabilization of polythiophene in the solvent in addition to the reduction of the repulsive action between the conductive polymer and the solvent. Therefore, the effect of improving conductivity is particularly high. For this reason, these conductivity improvers are suitably used in applications requiring high conductivity such as a noise cut film of an IPS liquid crystal display device.
また、通常、コーティング組成物において導電性高分子の含有量を増やした場合、導電性が高まる一方で着色により透明性が低下する傾向にあるが、一定の導電性を達成する際、導電性向上剤を用いることで、用いなかった場合と比べ、導電性を確保しつつ、透明性を向上させることができる利点を有する。 Also, usually, when the content of the conductive polymer in the coating composition is increased, the conductivity increases, while the transparency tends to decrease due to coloring, but the conductivity is improved when achieving a certain level of conductivity. By using an agent, it has an advantage that transparency can be improved while ensuring conductivity as compared with the case where the agent is not used.
コーティング組成物が導電性向上剤を含有する場合、その含有量は特に限定されないが、導電性高分子の固形分100重量部に対して0.01~100000重量部が好ましく、0.1~10000重量部がより好ましく、1~5000重量部がさらに好ましい。 When the coating composition contains a conductivity improver, the content is not particularly limited, but is preferably 0.01 to 100,000 parts by weight, preferably 0.1 to 10,000 parts by weight based on 100 parts by weight of the solid content of the conductive polymer. Part by weight is more preferred, and 1 to 5000 parts by weight is even more preferred.
(水溶性酸化防止剤)
コーティング組成物に水溶性酸化防止剤を配合することにより、コーティング組成物を用いて形成した導電層の耐湿熱性を向上させつつ、導電層の経時的な導電性劣化の進行を緩やかにすることができる。
水溶性酸化防止剤としては、特に限定されず、還元性の水溶性酸化防止剤、非還元性の水溶性酸化防止剤等が挙げられる。これらは単独で用いても良いし、2種以上を併用しても良い。
(Water-soluble antioxidant)
By adding a water-soluble antioxidant to the coating composition, it is possible to improve the moisture and heat resistance of the conductive layer formed using the coating composition, and to moderate the progress of the conductive deterioration of the conductive layer over time. it can.
The water-soluble antioxidant is not particularly limited, and examples thereof include a reducing water-soluble antioxidant and a non-reducing water-soluble antioxidant. These may be used alone or in combination of two or more.
還元性の水溶性酸化防止剤としては、例えば、L-アスコルビン酸、L-アスコルビン酸ナトリウム、L-アスコルビン酸カリウム、D(-)-イソアスコルビン酸(エリソルビン酸)、エリソルビン酸ナトリウム、エリソルビン酸カリウム等の2個の水酸基で置換されたラクトン環を有する化合物;マルトース、ラクトース、セロビオース、キシロース、アラビノース、グルコース、フルクトース、ガラクトース、マンノース等の単糖類又は二糖類(但し、スクロースを除く);カテキン、ルチン、ミリセチン、クエルセチン、ケンフェロール、サンメリン(登録商標)Y-AF等のフラボノイド;没食子酸、没食子酸メチル、没食子酸プロピル、タンニン酸、クルクミン、ロズマリン酸、クロロゲン酸、ヒドロキノン、3,4,5-トリヒドロキシ安息香酸等のフェノール性水酸基を2個以上有する化合物;システイン、グルタチオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)等のチオール基を有する化合物等が挙げられる。 Examples of reducing water-soluble antioxidants include L-ascorbic acid, sodium L-ascorbate, potassium L-ascorbate, D (-)-isoascorbic acid (erythorbic acid), sodium erythorbate, potassium erythorbate A compound having a lactone ring substituted with two hydroxyl groups such as: maltose, lactose, cellobiose, xylose, arabinose, glucose, fructose, galactose, mannose and other monosaccharides or disaccharides (excluding sucrose); Flavonoids such as rutin, myricetin, quercetin, kaempferol, sanmerin (registered trademark) Y-AF; gallic acid, methyl gallate, propyl gallate, tannic acid, curcumin, rosmarinic acid, chlorogenic acid, hydroquinone, 3,4,5 -bird Compounds having two or more phenolic hydroxyl group such as Dorokishi benzoic acid; cysteine, glutathione, a compound having a pentaerythritol tetrakis (3-mercapto butyrate) thiol groups, such as and the like.
非還元性の水溶性酸化防止剤としては、例えば、フェニルイミダゾールスルホン酸、フェニルトリアゾールスルホン酸、2-ヒドロキシピリミジン、サリチル酸フェニル、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸ナトリウム等の酸化劣化の原因となる紫外線を吸収する化合物が挙げられる。 Non-reducing water-soluble antioxidants include, for example, oxidative degradation such as phenylimidazolesulfonic acid, phenyltriazolesulfonic acid, 2-hydroxypyrimidine, phenyl salicylate, sodium 2-hydroxy-4-methoxybenzophenone-5-sulfonate. The compound which absorbs the ultraviolet-ray which causes this is mentioned.
これらの中では、2個の水酸基で置換されたラクトン環を有する化合物、及び/又は、フェノール性水酸基を2個以上有する化合物が好ましく、L-アスコルビン酸、L-アスコルビン酸ナトリウム、L-アスコルビン酸カリウム、D(-)-イソアスコルビン酸、没食子酸、没食子酸メチル、没食子酸プロピル及びタンニン酸からなる群より選択される少なくとも1つがより好ましい。 Among these, a compound having a lactone ring substituted with two hydroxyl groups and / or a compound having two or more phenolic hydroxyl groups are preferable. L-ascorbic acid, sodium L-ascorbate, L-ascorbic acid More preferred is at least one selected from the group consisting of potassium, D (−)-isoascorbic acid, gallic acid, methyl gallate, propyl gallate and tannic acid.
上述のとおり、導電性高分子を水分散体とした場合、導電性高分子がコア-シェル構造となることで十分な導電性が発揮されない問題が生じる。しかしその一方で、導電性高分子のコア-シェル構造は、導電性を発揮する上で重要なポリチオフェン(導電性高分子としてポリチオフェンとドーパントとの複合体を使用する場合)を周囲の酸化成分(大気に由来する酸素や、熱や紫外線により生じるラジカル)から保護する役目も担っている。上述したように、導電性をIPS方式液晶表示装置のノイズカット膜等の用途で使用し得る高い水準とするために、本発明の透明導電体では、上述の沸点が100℃以上で分子内に少なくとも1つのスルフィニル基を有する化合物、沸点が100℃以上で分子内に少なくとも1つのアミド基を有する化合物、及び、沸点が100℃以上で分子内に2つ以上のヒドロキシル基を有する化合物といった導電性向上剤が好適に使用されるが、導電性向上剤によりコア-シェル構造が緩和されると、ポリチオフェンが酸化成分の攻撃を受けやすくなる結果、導電性高分子の酸化が急速に進む。特に、本発明の透明導電体では、導電性高分子を用いた導電層を偏光層上に設けているため、酸化成分による導電性低下の影響は顕著であり、導電性向上剤を用いていない場合と比べ、導電性の低下は急速に進む。そのため、本発明の透明導電体において、導電層の導電性低下を穏やかにし、長期間にわたり一定水準の導電性を維持する上で、水溶性酸化防止剤の使用は特に効果的である。 As described above, when the conductive polymer is an aqueous dispersion, the conductive polymer has a core-shell structure, resulting in a problem that sufficient conductivity is not exhibited. However, on the other hand, the core-shell structure of the conductive polymer has a polythiophene (in the case of using a complex of polythiophene and dopant as the conductive polymer) that is important for achieving conductivity, and the surrounding oxidation component ( It also plays a role in protecting against oxygen derived from the atmosphere and radicals generated by heat and ultraviolet rays. As described above, in order to obtain a high level of conductivity that can be used in applications such as a noise cut film of an IPS liquid crystal display device, the transparent conductor of the present invention has a boiling point of 100 ° C. or higher in the molecule. Conductivity such as a compound having at least one sulfinyl group, a compound having a boiling point of 100 ° C. or more and having at least one amide group in the molecule, and a compound having a boiling point of 100 ° C. or more and having two or more hydroxyl groups in the molecule An improver is preferably used. However, when the core-shell structure is relaxed by the conductivity improver, polythiophene is easily attacked by an oxidizing component, and as a result, the oxidation of the conductive polymer proceeds rapidly. In particular, in the transparent conductor of the present invention, since the conductive layer using the conductive polymer is provided on the polarizing layer, the influence of the decrease in conductivity due to the oxidizing component is significant, and no conductivity improver is used. Compared to the case, the decrease in conductivity proceeds rapidly. Therefore, in the transparent conductor of the present invention, the use of a water-soluble antioxidant is particularly effective in moderately reducing the conductivity of the conductive layer and maintaining a certain level of conductivity over a long period of time.
さらに、上述の2個の水酸基で置換されたラクトン環を有する化合物、及び/又は、フェノール性水酸基を2個以上有する化合物は、他の水溶性酸化防止剤に比べ酸性度が高い点で共通するが、上述の導電性向上剤(沸点が100℃以上で分子内に少なくとも1つのスルフィニル基を有する化合物、沸点が100℃以上で分子内に少なくとも1つのアミド基を有する化合物、及び、沸点が100℃以上で分子内に2つ以上のヒドロキシル基を有する化合物)と組み合わせて使用することで、他の水溶性酸化防止剤を用いた場合と比べて、溶媒和や水素結合の形成により溶媒中で安定化されるため、導電層中で安定的かつ均質な酸化防止能を発揮できる点で好ましい。 Furthermore, the above-mentioned compound having a lactone ring substituted with two hydroxyl groups and / or a compound having two or more phenolic hydroxyl groups are common in that they have higher acidity than other water-soluble antioxidants. Are the above-mentioned conductivity improvers (a compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group in the molecule, a compound having a boiling point of 100 ° C. or higher and having at least one amide group in the molecule, and a boiling point of 100 Compared to the case of using other water-soluble antioxidants by using in combination with a compound having two or more hydroxyl groups in the molecule at a temperature of ℃ or higher, in the solvent due to solvation or hydrogen bond formation. Since it is stabilized, it is preferable in that a stable and homogeneous antioxidant ability can be exhibited in the conductive layer.
また、本発明の透明導電体は、高い透明性と良好な外観とを有する必要があるが、水溶性酸化防止剤の中でも、2個の水酸基で置換されたラクトン環を有する化合物、フェノール性水酸基を2個以上有する化合物は、ポリチオフェン系導電性高分子やバインダーと相互作用するため導電層中に留まりやすく、ブリードアウトによる外観の劣化が起きづらいため好適に使用される。 The transparent conductor of the present invention must have high transparency and good appearance. Among water-soluble antioxidants, compounds having a lactone ring substituted with two hydroxyl groups, phenolic hydroxyl groups A compound having two or more of them is preferably used because it interacts with the polythiophene-based conductive polymer and the binder, so that it easily stays in the conductive layer and hardly deteriorates in appearance due to bleeding out.
コーティング組成物が水溶性酸化防止剤を含有する場合、その含有量は特に限定されないが、導電性高分子の固形分100重量部に対して0.001~500重量部が好ましく、0.01~300重量部がより好ましく、0.05~200重量部がさらに好ましい。 When the coating composition contains a water-soluble antioxidant, its content is not particularly limited, but is preferably 0.001 to 500 parts by weight, preferably 0.01 to 500 parts by weight with respect to 100 parts by weight of the solid content of the conductive polymer. 300 parts by weight are more preferable, and 0.05 to 200 parts by weight are even more preferable.
(金属ナノワイヤ)
コーティング組成物に金属ナノワイヤを配合することにより、コーティング組成物を用いて形成した導電層の導電性を向上させることができる。
(Metal nanowires)
By mix | blending metal nanowire with a coating composition, the electroconductivity of the conductive layer formed using the coating composition can be improved.
(溶媒)
溶媒としては、特に限定されず、例えば、水;メタノール、エタノール、2-プロパノール、1-プロパノール等のアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のエチレングリコール類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル等のグリコールエーテル類;エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のグリコールエーテルアセテート類;プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のプロピレングリコール類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジエチルエーテル等のプロピレングリコールエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールエーテルアセテート類;ジエチルエーテル、ジイソプロピルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン(o-、m-、あるいはp-キシレン)、ベンゼン、ヘキサン、ヘプタン等の炭化水素類:酢酸エチル、酢酸ブチル等のエステル類:クロロメタン(塩化メチル)、ジクロロメタン(塩化メチレン)、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)等のハロゲン類、アセトニトリル、水とこれらの有機溶媒との混合溶媒(含水有機溶媒)、2種以上の有機溶媒の混合溶媒等が挙げられる。これらの溶媒は単独で用いても良いし、2種類以上を併用しても良い。
(solvent)
The solvent is not particularly limited. For example, water; alcohols such as methanol, ethanol, 2-propanol, and 1-propanol; ethylene glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; ethylene glycol monomethyl Glycol ethers such as ether, diethylene glycol monomethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether; Glycol ether acetates such as ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate; propylene glycol, dipropylene glycol, Such as tripropylene glycol Propylene glycols; propylene such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, propylene glycol diethyl ether, dipropylene glycol diethyl ether Glycol ethers; Propylene glycol ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate; diethyl ether, diisopropyl ether Ethers such as methyl-t-butyl ether and tetrahydrofuran; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Carbonization such as toluene, xylene (o-, m-, or p-xylene), benzene, hexane, and heptane Hydrogen: Esters such as ethyl acetate and butyl acetate: Halogens such as chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), acetonitrile, water and these And a mixed solvent (hydrous organic solvent) with two or more organic solvents, and a mixed solvent of two or more organic solvents. These solvents may be used alone or in combination of two or more.
溶媒は、水、有機溶媒、又は、水と有機溶媒との混合溶媒であることが好ましい。コーティング組成物が溶媒として水を含有する場合、水の含有量は、特に限定されないが、コーティング組成物中70重量%以下であることが好ましく、50重量%以下であることがより好ましい。含有量が70重量%を超えると、粘度が低下し、コーティング組成物の塗布性が低下することがある。 The solvent is preferably water, an organic solvent, or a mixed solvent of water and an organic solvent. When the coating composition contains water as a solvent, the content of water is not particularly limited, but is preferably 70% by weight or less, and more preferably 50% by weight or less in the coating composition. When content exceeds 70 weight%, a viscosity will fall and the applicability | paintability of a coating composition may fall.
溶媒は、コーティング組成物を用いて形成する導電層中には残留しないことが好ましい。なお、本明細書においては、コーティング組成物の全ての成分を完全に溶解させるもの(即ち、「溶媒」)と、不溶成分を分散させるもの(即ち、「分散媒」)とを特に区別せずに、いずれも「溶媒」と記載する。 It is preferable that the solvent does not remain in the conductive layer formed using the coating composition. In the present specification, there is no particular distinction between those in which all components of the coating composition are completely dissolved (ie, “solvent”) and those in which insoluble components are dispersed (ie, “dispersion medium”). Are described as “solvents”.
(架橋剤)
架橋剤を配合することによりバインダーを架橋させることができ、コーティング組成物を用いて形成する導電層の強度をさらに向上させることができる。
架橋剤としては、特に限定されないが、例えば、メラミン系、ポリカルボジイミド系、ポリオキサゾリン系、ポリエポキシ系、ポリイソシアネート系、ポリアクリレート系等の架橋剤が挙げられる。これらの架橋剤は、単独で用いてもよく、2種以上を併用してもよい。
(Crosslinking agent)
By blending a crosslinking agent, the binder can be crosslinked, and the strength of the conductive layer formed using the coating composition can be further improved.
Although it does not specifically limit as a crosslinking agent, For example, crosslinking agents, such as a melamine type, a polycarbodiimide type, a polyoxazoline type, a polyepoxy type, a polyisocyanate type, a polyacrylate type, are mentioned. These crosslinking agents may be used independently and may use 2 or more types together.
コーティング組成物が架橋剤を含有する場合、その含有量は特に限定されないが、コーティング組成物中30重量%以下であることが好ましく、20重量%以下であることがより好ましい。 When the coating composition contains a crosslinking agent, the content is not particularly limited, but is preferably 30% by weight or less, more preferably 20% by weight or less in the coating composition.
(触媒)
コーティング組成物がバインダー及び架橋剤を含有する場合、バインダーを架橋させるための触媒としては、特に限定されず、例えば、光重合開始剤や熱重合開始剤等が挙げられる。コーティング組成物がバインダーとしてアクリル樹脂を含有する場合には、光重合開始剤を用いることが好ましい。
(catalyst)
When the coating composition contains a binder and a crosslinking agent, the catalyst for crosslinking the binder is not particularly limited, and examples thereof include a photopolymerization initiator and a thermal polymerization initiator. When the coating composition contains an acrylic resin as a binder, it is preferable to use a photopolymerization initiator.
(界面活性剤及び/又はレベリング剤)
界面活性剤及び/又はレベリング剤を配合することにより、コーティング組成物のレベリング性を向上させることができ、このようなコーティング組成物を用いることで均一な導電層を形成することができる。
(Surfactant and / or leveling agent)
By blending a surfactant and / or a leveling agent, the leveling property of the coating composition can be improved, and a uniform conductive layer can be formed by using such a coating composition.
(増粘剤)
増粘剤をコーティング組成物に配合することにより、コーティング組成物の粘度やレオロジー特性を調整することができる。増粘剤としては、特に限定されないが、例えば、ポリアクリル酸系樹脂、セルロースエーテル樹脂、ポリビニルピロリドン、ポリウレタン、カルボキシビニルポリマー、ポリビニルアルコール等が挙げられる。このような増粘剤の市販品としては、例えば、CARBOPOL ETD-2623(架橋性ポリアクリル酸、BF Goodrichi社製)、GE-167(N-ビニルアセトアミドとアクリル酸の共重合体、昭和電工株式会社製)、ジュリマー(ポリアクリル酸、日本純薬株式会社製)、ポリビニルピロリドンK-90(ポリビニルピロリドン、株式会社日本触媒製)等が挙げられる。これらは単独で用いても良いし、2種以上を併用してもよい。
(Thickener)
By blending a thickener in the coating composition, the viscosity and rheological properties of the coating composition can be adjusted. Although it does not specifically limit as a thickener, For example, polyacrylic acid-type resin, a cellulose ether resin, polyvinylpyrrolidone, a polyurethane, a carboxy vinyl polymer, polyvinyl alcohol etc. are mentioned. Examples of such commercially available thickeners include CARBOPOL ETD-2623 (crosslinkable polyacrylic acid, manufactured by BF Goodrich), GE-167 (N-vinylacetamide and acrylic acid copolymer, Showa Denko Co., Ltd.) Company), Jurimer (polyacrylic acid, manufactured by Nippon Pure Chemicals Co., Ltd.), polyvinylpyrrolidone K-90 (polyvinylpyrrolidone, manufactured by Nippon Shokubai Co., Ltd.), and the like. These may be used alone or in combination of two or more.
導電層は、偏光層上に形成されるが、より詳細には、偏光層上にコーティング組成物を塗布することにより形成される。コーティング組成物は偏光層を構成するフィルムに対する親和性が高いため、より均一な導電層を形成することができる。
また、コーティング組成物をフィルムに塗布するため、ロールtoロールで生産することも可能となり、生産性が向上し、表示デバイスの大面積化も容易となる。
The conductive layer is formed on the polarizing layer. More specifically, the conductive layer is formed by applying a coating composition on the polarizing layer. Since the coating composition has a high affinity for the film constituting the polarizing layer, a more uniform conductive layer can be formed.
Further, since the coating composition is applied to the film, it can be produced in a roll-to-roll manner, the productivity is improved, and the display device can be easily increased in area.
コーティング組成物を用いて導電層を形成する方法としては、特に限定されないが、コーティング組成物を偏光層上に塗布した後、加熱処理、光照射処理等する方法等が挙げられる。コーティング組成物を偏光層上に塗布する方法としては、特に限定されないが、例えば、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、ブレードコート法、カーテンコート法、スプレーコート法、ドクターコート法等を用いることができる。これらの中では、特にスプレーコート法が好ましい。 A method for forming the conductive layer using the coating composition is not particularly limited, and examples thereof include a method in which the coating composition is applied on the polarizing layer, followed by heat treatment, light irradiation treatment, and the like. A method for applying the coating composition on the polarizing layer is not particularly limited, and examples thereof include a roll coating method, a bar coating method, a dip coating method, a spin coating method, a blade coating method, a curtain coating method, a spray coating method, and a doctor. A coating method or the like can be used. Among these, the spray coating method is particularly preferable.
コーティング組成物を偏光層上に塗布する際には、あらかじめ偏光層上にプライマー層等の層を形成し、その層上にコーティング組成物を塗布しても良い。また、必要に応じて、あらかじめ偏光層の表面に表面処理を施した後にコーティング組成物を塗布しても良い。表面処理としては、特に限定されないが、例えば、コロナ処理、プラズマ処理、イトロ処理、火炎処理等が挙げられる。 When applying the coating composition on the polarizing layer, a layer such as a primer layer may be formed on the polarizing layer in advance, and the coating composition may be applied on the layer. Moreover, you may apply | coat a coating composition, after giving surface treatment to the surface of a polarizing layer beforehand as needed. The surface treatment is not particularly limited, and examples thereof include corona treatment, plasma treatment, itro treatment, and flame treatment.
偏光層上に塗布されたコーティング組成物を加熱処理、光照射処理等することにより、偏光層上に導電層を形成することができる。加熱処理は、特に限定されず公知の方法により行えば良く、例えば、送風オーブン、赤外線オーブン、真空オーブン等を用いて行えば良い。なお、コーティング組成物が溶媒を含有する場合、溶媒は、加熱処理により除去される。 A conductive layer can be formed on the polarizing layer by subjecting the coating composition applied on the polarizing layer to a heat treatment, a light irradiation treatment, or the like. The heat treatment is not particularly limited and may be performed by a known method. For example, the heat treatment may be performed using a blow oven, an infrared oven, a vacuum oven, or the like. In addition, when a coating composition contains a solvent, a solvent is removed by heat processing.
加熱処理は、特に限定されないが、150℃以下の温度条件で行うことが好ましい。加熱処理の温度が150℃を超えると、用いる基材の材質が限定され、例えば、PETフィルム、ポリカーボネートフィルム、アクリルフィルム等の一般に透明電極フィルムに用いられる材質からなる基材を用いることが出来なくなる。本発明では、150℃以下の温度条件での加熱処理であっても、十分な透明性及び導電性を有する透明導電体を得ることが出来る利点を有する。加熱処理の温度は、50~140℃であることが好ましく、60~130℃であることがより好ましい。加熱処理の処理時間は、特に限定されないが、0.1~60分間であることが好ましく、0.5~30分間であることがより好ましい。 Although heat processing is not specifically limited, It is preferable to perform on 150 degreeC or less temperature conditions. When the temperature of the heat treatment exceeds 150 ° C., the material of the base material to be used is limited. For example, a base material made of a material generally used for a transparent electrode film such as a PET film, a polycarbonate film, or an acrylic film cannot be used. . In this invention, even if it is heat processing on 150 degreeC or less temperature conditions, it has an advantage which can obtain the transparent conductor which has sufficient transparency and electroconductivity. The temperature of the heat treatment is preferably 50 to 140 ° C, more preferably 60 to 130 ° C. The treatment time for the heat treatment is not particularly limited, but is preferably 0.1 to 60 minutes, more preferably 0.5 to 30 minutes.
光照射処理には、特に限定されないが、主に、紫外線、可視光、電子線、電離放射線等を使用する。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光源から発する紫外線等を使用することができる。ここで、エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~5000mJ/cm程度である。 The light irradiation treatment is not particularly limited, but mainly ultraviolet rays, visible light, electron beams, ionizing radiation, etc. are used. In the case of ultraviolet curing, ultraviolet rays emitted from a light source such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, or a metal halide lamp can be used. Here, the irradiation amount of the energy ray source is about 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
本発明の透明導電体において、導電層の鉛筆硬度は、特に限定されないが、H以上であることが好ましい。その理由は、透明導電体としたときに十分な膜耐性が得られるからである。 In the transparent conductor of the present invention, the pencil hardness of the conductive layer is not particularly limited, but is preferably H or more. The reason is that sufficient film resistance can be obtained when a transparent conductor is used.
本発明の透明導電体において、導電層の厚みは、特に限定されないが、0.01~1.0μmであることが好ましく、0.05~0.5μmであることがより好ましい。その理由は、充分な電磁波ノイズ遮蔽性を有しつつ、透明性、鉛筆強度、耐湿熱性を維持できるからである。 In the transparent conductor of the present invention, the thickness of the conductive layer is not particularly limited, but is preferably 0.01 to 1.0 μm, and more preferably 0.05 to 0.5 μm. The reason is that transparency, pencil strength, and moist heat resistance can be maintained while having sufficient electromagnetic wave noise shielding properties.
本発明の透明導電体において、導電層の表面抵抗率は、10~10Ω/□である限り特に限定されないが、100~3000Ω/□であることが好ましい。表面抵抗率が10Ω/□を超えると、導電層が充分な電磁波ノイズ遮蔽性を発現しないことがある。 In the transparent conductor of the present invention, the surface resistivity of the conductive layer is not particularly limited as long as it is 10 2 to 10 5 Ω / □, but it is preferably 100 to 3000 Ω / □. When the surface resistivity exceeds 10 5 Ω / □, the conductive layer may not exhibit sufficient electromagnetic wave noise shielding properties.
導電層は、80℃、相対湿度85%の環境に1000時間保持した後の表面抵抗率が、保持する前の表面抵抗率の5倍以下であることが好ましい。保持後の表面抵抗率が保持前の表面抵抗率の5倍を超えると、電磁波ノイズを遮蔽できなくなることがある。 The conductive layer preferably has a surface resistivity after holding for 1000 hours in an environment of 80 ° C. and a relative humidity of 85% that is not more than 5 times the surface resistivity before holding. If the surface resistivity after holding exceeds 5 times the surface resistivity before holding, electromagnetic wave noise may not be shielded.
本発明の透明導電体は、上述したガラス基材、粘着層、偏光層及び導電層の他に、任意に、様々な機能を有する他の層が積層された構造を有していても良い。他の層としては、特に限定されないが、例えば、ハードコート層、防眩層、低反射層等が挙げられる。これらの他の層の積層順は、透明導電体としての機能を損なわない限り、特に限定されない。 The transparent conductor of the present invention may have a structure in which other layers having various functions are arbitrarily laminated in addition to the glass substrate, the adhesive layer, the polarizing layer, and the conductive layer described above. Although it does not specifically limit as another layer, For example, a hard-coat layer, a glare-proof layer, a low reflection layer, etc. are mentioned. The order of stacking these other layers is not particularly limited as long as the function as the transparent conductor is not impaired.
本発明の透明導電体の全光線透過率は、特に限定されないが、50%以上が好ましく、60%以上がより好ましく、80%以上がさらに好ましい。一方、上限は100%である。 The total light transmittance of the transparent conductor of the present invention is not particularly limited, but is preferably 50% or more, more preferably 60% or more, and further preferably 80% or more. On the other hand, the upper limit is 100%.
本発明の透明導電体のヘイズは、特に限定されないが、1.0%以下が好ましく、0.8%以下がより好ましく、0.5%以下がさらに好ましい。ヘイズは小さければ小さいほど好ましいため、下限は特に限定されないが、例えば、0.1%である。 The haze of the transparent conductor of the present invention is not particularly limited, but is preferably 1.0% or less, more preferably 0.8% or less, and further preferably 0.5% or less. The smaller the haze is, the better. Therefore, the lower limit is not particularly limited, but is, for example, 0.1%.
本発明の透明導電体は、液晶表示装置、特にIPS方式液晶表示装置に好適に用いられる。 The transparent conductor of the present invention is suitably used for a liquid crystal display device, particularly an IPS liquid crystal display device.
<<液晶表示装置>>
本発明の液晶表示装置は、本発明の透明導電体を備えたことを特徴とする。本発明の液晶表示装置は、本発明の透明導電体を備えるため、製造にかかるコストや時間が抑えられ、帯電による不具合の発生が少ない。
<< Liquid Crystal Display >>
The liquid crystal display device of the present invention includes the transparent conductor of the present invention. Since the liquid crystal display device of the present invention includes the transparent conductor of the present invention, the manufacturing cost and time can be suppressed, and the occurrence of problems due to charging is small.
本発明の液晶表示装置は、IPS方式液晶表示装置であることが好ましい。その理由は、表示デバイス、特に、IPS方式液晶の動作に与える電磁波ノイズの影響が顕著だからである。 The liquid crystal display device of the present invention is preferably an IPS liquid crystal display device. This is because the influence of electromagnetic noise on the operation of the display device, particularly the IPS liquid crystal, is significant.
<<透明導電体の製造方法>>
本発明の透明導電体の製造方法は、
(i)研磨処理されたガラス基材の少なくとも一方の面上に、粘着層及び偏光層を形成した後、導電性高分子を含むコーティング組成物を用いて導電層をさらに形成するか、又は、
(ii)偏光層上に導電性高分子を含むコーティング組成物を用いて導電層を形成した後、導電層が形成された面とは反対の面を粘着層を介して研磨処理されたガラス基材に接着させることを特徴とする。
<< Method for producing transparent conductor >>
The method for producing the transparent conductor of the present invention is as follows.
(I) after forming an adhesive layer and a polarizing layer on at least one surface of a polished glass substrate, further forming a conductive layer using a coating composition containing a conductive polymer, or
(Ii) A glass substrate in which a conductive layer is formed on a polarizing layer using a coating composition containing a conductive polymer, and then the surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. It is characterized by being adhered to a material.
<製造方法(i)>
本方法では、研磨処理されたガラス基材の少なくとも一方の面上に、粘着層及び偏光層を形成した後、導電性高分子を含むコーティング組成物を用いて導電層をさらに形成する。粘着層を形成する方法、偏光層を形成する方法、コーティング組成物を用いて導電層を形成する方法は、いずれも上述した通りである。
<Manufacturing method (i)>
In this method, an adhesive layer and a polarizing layer are formed on at least one surface of a polished glass substrate, and then a conductive layer is further formed using a coating composition containing a conductive polymer. The method for forming the adhesive layer, the method for forming the polarizing layer, and the method for forming the conductive layer using the coating composition are all as described above.
<製造方法(ii)>
本方法では、偏光層上に導電性高分子を含むコーティング組成物を用いて導電層を形成した後、導電層が形成された面とは反対の面を粘着層を介して研磨処理されたガラス基材に接着させる。偏光層上にコーティング組成物を用いて導電層を形成する方法は、上述した通りである。偏光層の導電層が形成された面とは反対の面を粘着層を介して研磨処理されたガラス基材に接着させる方法としては、加圧による接着を行うのが一般的だが、必要に応じて熱等を加えても良い。
<Manufacturing method (ii)>
In this method, after forming a conductive layer using a coating composition containing a conductive polymer on a polarizing layer, a surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. Adhere to the substrate. The method for forming the conductive layer on the polarizing layer using the coating composition is as described above. As a method of adhering the surface of the polarizing layer opposite to the surface on which the conductive layer is formed to the polished glass substrate through the adhesive layer, it is common to perform adhesion by pressing, but if necessary Heat may be applied.
本発明の透明導電体の製造方法によれば、本発明の透明導電体を少ない工程数で簡便かつ安価に製造することができる。 According to the method for producing a transparent conductor of the present invention, the transparent conductor of the present invention can be produced easily and inexpensively with a small number of steps.
以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。以下、「部」又は「%」は特記ない限り、それぞれ「重量部」又は「重量%」を意味する。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to a following example. Hereinafter, “part” or “%” means “part by weight” or “% by weight”, respectively, unless otherwise specified.
1.使用材料
1-1.ガラス基材
・研磨処理されたガラス基材(無アルカリガラス(コーニング社製、EAGLE XG)を、エッチング液にて化学研磨することにより作製した)
1. Materials used 1-1. Glass substrate / glass substrate subjected to polishing treatment (produced by chemically polishing non-alkali glass (Corning, EAGLE XG) with an etching solution)
1-2.粘着層
(粘着剤)
・アクリル樹脂(ナガセケムテックス社製、SG790)
(架橋剤)
・イソシアネート化合物(日本ポリウレタン社製、コロネートHL)
1-2. Adhesive layer (adhesive)
・ Acrylic resin (Nagase ChemteX, SG790)
(Crosslinking agent)
・ Isocyanate compound (Nihon Polyurethane, Coronate HL)
1-3.偏光層
(透明保護フィルム)
・トリアセチルセルロース(TAC)フィルム(コニカミノルタ社製、KC8UX2MW、厚み80μm)
・シクロオレフィン系樹脂(COP)フィルム(日本ゼオン社製、ゼオノア(ZEONOR)、厚さ60μm)
(偏光フィルム)
・ポリビニルアルコールフィルム(日本合成化学社製、厚み75μm)
(接着剤)
・紫外線硬化型エポキシ接着剤(ADEKA社製、KRシリーズ)
1-3. Polarizing layer (transparent protective film)
Triacetyl cellulose (TAC) film (Konica Minolta, KC8UX2MW, thickness 80 μm)
・ Cycloolefin resin (COP) film (manufactured by Nippon Zeon Co., Ltd., ZEONOR, thickness 60μm)
(Polarizing film)
・ Polyvinyl alcohol film (Nippon Gosei Co., Ltd., thickness 75μm)
(adhesive)
・ UV curable epoxy adhesive (made by ADEKA, KR series)
1-4.導電層
(導電性高分子)
・PEDOT/PSS(ヘレウス社製、Clevios PH1000)
(バインダー)
・ポリエステル系樹脂(ナガセケムテックス社製、ガブセンES-210)
・アルコキシシランオリゴマー(扶桑化学工業社製、N-POS)
・アルコキシシランオリゴマー(信越化学工業社製、KBE-402)
・(メタ)アクリレート(第一工業製薬株式会社製、ニューフロンティアR-1150D)
・アクリル樹脂(東亜合成株式会社製、ジュリマーAT-510、固形分30%)
・メラミン樹脂(三井サイアナミッド株式会社製、サイメル300)
(導電性向上剤)
・エチレングリコール(和光純薬工業株式会社製)
・ジメチルスルホキシド(DMSO)(和光純薬工業株式会社製)
・アセトアミド
・ジオキサン
・ε-カプロラクタム
(水溶性酸化防止剤)
・アスコルビン酸(和光純薬工業株式会社製)
・タンニン酸(和光純薬工業株式会社製)
・ヒドロキノン(和光純薬工業株式会社製)
・D(+)-グルコース(和光純薬工業株式会社製)
(溶媒)
・工業用変性アルコール(日本アルコール販売株式会社製、ソルミックスAP-7)
1-4. Conductive layer (conductive polymer)
・ PEDOT / PSS (manufactured by Heraeus, Clevios PH1000)
(binder)
・ Polyester resin (manufactured by Nagase ChemteX Corporation, Gabsen ES-210)
・ Alkoxysilane oligomer (manufactured by Fuso Chemical Industry Co., Ltd., N-POS)
・ Alkoxysilane oligomer (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-402)
・ (Meth) acrylate (Daiichi Kogyo Seiyaku Co., Ltd., New Frontier R-1150D)
・ Acrylic resin (Toagosei Co., Ltd., Jurimer AT-510, solid content 30%)
・ Melamine resin (Mitsui Cyanamid Co., Ltd., Cymel 300)
(Conductivity improver)
・ Ethylene glycol (Wako Pure Chemical Industries, Ltd.)
・ Dimethyl sulfoxide (DMSO) (manufactured by Wako Pure Chemical Industries, Ltd.)
・ Acetamide ・ Dioxane ・ ε-Caprolactam (Water-soluble antioxidant)
・ Ascorbic acid (Wako Pure Chemical Industries, Ltd.)
・ Tannic acid (Wako Pure Chemical Industries, Ltd.)
・ Hydroquinone (Wako Pure Chemical Industries, Ltd.)
・ D (+)-glucose (manufactured by Wako Pure Chemical Industries, Ltd.)
(solvent)
-Industrial denatured alcohol (manufactured by Nippon Alcohol Sales Co., Ltd., Solmix AP-7)
2.評価方法
各実施例及び比較例で得た透明導電体について、以下のとおり評価を行った。
2. Evaluation method The transparent conductors obtained in the respective Examples and Comparative Examples were evaluated as follows.
2-1.表面抵抗率(SR)
導電層の表面抵抗率を、抵抗率計(三菱化学社製、ロレスターGP MCP-T600)を用いて測定した。
2-1. Surface resistivity (SR)
The surface resistivity of the conductive layer was measured using a resistivity meter (manufactured by Mitsubishi Chemical Corporation, Lorester GP MCP-T600).
2-2.耐湿熱性試験
導電層形成直後の表面抵抗率と、恒温恒湿器(ESPEC社製、FR-1J)を用いて80℃、相対湿度85%の環境に1000時間保持した後の表面抵抗率とを、抵抗率計(三菱化学株式会社製、ロレスターGP MCP-T600)を用いて測定し、下記7段階で耐湿熱性を評価した。
7:保持後の表面抵抗率が、保持前の表面抵抗率の1.1倍以下である
6:保持後の表面抵抗率が、保持前の表面抵抗率の1.1倍より大きく1.2倍以下である
5:保持後の表面抵抗率が、保持前の表面抵抗率の1.2倍より大きく1.5倍以下である
4:保持後の表面抵抗率が、保持前の表面抵抗率の1.5倍より大きく2.0倍以下である
3:保持後の表面抵抗率が、保持前の表面抵抗率の2.0倍より大きく3.0倍以下である
2:保持後の表面抵抗率が、保持前の表面抵抗率の3.0倍より大きく5.0倍以下である
1:保持後の表面抵抗率が、保持前の表面抵抗率の5.0倍より大きい
2-2. Moisture and heat resistance test The surface resistivity immediately after the formation of the conductive layer and the surface resistivity after being kept in an environment of 80 ° C. and 85% relative humidity for 1000 hours using a thermo-hygrostat (manufactured by ESPEC, FR-1J). The measurement was made using a resistivity meter (Lorestar GP MCP-T600, manufactured by Mitsubishi Chemical Corporation), and the moisture and heat resistance was evaluated in the following seven stages.
7: Surface resistivity after holding is 1.1 times or less of surface resistivity before holding 6: Surface resistivity after holding is larger than 1.1 times of surface resistivity before holding 1.2 5 or less: The surface resistivity after holding is greater than 1.2 times the surface resistivity before holding and 1.5 times or less. 4: The surface resistivity after holding is the surface resistivity before holding. 3 to 1.5 times greater than or equal to 2.0 and less than or equal to 3: Surface resistivity after holding is greater than 2.0 times and less than or equal to 3.0 times surface resistivity before holding 2: Surface after holding Resistivity is more than 3.0 times and less than 5.0 times the surface resistivity before holding 1: The surface resistivity after holding is more than 5.0 times the surface resistivity before holding
2-3.鉛筆硬度
導電層の鉛筆硬度を、JIS-K5600-5-4の試験法に準じて、鉛筆引っかき硬度試験機(安田精機製作所社製)を用いて測定した。
2-3. Pencil hardness The pencil hardness of the conductive layer was measured using a pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) according to the test method of JIS-K5600-5-4.
2-4.面内バラツキ(CV%)
導電層の、幅20cm、長さ20cmの区画において、幅方向に50mm間隔、長さ方向に50mmの計25点について、2-1記載の手法にて表面抵抗率を測定し、その標準偏差と平均値を求め、面内バラツキを表わす変動係数CV%を以下の数式により算出した。
CV%=標準偏差σ/平均表面抵抗率r×100(%)
2-4. In-plane variation (CV%)
In a section of the conductive layer having a width of 20 cm and a length of 20 cm, the surface resistivity was measured by the method described in 2-1, for a total of 25 points with an interval of 50 mm in the width direction and 50 mm in the length direction. An average value was obtained, and a coefficient of variation CV% representing in-plane variation was calculated by the following formula.
CV% = standard deviation σ / average surface resistivity r × 100 (%)
2-5.電磁波ノイズ遮蔽性
電磁波ノイズ遮蔽性を、KEC法により、1~100MHzの周波数領域で測定し、下記の基準で評価した。
○:電磁波ノイズ遮蔽効果が30dB以上である。
△:電磁波ノイズ遮蔽効果が20dB以上30dB未満である。
×:電磁波ノイズ遮蔽効果が20dB未満である。
2-5. Electromagnetic wave noise shielding properties Electromagnetic wave noise shielding properties were measured in the frequency range of 1 to 100 MHz by the KEC method and evaluated according to the following criteria.
A: The electromagnetic wave noise shielding effect is 30 dB or more.
Δ: Electromagnetic wave noise shielding effect is 20 dB or more and less than 30 dB.
X: The electromagnetic wave noise shielding effect is less than 20 dB.
2-6.透明導電体の外観
目視検査用照明を透明導電体の背面に配置し、透明導電体の外観特性を下記2段階で評価した。
○:凹凸や傷が確認されなかった。
×:凹凸や傷が確認された。
2-6. Illumination for visual inspection of the transparent conductor was placed on the back of the transparent conductor, and the appearance characteristics of the transparent conductor were evaluated in the following two stages.
○: Concavities and convexities and scratches were not confirmed.
X: Concavities and convexities and scratches were confirmed.
2-7.密着性(碁盤目試験)
JIS K 5400に従って、碁盤目試験を実施し、以下の基準で評価した。
5:碁盤目試験の結果が10点である
4:碁盤目試験の結果が9点である
3:碁盤目試験の結果が8点である
2:碁盤目試験の結果が7点である
1:碁盤目試験の結果が6点以下である
2-7. Adhesion (cross cut test)
According to JIS K 5400, a cross cut test was performed and evaluated according to the following criteria.
5: The result of the cross cut test is 10 points 4: The result of the cross cut test is 9 points 3: The result of the cross cut test is 8 points 2: The result of the cross cut test is 7 points 1: Cross-cut test result is 6 points or less
2-8.耐候性試験
導電層形成直後の表面抵抗率(初期表面抵抗率)と、耐候性試験機(ATLAS Material Testing Technology GmbH製、SUNSET CPS)を用いてキセノンランプを用い、放射照度162W/m(300~400nm)、温度63℃、湿度50%の条件で、連続して500時間UV照射した後の表面抵抗率(照射後表面抵抗率)とを、抵抗率計(三菱化学株式会社製、ロレスターGP MCP-T600)を用いて測定し、下記7段階で耐候性を評価した。
7:照射後表面抵抗率が、初期表面抵抗率の3倍未満である
6:照射後表面抵抗率が、初期表面抵抗率の3倍以上5倍未満である
5:照射後表面抵抗率が、初期表面抵抗率の5倍以上10未満である
4:照射後表面抵抗率が、初期表面抵抗率の10倍以上20倍未満である
3:照射後表面抵抗率が、初期表面抵抗率の20倍以上30倍未満である
2:照射後表面抵抗率が、初期表面抵抗率の30倍以上50倍未満である
1:照射後表面抵抗率が、初期表面抵抗率の50倍以上である
2-8. Weather resistance test Immediately after forming the conductive layer (initial surface resistivity) and using a xenon lamp with a weather resistance tester (manufactured by ATLAS Material Testing Technology GmbH, SUNSET CPS), an irradiance of 162 W / m 2 (300 To 400 nm), a temperature resistivity of 63 ° C., and a humidity of 50%. The surface resistivity after irradiation with UV for 500 hours (surface resistivity after irradiation) was measured with a resistivity meter (Lorestar GP, manufactured by Mitsubishi Chemical Corporation). MCP-T600) and the weather resistance was evaluated according to the following 7 levels.
7: Surface resistivity after irradiation is less than 3 times the initial surface resistivity 6: Surface resistivity after irradiation is 3 times or more and less than 5 times the initial surface resistivity 5: Surface resistivity after irradiation is The initial surface resistivity is 5 times or more and less than 10 4: The surface resistivity after irradiation is 10 times or more and less than 20 times the initial surface resistivity 3: The surface resistivity after irradiation is 20 times the initial surface resistivity. The surface resistivity after irradiation is 30 times or more and less than 50 times the initial surface resistivity. 1: The surface resistivity after irradiation is 50 times or more the initial surface resistivity.
(実施例1~3、5、6、8~53)
表1~4に記載した重量比にて各成分を混合し、粘着剤組成物を作製した。次に、得られた粘着剤組成物を、研磨処理されたガラス基材の片面にアプリケーターにて乾燥後の膜厚が15μmとなる様に塗布し、120℃で2分間乾燥し、ガラス基材上に粘着層を形成した。
次に、ポリビニルアルコールフィルムをヨウ素水溶液中で5倍に延伸したのち、50℃で4分間乾燥させて偏光膜を作製した。この偏光膜の両側に、透明保護フィルムとしてトリアセチルセルロース(TAC)フィルムを、紫外線硬化型エポキシ接着剤を用いて接着して偏光層とした。この偏光層を、前述した粘着層に貼り合わせた。
さらに、表1~4に記載した重量比で各成分を混合し、コーティング組成物を作製後、上記にて作製した偏光層上にバーコーター(安田精機製作所製)を用いて塗布し、送風定温乾燥器(東京理化器械社製、WFO-401型)を用いて100℃で1分間加熱処理することにより、導電層を形成し、透明導電体を得た。
(Examples 1 to 3, 5, 6, 8 to 53)
Each component was mixed in the weight ratio described in Tables 1 to 4 to prepare an adhesive composition. Next, the obtained pressure-sensitive adhesive composition was applied to one side of a polished glass substrate with an applicator so that the film thickness after drying was 15 μm, and dried at 120 ° C. for 2 minutes. An adhesive layer was formed on top.
Next, after extending | stretching a polyvinyl alcohol film 5 times in iodine aqueous solution, it was dried at 50 degreeC for 4 minute (s), and the polarizing film was produced. A triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer. This polarizing layer was bonded to the aforementioned adhesive layer.
Furthermore, each component was mixed in the weight ratios described in Tables 1 to 4 to prepare a coating composition, and then applied onto the polarizing layer prepared above using a bar coater (manufactured by Yasuda Seiki Seisakusho) A conductive layer was formed by heat treatment at 100 ° C. for 1 minute using a drier (Tokyo Rika Kikai Co., Ltd., WFO-401 type) to obtain a transparent conductor.
(実施例4)
TACフィルムの代わりに、シクロオレフィン系樹脂(COP)フィルムを用いた他は、実施例1と同様にして透明導電体を得た。
Example 4
A transparent conductor was obtained in the same manner as in Example 1 except that a cycloolefin resin (COP) film was used instead of the TAC film.
(実施例7)
ポリビニルアルコールフィルムをヨウ素水溶液中で5倍に延伸したのち、50℃で4分間乾燥させて偏光膜を作製した。この偏光膜の両側に、透明保護フィルムとしてトリアセチルセルロース(TAC)フィルムを、紫外線硬化型エポキシ接着剤を用いて接着して偏光層とした。次に、表1に記載した重量比で各成分を混合し、コーティング組成物を作製後、上記にて作製した偏光層上にバーコーター(株式会社安田精機製作所製)を用いて塗布し、送風定温乾燥器(東京理化器械株式会社製、WFO-401型)を用いて100℃で1分間加熱処理することにより、偏光層上に導電層を形成した。
また、表1に記載した重量比にて各成分を混合し、粘着剤組成物を作製後、得られた粘着剤組成物を、研磨処理されたガラス基材の片面にアプリケーターにて乾燥後の膜厚が15μmとなる様に塗布し、120℃で2分間乾燥し、ガラス基材上に粘着層を形成した。
さらに、偏光層を、導電層が形成された面とは反対の面を粘着層を介してガラス基材に貼り合わせることにより、透明導電体を得た。
(Example 7)
The polyvinyl alcohol film was stretched 5 times in an aqueous iodine solution and then dried at 50 ° C. for 4 minutes to produce a polarizing film. A triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer. Next, after mixing each component by the weight ratio described in Table 1, and producing a coating composition, it apply | coats on the polarizing layer produced above using a bar coater (made by Yasuda Seiki Seisakusyo Co., Ltd.), and blows air. A conductive layer was formed on the polarizing layer by heat treatment at 100 ° C. for 1 minute using a constant temperature dryer (manufactured by Tokyo Rika Kikai Co., Ltd., WFO-401 type).
Moreover, each component was mixed by the weight ratio described in Table 1, and after producing an adhesive composition, the obtained adhesive composition was dried with the applicator on the single side | surface of the glass substrate by which the grinding process was carried out. It apply | coated so that a film thickness might be set to 15 micrometers, and it dried for 2 minutes at 120 degreeC, and formed the adhesion layer on the glass base material.
Furthermore, the transparent conductor was obtained by bonding the polarizing layer to the glass substrate via the adhesive layer on the surface opposite to the surface on which the conductive layer was formed.
(比較例1)
研磨処理されたガラス基材上にITOスパッタリングすることによりITO層を形成した。また、表4に記載した重量比にて各成分を混合して粘着剤組成物を作製し、ITO層上にアプリケーターにて乾燥後の膜厚が15μmとなる様に塗布し、120℃で2分間乾燥し、ITO層上に粘着層を形成した。次に、ポリビニルアルコールフィルムをヨウ素水溶液中で5倍に延伸したのち、50℃で4分間乾燥させて偏光膜を作製した。この偏光膜の両側に、透明保護フィルムとしてトリアセチルセルロース(TAC)フィルムを、紫外線硬化型エポキシ接着剤を用いて接着して偏光層とした。さらに、この偏光層を、前述した粘着層に貼り合わせることにより、透明導電体を得た。
(Comparative Example 1)
An ITO layer was formed by sputtering ITO on the polished glass substrate. Moreover, each component was mixed by weight ratio described in Table 4, and an adhesive composition was produced, it apply | coated so that the film thickness after drying with an applicator might be set to 15 micrometers on an ITO layer, and 120 degreeC 2 It dried for minutes and formed the adhesion layer on the ITO layer. Next, after extending | stretching a polyvinyl alcohol film 5 times in iodine aqueous solution, it was dried at 50 degreeC for 4 minute (s), and the polarizing film was produced. A triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer. Furthermore, this polarizing layer was bonded to the above-mentioned adhesive layer to obtain a transparent conductor.
(比較例2)
表4に記載した重量比で各成分を混合して得られたコーティング組成物を用いたこと以外、実施例1と同様にして透明導電体を得た。
(Comparative Example 2)
A transparent conductor was obtained in the same manner as in Example 1 except that the coating composition obtained by mixing each component at the weight ratio shown in Table 4 was used.
(比較例3)
研磨処理されたガラス基材上に、表4に記載した重量比で各成分を混合して得られたコーティング組成物を、スリットコータを用いて塗布し、送風定温乾燥器(東京理化器械社製、WFO-401型)を用いて100℃で1分間加熱処理することにより導電層を形成した。また、表4に記載した重量比にて各成分を混合し、粘着剤組成物を作製し、導電層上にアプリケーターにて乾燥後の膜厚が15μmとなる様に塗布し、120℃で2分間乾燥し、導電層上に粘着層を形成した。次に、ポリビニルアルコールフィルムをヨウ素水溶液中で5倍に延伸したのち、50℃で4分間乾燥させて偏光膜を作製した。この偏光膜の両側に、透明保護フィルムとしてトリアセチルセルロース(TAC)フィルムを、紫外線硬化型エポキシ接着剤を用いて接着して偏光層とした。この偏光層を、前述した粘着層に貼り合わせることにより、透明導電体を得た。
(Comparative Example 3)
A coating composition obtained by mixing each component at a weight ratio shown in Table 4 on a polished glass substrate was applied using a slit coater, and a blown constant temperature dryer (manufactured by Tokyo Rika Kikai Co., Ltd.). , WFO-401 type) was heated at 100 ° C. for 1 minute to form a conductive layer. Moreover, each component was mixed by the weight ratio described in Table 4, the adhesive composition was produced, and it apply | coated so that the film thickness after drying with an applicator might be set to 15 micrometers on a conductive layer, and 120 degreeC 2 It dried for minutes and formed the adhesion layer on the conductive layer. Next, after extending | stretching a polyvinyl alcohol film 5 times in iodine aqueous solution, it was dried at 50 degreeC for 4 minute (s), and the polarizing film was produced. A triacetyl cellulose (TAC) film as a transparent protective film was adhered to both sides of the polarizing film using an ultraviolet curable epoxy adhesive to form a polarizing layer. A transparent conductor was obtained by pasting this polarizing layer on the adhesive layer described above.
実施例1~53及び比較例1~3で得られた透明導電体を用いて、上述した方法により、表面抵抗率(SR)を測定するとともに、耐湿熱性、鉛筆硬度、面内バラツキ、電磁波ノイズ遮蔽性、透明導電体の外観、密着性、耐候性を評価した。結果を表1~4に示す。
なお、参考までに、透明保護フィルム上にコーティング組成物をバーコーター(株式会社安田精機製作所製)を用いて塗布した状態(ガラス基材、粘着層及び偏光膜なし)で、全光線透過率(Tt)及びヘイズを、JIS K7150に従いヘイズコンピュータ(スガ試験機社製、HGM-2B)を用いて測定した結果も併せて表1~4に示す。
Using the transparent conductors obtained in Examples 1 to 53 and Comparative Examples 1 to 3, the surface resistivity (SR) was measured by the above-described method, and the moisture resistance, pencil hardness, in-plane variation, electromagnetic wave noise were measured. The shielding property, appearance of the transparent conductor, adhesion, and weather resistance were evaluated. The results are shown in Tables 1 to 4.
For reference, the total light transmittance (without glass substrate, adhesive layer and polarizing film) is applied on the transparent protective film using a bar coater (manufactured by Yasuda Seiki Seisakusho). Tables 1 to 4 also show the results of measuring Tt) and haze using a haze computer (HGM-2B, manufactured by Suga Test Instruments Co., Ltd.) in accordance with JIS K7150.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (10)

  1. 研磨処理されたガラス基材の少なくとも一方の面に、粘着層、偏光層及び導電層が順に積層された透明導電体であって、
    導電層は、導電性高分子を含むコーティング組成物を用いて形成され、表面抵抗率が10~10Ω/□である、透明導電体。
    A transparent conductor in which an adhesive layer, a polarizing layer and a conductive layer are sequentially laminated on at least one surface of a polished glass substrate,
    The conductive layer is a transparent conductor formed using a coating composition containing a conductive polymer and having a surface resistivity of 10 2 to 10 5 Ω / □.
  2. 導電層の鉛筆硬度がH以上である、請求項1記載の透明導電体。 The transparent conductor according to claim 1, wherein the conductive layer has a pencil hardness of H or more.
  3. 導電層は、80℃、相対湿度85%の環境に1000時間保持した後の表面抵抗率が、保持する前の表面抵抗率の5倍以下である、請求項1又は2に記載の透明導電体。 3. The transparent conductor according to claim 1, wherein the conductive layer has a surface resistivity after holding for 1000 hours in an environment of 80 ° C. and a relative humidity of 85% that is 5 times or less of the surface resistivity before holding. .
  4. コーティング組成物は、バインダーとして、アルコキシシランオリゴマー、(メタ)アクリレート及びメラミン樹脂からなる群より選択される少なくとも1つをさらに含む、請求項1~3のいずれか1項に記載の透明導電体。 The transparent conductor according to any one of claims 1 to 3, wherein the coating composition further comprises at least one selected from the group consisting of an alkoxysilane oligomer, a (meth) acrylate, and a melamine resin as a binder.
  5. コーティング組成物は、導電性向上剤として、沸点が100℃以上であって、分子内に、少なくとも1つのスルフィニル基、少なくとも1つのアミド基又は少なくとも2つのヒドロキシル基を有する化合物をさらに含む、請求項1~4のいずれか1項に記載の透明導電体。 The coating composition further comprises, as a conductivity improver, a compound having a boiling point of 100 ° C. or higher and having at least one sulfinyl group, at least one amide group, or at least two hydroxyl groups in the molecule. 5. The transparent conductor according to any one of 1 to 4.
  6. コーティング組成物は、水溶性酸化防止剤として、2個の水酸基で置換されたラクトン環を有する化合物、及び/又は、フェノール性水酸基を2個以上有する化合物をさらに含む、請求項1~5のいずれか1項に記載の透明導電体。 The coating composition further comprises a compound having a lactone ring substituted with two hydroxyl groups and / or a compound having two or more phenolic hydroxyl groups as a water-soluble antioxidant. 2. The transparent conductor according to item 1.
  7. 請求項1~6のいずれか1項に記載の透明導電体を備えた液晶表示装置。 A liquid crystal display device comprising the transparent conductor according to any one of claims 1 to 6.
  8. IPS方式液晶表示装置である、請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, which is an IPS liquid crystal display device.
  9. (i)研磨処理されたガラス基材の少なくとも一方の面上に、粘着層及び偏光層を形成した後、導電性高分子を含むコーティング組成物を用いて導電層をさらに形成するか、又は、
    (ii)偏光層上に導電性高分子を含むコーティング組成物を用いて導電層を形成した後、導電層が形成された面とは反対の面を粘着層を介して研磨処理されたガラス基材に接着させる、
    請求項1~6のいずれか1項に記載の透明導電体の製造方法。
    (I) after forming an adhesive layer and a polarizing layer on at least one surface of a polished glass substrate, further forming a conductive layer using a coating composition containing a conductive polymer, or
    (Ii) A glass substrate in which a conductive layer is formed on a polarizing layer using a coating composition containing a conductive polymer, and then the surface opposite to the surface on which the conductive layer is formed is polished through an adhesive layer. Glue to the material,
    The method for producing a transparent conductor according to any one of claims 1 to 6.
  10. 請求項1~6のいずれか1項に記載の透明導電体における導電層を形成するためのコーティング組成物。 A coating composition for forming a conductive layer in the transparent conductor according to any one of claims 1 to 6.
PCT/JP2015/072298 2014-08-08 2015-08-06 Transparent conductor, liquid crystal display device and method for producing transparent conductor WO2016021670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042371.9A CN106575053A (en) 2014-08-08 2015-08-06 Transparent conductor, liquid crystal display device and method for producing transparent conductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014163009 2014-08-08
JP2014-163009 2014-08-08
JP2015-088590 2015-04-23
JP2015088590A JP5812311B1 (en) 2014-08-08 2015-04-23 Transparent conductor, liquid crystal display device, and method of manufacturing transparent conductor

Publications (1)

Publication Number Publication Date
WO2016021670A1 true WO2016021670A1 (en) 2016-02-11

Family

ID=54550523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072298 WO2016021670A1 (en) 2014-08-08 2015-08-06 Transparent conductor, liquid crystal display device and method for producing transparent conductor

Country Status (4)

Country Link
JP (1) JP5812311B1 (en)
CN (1) CN106575053A (en)
TW (1) TW201614680A (en)
WO (1) WO2016021670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135704A (en) * 2018-02-05 2019-08-15 マクセルホールディングス株式会社 Method for producing transparent conductive film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105824142A (en) * 2016-03-08 2016-08-03 展群科技(深圳)有限公司 Novel construction method for preventing liquid crystal panel from electromagnetic interference
WO2018008464A1 (en) * 2016-07-05 2018-01-11 星光Pmc株式会社 Weather resistance improver, resin composition containing same for covering metal nanowire-containing layer, and metal nanowire-containing laminate
JP2020144200A (en) * 2019-03-05 2020-09-10 日東電工株式会社 Liquid crystal display device with built-in touch sensing function and method for manufacturing the same
JP2020144199A (en) * 2019-03-05 2020-09-10 日東電工株式会社 Polarizing film with conductive layer and method for manufacturing the same
KR20220023965A (en) 2019-06-28 2022-03-03 닛토덴코 가부시키가이샤 Polarizing film and liquid crystal panel with adhesive layer
JP7016851B2 (en) 2019-12-13 2022-02-07 日東電工株式会社 Optical film and liquid crystal panel with adhesive layer
KR102568290B1 (en) 2023-04-20 2023-08-17 박건우 Pressure-sensitive adhesive, pressure-sensitive adhesive film having a pressure-sensitive adhesive layer, and liquid crystal panel including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065845A1 (en) * 2003-01-23 2004-08-05 Toray Industries, Inc. Display panel
JP2008095015A (en) * 2006-10-13 2008-04-24 Sumitomo Osaka Cement Co Ltd Coating liquid for forming electroconductive coating film and method for forming electroconductive coating film and the resultant electroconductive coating film
JP2012083659A (en) * 2010-10-14 2012-04-26 Nsc:Kk Method for manufacturing glass substrate for electronic device
JP2013114086A (en) * 2011-11-29 2013-06-10 Geomatec Co Ltd Ips liquid crystal display panel and manufacturing method for the same
JP2013148744A (en) * 2012-01-20 2013-08-01 Konica Minolta Inc Light control film, and method of manufacturing light control film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070094119A (en) * 2006-03-16 2007-09-20 주식회사 동진쎄미켐 Conductive coating composition for protective film and method for producing coating layer using the same
CN101201485A (en) * 2006-12-15 2008-06-18 英业达股份有限公司 Display device
JP5740925B2 (en) * 2010-11-15 2015-07-01 ナガセケムテックス株式会社 Conductive coating composition and laminate
EP2820102B1 (en) * 2012-02-28 2022-01-12 Heraeus Deutschland GmbH & Co. KG Conductive polymer layer as an antistatic protection shield for polarization filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004065845A1 (en) * 2003-01-23 2004-08-05 Toray Industries, Inc. Display panel
JP2008095015A (en) * 2006-10-13 2008-04-24 Sumitomo Osaka Cement Co Ltd Coating liquid for forming electroconductive coating film and method for forming electroconductive coating film and the resultant electroconductive coating film
JP2012083659A (en) * 2010-10-14 2012-04-26 Nsc:Kk Method for manufacturing glass substrate for electronic device
JP2013114086A (en) * 2011-11-29 2013-06-10 Geomatec Co Ltd Ips liquid crystal display panel and manufacturing method for the same
JP2013148744A (en) * 2012-01-20 2013-08-01 Konica Minolta Inc Light control film, and method of manufacturing light control film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019135704A (en) * 2018-02-05 2019-08-15 マクセルホールディングス株式会社 Method for producing transparent conductive film
JP7175086B2 (en) 2018-02-05 2022-11-18 マクセル株式会社 Method for producing transparent conductive film

Also Published As

Publication number Publication date
CN106575053A (en) 2017-04-19
JP5812311B1 (en) 2015-11-11
TW201614680A (en) 2016-04-16
JP2016039132A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5812311B1 (en) Transparent conductor, liquid crystal display device, and method of manufacturing transparent conductor
TWI679655B (en) Method for repairing and regenerating transparent conductive film and transparent conductive laminated body
JP7412087B2 (en) coating composition
JP5312627B2 (en) Optical film having antistatic layer, and antireflection film, polarizing plate and image display device using the same
JP6292443B2 (en) Repair composition for transparent conductive film and transparent conductive film
JP2006199781A (en) Electroconductive coating composition and formed product
JP7391530B2 (en) transparent laminate
JP4866768B2 (en) Antistatic hard coat film and method for producing the same
JP2015199641A (en) transparent conductive member
TWI643740B (en) Optical laminate and manufacturing method of optical laminate
JP6617949B2 (en) Conductive laminate
JP5211510B2 (en) Antistatic cured film forming coating, antistatic cured film, plastic substrate with antistatic cured film, and method for producing antistatic cured film
JP7237555B2 (en) laminate
JP2015225760A (en) Transparent electrode, production method of transparent electrode and touch panel
JP6747545B1 (en) Laminate
JP7378952B2 (en) Optical laminate having transparent conductive film and coating composition
KR20200123389A (en) Laminate
JP7282511B2 (en) laminate
KR20090073062A (en) Antistatic coating formulation for polarizer films and antistatic polarizer film using the same
JP6750180B1 (en) Laminate
JP5251780B2 (en) Optical laminate, method for producing optical laminate, polarizing plate, and image display device
JP7391529B2 (en) transparent laminate
KR20110053938A (en) Protective film for polarizing plate and process for producing the same and polarizing plate
KR20090084777A (en) Antistatic coating formulation for polarizer films and antistatic polarizer film using the same
JP2019104246A (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829676

Country of ref document: EP

Kind code of ref document: A1