JP2013114086A - Ips liquid crystal display panel and manufacturing method for the same - Google Patents

Ips liquid crystal display panel and manufacturing method for the same Download PDF

Info

Publication number
JP2013114086A
JP2013114086A JP2011260911A JP2011260911A JP2013114086A JP 2013114086 A JP2013114086 A JP 2013114086A JP 2011260911 A JP2011260911 A JP 2011260911A JP 2011260911 A JP2011260911 A JP 2011260911A JP 2013114086 A JP2013114086 A JP 2013114086A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
layer
crystal display
display panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011260911A
Other languages
Japanese (ja)
Other versions
JP5785859B2 (en
Inventor
Hiroyuki Sugawara
浩幸 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geomatec Co Ltd
Original Assignee
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geomatec Co Ltd filed Critical Geomatec Co Ltd
Priority to JP2011260911A priority Critical patent/JP5785859B2/en
Publication of JP2013114086A publication Critical patent/JP2013114086A/en
Application granted granted Critical
Publication of JP5785859B2 publication Critical patent/JP5785859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an IPS liquid crystal display panel whose damage on a glass substrate is difficult to be viewed and which has the required display quality satisfied, and provide a manufacturing method for the same.SOLUTION: An IPS liquid crystal display panel P has liquid crystal 1 enclosed between two glass substrates 11 and 21 which are attached to each other. A base layer including a first layer 4 and a second layer 5 stacked, a transparent conductive film 6, and a polarizer 17 are sequentially stacked on a visible surface of one substrate 11 of the two substrates 11 and 21. The refractive index n1 of the first layer 4, the refractive index n2 of the second layer 5, and the refractive index n3 of the transparent conductive film 6 satisfy the relation of n2<n1<n3.

Description

本発明はIPS型液晶表示パネル及びその製造方法に係り、特に、ガラス基板上に化学研磨を施したIPS型液晶表示パネル及びその製造方法に関する。   The present invention relates to an IPS liquid crystal display panel and a method for manufacturing the same, and more particularly to an IPS liquid crystal display panel obtained by subjecting a glass substrate to chemical polishing and a method for manufacturing the same.

近年、スマートフォン(高機能携帯電話)等の携帯端末の市場の拡大により、液晶表示装置のガラス基板の小型化・軽量化のニーズが高まり、化学研磨による薄型化が進んでいる。化学研磨は、機械研磨に対比して複数枚の基板を同時に処理でき、処理速度が速いという利点や、貼合せガラス基板を限界まで薄型化できるという利点がある。
しかし、化学研磨では、元々基板にあった傷が研磨液による処理で顕在化して、ディンプル状の傷となって視認され易くなったり、その他の傷が発生したりすることで、表示品質が低下することが問題となっている。そこで、化学研磨により顕在化される傷を視認し難くする技術が、種々提案されている(例えば、特許文献1及び2参照)。
In recent years, with the expansion of the market for portable terminals such as smartphones (high-performance mobile phones), there is an increasing need for downsizing and weight reduction of glass substrates of liquid crystal display devices, and thinning by chemical polishing is progressing. Compared with mechanical polishing, chemical polishing has the advantage that a plurality of substrates can be processed at the same time and the processing speed is high, and that the laminated glass substrate can be thinned to the limit.
However, in chemical polishing, scratches that originally existed on the substrate become obvious by the treatment with the polishing liquid, and are easily recognized as dimple-like scratches, and other scratches are generated, resulting in a deterioration in display quality. It is a problem to do. Therefore, various techniques have been proposed for making it difficult to visually recognize a flaw that becomes apparent by chemical polishing (see, for example, Patent Documents 1 and 2).

特許文献1のディスプレイ用ガラス基板の製造方法では、貼合せガラス基板をフッ酸含有水溶液に浸漬して化学研磨した後、検査工程で、所定直径の凹部傷が検出された場合、ガラス基板との密着性を向上させるプライマと紫外線硬化樹脂とを順次凹部溝に塗布した後、紫外線を照射し、スクレーパー等で平坦化する。
また、特許文献2のガラス基板用化学研磨液及びそれを用いた液晶表示装置の製造方法によれば、化学研磨液の組成を制御することにより、ガラス表面の傷の成長を抑制する。
In the manufacturing method of the glass substrate for display of patent document 1, after immersing a bonded glass substrate in the hydrofluoric acid containing aqueous solution and carrying out chemical polishing, when the crack of a predetermined diameter is detected in an inspection process, A primer for improving adhesion and an ultraviolet curable resin are sequentially applied to the recess grooves, and then irradiated with ultraviolet rays and flattened with a scraper or the like.
Moreover, according to the chemical polishing liquid for glass substrates and the manufacturing method of a liquid crystal display device using the same of Patent Document 2, the growth of scratches on the glass surface is suppressed by controlling the composition of the chemical polishing liquid.

特開2007−197236号公報(段落0027〜0040,図1,図4)JP 2007-197236 A (paragraphs 0027 to 0040, FIGS. 1 and 4) 特開2010−090018号公報(段落0010〜0013,図1)Japanese Patent Laying-Open No. 2010-090018 (paragraphs 0010 to 0013, FIG. 1)

しかし、特許文献1記載のディスプレイ用ガラス基板の製造方法によれば、収率は向上するが、傷を埋めるための工程数が多いため、大幅なコストアップにつながる。また、特許文献2記載のガラス基板用化学研磨液及びそれを用いた液晶表示装置の製造方法では、ある程度の傷の成長の抑制は可能であるが、化学研磨によって顕在化する傷の大きさは多様であり、すべての傷について成長を抑制できるよう、エッチング条件を最適化することは難しい。   However, according to the method for manufacturing a glass substrate for display described in Patent Document 1, the yield is improved, but the number of processes for filling the scratches is large, leading to a significant cost increase. In addition, in the chemical polishing liquid for glass substrate described in Patent Document 2 and the method of manufacturing a liquid crystal display device using the same, it is possible to suppress the growth of scratches to some extent, but the size of the scratches that are manifested by chemical polishing is as follows. It is difficult to optimize the etching conditions so that it is diverse and growth can be suppressed for all scratches.

本発明は、上記事情に鑑みてなされたものであって、その目的は、化学研磨等によって生じた傷がガラス基板上にあっても傷が視認し難く、要求される表示品質を備えたIPS型液晶表示パネル及びその製造方法を提供することにある。
本発明の他の目的は、別途新たな設備導入が不要で、従来のIPS型液晶表示パネルの工程設備の範囲内で簡便に実施可能な、化学研磨等によって生じた傷が視認し難いIPS型液晶表示パネルの製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an IPS having a required display quality because it is difficult to visually recognize a scratch caused by chemical polishing or the like even on a glass substrate. It is to provide a liquid crystal display panel and a method for manufacturing the same.
Another object of the present invention is that an IPS type in which scratches caused by chemical polishing or the like are difficult to visually recognize can be easily implemented within the scope of the process equipment of a conventional IPS type liquid crystal display panel, without introducing new equipment separately. The object is to provide a method of manufacturing a liquid crystal display panel.

前記課題は、請求項1のIPS型液晶表示パネルによれば、互いに貼り合された二枚のガラス基板の間に液晶が封入されたIPS型液晶表示パネルであって、前記二枚の基板のうち視認側となる一方の基板の前記視認側の面に、第一層膜及び第二層膜が積層された下地層と、透明導電膜と、偏光板と、が順次積層され、前記第一層膜の屈折率n1,前記第二層膜の屈折率n2及び前記透明導電膜の屈折率n3は、n2<n1<n3であること、により解決される。   The IPS liquid crystal display panel according to claim 1 is an IPS liquid crystal display panel in which liquid crystal is sealed between two glass substrates bonded to each other. The first layer film and the second layer film are laminated on the surface on one viewing side of the substrate on the viewing side, a base layer on which the first layer film and the second layer film are laminated, a transparent conductive film, and a polarizing plate are sequentially laminated. The refractive index n1 of the layer film, the refractive index n2 of the second layer film, and the refractive index n3 of the transparent conductive film are solved by n2 <n1 <n3.

このように、第一層膜及び第二層膜が積層された下地層と、透明導電膜と、が順次積層されているので、視認側の基板面全体の反射率が低くなってディンプル状の傷の部分と傷の周囲の部分との反射率の差が小さくなり、化学研磨によって視認側の基板上にできたディンプル状の傷が視認されにくくなる。
また、基板が化学研磨を経ていない場合であっても、基板の視認側の面に存在する微細な傷を、視認されにくくすることができる。
As described above, since the base layer on which the first layer film and the second layer film are stacked, and the transparent conductive film are sequentially stacked, the reflectivity of the entire substrate surface on the viewing side is lowered, resulting in a dimple shape. The difference in reflectance between the scratched portion and the surrounding portion of the scratch is reduced, and the dimple-like scratch formed on the viewing-side substrate by chemical polishing becomes difficult to be visually recognized.
In addition, even when the substrate has not undergone chemical polishing, it is possible to make it difficult to visually recognize fine scratches present on the surface on the viewing side of the substrate.

また、前記第一層膜,前記第二層膜及び前記透明導電膜はそれぞれ、窒化ケイ素(SiN),二酸化ケイ素(SiO)及び酸化インジウムスズ(ITO)の薄膜であるように構成してもよい。
このように構成すると、第一層膜の屈折率n1,第二層膜の屈折率n2及び透明導電膜の屈折率n3について、n2<n1<n3の関係を満足させることができる。また、窒化ケイ素,二酸化ケイ素はいずれも、屈折率の波長依存性が少ない材料であるため、これらの材料を用いることにより、広い波長域に亘って、平均的に、フラットに反射率を低下させることができる。
The first layer film, the second layer film, and the transparent conductive film may be configured to be thin films of silicon nitride (SiN), silicon dioxide (SiO 2 ), and indium tin oxide (ITO), respectively. Good.
If comprised in this way, the relationship of n2 <n1 <n3 can be satisfied about the refractive index n1 of a 1st layer film, the refractive index n2 of a 2nd layer film, and the refractive index n3 of a transparent conductive film. Moreover, since both silicon nitride and silicon dioxide are materials with little wavelength dependency of the refractive index, the average reflectance is reduced flatly over a wide wavelength range by using these materials. be able to.

また、前記透明導電膜の抵抗値が、200〜500Ω/sqであるように構成してもよい。
このように構成すると、液晶表示パネルの表示品質を高めるために適当な抵抗値,透過率にすることができ、液晶表示パネルの表示品質を高めることができる。
Moreover, you may comprise so that the resistance value of the said transparent conductive film may be 200-500 ohm / sq.
If comprised in this way, in order to improve the display quality of a liquid crystal display panel, it can be set as an appropriate resistance value and transmittance | permeability, and the display quality of a liquid crystal display panel can be improved.

また、前記第一層膜,前記第二層膜及び前記透明導電膜の厚みはそれぞれ、18〜22nm,40〜60nm及び15〜19nmであるように構成してもよい。
このように構成すると、広い波長域に亘って、平均的に、フラットに反射率を低下させることができる。
Moreover, you may comprise so that the thickness of said 1st layer film, said 2nd layer film, and said transparent conductive film may be 18-22 nm, 40-60 nm, and 15-19 nm, respectively.
If comprised in this way, a reflectance can be reduced to flat on the average over a wide wavelength range.

前記課題は、請求項5のIPS型液晶表示パネルの製造方法によれば、視認側となる第一の前記基板とバックライト側の第二の前記基板とを貼り合せて、前記貼合せ基板を作成する工程と、前記第一の基板の視認側の面に、前記第一層膜及び前記第二層膜が積層された前記下地層と、前記透明導電膜とを、前記第一層膜の屈折率n1,前記第二層膜の屈折率n2及び前記透明導電膜の屈折率n3が、n2<n1<n3になるように、順次積層して成膜する工程と、前記透明導電膜の上に、前記偏光板を積層する工程と、を行うこと、により解決される。   According to the method of manufacturing an IPS type liquid crystal display panel according to claim 5, the problem is that the first substrate on the viewing side is bonded to the second substrate on the backlight side, and the bonded substrate is A step of creating, the base layer in which the first layer film and the second layer film are laminated on a surface on the viewing side of the first substrate, and the transparent conductive film. A step of sequentially laminating a film so that a refractive index n1, a refractive index n2 of the second layer film, and a refractive index n3 of the transparent conductive film satisfy n2 <n1 <n3; And the step of laminating the polarizing plates.

このように、第一層膜及び第二層膜が積層された下地層と、透明導電膜と、を順次積層するので、視認側の基板面全体の反射率が低くなってディンプル状の傷の部分と傷の周囲の部分との反射率の差が小さくなり、化学研磨によって視認側の基板上にできたディンプル状の傷が視認されにくくなる。
また、基板が化学研磨を経ていない場合であっても、基板の視認側の面に存在する微細な傷を、視認されにくくすることができる。
As described above, since the base layer on which the first layer film and the second layer film are stacked and the transparent conductive film are sequentially stacked, the reflectivity of the entire substrate surface on the viewing side is lowered, and the dimple-like scratches are reduced. The difference in reflectance between the portion and the portion around the scratch becomes small, and the dimple-like scratch formed on the substrate on the viewing side by chemical polishing becomes difficult to be visually recognized.
In addition, even when the substrate has not undergone chemical polishing, it is possible to make it difficult to visually recognize fine scratches present on the surface on the viewing side of the substrate.

このとき、前記貼合せ基板を作成する工程と、前記成膜する工程との間に、前記貼合せ基板を、化学研磨液により化学研磨する工程を行うようにしてもよい。
このように構成しているため、化学研磨により視認側の基板上にできたディンプル状の傷を視認されにくくすることができる。
At this time, a step of chemically polishing the bonded substrate with a chemical polishing liquid may be performed between the step of forming the bonded substrate and the step of forming the film.
Since it comprises in this way, the dimple-like damage | wound made on the visual recognition side board | substrate by chemical polishing can be made hard to be visually recognized.

本発明によれば、第一層膜及び第二層膜が積層された下地層と、透明導電膜と、が順次積層されているので、視認側の基板面全体の反射率が低くなってディンプル状の傷の部分と傷の周囲の部分との反射率の差が小さくなり、化学研磨によって視認側の基板上にできたディンプル状の傷が視認されにくくなる。
また、基板が化学研磨を経ていない場合であっても、基板の視認側の面に存在する微細な傷を、視認されにくくすることができる。
According to the present invention, since the base layer on which the first layer film and the second layer film are stacked and the transparent conductive film are sequentially stacked, the reflectivity of the entire substrate surface on the viewing side is lowered, and the dimples are reduced. The difference in reflectance between the scratched portion and the surrounding portion of the scratch becomes small, and the dimple-like scratch formed on the viewing-side substrate by chemical polishing becomes difficult to be visually recognized.
In addition, even when the substrate has not undergone chemical polishing, it is possible to make it difficult to visually recognize fine scratches present on the surface on the viewing side of the substrate.

本発明の実施形態に係るIPS型液晶表示パネルの断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the IPS type | mold liquid crystal display panel which concerns on embodiment of this invention. 本発明の実施形態に係るガラス基板,光学多層膜,粘着層,偏光板の積層体におけるディンプル状の傷の箇所の模式断面図である。FIG. 3 is a schematic cross-sectional view of a dimple-like scratch in a laminated body of a glass substrate, an optical multilayer film, an adhesive layer, and a polarizing plate according to an embodiment of the present invention. 本発明の実施形態に係るIPS型液晶表示パネルの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the IPS type | mold liquid crystal display panel which concerns on embodiment of this invention. カルーセル型のバッチ式スパッタ装置の説明図である。It is explanatory drawing of a carousel type batch type sputtering device. インライン式のスパッタ装置を示す説明図である。It is explanatory drawing which shows an inline-type sputtering device. 光学多層膜を構成する膜の屈折率と反射率との関係を示すグラフである。It is a graph which shows the relationship between the refractive index of the film | membrane which comprises an optical multilayer film, and a reflectance. 光学多層膜を構成する膜の厚みと反射率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the film | membrane which comprises an optical multilayer film, and a reflectance.

以下、本発明の実施形態について、図1〜図5を参照して説明する。なお、以下に説明する構成は、本発明を限定するものではなく、本発明の趣旨に沿って各種改変することができることは勿論である。
本実施形態のIPS型液晶表示パネルPは、IPS(In-Plane-Switching)モードに係る液晶表示パネルである。IPSモードとは、アクティブマトリクス型液晶表示装置において、一方の基板に設けた櫛形電極対間に印加された横方向の電界により、液晶を基板面内で回転させて表示を行う方式である。
図1は、本発明の実施形態に係るIPS型液晶表示パネルの断面構造を示す模式図である。図2は、本発明の実施形態に係るガラス基板,光学多層膜,粘着層,偏光板の積層体におけるディンプル状の傷の箇所の模式断面図である。図3は、本発明の実施形態に係るIPS型液晶表示パネルの製造方法を示すフロー図である。図4は、カルーセル型のバッチ式スパッタ装置の説明図である。図5は、インライン式のスパッタ装置を示す説明図である。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In addition, the structure demonstrated below does not limit this invention, Of course, it can change variously along the meaning of this invention.
The IPS liquid crystal display panel P of the present embodiment is a liquid crystal display panel according to an IPS (In-Plane-Switching) mode. The IPS mode is a method in which in an active matrix liquid crystal display device, display is performed by rotating a liquid crystal within a substrate plane by a horizontal electric field applied between a pair of comb electrodes provided on one substrate.
FIG. 1 is a schematic diagram showing a cross-sectional structure of an IPS liquid crystal display panel according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a dimple-like scratch in a laminated body of a glass substrate, an optical multilayer film, an adhesive layer, and a polarizing plate according to an embodiment of the present invention. FIG. 3 is a flowchart showing a method for manufacturing the IPS liquid crystal display panel according to the embodiment of the present invention. FIG. 4 is an explanatory diagram of a carousel-type batch sputtering apparatus. FIG. 5 is an explanatory view showing an in-line type sputtering apparatus.

(IPS型液晶表示パネルP)
本実施形態のIPS型液晶表示パネルPは、IPSモードの液晶表示パネルであって、図1に示すように、カラーフィルタ基板10とTFT基板20とが、液晶1を封入した状態で貼合されて形成されている。
カラーフィルタ基板10は、ガラス基板11の非視認側である液晶1側の面に、ブラックマトリクス12に区分されて配置されたカラーフィルタ13が積層されている。
ガラス基板11の視認側である液晶1逆側の面には、カラーフィルタ基板10とTFT基板20とを貼合せた後に実施される化学研磨工程により顕在化した最大直径数〜数百μm程度のディンプル状の傷Dが、多数発生している。
カラーフィルタ基板10の液晶1側の面には、更に配向膜15が形成されている。
(IPS liquid crystal display panel P)
The IPS liquid crystal display panel P of the present embodiment is an IPS mode liquid crystal display panel, and as shown in FIG. 1, the color filter substrate 10 and the TFT substrate 20 are bonded together with the liquid crystal 1 sealed therein. Is formed.
In the color filter substrate 10, a color filter 13 arranged in a black matrix 12 is laminated on the surface of the glass substrate 11 on the liquid crystal 1 side that is the non-viewing side.
The surface on the opposite side of the liquid crystal 1 that is the viewing side of the glass substrate 11 has a maximum diameter of about several to several hundred μm, which is manifested by a chemical polishing step performed after the color filter substrate 10 and the TFT substrate 20 are bonded together. Many dimple-like scratches D are generated.
An alignment film 15 is further formed on the surface of the color filter substrate 10 on the liquid crystal 1 side.

カラーフィルタ基板10の液晶1逆側の面には、基板に元々存在する微細な傷Dや、化学研磨によって顕在化した傷Dを視認し難くするための光学多層膜3が積層されている。光学多層膜3は、下地層となる第一層4及び第二層5と、帯電防止を目的とする透明導電膜6との三層から構成されている。
第一層4は、ガラス基板11よりも屈折率の高い物質からなり、屈折率が1.65〜1.90である窒化ケイ素(SiN),酸化アルミニウム(Al),Y(酸化イットリウム)等が用いられる。
第二層5は、ガラス基板21よりも屈折率の低い物質からなり、屈折率が1.35〜1.5である酸化ケイ素(SiO),MgF(フッ化マグネシウム)等が用いられる。ガラス基板21の屈折率ns,第一層4の屈折率n1,第二層5の屈折率n2,透明導電膜6の屈折率n3は、n2<ns<n1<n3となるように構成される。
On the surface of the color filter substrate 10 opposite to the liquid crystal 1, an optical multilayer film 3 is laminated to make it difficult to visually recognize the fine scratches D originally present on the substrate and the scratches D that have been revealed by chemical polishing. The optical multilayer film 3 is composed of three layers of a first layer 4 and a second layer 5 serving as a base layer and a transparent conductive film 6 for the purpose of preventing charging.
The first layer 4 is made of a material having a refractive index higher than that of the glass substrate 11 and has a refractive index of 1.65 to 1.90, silicon nitride (SiN), aluminum oxide (Al 2 O 3 ), Y 2 O 3. (Yttrium oxide) or the like is used.
The second layer 5 is made of a material having a refractive index lower than that of the glass substrate 21, and silicon oxide (SiO 2 ), MgF 2 (magnesium fluoride) or the like having a refractive index of 1.35 to 1.5 is used. The refractive index ns of the glass substrate 21, the refractive index n1 of the first layer 4, the refractive index n2 of the second layer 5, and the refractive index n3 of the transparent conductive film 6 are configured to satisfy n2 <ns <n1 <n3. .

本実施形態では、第一層4は、厚み18〜22nmのSiN、第二層5は、厚み40〜60nmのSiO、透明導電膜6は、厚み15〜19nm,抵抗値200〜500Ω/sqのITO(酸化インジウム錫)からなる。透明導電膜6は、厚み15〜19nmに設定することにより、適正な抵抗値200〜500Ω/sqに調整可能となる。
光学多層膜3の上には、偏光板17と透明導電膜6とを接着するための粘着層7を介して公知の偏光板17が、順次積層されている。粘着層7は厚み約1μm、偏光板17は、厚み30〜50μmである。
In the present embodiment, the first layer 4 is SiN having a thickness of 18 to 22 nm, the second layer 5 is SiO 2 having a thickness of 40 to 60 nm, the transparent conductive film 6 is 15 to 19 nm in thickness, and a resistance value is 200 to 500 Ω / sq. Made of ITO (indium tin oxide). The transparent conductive film 6 can be adjusted to an appropriate resistance value of 200 to 500 Ω / sq by setting the thickness to 15 to 19 nm.
On the optical multilayer film 3, known polarizing plates 17 are sequentially laminated via an adhesive layer 7 for bonding the polarizing plate 17 and the transparent conductive film 6. The adhesive layer 7 has a thickness of about 1 μm, and the polarizing plate 17 has a thickness of 30 to 50 μm.

図2に基づき、ガラス基板11上のディンプル状の傷Dが視認されにくくなるメカニズムを説明する。
光学多層膜3を備えない液晶表示パネルでは、傷Dは、ガラス基板11面に対して、入射光と見る角度が特定の関係を満たす場合、白く光って見える。傷Dは、凹面状であることにより、入射した光の反射光が収束する方向があり、それが視認方向と一致した場合に光る点として認識される。
本実施形態では、ガラス基板11上には、光学多層膜3,粘着層7,偏光板17が順次積層されており、ディンプル状の傷Dは、順次積層された第一層4,第二層5,透明導電膜6,粘着層7の上の層に向かうに従い、各層によって傷Dによる窪みが埋められて浅くなり、偏光板17の表面は、略平らになっている。
Based on FIG. 2, the mechanism by which the dimple-like scratch D on the glass substrate 11 becomes less visible will be described.
In a liquid crystal display panel that does not include the optical multilayer film 3, the scratch D appears to shine white when the viewing angle with respect to the incident light satisfies a specific relationship with respect to the surface of the glass substrate 11. Since the scratch D has a concave shape, there is a direction in which the reflected light of the incident light converges and is recognized as a point that shines when it matches the viewing direction.
In the present embodiment, the optical multilayer film 3, the adhesive layer 7, and the polarizing plate 17 are sequentially laminated on the glass substrate 11, and the dimple-shaped scratches D are the first layer 4 and the second layer that are sequentially laminated. 5, the transparent conductive film 6 and the adhesive layer 7 are layered, and the depressions due to the scratches D are filled and shallowed by the respective layers, and the surface of the polarizing plate 17 is substantially flat.

本実施形態のIPS型液晶表示パネルPでは、光学多層膜3がガラス基板11上に積層されたことにより、IPS型液晶表示パネルPの視認側の面全体の反射率が下がり、傷Dの見える度合いが小さくなっている。光学多層膜3は、反射光の収束方向に影響するわけではないが、全体の反射率が低下することにより傷Dと周囲との反射率の差が小さくなり、見えにくくなるものと思われる。   In the IPS liquid crystal display panel P of the present embodiment, the optical multilayer film 3 is laminated on the glass substrate 11, so that the reflectance of the entire surface on the viewing side of the IPS liquid crystal display panel P is lowered and scratches D are visible. The degree is small. Although the optical multilayer film 3 does not affect the convergence direction of the reflected light, it is considered that the difference in reflectance between the scratch D and the surrounding area is reduced due to a decrease in the overall reflectance, and it becomes difficult to see.

TFT基板20は、ガラス基板21の液晶1側の面に、画素電極としての櫛形の透明電極24が形成されてなる。TFT基板20及び透明電極24の液晶1側の面には、更に配向膜25が形成され、TFT基板20のバックライト側である液晶1逆側の面には、カラーフィルタ基板10と同様に、粘着層37を介して偏光板27が積層されている。   The TFT substrate 20 is formed by forming a comb-shaped transparent electrode 24 as a pixel electrode on the surface of the glass substrate 21 on the liquid crystal 1 side. An alignment film 25 is further formed on the surface of the TFT substrate 20 and the transparent electrode 24 on the liquid crystal 1 side, and the surface on the opposite side of the liquid crystal 1 that is the backlight side of the TFT substrate 20 is similar to the color filter substrate 10. A polarizing plate 27 is laminated via an adhesive layer 37.

(IPS型液晶表示パネルPの製造方法)
次に、本実施形態のIPS型液晶表示パネルPの製造方法について図3に基づき説明する。
まず、公知の方法でガラス基板21のマザーガラス基板上に櫛形の透明電極24を形成し、TFT基板20のマザーガラス基板を準備する(ステップS1)。一方、公知の方法でガラス基板11のマザーガラス基板上にブラックマトリクス12,カラーフィルタ13を形成し、カラーフィルタ基板10のマザーガラス基板を準備する(ステップS2)。本実施形態では、マザーガラス基板は数百ミリ角以上の大きさであり、IPS型液晶表示パネルPの製品個数としては数十個取りである。
(Manufacturing method of IPS type liquid crystal display panel P)
Next, a manufacturing method of the IPS type liquid crystal display panel P of the present embodiment will be described with reference to FIG.
First, the comb-shaped transparent electrode 24 is formed on the mother glass substrate of the glass substrate 21 by a known method, and the mother glass substrate of the TFT substrate 20 is prepared (step S1). On the other hand, the black matrix 12 and the color filter 13 are formed on the mother glass substrate of the glass substrate 11 by a known method, and the mother glass substrate of the color filter substrate 10 is prepared (step S2). In this embodiment, the mother glass substrate has a size of several hundred mm square or more, and the number of products of the IPS liquid crystal display panel P is several tens.

次に、カラーフィルタ基板10及びTFT基板20のマザーガラス基板に、公知の方法で配向膜15,25を印刷し、赤外線で焼成して硬化する。硬化された配向膜15,25にラビング等により配向処理を施す。次いで、公知の方法で、TFT基板20のマザーガラス基板の周縁部に不図示のシール剤を印刷し、カラーフィルタ基板10のマザーガラス基板の表面全面にスペーサ2を散布して付着させる。   Next, the alignment films 15 and 25 are printed on the mother glass substrates of the color filter substrate 10 and the TFT substrate 20 by a known method, and are baked and cured with infrared rays. The cured alignment films 15 and 25 are subjected to alignment treatment by rubbing or the like. Next, a sealing agent (not shown) is printed on the periphery of the mother glass substrate of the TFT substrate 20 by a known method, and the spacers 2 are dispersed and adhered to the entire surface of the mother glass substrate of the color filter substrate 10.

カラーフィルタ基板10とTFT基板20のマザーガラス基板を位置決めして、シール剤を介して熱圧着により相互に貼合せ(ステップS3)、シール剤を硬化して、マザーガラス基板の貼合せ基板30を得る。
次いで、貼合せ基板30を、公知のフッ酸を含有する化学研磨水溶液に浸漬し、公知の方法でガラス基板11,21の外表面を化学研磨する(ステップS4)。この化学研磨は、IPS型液晶表示パネルPの厚みが、製品として要求される0.4mm程度等の厚みになるよう、ガラス基板11,21を薄板化するものである。
このとき、化学研磨により、ガラス基板11,21上に存在していた微小な傷が拡大され、ガラス基板11,21上にディンプル状の傷Dが発生する。
The mother glass substrate of the color filter substrate 10 and the TFT substrate 20 is positioned and bonded to each other by thermocompression bonding via a sealing agent (step S3), the sealing agent is cured, and the bonded substrate 30 of the mother glass substrate is fixed. obtain.
Next, the bonded substrate 30 is dipped in a chemical polishing aqueous solution containing a known hydrofluoric acid, and the outer surfaces of the glass substrates 11 and 21 are chemically polished by a known method (step S4). In this chemical polishing, the glass substrates 11 and 21 are thinned so that the thickness of the IPS liquid crystal display panel P is about 0.4 mm or the like required as a product.
At this time, the fine scratches existing on the glass substrates 11 and 21 are enlarged by chemical polishing, and dimple-shaped scratches D are generated on the glass substrates 11 and 21.

次いで、ガラス基板11上に光学多層膜3を成膜する(ステップS5)。このステップは、ステップS4で発生したディンプル状の傷Dを視認されにくくするために行うものである。
このステップでは、まず、貼合せ基板30を、公知の方法でアルカリ洗浄する。
その後、図4に示す竪型円筒状カルーセル型のバッチ式スパッタ装置40を用いて、光学多層膜3の成膜を行う。
Next, the optical multilayer film 3 is formed on the glass substrate 11 (step S5). This step is performed in order to make the dimple-like scratch D generated in step S4 less visible.
In this step, first, the laminated substrate 30 is alkali-cleaned by a known method.
Thereafter, the optical multilayer film 3 is formed by using a vertical cylindrical carousel type batch type sputtering apparatus 40 shown in FIG.

スパッタ装置40に、Siターゲット41を2枚と、ITOターゲット42を1枚セットする。ターゲット寸法は、ガラス基板21に対応するものであれば良い。
次いで、貼合せ基板30を、スパッタ装置40の基板ホルダ43にセットし、スパッタ装置40内を排気する。スパッタ装置40内が所定の真空度になったら、基板ホルダ43の回転を開始して、Siターゲット41を用い、Nガスを導入して、リアクティブスパッタにより、SiNからなる第一層4を成膜する。次いで、Siターゲット41を用い、CO又はOを導入して、リアクティブスパッタにより、SiOからなる第二層5を成膜する。
その後、ITOターゲット42を用いて、ITOからなる透明導電膜6をスパッタにより成膜する。
第一層4,第二層5については、パルスDC電源、透明導電膜6については、DC電源を用い、成膜温度は、70℃以下とする。
光学多層膜3成膜後は、検査工程で外観検査を行い、ステップS5の成膜工程を完了する。
Two Si targets 41 and one ITO target 42 are set in the sputtering apparatus 40. The target dimension may be anything corresponding to the glass substrate 21.
Next, the bonded substrate 30 is set on the substrate holder 43 of the sputtering apparatus 40, and the inside of the sputtering apparatus 40 is exhausted. When the inside of the sputtering apparatus 40 reaches a predetermined degree of vacuum, the rotation of the substrate holder 43 is started, the Si target 41 is used, N 2 gas is introduced, and the first layer 4 made of SiN is formed by reactive sputtering. Form a film. Next, using the Si target 41, CO 2 or O 2 is introduced, and the second layer 5 made of SiO 2 is formed by reactive sputtering.
Thereafter, using the ITO target 42, the transparent conductive film 6 made of ITO is formed by sputtering.
A pulse DC power source is used for the first layer 4 and the second layer 5, and a DC power source is used for the transparent conductive film 6, and the film forming temperature is 70 ° C. or lower.
After the optical multilayer film 3 is formed, an appearance inspection is performed in an inspection process, and the film formation process in step S5 is completed.

なお、本実施形態では、カルーセル型のバッチ式スパッタ装置40を用いるが、3種類の物質の膜を積層成膜可能であれば、バッチ式,インライン式のいずれの成膜装置も用いることができる。例えば、図5に示すインライン式のスパッタ装置40´を用いてもよい。
図5のスパッタ装置40´は、両面成膜が可能な装置の典型的なターゲット配置を示している。本発明の場合は、光学調整膜成膜室CH−3にSiターゲット41´(2箇所)、ITO成膜室CH−5にITOターゲット42´が設置され、貼合せ基板30を基板ホルダ43´で搬送することにより、光学調整膜成膜室CH−3で第一層4,第二層5が、ITO成膜室CH−5で透明導電膜6が成膜される。
In this embodiment, the carousel-type batch-type sputtering apparatus 40 is used. However, any of the batch-type and in-line-type film formation apparatuses can be used as long as films of three kinds of materials can be stacked. . For example, an in-line type sputtering apparatus 40 ′ shown in FIG. 5 may be used.
The sputtering apparatus 40 ′ in FIG. 5 shows a typical target arrangement of an apparatus capable of double-side film formation. In the case of the present invention, the Si target 41 ′ (two places) is installed in the optical adjustment film forming chamber CH-3, the ITO target 42 ′ is installed in the ITO film forming chamber CH-5, and the bonded substrate 30 is attached to the substrate holder 43 ′. The first and fourth layers 4 and 5 are formed in the optical adjustment film forming chamber CH-3, and the transparent conductive film 6 is formed in the ITO film forming chamber CH-5.

次いで、マザーガラス基板の貼合せ基板30に、注入口から液晶1を注入する(ステップS6)。なお、本実施形態では、貼合せ基板を切断した後に液晶1を注入しているが、ODF(液晶滴下方式,One Drop Fill)の場合は、液晶1は、ステップS6でなく、ステップS3の基板貼合せ時に注入する。
液晶1を注入したら紫外線硬化型の接着剤を用いて注入口を封止し、紫外線を照射して封止剤を硬化する。この後、カラーフィルタ基板10の上面とTFT基板20の下面のそれぞれに、粘着層7,37を積層した後、カラーフィルタ基板10の上面とTFT基板20の下面のそれぞれに、偏光板17,27を貼着し(ステップS7)、所定の大きさに切断して(ステップS8)IPS型液晶表示パネルPを完成する。
Next, the liquid crystal 1 is injected from the injection port into the bonding substrate 30 of the mother glass substrate (step S6). In the present embodiment, the liquid crystal 1 is injected after the bonded substrate is cut. However, in the case of ODF (Liquid Crystal Drop Method, One Drop Fill), the liquid crystal 1 is not the substrate in step S6 but the substrate in step S3. Inject at the time of bonding.
When the liquid crystal 1 is injected, the injection port is sealed using an ultraviolet curable adhesive, and the sealing agent is cured by irradiating ultraviolet rays. Thereafter, adhesive layers 7 and 37 are laminated on the upper surface of the color filter substrate 10 and the lower surface of the TFT substrate 20, respectively, and then polarizing plates 17 and 27 are formed on the upper surface of the color filter substrate 10 and the lower surface of the TFT substrate 20, respectively. (Step S7) and cut into a predetermined size (step S8) to complete the IPS liquid crystal display panel P.

光学多層膜3の膜を構成する組成,膜厚及び屈折率を種々変更して、IPS型液晶表示パネルPを作成し、ディンプル状の傷Dの見えにくさについて対比した試験例1,シミュレーションにより確認,検証した検討例1,2について、以下に説明する。
(試験例1)
上記したIPS型液晶表示パネルPの製造方法に従い、光学多層膜3の組成及び膜厚が表1の通りになるよう、実施例1,対比例1〜4に係るIPS型液晶表示パネルPを作成した。
By making various changes to the composition, film thickness, and refractive index of the optical multilayer film 3, an IPS type liquid crystal display panel P was produced, and the dimple-like scratches D were difficult to see. The examination examples 1 and 2 confirmed and verified will be described below.
(Test Example 1)
According to the manufacturing method of the IPS type liquid crystal display panel P described above, the IPS type liquid crystal display panel P according to Example 1 and Comparative Examples 1 to 4 is prepared so that the composition and film thickness of the optical multilayer film 3 are as shown in Table 1. did.

Figure 2013114086
Figure 2013114086

作成した実施例1,対比例1〜4のIPS型液晶表示パネルPについて、ディンプル状の傷Dの見栄えについて○,△,×の3段階評価を行った。
白色蛍光灯の下でIPS型液晶表示パネルPの角度を適宜変化させたときに、傷Dが白く光り、傷Dの輪郭が鮮明に認識できるものを×,傷Dが白く光るが、傷Dの輪郭がぼやけて見えにくいものを△,傷Dが認識できないか、認識できたとしても殆ど気にならないものを○として評価した。
For the IPS type liquid crystal display panels P of Examples 1 to 1 to 4 that were produced, the appearance of the dimple-like scratch D was evaluated in three stages: ○, Δ, and ×.
When the angle of the IPS type liquid crystal display panel P is appropriately changed under a white fluorescent lamp, the scratch D shines white and the contour of the scratch D can be clearly recognized. The case where the outline of the image was blurred and difficult to see was evaluated as Δ, and the case where the scratch D could not be recognized or was hardly noticed even if it was recognized was evaluated as ○.

その結果、表1に示すように、実施例1では、傷Dが認識できないか、認識できたとしても殆ど気にならず、○の評価であったのに対し、対比例1〜4では、傷Dが白く光っており、△又は×の評価であった。   As a result, as shown in Table 1, in Example 1, the scar D was not recognized, or even if it could be recognized, it was hardly anxious, and it was an evaluation of ◯, whereas in Comparative 1-4, The scratch D was shining white and was evaluated as Δ or ×.

(検討例1)
表1の目視による結果をシミュレーションにより確認する目的で、表1中の、実施例1,対比例1,対比例4の積層体の反射率を可視光の波長域について算出した。このときの各物質の屈折率の代表値は、波長550nmにおける値として、ITO;1.924,SiO;1.479,SiN;1.846,Nb;2.28を採用した。
(Examination example 1)
For the purpose of confirming the visual results in Table 1 by simulation, the reflectances of the laminates of Example 1, Comparative Example 1 and Comparative Example 4 in Table 1 were calculated in the wavelength range of visible light. At this time, ITO; 1.924, SiO 2 ; 1.479, SiN; 1.846, Nb 2 O 5 ; 2.28 was adopted as a representative value of the refractive index of each substance at a wavelength of 550 nm.

結果を、図6の光学多層膜を構成する膜の屈折率と反射率との関係を示すグラフに示す。
図6の結果より、実施例1のように、光学多層膜3を構成する膜の屈折率の組み合わせが、基板側から中屈折率,低屈折率,高屈折率となる場合、即ち、第一層4の屈折率n1,第二層5の屈折率n2,透明導電膜6の屈折率n3が、n2<n1<n3となる場合、第一層4,第二層5を備えない対比例4と対比して、反射率がほぼ全波長域で低下することを確認した。
A result is shown in the graph which shows the relationship between the refractive index of the film | membrane which comprises the optical multilayer film of FIG. 6, and a reflectance.
From the result of FIG. 6, when the combination of the refractive indexes of the films constituting the optical multilayer film 3 becomes medium refractive index, low refractive index, and high refractive index from the substrate side as in the first embodiment, that is, the first When the refractive index n1 of the layer 4, the refractive index n2 of the second layer 5, and the refractive index n3 of the transparent conductive film 6 satisfy n2 <n1 <n3, the first layer 4 and the second layer 5 are not provided. In contrast, it was confirmed that the reflectance decreased in almost all wavelength regions.

それに対し、対比例1のように、光学多層膜3を構成する膜の屈折率の組み合わせが、基板側から高屈折率,低屈折率,中屈折率となる場合、即ち、第一層4の屈折率n1,第二層5の屈折率n2,透明導電膜6の屈折率n3が、n2<n3<n1となる場合、第一層4,第二層5を備えない対比例4と対比して、全波長域における平均反射率は下がるものの、長波長域での反射率は、実施例2の場合よりもかなり高くなっていた。
表示パネルという用途より、反射率は、全波長域で平均的に低い値であることが要求されることから、対比例1は、製品のニーズに対応していないことが分かった。
On the other hand, when the combination of the refractive indexes of the films constituting the optical multilayer film 3 becomes a high refractive index, a low refractive index, and a medium refractive index from the substrate side, as in Comparative Example 1, that is, the first layer 4 When the refractive index n1, the refractive index n2 of the second layer 5, and the refractive index n3 of the transparent conductive film 6 satisfy n2 <n3 <n1, the contrast 4 with the first layer 4 and the second layer 5 is not provided. Although the average reflectance in the entire wavelength region was lowered, the reflectance in the long wavelength region was considerably higher than that in Example 2.
From the use of a display panel, the reflectance is required to be a low average value in the entire wavelength range, and therefore it was found that the proportionality 1 does not correspond to the needs of the product.

(検討例2)
反射率が充分に低下する膜厚の範囲を設定するために、実施例1の各層の膜厚を中心値として、第一層4,第二層5,透明導電膜6の膜厚を変更して、反射率をシミュレーションにより算出した。それぞれのケースを、本発明の範囲に含まれるものの、最大の効果が得られた実施例1から若干ずれるという位置づけで、近似例1〜6とした。対照は、第一層4,第二層5を含まない透明導電膜6単層の対比例4とした。
具体的な膜厚は、表2の通りである。
(Examination example 2)
In order to set the film thickness range in which the reflectance is sufficiently lowered, the film thicknesses of the first layer 4, the second layer 5, and the transparent conductive film 6 are changed with the film thickness of each layer of Example 1 as the center value. The reflectance was calculated by simulation. Although each case is included in the scope of the present invention, it is regarded as approximate examples 1 to 6 in a position of slightly deviating from the example 1 where the maximum effect is obtained. The control was a proportional 4 of the single layer of the transparent conductive film 6 not including the first layer 4 and the second layer 5.
Specific film thicknesses are shown in Table 2.

Figure 2013114086
Figure 2013114086

結果を、図7の光学多層膜を構成する膜の厚みと反射率との関係に関するグラフに示す。また、波長450〜700nmにおける実施例1,近似例1〜6,対比例4の反射率の平均値,最大値,最小値,最大値−最小値を、表3に示す。   A result is shown in the graph regarding the relationship between the thickness of the film | membrane which comprises the optical multilayer film of FIG. 7, and a reflectance. Table 3 shows the average values, maximum values, minimum values, and maximum-minimum values of the reflectances of Examples 1, Approximation Examples 1 to 6, and Comparative Example 4 at wavelengths of 450 to 700 nm.

Figure 2013114086
Figure 2013114086

図7及び表3の結果より、第一層4,第二層5を含まない対比例4と対比し、すべての実施例,近似例において、反射率の低下がみられ、第一層4及び第二層5を備えることにより、反射率が低下することが分かった。
また、実施例1,近似例1〜4では、全波長域で反射率が充分低下していた。また、近似施例5,6では、波長400〜410nm付近の波長域で反射率が13%を超えていたが、450〜700nmの波長域で反射率が充分低下していた。
以上より、第一層4が15〜22nm、第二層5が45〜60nmの範囲内にある場合において、充分な反射率の低下が得られることが分かった。
From the results of FIG. 7 and Table 3, as compared with the proportionality 4 not including the first layer 4 and the second layer 5, in all the examples and approximate examples, a decrease in the reflectance is observed. It was found that the reflectance is lowered by providing the second layer 5.
Further, in Example 1 and Approximation Examples 1 to 4, the reflectance was sufficiently lowered in the entire wavelength region. In the approximate examples 5 and 6, the reflectance exceeded 13% in the wavelength region near the wavelength of 400 to 410 nm, but the reflectance was sufficiently lowered in the wavelength region of 450 to 700 nm.
From the above, it was found that when the first layer 4 is in the range of 15 to 22 nm and the second layer 5 is in the range of 45 to 60 nm, a sufficient decrease in reflectance can be obtained.

D 傷
P IPS型液晶表示パネル
CH−3 光学調整膜成膜室
CH−5 ITO成膜室
1 液晶
2 スペーサ
3 光学多層膜
4 第一層
5 第二層
6 透明導電膜
7,37 粘着層
10 カラーフィルタ基板
11,21 ガラス基板
12 ブラックマトリクス
13 カラーフィルタ
24 透明電極
15,25 配向膜
17,27 偏光板
20 TFT基板
30 貼合せ基板
40,40´ スパッタ装置
41,41´ Siターゲット
42,42´ ITOターゲット
43,43´ 基板ホルダ
D scratch P IPS type liquid crystal display panel CH-3 optical adjustment film forming chamber CH-5 ITO film forming chamber 1 liquid crystal 2 spacer 3 optical multilayer film 4 first layer 5 second layer 6 transparent conductive films 7 and 37 adhesive layer 10 Color filter substrate 11, 21 Glass substrate 12 Black matrix 13 Color filter 24 Transparent electrode 15, 25 Alignment film 17, 27 Polarizing plate 20 TFT substrate 30 Bonded substrate 40, 40 ′ Sputtering device 41, 41 ′ Si target 42, 42 ′ ITO target 43, 43 'Substrate holder

Claims (6)

互いに貼り合された二枚のガラス基板の間に液晶が封入されたIPS型液晶表示パネルであって、
前記二枚の基板のうち視認側となる一方の基板の前記視認側の面に、第一層膜及び第二層膜が積層された下地層と、透明導電膜と、偏光板と、が順次積層され、
前記第一層膜の屈折率n1,前記第二層膜の屈折率n2及び前記透明導電膜の屈折率n3は、n2<n1<n3であることを特徴とするIPS型液晶表示パネル。
An IPS liquid crystal display panel in which liquid crystal is sealed between two glass substrates bonded together,
An underlayer in which a first layer film and a second layer film are laminated, a transparent conductive film, and a polarizing plate are sequentially formed on the surface on the viewing side of one of the two substrates that is on the viewing side. Laminated,
The IPS liquid crystal display panel according to claim 1, wherein a refractive index n1 of the first layer film, a refractive index n2 of the second layer film, and a refractive index n3 of the transparent conductive film satisfy n2 <n1 <n3.
前記第一層膜,前記第二層膜及び前記透明導電膜はそれぞれ、窒化ケイ素(SiN),二酸化ケイ素(SiO)及び酸化インジウムスズ(ITO)の薄膜であることを特徴とする請求項1記載のIPS型液晶表示パネル。 2. The first layer film, the second layer film, and the transparent conductive film are thin films of silicon nitride (SiN), silicon dioxide (SiO 2 ), and indium tin oxide (ITO), respectively. The IPS type liquid crystal display panel described. 前記透明導電膜の抵抗値が、200〜500Ω/sqであることを特徴とする請求項1又は2記載のIPS型液晶表示パネル。   3. The IPS liquid crystal display panel according to claim 1, wherein the transparent conductive film has a resistance value of 200 to 500 [Omega] / sq. 前記第一層膜,前記第二層膜及び前記透明導電膜の厚みはそれぞれ、18〜22nm,40〜60nm及び15〜19nmであることを特徴とする請求項1乃至3いずれか記載のIPS型液晶表示パネル。   4. The IPS type according to claim 1, wherein thicknesses of the first layer film, the second layer film, and the transparent conductive film are 18 to 22 nm, 40 to 60 nm, and 15 to 19 nm, respectively. LCD display panel. 請求項1乃至4のいずれか記載のIPS型液晶表示パネルを製造する方法であって、
視認側となる第一の前記基板とバックライト側の第二の前記基板とを貼り合せて、前記貼合せ基板を作成する工程と、
前記第一の基板の視認側の面に、前記第一層膜及び前記第二層膜が積層された前記下地層と、前記透明導電膜とを、前記第一層膜の屈折率n1,前記第二層膜の屈折率n2及び前記透明導電膜の屈折率n3が、n2<n1<n3になるように、順次積層して成膜する工程と、
前記透明導電膜の上に、前記偏光板を積層する工程と、を行うことを特徴とするIPS型液晶表示パネルの製造方法。
A method for manufacturing the IPS liquid crystal display panel according to claim 1,
Bonding the first substrate on the viewing side and the second substrate on the backlight side to create the bonded substrate;
The base layer on which the first layer film and the second layer film are laminated on the surface on the viewing side of the first substrate, and the transparent conductive film, the refractive index n1 of the first layer film, the A step of sequentially laminating the film so that the refractive index n2 of the second layer film and the refractive index n3 of the transparent conductive film satisfy n2 <n1 <n3;
And a step of laminating the polarizing plate on the transparent conductive film. A method for producing an IPS type liquid crystal display panel.
前記貼合せ基板を作成する工程と、前記成膜する工程との間に、前記貼合せ基板を、化学研磨液により化学研磨する工程を行うことを特徴とする請求項5記載のIPS型液晶表示パネルの製造方法。
6. The IPS liquid crystal display according to claim 5, wherein a step of chemically polishing the bonded substrate with a chemical polishing liquid is performed between the step of forming the bonded substrate and the step of forming the film. Panel manufacturing method.
JP2011260911A 2011-11-29 2011-11-29 IPS type liquid crystal display panel and manufacturing method thereof Expired - Fee Related JP5785859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260911A JP5785859B2 (en) 2011-11-29 2011-11-29 IPS type liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260911A JP5785859B2 (en) 2011-11-29 2011-11-29 IPS type liquid crystal display panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013114086A true JP2013114086A (en) 2013-06-10
JP5785859B2 JP5785859B2 (en) 2015-09-30

Family

ID=48709662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260911A Expired - Fee Related JP5785859B2 (en) 2011-11-29 2011-11-29 IPS type liquid crystal display panel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5785859B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004429A (en) * 2014-06-17 2016-01-12 株式会社アルバック Transparent conductive substrate and production method thereof, and touch panel
WO2016021670A1 (en) * 2014-08-08 2016-02-11 ナガセケムテックス株式会社 Transparent conductor, liquid crystal display device and method for producing transparent conductor
JP2020134752A (en) * 2019-02-21 2020-08-31 三菱電機株式会社 Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004429A (en) * 2014-06-17 2016-01-12 株式会社アルバック Transparent conductive substrate and production method thereof, and touch panel
WO2016021670A1 (en) * 2014-08-08 2016-02-11 ナガセケムテックス株式会社 Transparent conductor, liquid crystal display device and method for producing transparent conductor
JP2020134752A (en) * 2019-02-21 2020-08-31 三菱電機株式会社 Liquid crystal display device
US10884279B2 (en) 2019-02-21 2021-01-05 Mitsubishi Electric Corporation Liquid crystal display device

Also Published As

Publication number Publication date
JP5785859B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
CN102909918B (en) Two-side coated glass and preparation method thereof
CN103460118B (en) The electronic installation of Newton&#39;s ring susceptibility with reduction and/or the method for making it
JP6512999B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
CN108027534B (en) Long optical film laminate, roll of long optical film laminate, and IPS liquid crystal display device
JPWO2019198748A1 (en) Laminated glass, method for manufacturing laminated glass, light control device, light control cell, and laminated body for light control device
US9195110B2 (en) Liquid crystal display device and process for producing the same
WO2005121841A1 (en) Reflection preventing laminated body and optical member
JP6512998B2 (en) Long Polarizing Plate with Optical Compensation Layer and Organic EL Panel Using the Same
US11003001B2 (en) Method for manufacturing a curved display substrate using a tape casting method, method for manufacturing a curved display panel using the same
JP5785859B2 (en) IPS type liquid crystal display panel and manufacturing method thereof
CN101681069B (en) Transparent electrode
TW201541112A (en) Optical module and optically functional film for optical device
JP2001209038A (en) Substrate for liquid crystal display element
JPWO2006054695A1 (en) Liquid crystal display
JP3255638B1 (en) Substrate for reflective liquid crystal display
CN103576377A (en) Color film substrate and display device provided with same
US8173202B2 (en) Multi-layer coating structure with anti-reflection, anti-static and anti-smudge functions and method for manufacturing the same
CN105278148A (en) Polarizing plate, liquid crystal display device having the same and method of fabricating the polarizing plate
US20170139274A1 (en) Display device
CN102749753A (en) Display panel for improving polaroid attachment
WO2019146543A1 (en) Liquid crystal display device, and optical member and optical member set used in said liquid crystal display device
JP2006293013A (en) Substrate for semi-transmission type liquid crystal display element and semi-transmission type liquid crystal display element equipped with the substrate
CN108196334A (en) A kind of polaroid and preparation method thereof, display device
KR101758440B1 (en) Module for liquid crystal display apparatus and liquid crystal display apparatus comprising the same
JP2019070860A (en) Polarizing plate with optical compensation layer and organic EL panel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5785859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees