WO2016019769A1 - 电池单体及电池组 - Google Patents

电池单体及电池组 Download PDF

Info

Publication number
WO2016019769A1
WO2016019769A1 PCT/CN2015/082713 CN2015082713W WO2016019769A1 WO 2016019769 A1 WO2016019769 A1 WO 2016019769A1 CN 2015082713 W CN2015082713 W CN 2015082713W WO 2016019769 A1 WO2016019769 A1 WO 2016019769A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
lower casing
casing
battery cell
upper casing
Prior art date
Application number
PCT/CN2015/082713
Other languages
English (en)
French (fr)
Inventor
魏本建
鲁怀敏
何向明
方海峰
朱红萍
李建军
尚玉明
刘庆
王莉
查于东
Original Assignee
江苏华东锂电技术研究院有限公司
沙洲职业工学院
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 沙洲职业工学院, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2016019769A1 publication Critical patent/WO2016019769A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • H01M50/1385Hybrid cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery cell and a battery pack.
  • Battery safety is the biggest bottleneck affecting the popularity of environmentally friendly electric vehicles.
  • Power battery packs are usually made up of multiple battery cells connected in series or in series.
  • the battery cells are available in aluminum or steel shell batteries and flexible packaging batteries, depending on the housing. Whether it is an aluminum shell/steel shell battery or a flexible packaging battery, the internal battery core is composed of a positive electrode pole piece, a diaphragm and a negative electrode pole piece in a laminated structure. In order to make the battery have good performance, the battery core needs to be stacked in the stacking direction. Press tight.
  • the flexible packaging battery unit usually packs the battery core with a layer of aluminum plastic film, and then uses the atmospheric pressure difference inside and outside the packaging structure to ensure the compression of the battery core by vacuuming.
  • the flexible packaging battery has the advantages of flexible design, good safety performance and strong plasticity.
  • the aluminum plastic film material is soft, so that the whole monomer is soft and the shape is not uniform, so that the flexible packaging battery is difficult to be stabilized during packaging, and the corners are easily punctured, thereby reducing safety.
  • the current aluminum shell/steel shell battery unit is based on a flexible packaging battery, and the flexible packaging battery is sealed in a steel structure, and a gas such as nitrogen gas is filled into the sealed steel structure to obtain a compaction of the battery core. Effect.
  • the aluminum shell/steel shell battery has the advantages of good strength and simple external assembly, but its plasticity is not as good as that of a soft-packaged battery.
  • the internal rigidity of the outer shell is strong, and it is easy to cause a safety accident such as an explosion.
  • the outer core of the battery is covered with a layer of aluminum plastic film, because of the low thermal conductivity of the aluminum plastic film, in the case of high rate charge and discharge
  • the heat dissipation of the battery cells is very unfavorable and is likely to cause safety hazards.
  • the existing flexible packaging battery cells and aluminum shell/steel shell battery cells can not simultaneously have the characteristics of fixed size, heat dissipation and explosion protection.
  • a battery cell comprising a package structure, a battery core and a tab, the package structure covering the outside of the battery core, directly encapsulating the battery core, the tab is connected to the battery core, and partially Exposed to the outside of the package structure, the package structure includes an upper case and a lower case, and the upper case and the lower case are combined with each other to form a sealed space for accommodating the battery core,
  • the material of the upper casing is a soft material
  • the material of the lower casing is a rigid material
  • the battery core is composed of a positive electrode tab, a separator, and a negative electrode tab.
  • a battery pack includes a plurality of the battery cells, and the plurality of battery cells are disposed one on another.
  • the battery cell of the present invention has the following beneficial effects: the battery core is directly encapsulated with a package structure, the whole of the battery core is not covered with an aluminum plastic film, and the lower case is made of a rigid material.
  • the heat transfer coefficient is high. Therefore, the heat generated in the operation of the battery can be directly transmitted to the outside through the lower casing, which is beneficial to heat dissipation of the battery under high-rate charging and discharging, and improves the safety of the battery.
  • the upper casing is made of soft material. When the internal pressure of the battery increases to a certain extent, it will leak in a weak place, decompress itself, and improve the explosion-proof performance of the battery cell.
  • the lower casing is made of a rigid material and has strong strength, which is advantageous for improving the supporting force of the entire battery cell and forming a relatively fixed shape for easy installation.
  • FIG. 1 is a schematic view of a battery cell according to a first embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of the battery cell of the first embodiment of the present invention taken along line II-II.
  • Fig. 3 is an exploded perspective view showing the battery unit of the first embodiment of the present invention.
  • FIG. 4 is a perspective view of a battery pack according to the first embodiment of the present invention.
  • Fig. 5 is a rear elevational view of the battery pack of the first embodiment of the present invention.
  • Fig. 6 is a left side view of the battery pack of the second embodiment of the present invention.
  • Fig. 7 is a schematic view showing a battery cell of a second embodiment of the present invention.
  • Figure 8 is a cross-sectional view of the battery cell of the second embodiment of the present invention taken along line VIII-VIII.
  • Fig. 9 is a structural exploded view of a battery unit according to a second embodiment of the present invention.
  • Fig. 10 is a perspective view of a battery pack according to a second embodiment of the present invention.
  • Figure 11 is a rear elevational view of the battery pack of the second embodiment of the present invention.
  • Fig. 12 is a left side view of the battery pack of the second embodiment of the present invention.
  • Fig. 13 is a schematic view showing a battery unit of a third embodiment of the present invention.
  • Figure 14 is a cross-sectional view of the battery cell of the third embodiment of the present invention taken along the line XIV-XIV.
  • Fig. 15 is a structural exploded view of a battery unit according to a third embodiment of the present invention.
  • Fig. 16 is a perspective view of a battery pack according to a third embodiment of the present invention.
  • Fig. 17 is a cross-sectional view taken along line XVII-XVII of the battery pack of the third embodiment of the present invention.
  • Fig. 18 is a left side view of the battery pack of the third embodiment of the present invention.
  • Battery cell 10 20,30 Package structure 11,21,31 Batteries 12,22,32 Ear 13,23,33 Upper housing 14,24,34 First subject 142,242,252,342, First side panel 144,244,254,344 Second side panel 146,246,256,346 Lower housing 15,25,35 Positioning hole 16 Second subject 352 Side 354 Third side panel 3544 Fourth side panel 3546 Fifth side panel 3548 First accommodation space 36 Second accommodation space 38
  • a first embodiment of the present invention provides a battery unit 10 including a package structure 11 , a battery core 12 , and a tab 13 .
  • the package structure 11 covers the outside of the battery core 12 and directly encapsulates the battery core 12.
  • the tab 13 is connected to the cell 12 and partially exposed outside the package structure 11.
  • the package structure 11 includes an upper casing 14 and a lower casing 15.
  • the upper casing 14 and the lower casing 15 are combined with each other to form a sealed space for accommodating the battery core 12.
  • the material of the upper casing 14 is a soft material
  • the material of the lower casing 15 is a rigid material.
  • the upper casing 14 has a convex space in a direction away from the lower casing 15, and an edge of the space has outwardly extending sides, and the side edges can be fixed to the lower casing 15 .
  • the space of the upper casing 14 can accommodate at least a portion of the battery cells 12, and the size and shape of the space can be determined according to actual needs.
  • the number of the side edges and the shape of the side edges are not limited as long as it can be ensured that the battery cells 12 can be fixed in a sealed space in which the upper casing 14 and the lower casing 15 are coupled to each other.
  • the upper casing 14 is a hat-like structure, and the periphery of the upper casing 14 is bent into a "Z"-shaped step structure, so that the upper casing 14 has a concave structure.
  • the upper housing 14 includes a first body 142 having a rectangular plate shape, four first side plates 144 respectively bent from four sides of the first body 142, and four first side plates 144 respectively. The four sides of the four sides extend outwardly from the extended second side panel 146.
  • the first body 142 and the first side plate 144 and the second side plate 146 may be integrally formed, and a "Z" type step structure is formed on four sides of the first body 142.
  • the first side panel 144 is perpendicular to the first body 142
  • the second side panel 146 is parallel to the first body 142 .
  • the four first side plates 144 are connected to each other and simultaneously connected to the first body 142 to form a recessed structure for carrying the battery cells 12.
  • the four second side plates 146 are connected to each other and simultaneously connected to the corresponding four first side plates 144, and the four second side plates 146 extend outward relative to the first body 142, so that
  • the upper casing 14 has a hat-shaped structure.
  • the length of the first side plate 144 in a direction perpendicular to the first body 142 is greater than or equal to the thickness of the battery core 12 in order to realize that the battery core 12 can be encapsulated by the package structure 11 as a whole. .
  • the material of the upper casing 14 is a soft material such as an aluminum plastic film.
  • the material of the upper casing 14 is an aluminum plastic film.
  • the upper casing 14 has a thickness of 0.3 mm to 1 mm.
  • the lower casing 15 is a planar structure that cooperates with the upper casing 14 to form a sealed space for carrying the battery core 12.
  • the lower casing 15 is a rectangular plate-shaped planar structure.
  • the area of the lower casing 15 is larger than the area of the upper casing 14. That is, the rectangular plate-like edge of the lower casing 15 is not covered by the edge of the second side plate 146 of the upper casing 14.
  • the portion of the lower casing 15 that is not covered by the second side plate 146 of the upper casing 14 may be provided with a positioning hole 16 to facilitate fixing when the plurality of battery cells 10 are stacked into a battery pack.
  • the material of the lower casing 15 is a rigid material, for example, stainless steel, aluminum or magnesium aluminum alloy. In this embodiment, the material of the lower casing 15 is aluminum. Preferably, the lower casing 15 has a thickness of 0.3 mm to 1 mm.
  • the inner surface of the lower case 15 has an insulating property.
  • the inner surface of the lower case 15 refers to the surface of the lower case 15 close to the battery core 12.
  • the insulation can be obtained by anodization; in addition, an insulating material with better thermal conductivity can be applied to the inner surface of the lower case 15 to obtain insulation. Insulation, such as the application of insulating materials or PP (polypropylene) to obtain insulation.
  • the battery cell 12 is composed of a positive electrode tab, a separator, and a negative electrode tab.
  • the package structure 11 covers the outside of the battery core 12 and directly encapsulates the battery core 12.
  • the direct encapsulation of the battery core 12 means that the outer portion of the battery core 12 is only encapsulated by the package structure 11 , that is, directly covered by the upper casing 14 and the lower casing 15 , and is no longer Wrapped with other materials. More specifically, it means that there is no other encapsulating material between the pole piece of the cell 12 and the package structure 11, or the pole piece of the cell 12 is in contact with the inner surface of the package structure 11.
  • the material and manufacturing method of the positive electrode tab, the separator, and the negative electrode tab may be the same as in the prior art.
  • the tabs 13 are disposed on any of the two surfaces opposite to each other in the thickness direction of the battery cell 12, and extend in a direction parallel to the surface of the battery cell 12. Specifically, the tabs 13 are disposed coplanar with any one of the two surfaces opposite to each other in the thickness direction of the battery cell 12.
  • the tab 13 is disposed adjacent to the lower case 15.
  • the material of the tabs 13 may be aluminum foil or nickel-plated copper foil.
  • the thickness of the tabs 13 may be selected according to actual needs. In the embodiment, the thickness of the tabs 13 is 0.2 mm.
  • the upper casing 14 When the battery cell 10 is in use, the upper casing 14 is in contact with a rigid surface of a flat plate. When a plurality of the battery cells 10 are stacked into a battery pack, the upper casing 14 is in contact with the lower casing 15 of the adjacent battery cells 10.
  • the lower casing 15 is mainly used for the connection of the battery cells 10 with other peripheral fixing frames. When a plurality of the battery cells 10 are stacked into a battery pack, the lower casing 15 is mainly used for fixing the positions of the plurality of battery cells 10 to each other.
  • the assembling method of the battery cell 10 is specifically: pressing the soft material into the upper casing 14, and punching the rigid material into the shape of the lower casing 15, and the tab 13 is provided.
  • the battery core 12 is placed on the lower casing 15, and then the upper casing 14 and the lower casing 15 are joined together by thermoplastic means to form the package structure body 11 and
  • the battery cell 12 is encapsulated inside the package structure 11, and a part of the tab 13 is exposed outside the package structure 11 for connecting an external circuit.
  • the tabs 13 are insulated by the tabs at the sealing portion, and then heat-sealed by the micro-deformation of the upper casing 14 to expose a part of the tabs 13 to the cap.
  • the outside of the package structure 11 is used to connect an external circuit.
  • the battery cell 10 provided by the present invention has the following beneficial effects: the battery core 12 is directly encapsulated by the package structure 11, the whole of the battery core 12 is not covered with an aluminum plastic film, and the lower case 15 is made of a rigid material.
  • the heat transfer coefficient is high. Therefore, the heat generated in the operation of the battery can be directly transmitted to the outside through the lower casing 15 to facilitate heat dissipation of the battery under high-rate charging and discharging conditions, thereby improving the safety of the battery.
  • the upper casing 14 is made of a soft material. When the internal pressure of the battery is increased to a certain extent, liquid leakage occurs in a weak place, and the pressure is decompressed by itself to improve the explosion-proof performance of the battery cell 10.
  • the lower casing 15 is made of a rigid material and has strong strength, which is advantageous for improving the supporting force of the entire battery cell 10, and forming a relatively fixed shape for easy installation.
  • the first embodiment of the present invention further provides a battery pack 100 .
  • the battery pack 100 includes a plurality of battery cells 10 stacked in a stack. Specifically, when a plurality of the battery cells 10 are stacked, the upper casing 14 of one battery cell 10 is placed in contact with the lower casing 15 of the adjacent battery cells 10. The plurality of the battery cells 10 are fixed by the positioning holes 16 to form a unitary structure. Specifically, the fastening member may be connected using a bolt or the like, and the battery pack 100 may be pressed by the positioning hole 16.
  • the upper casing 14 Under the clamping force of the battery pack 100, the upper casing 14 is deformed by a soft material, and the pressing force is transmitted to the battery core 12. At the same time, the lower casing 15 and the electric The area corresponding to the core 12 will be slightly deformed, and displacement occurs in a direction in which a plurality of the battery cells 10 are superposed, and the battery cells 12 inside the battery cell 10 are pressed to ensure positive and negative electrodes in the battery.
  • the separator is in good contact state, which facilitates the lithium ion to pass through the diaphragm and engages in the embedding and deintercalation of the positive and negative materials to ensure high efficiency operation of the battery.
  • the inner periphery of the package structure 11 is protected by an insulating layer, the inner wall of the package structure 11 is not damaged. Therefore, the area corresponding to the upper core 14 and the lower case 15 and the battery core 12 will be The cell 12 is not destroyed when a slight deformation occurs.
  • a portion of the lower casing 15 not covered by the battery core 12 may form a heat dissipation fin, and the lower casing 15 may be in the battery unit 10 .
  • the heat generated by the battery core 12 is transmitted to the fins on the four sides, and the heat is led out of the battery pack 100 through the scales, which has a positive effect on the heat dissipation of the battery.
  • a second embodiment of the present invention provides a battery unit 20 including a package structure 21 , a battery core 22 , and a tab 23 .
  • the package structure 21 covers the outside of the battery core 22 and directly encapsulates the battery core 22 .
  • the tab 23 is connected to the cell 22 and partially exposed outside the package structure 21.
  • the package structure 21 includes an upper casing 24 and a lower casing 25.
  • the upper casing 24 and the lower casing 25 are combined with each other to form a sealed space for accommodating the battery core 22.
  • the material of the upper casing 24 is a soft material
  • the material of the lower casing 25 is a rigid material.
  • the structure and material of the battery core 22, the tab 23 and the upper casing 24 are respectively in the battery cell 10 in the first embodiment.
  • the structure of the battery core 12, the tabs 13 and the upper casing 14 are the same.
  • the difference from the battery cell 10 in the first embodiment is that the lower case 25 and the upper case 24 have the same structure but different materials, that is, the lower case 25 in this embodiment.
  • the structure of the upper casing 24 is the same as that of the upper casing 14 in the first embodiment; the tabs 23 are disposed on a plane in which the thickness direction of the battery core 22 is located.
  • the upper casing 24 includes a first main body 242 having a rectangular plate shape, four first side plates 244 extending from four sides of the rectangular plate, and four sides from the first side plate 244, respectively.
  • the lower housing 25 includes a first body 252 having a rectangular plate shape, four first side plates 254 extending from the four sides of the rectangular plate, and four second sides extending from the four sides of the first side plate 254, respectively.
  • Board 256 The second side plate 246 of the upper casing 24 and the second side plate 256 of the lower casing 25 are joined together by gluing, welding or metal flange wrapping to form the package
  • the structure 21 seals the battery cells 22.
  • the length of the first side plate 244 in a direction perpendicular to the first body 242 and the first side plate 254 are vertical
  • the sum of the lengths in the direction of the first body 252 is greater than or equal to the thickness of the cell 22.
  • the upper casing 24 is identical in structure and symmetrical to the lower casing 25.
  • the tabs 23 are disposed in the thickness direction of the battery core 22. The center of the plane.
  • the battery cell 20 provided by the present invention has the following beneficial effects: the battery core 22 is directly encapsulated by the package structure 21, the whole of the battery core 22 is not covered with an aluminum plastic film, and the lower case 15 is made of a rigid material.
  • the heat transfer coefficient is high. Therefore, the heat generated in the operation of the battery can be directly transmitted to the outside through the lower casing 25, which is beneficial to heat dissipation of the battery under high-rate charging and discharging, and improves the safety of the battery.
  • the upper casing 24 is made of a soft material.
  • the lower casing 25 is made of a rigid material and has strong strength, which is advantageous for improving the supporting force of the entire battery cell 20, and forming a relatively fixed shape for easy installation.
  • the upper casing 24 and the lower casing 25 have the same shape, and the manufacturing method is simple; the upper casing 24 and the lower casing 25 are both hat-shaped structures, and the battery sheet is effectively protected.
  • the corners of the body 20 prevent the battery cell 20 from being scratched and damaged, and also ensure that the tab 23 is at the center plane of the battery cell 20, and can be adapted to a special installation.
  • a second embodiment of the present invention further provides a battery pack 200.
  • the battery pack 200 includes a plurality of the battery cells 20 stacked in a stack. Specifically, when a plurality of the battery cells 20 are stacked, the upper casing 24 of one battery cell 20 is placed in contact with the lower casing 25 of the adjacent battery cells 20. A plurality of the battery cells 20 may be laminated by an adhesive to form a unitary structure.
  • a lower case 25 formed of a rigid material can quickly derive heat inside the battery pack; a second side plate 256 of the lower case 25 and a second side plate 246 of the upper case 24
  • the overlapping portions form heat dissipation fins, which have a positive effect on heat conduction between the battery cells 20 of the battery pack 200, can increase the internal heat transfer capability of the battery pack, and improve the heat balance performance of the battery pack.
  • a third embodiment of the present invention provides a battery unit 30 including a package structure 31 , a battery core 32 , and a tab 33 .
  • the package structure 31 covers the outside of the battery core 32 and directly encapsulates the battery core 32.
  • the tab 33 is connected to the cell 32 and partially exposed outside the package structure 31.
  • the package structure 31 includes an upper case 34 and a lower case 35.
  • the upper casing 34 and the lower casing 35 are combined with each other to form a sealed space for accommodating the battery cells 32.
  • the material of the upper casing 34 is a soft material, and the material of the lower casing 35 is a rigid material.
  • the upper casing 34 includes a first main body 342 having a rectangular plate shape, four first side plates 344 extending from four sides of the rectangular plate, and four first extending from four sides of the first side plate 344, respectively. Two side panels 346.
  • the structure and material of the battery cell 32, the tab 33 and the upper casing 34 are the same as those in the battery cell 10 in the first embodiment.
  • the structure, materials, and materials of the battery core 12, the tabs 13, and the upper casing 14 are the same.
  • the difference from the battery cell 10 in the first embodiment is that the structure of the lower case 35 in the present embodiment is different from the structure of the lower case 15 in the first embodiment, and the lower The specific combination of the housing 35 and the upper housing 34 is different from the specific combination of the lower housing 15 and the upper housing 14 in the first embodiment.
  • the lower casing 35 includes a second body 352 having a rectangular plate shape and three stepped side edges 354 extending from three sides of the rectangular plate, respectively.
  • the three side edges 354 can be connected to each other.
  • the side 354 may have a third side panel 3544 connected to the second body 352, a fifth side panel 3548 remote from the second body 352, and the third side
  • the plate 3544 is connected to the fourth side plate 3546 of the fifth side plate 3548 to form the stepped side 354.
  • the third side panel 3544 and the fifth side panel 3548 may be perpendicular to the second body 352, and the fourth side panel 3546 may be parallel to the second body 352.
  • the length of the third side plate 3544 in a direction perpendicular to the second body 352 is less than or equal to the thickness of the battery core 32, which facilitates the stacking of the plurality of battery cells 30, and the two adjacent lower shells
  • the bodies 35 are attached to each other and fixed.
  • the specific combination of the lower casing 35 and the upper casing 34 is such that the second side plate 346 is in contact with the second body 352 to make the first body 342 and the The first side plate 344 and the second body 352 together define a sealed space for encapsulating the battery core 32; the first side plate 344 is spaced apart from the side edge 354.
  • the second body 352 and the plurality of the first side plates 3554 together define a first receiving space 36, and the plurality of the side edges 354 are away from the first receiving space 36.
  • One side of the second body 352 further defines a second receiving space 38 that cooperates with the second body 352 to accommodate another identical when a plurality of the lower housings 35 are superposed on each other The second body 352 of the lower housing 35.
  • the first accommodating space 36 is for accommodating the electric core 32 and the upper casing 34
  • the second accommodating space 38 is for partially accommodating and cooperating with another identical lower casing 35, mainly for accommodating The second body 352 of the other battery cell 30 and the third side plate 3544.
  • the length of the side 354 in a direction perpendicular to the second body 352 is greater than the thickness of the battery core 32 and the upper casing 34, so that the lower casing 35 can cover the battery core. 32 and the upper casing 34, and further enabling the second receiving space 38 to receive a portion of the side 354 of the adjacent lower casing 35.
  • the side edge 354 is shaped to be able to abut each other when the battery core 32 and the two adjacent lower casings 35 of the upper casing 34 are stacked in the same direction. Specifically, the inner side of the side edge 354 of the lower casing 35 abuts against the outer side of the side edge 354 of the adjacent other lower casing 35.
  • the battery cell 30 provided by the present invention has the following beneficial effects: the battery core 32 is directly encapsulated by the package structure 31, the whole of the battery core 32 is not covered with an aluminum plastic film, and the lower case 35 is made of a rigid material.
  • the heat transfer coefficient is high, so that the heat generated in the operation of the battery can be directly transmitted to the outside through the lower casing 35, which is beneficial to heat dissipation of the battery under high-rate charging and discharging, and improves the safety of the battery.
  • the upper casing 34 is made of a soft material.
  • the lower case 35 is made of a rigid material and has strong strength, which is advantageous for improving the supporting force of the entire battery cell 30, and forming a relatively fixed shape for easy installation.
  • the upper casing 34 and the lower casing 35 have matching side plates, the upper casing 34 and the lower casing 35 are combined to form the package structure 31, which can be directly locked, without The process is simplified by thermoplastic or adhesive bonding.
  • a third embodiment of the present invention further provides a battery pack 300.
  • the battery pack 300 includes a plurality of the battery cells 30 stacked in a stack.
  • the plurality of battery cells 30 can be laminated by an adhesive to form a unitary structure.
  • the plurality of the lower casings 35 of the battery pack 300 are superposed in the same direction, so that a plurality of the battery cells 30 are superposed on each other.
  • a direction in which a plurality of the battery cells 30 are superposed is defined as X.
  • the plurality of mutually stacked lower casings 35 are relatively positioned in the X direction, thereby the battery cells 32 in the first receiving space 36 and The upper housing 34 is fixed. That is, the two adjacent second bodies 352 are separated by a battery core 32 and the upper casing 34.
  • the first body 342 and the adjacent battery cells 30 are The second body 352 is in contact with and conforms.
  • the upper casing 34 Under the clamping force of the battery pack 300, the upper casing 34 is deformed by a soft material, and the pressing force is transmitted to the battery core 12. At the same time, the lower casing 35 and the electric The area corresponding to the core 12 will be slightly deformed, and displacement occurs in a direction in which a plurality of the battery cells 30 are superposed, and the battery cells 32 inside the battery cell 30 are pressed to ensure positive and negative electrodes in the battery.
  • the separator is in good contact state, which facilitates the lithium ion to pass through the diaphragm and engages in the embedding and deintercalation of the positive and negative materials to ensure high efficiency operation of the battery.
  • the inner wall of the package structure 11 is not damaged. Therefore, the area corresponding to the upper case 34 and the lower case 35 and the battery core 32 will be slightly deformed. The battery core 32 is not destroyed.
  • the upper casing 34 and the lower casing 35 have matching side plates, and the battery pack 300 having uniform outer dimensions can be formed, and the battery pack 300 can be conveniently fixed and compacted, and rigid.
  • the lower case 35 made of a material can quickly derive the heat inside the battery pack 300; the sides of the lower case 35 overlapping each other facilitate the between the battery cells 30 in the battery pack 300.
  • the heat conduction increases the heat transfer capability inside the battery pack 300 and improves the thermal balance performance of the battery pack 300.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明涉及一种电池单体,包括封装结构体、电芯及极耳,所述封装结构体罩于所述电芯外部,直接封装所述电芯,所述极耳与所述电芯连接,并部分暴露于所述封装结构体外部,所述封装结构体包括上壳体与下壳体,所述上壳体及所述下壳体相互结合形成一密闭空间用于容纳所述电芯,所述上壳体的材料为软性材料,所述下壳体的材料为刚性材料,所述电芯由正极极片、隔膜、负极极片层叠组成。本发明还涉及一种电池组,包括多个电池单体,所述多个电池单体相互叠加设置。

Description

电池单体及电池组 技术领域
本发明涉及一种电池单体及电池组。
背景技术
电池的安全性是影响环保电动汽车普及的最大瓶颈,动力电池组通常是由多个电池单体串联或者串并联而成。电池单体按照壳体的不同,有铝壳/钢壳电池和软包装电池两种。不论是铝壳/钢壳电池还是软包装电池,其内部电芯是由正极极片、隔膜、负极极片以层叠的结构形式组成,为使电池具有良好的性能,均需将电芯沿层叠方向压紧。
软包装电池单体通常用一层铝塑膜包装电芯,然后以抽真空的方式,利用包装结构内外的大气压差保证电芯的压紧。软包装电池具有设计灵活,安全性能好,可塑性较强等优点。然而,铝塑膜材质较软,使整个单体较软,形状不统一,使软包装电池在封装时难以稳固,并且边角很容易被刺破,降低了安全性。当前的铝壳/钢壳电池单体是在软包装电池的基础上,将软包装电池密封在一个钢性结构中,并向密封的钢性结构内充入氮气等气体,以取得使电芯压紧的效果。铝壳/钢壳电池具有强度好,外部组装简便的优点,但其可塑性不及软包装电池,当内部产生大量气体时,因外壳刚性较强不能排放内部气体,容易引起爆炸等安全事故。
此外,现有软包装电池单体及铝壳/钢壳电池单体中,电芯外部均包覆一层铝塑膜,由于铝塑膜的导热系数的较低,对处于高倍率充放情况下的电池单体散热非常不利,容易引起安全隐患。同时,现有软包装电池单体及铝壳/钢壳电池单体都无法同时兼顾具有固定外形尺寸、散热好、防爆的特点。
发明内容
有鉴于此,确有必要提供具有固定外形尺寸、能有效散热且防爆的电池单体及电池组。
一种电池单体,包括封装结构体、电芯及极耳,所述封装结构体罩于所述电芯外部,直接封装所述电芯,所述极耳与所述电芯连接,并部分暴露于所述封装结构体外部,所述封装结构体包括上壳体与下壳体,所述上壳体及所述下壳体相互结合形成一密闭空间用于容纳所述电芯,所述上壳体的材料为软性材料,所述下壳体的材料为刚性材料,所述电芯由正极极片、隔膜、负极极片层叠组成。
一种电池组,包括多个所述电池单体,所述多个电池单体相互叠加设置。
相对于现有技术,本发明的电池单体具有以下有益效果:用封装结构体直接封装所述电芯,所述电芯的整体没有包覆铝塑膜,并且下壳体由刚性材料制成,热传导系数高,因此,电池工作中产生的热量可直接通过所述下壳体迅速传导至外部,有利于高倍率充放情况下的电池散热,提高电池的安全性。同时,上壳体由软性材料制成,当电池内部压力增加到一定程度时,会在薄弱的地方漏液,自行减压,提高电池单体的防爆性能。另外,下壳体采用刚性材料制造,具有较强的强度,有利于提高整个电池单体的支撑力,以及形成比较固定的形状便于安装。
附图说明
图1是本发明第一实施方式的电池单体的示意图。
图2是本发明第一实施方式的电池单体沿II-II线的剖面图。
图3是本发明第一实施方式的电池单体的结构分解图。
图4是本发明第一实施方式的电池组的立体图。
图5是本发明第一实施方式的电池组的后视图。
图6是本发明第二实施方式的电池组的左视图。
图7是本发明第二实施方式的电池单体的示意图。
图8是本发明第二实施方式的电池单体沿VIII-VIII线的剖面图。
图9是本发明第二实施方式的电池单体的结构分解图。
图10是本发明第二实施方式的电池组的立体图。
图11是本发明第二实施方式的电池组的后视图。
图12是本发明第二实施方式的电池组的左视图。
图13是本发明第三实施方式的电池单体的示意图。
图14是本发明第三实施方式的电池单体沿XIV-XIV线的剖面图。
图15是本发明第三实施方式的电池单体的结构分解图。
图16是本发明第三实施方式的电池组的立体图。
图17是本发明第三实施方式的电池组的沿XVII-XVII线的剖面图。
图18是本发明第三实施方式的电池组的左视图。
主要元件符号说明
电池单体 10,20,30
封装结构体 11,21,31
电芯 12,22,32
极耳 13,23,33
上壳体 14,24,34
第一主体 142,242,252,342,
第一侧板 144,244,254,344
第二侧板 146,246,256,346
下壳体 15,25,35
定位孔 16
第二主体 352
侧边 354
第三侧板 3544
第四侧板 3546
第五侧板 3548
第一容纳空间 36
第二容纳空间 38
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的电池单体及电池组作进一步的详细说明。
请参阅图1至图3,本发明第一实施方式提供一种电池单体10,包括一封装结构体11、一电芯12及一极耳13。所述封装结构体11罩于所述电芯12外部,直接封装所述电芯12。所述极耳13与所述电芯12连接,并部分暴露在所述封装结构体11外部。
所述封装结构体11包括一上壳体14及一下壳体15。所述上壳体14及所述下壳体15相互结合形成一密闭空间用于容纳所述电芯12。所述上壳体14的材料为软性材料,所述下壳体15的材料为刚性材料。
所述上壳体14在远离所述下壳体15的方向上具有一凸起空间,所述空间的边缘具有向外延伸的侧边,所述侧边可固定于所述下壳体15上。所述上壳体14的空间可以容纳至少部分所述电芯12,所述空间的大小形状可以根据实际需要制定。只要能够确保所述电芯12能够被固定于所述上壳体14及所述下壳体15相互结合形成的密闭空间内,所述侧边的数量及所述侧边的形状不限。
请参阅图2,所述上壳体14为类似帽子形结构体,所述上壳体14的周边弯折成“Z”型台阶结构,使上壳体14具有一凹陷结构。具体地,该上壳体14包括矩形板状的第一主体142、四个分别从该第一主体142的四条边弯折延伸的第一侧板144,以及四个分别从第一侧板144的四条边向外弯折延伸的第二侧板146。所述第一主体142、与第一侧板144和第二侧板146可一体成型,且在该第一主体142的四条边形成“Z”型台阶结构。所述第一侧板144垂直于所述第一主体142,所述第二侧板146平行于所述第一主体142。四个所述第一侧板144相互连接,并同时与所述第一主体142连接,形成一凹陷结构,用于承载所述电芯12。四个所述第二侧板146相互连接,并同时与对应的四个所述第一侧板144相互连接,该四个第二侧板146相对于所述第一主体142向外延伸,使所述上壳体14成为帽子形结构。其中,为了实现所述电芯12整体能够被所述封装结构体11封装,所述第一侧板144在垂直于所述第一主体142方向上的长度大于或等于所述电芯12的厚度。
所述上壳体14的材料为软性材料,例如,铝塑膜。本实施例中,所述上壳体14的材料为铝塑膜。优选地,所述上壳体14的厚度为0.3mm~1mm。
所述下壳体15为一平面结构体,与所述上壳体14配合,形成一密闭空间用于承载所述电芯12。优选地,所述下壳体15为一矩形板状的平面结构体。所述下壳体15的面积大于上壳体14的面积。即,所述下壳体15的矩形板状的边缘不被所述上壳体14的所述第二侧板146的边缘所覆盖。所述下壳体15不被所述上壳体14的所述第二侧板146所覆盖的部分可以设置定位孔16,方便多个电池单体10叠加成电池组时进行固定。
所述下壳体15的材料为刚性材料,例如,为不锈钢、铝或镁铝合金。本实施例中,所述下壳体15的材料为铝。优选地,所述下壳体15的厚度为0.3mm~1mm。
进一步,优选地,所述下壳体15的内表面具有绝缘性能。所述下壳体15的内表面是指所述下壳体15靠近所述电芯12的表面。例如,当所述下壳体15的材料为铝材质时,可经阳极氧化获得绝缘性;另外,还可在所述下壳体15的内表面涂覆导热性较好的绝缘材料来获得绝缘性,如可涂覆绝缘材料或PP(聚丙烯)获得绝缘性。
所述电芯12由正极极片、隔膜、负极极片层叠组成。所述封装结构体11罩于所述电芯12外部,直接封装所述电芯12。所述直接封装所述电芯12是指,所述电芯12外部仅由所述封装结构体11封装,即直接被所述上壳体14及所述下壳体15所包覆,不再被其他材料包覆。更为具体地,指所述电芯12极片与所述封装结构体11之间没有其他封装材料,或所述电芯12极片与所述封装结构体11的内表面接触设置。所述电芯12中,所述正极极片、隔膜及负极极片的材料及制造方法可与现有技术相同。
所述极耳13设置在所述电芯12厚度方向上相对的两个表面上的任意一表面,其延伸方向平行于所述电芯12表面。具体地,所述极耳13与所述电芯12的厚度方向上相对的两个表面上的任意一表面共面设置。当所述封装结构体11将所述电芯12封装时,优选地,所述极耳13靠近所述下壳体15设置。所述极耳13的材料可为铝箔或镀镍铜箔,所述极耳13的厚度可根据实际需要进行选择,本实施方式中所述极耳13的厚度为0.2mm。
所述电池单体10使用时,所述上壳体14与平板类刚性面接触。当多个所述电池单体10叠加成电池组时,所述上壳体14与相邻的所述电池单体10的所述下壳体15相接触。所述下壳体15主要用于所述电池单体10与其它外围固定框架的连接。当多个所述电池单体10叠加成电池组时,所述下壳体15主要用于多个所述电池单体10相互间位置的固定。
电池单体10的组装方法具体为:将所述软性材料冲压成所述上壳体14,将所述刚性材料冲压成所述下壳体15的形状,将设置有所述极耳13的所述电芯12放置在所述下壳体15上,然后通过热塑的方式使所述上壳体14及所述下壳体15结合在一起,形成所述封装结构体11,并使所述电芯12封装在所述封装结构体11内部,部分所述极耳13暴露于所述封装结构体11外部用于连接外电路。具体地,在上下壳体封装时,在封口处用极耳胶包裹极耳13做绝缘处理后进行热封,依靠上壳体14的微小形变实现封塑,使部分所述极耳13暴露于所述封装结构体11外部用于连接外电路。
本发明提供的电池单体10具有以下有益效果:用封装结构体11直接封装所述电芯12,所述电芯12的整体没有包覆铝塑膜,并且下壳体15由刚性材料制成,热传导系数高,因此,电池工作中产生的热量可直接通过所述下壳体15迅速传导至外部,有利于高倍率充放情况下的电池散热,提高电池的安全性。同时,上壳体14由软性材料制成,当电池内部压力增加到一定程度时,会在薄弱的地方漏液,自行减压,提高电池单体10的防爆性能。另外,下壳体15采用刚性材料制造,具有较强的强度,有利于提高整个电池单体10的支撑力,以及形成比较固定的形状便于安装。
另外,请参阅图4至图6,本发明第一实施方式还提供一种电池组100。所述电池组100包括层叠设置的多个电池单体10。具体地,层叠设置的多个所述电池单体10时,一电池单体10的所述上壳体14与相邻的电池单体10的所述下壳体15接触设置。该多个所述电池单体10通过定位孔16固定形成一整体结构。具体地,可使用螺栓等连接紧固元件,通过定位孔16将所述电池组100压紧。
在所述电池组100夹紧力的作用下,所述上壳体14为软性材料会发生形变,并将压紧力传递至电芯12,同时,所述下壳体15与所述电芯12对应的区域将发生轻微形变,在多个所述电池单体10叠加的方向上产生位移,将所述电池单体10内部的所述电芯12压紧,保证电池内正负极片及隔膜处于良好的接触状态,利于锂离子穿越隔膜、在正负极材料进行嵌入与脱嵌运动,保障电池高效率工作。因所述封装结构体11内部四周有有绝缘层保护,不会导致封装结构体11内壁破损,因此,所述上壳体14及所述下壳体15与所述电芯12对应的区域将发生轻微形变时不会破坏所述电芯12。
另外,请参阅图5及图6,所述电池组100中,所述下壳体15不被所述电芯12覆盖的部分可形成散热鳍片,下壳体15能将电池单体10中所述电芯12产生的热量传向四个侧边的鳍片,通过鳞片将热量导出电池组100,对电池的散热有积极作用。通过在所述定位孔16安装连接紧固元件,可方便的将所述电池组100压紧,增加电池组的传热能力,改善所述电池组100的热均衡性能。
请参阅图7至图9,本发明第二实施方式提供一种电池单体20,包括一封装结构体21、一电芯22及一极耳23。所述封装结构体21罩于所述电芯22外部,直接封装所述电芯22。所述极耳23与所述电芯22连接,并部分暴露在所述封装结构体21外部。
所述封装结构体21包括一上壳体24及一下壳体25。所述上壳体24及所述下壳体25相互结合形成一密闭空间用于容纳所述电芯22。所述上壳体24的材料为软性材料,所述下壳体25的材料为刚性材料。
本实施例中的所述电池单体20中,所述电芯22、所述极耳23及所述上壳体24的结构以及材料分别与第一实施方式中所述电池单体10中,所述电芯12、所述极耳13及所述上壳体14的结构以及材料相同。与第一实施方式中所述电池单体10不同之处在于:所述下壳体25与所述上壳体24的结构相同但材料不同,即,本实施例中的所述下壳体25及所述上壳体24的结构均与第一实施例中的所述上壳体14的结构相同;所述极耳23设置在所述电芯22厚度方向所在的平面上。
具体地,所述上壳体24包括矩形板状的第一主体242、四个分别从该矩形板的四条边延伸的第一侧板244,以及四个分别从第一侧板244的四条边延伸的第二侧板246。下壳体25包括矩形板状的第一主体252、四个分别从该矩形板的四条边延伸的第一侧板254,以及四个分别从第一侧板254的四条边延伸的第二侧板256。通过胶接、焊接或金属翻边包裹的方式使所述上壳体24的所述第二侧板246及所述下壳体25的所述第二侧板256结合在一起,形成所述封装结构体21,密封所述电芯22。另外,为了实现所述电芯22整体能够被所述封装结构体21封装,所述第一侧板244在垂直于所述第一主体242方向上的长度及所述第一侧板254在垂直于所述第一主体252方向上的长度和,大于或等于所述电芯22的厚度。
所述上壳体24与所述下壳体25结构相同且对称。为了更好的封装所述电芯22使所述电芯22不受破坏,且充分利用所述封装结构体21的空间,优选地,所述极耳23设置在所述电芯22厚度方向上的平面的中心。
本发明提供的所述电池单体20具有以下有益效果:用封装结构体21直接封装所述电芯22,所述电芯22的整体没有包覆铝塑膜,并且下壳体15由刚性材料制成,热传导系数高,因此,电池工作中产生的热量可直接通过所述下壳体25迅速传导至外部,有利于高倍率充放情况下的电池散热,提高电池的安全性。同时,上壳体24由软性材料制成,当电池内部压力增加到一定程度时,会在薄弱的地方漏液,自行减压,提高电池单体20的防爆性能。另外,下壳体25采用刚性材料制造,具有较强的强度,有利于提高整个电池单体20的支撑力,以及形成比较固定的形状便于安装。并且,所述上壳体24与所述下壳体25具有相同的形状,制造方法简单;所述上壳体24与所述下壳体25同为帽子形结构,在有效保护所述电池单体20的边角,防止所述电池单体20被刮伤损坏的同时,也可保证所述极耳23处在所述电池单体20的中心平面,可以适应特殊要求的安装。
另外,请参阅图10至图12,本发明第二实施方式还提供一种电池组200。所述电池组200包括层叠设置的多个所述电池单体20。具体地,层叠设置的多个所述电池单体20时,一电池单体20的所述上壳体24与相邻的电池单体20的所述下壳体25接触设置。多个所述电池单体20可通过粘结剂层叠结合,形成一整体结构。
所述电池组200中,刚性材料形成的下壳体25能够将电池组内部的热量快速导出;所述下壳体25的第二侧板256与所述上壳体24的第二侧板246重叠的部分形成散热鳍片,对所述电池组200的所述电池单体20间的热量传导有积极作用,能够增加电池组的内部传热能力,改善电池组的热均衡性能。
请参阅图13至图15,本发明第三实施方式提供一种电池单体30,包括一封装结构体31、一电芯32及一极耳33。所述封装结构体31罩于所述电芯32外部,直接封装所述电芯32。所述极耳33与所述电芯32连接,并部分暴露在所述封装结构体31外部。
所述封装结构体31包括一上壳体34及一下壳体35。所述上壳体34及所述下壳体35相互结合形成一密闭空间用于容纳所述电芯32。所述上壳体34的材料为软性材料,所述下壳体35的材料为刚性材料。所述上壳体34包括矩形板状的第一主体342、四个分别从该矩形板的四条边延伸的第一侧板344,以及四个分别从第一侧板344的四条边延伸的第二侧板346。
本实施例中的所述电池单体30中,所述电芯32、所述极耳33及所述上壳体34的结构以及材料与第一实施方式中所述电池单体10中,所述电芯12、所述极耳13及所述上壳体14的结构以及材料均相同。与第一实施方式中所述电池单体10不同之处在于:本实施例中所述下壳体35的结构与第一实施方式中的所述下壳体15的结构不同,且所述下壳体35与所述上壳体34的具体结合方式与第一实施方式中所述下壳体15与所述上壳体14的具体结合方式不同。
具体地,所述下壳体35包括矩形板状的第二主体352及三个分别从该矩形板的三条边延伸的台阶状的侧边354。所述三个侧边354可以相互连接。更为具体地,所述侧边354可以具有与所述第二主体352连接的第三侧板3544、远离该述所述第二主体352的第五侧板3548,以及所述将第三侧板3544与所述第五侧板3548连接的第四侧板3546,以共同形成该台阶状所述侧边354。所述第三侧板3544与所述第五侧板3548可以垂直于所述第二主体352,所述第四侧板3546可以平行于所述第二主体352。所述第三侧板3544在垂直于所述第二主体352方向上的长度小于或等于所述电芯32的厚度,利于多个电池单体30层叠时,相邻的两个所述下壳体35相互贴合固定。
请参阅图14,所述下壳体35与所述上壳体34的具体结合方式为:所述第二侧板346与所述第二主体352接触设置,使所述第一主体342、所述第一侧板344及所述第二主体352共同围成一密闭空间,用于封装所述电芯32;所述第一侧板344与所述侧边354间隔设置。
进一步,请参阅图17,所述第二主体352与多个所述第一侧板3554共同定义一第一容纳空间36,多个所述侧边354在所述第一容纳空间36远离所述第二主体352的一侧进一步定义一第二容纳空间38,所述第二容纳空间38与所述第二主体352相配合,能够在多个所述下壳体35相互叠加时容纳另一相同的所述下壳体35的所述第二主体352。所述第一容纳空间36用于容纳所述电芯32及所述上壳体34,所述第二容纳空间38用于部分容纳并配合另一相同的所述下壳体35,主要是容纳另一电池单体30的所述第二主体352及所述第三侧板3544。所述侧边354在垂直于所述第二主体352方向上的长度大于所述电芯32及所述上壳体34的厚度和,从而使所述下壳体35可以罩于所述电芯32及所述上壳体34外,并进一步使所述第二容纳空间38能够容纳相邻的所述下壳体35的部分所述侧边354外。所述侧边354的形状可以使中间间隔有所述电芯32及所述上壳体34的两个相邻的所述下壳体35沿相同方向叠加时仍能相互抵靠。具体地,所述下壳体35的所述侧边354的内侧与相邻的另一所述下壳体35的所述侧边354的外侧相抵靠。
本发明提供的所述电池单体30具有以下有益效果:用封装结构体31直接封装所述电芯32,所述电芯32的整体没有包覆铝塑膜,并且下壳体35由刚性材料制成,热传导系数高,因此,电池工作中产生的热量可直接通过所述下壳体35迅速传导至外部,有利于高倍率充放情况下的电池散热,提高电池的安全性。同时,上壳体34由软性材料制成,当电池内部压力增加到一定程度时,会在薄弱的地方漏液,自行减压,提高电池单体30的防爆性能。另外,下壳体35采用刚性材料制造,具有较强的强度,有利于提高整个电池单体30的支撑力,以及形成比较固定的形状便于安装。同时,因所述上壳体34与所述下壳体35具有相配合的侧板,所述上壳体34与所述下壳体35结合形成封装结构体31可直接进行卡固,不需通过热塑方式或粘结剂粘合,简化了工序。
另外,请参阅图16至图18,本发明第三实施方式还提供一种电池组300。所述电池组300包括层叠设置的多个所述电池单体30。该多个电池单体30可通过粘结剂层叠结合,形成一整体结构。
所述电池组300的多个所述下壳体35沿相同方向进行叠加,使多个所述电池单体30相互叠加设置。定义多个所述电池单体30叠加的方向为X。当多个所述电池单体30叠加时,在X方向上,该多个相互叠加的所述下壳体35相对位置固定,从而对所述第一容纳空间36中的所述电芯32及所述上壳体34进行固定。即,相邻的两个所述第二主体352之间间隔有一所述电芯32及所述上壳体34,在该X方向,所述第一主体342与相邻的电池单体30的所述第二主体352相接触并贴合。
在所述电池组300夹紧力的作用下,所述上壳体34为软性材料会发生形变,并将压紧力传递至电芯12,同时,所述下壳体35与所述电芯12对应的区域将发生轻微形变,在多个所述电池单体30叠加的方向上产生位移,将所述电池单体30内部的所述电芯32压紧,保证电池内正负极片及隔膜处于良好的接触状态,利于锂离子穿越隔膜、在正负极材料进行嵌入与脱嵌运动,保障电池高效率工作。因封装结构体内部四周有有绝缘层保护,不会导致封装结构体11内壁破损,因此,所述上壳体34及所述下壳体35与所述电芯32对应的区域将发生轻微形变时不会破坏所述电芯32。
另外,所述上壳体34与所述下壳体35具有相配合的侧板,能够形成外形尺寸统一的所述电池组300,可方便的对所述电池组300进行固定和压紧,刚性材料制成的所述下壳体35能将所述电池组300内部的热量快速导出;相互重叠的下壳体35的侧边有利于所述电池组300内各个所述电池单体30间的热量传导,增加所述电池组300内部的传热能力,改善所述电池组300的热均衡性能。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (12)

  1. 一种电池单体,包括封装结构体、电芯及极耳,其特征在于,所述封装结构体罩于所述电芯外部,直接封装所述电芯,所述极耳与所述电芯连接,并部分暴露于所述封装结构体外部,所述封装结构体包括上壳体与下壳体,所述上壳体及所述下壳体相互结合形成一密闭空间用于容纳所述电芯,所述上壳体的材料为软性材料,所述下壳体的材料为刚性材料,所述电芯由正极极片、隔膜、负极极片层叠组成。
  2. 如权利要求1所述的电池单体,其特征在于,所述下壳体的材料为不锈钢、铝或镁铝合金,所述上壳体为铝塑膜。
  3. 如权利要求1所述的电池单体,其特征在于,所述上壳体及所述下壳体的内表面具有绝缘性能。
  4. 如权利要求1所述的电池单体,其特征在于,所述上壳体在远离所述下壳体的方向上具有一凸起空间,所述空间的边缘具有侧边,所述侧边固定于所述下壳体上。
  5. 如权利要求4所述的电池单体,其特征在于,所述上壳体包括矩形板状的第一主体、四个分别从所述第一主体的四条边延伸的第一侧板,以及四个分别从第一侧板的四条边延伸的第二侧板,所述第一侧板垂直于所述第一主体,四个所述第一侧板相互连接,并同时与所述第一主体连接,所述第二侧板平行于所述第一主体,四个所述第二侧板相互连接,并同时与对应的四个所述第一侧板相互连接,该四个第二侧板相对于所述第一主体向外延伸。
  6. 如权利要求1所述的电池单体,其特征在于,所述下壳体为一平面结构体。
  7. 如权利要求1所述的电池单体,其特征在于,所述下壳体的结构与所述上壳体的结构相同。
  8. 如权利要求1所述的电池单体,其特征在于,所述下壳体包括第二主体及侧边,所述第二主体为矩形板,所述侧边的数量为三个,分别从所述矩形板的三条边延伸而出。
  9. 如权利要求8所述的电池单体,其特征在于,所述侧边在垂直于所述第二主体方向上的长度大于所述电芯及所述上壳体的厚度和。
  10. 如权利要求8所述的电池单体,其特征在于,所述侧边为一台阶状结构,所述侧边包括与所述第二主体连接的第三侧板、远离所述第二主体的第五侧板,以及将该第三侧板与第五侧板连接的第四侧板,所述第三侧板与所述第五侧板垂直于所述第二主体,所述第四侧板平行于所述第二主体。
  11. 一种电池组,包括多个如权利要求1至10中任意一项所述的电池单体,多个所述电池单体相互叠加设置。
  12. 如权利要求11所述的电池组,其特征在于,所述下壳体的形状使两个相同的所述下壳体沿相同方向叠加时一个所述下壳体的所述侧边的内侧与另一所述下壳体的所述侧边的外侧相抵靠,并且两个所述下壳体的第二主体之间具有间隔,用于容纳所述电芯及所述上壳体。
PCT/CN2015/082713 2014-08-06 2015-06-30 电池单体及电池组 WO2016019769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410382941.6 2014-08-06
CN201410382941.6A CN104183798B (zh) 2014-08-06 2014-08-06 电池单体及电池组

Publications (1)

Publication Number Publication Date
WO2016019769A1 true WO2016019769A1 (zh) 2016-02-11

Family

ID=51964689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082713 WO2016019769A1 (zh) 2014-08-06 2015-06-30 电池单体及电池组

Country Status (2)

Country Link
CN (1) CN104183798B (zh)
WO (1) WO2016019769A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321423A (zh) * 2018-03-01 2018-07-24 珠海格力电器股份有限公司 一种电池分容设备
CN108365136A (zh) * 2018-03-16 2018-08-03 长沙优力电驱动系统有限公司 电芯封装盒、锂电池及电芯封装方法
CN112350031A (zh) * 2019-07-22 2021-02-09 宁德新能源科技有限公司 电池
CN112676785A (zh) * 2020-12-31 2021-04-20 镇江龙源铝业有限公司 一种汽车电池散热用铝材的成型方法
CN112968243A (zh) * 2021-02-02 2021-06-15 江苏海思联新能源科技有限公司 一种高温防爆保护结构的固态锂电池及其制造方法
CN113131045A (zh) * 2020-01-13 2021-07-16 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN113285149A (zh) * 2020-02-18 2021-08-20 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN113904036A (zh) * 2021-10-08 2022-01-07 陕西奥林波斯电力能源有限责任公司 一种大容量单体电池及组装方法
CN114335821A (zh) * 2022-01-05 2022-04-12 宁波容百新能源科技股份有限公司 软包电芯壳体及软包电芯
CN114824602A (zh) * 2022-03-31 2022-07-29 广东国光电子有限公司 一种组合电芯外壳及制作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558661B (zh) * 2017-01-17 2023-07-18 华霆(合肥)动力技术有限公司 可定向排气的电池模组及动力电池
CN112366393B (zh) 2019-07-23 2023-10-20 宁德时代新能源科技股份有限公司 二次电池
CN111244527B (zh) * 2020-03-03 2022-05-20 宁德新能源科技有限公司 电芯、电池及包装袋
WO2021248488A1 (zh) * 2020-06-12 2021-12-16 宁德新能源科技有限公司 电池和用电装置
CN114374030A (zh) * 2022-02-10 2022-04-19 中创新航科技股份有限公司 电池、电池组及电池的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411081A (zh) * 2002-11-15 2003-04-16 中信国安盟固利电源技术有限公司 软包装液态锂离子蓄电池
CN201498537U (zh) * 2008-04-11 2010-06-02 于湘勇 具有防爆功能的塑胶、塑胶膜锂电池盖板
CN204189831U (zh) * 2014-08-06 2015-03-04 江苏华东锂电技术研究院有限公司 电池单体及电池组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764267A (zh) * 2008-12-24 2010-06-30 深圳市比克电池有限公司 一种电池及制造方法
CN101877421A (zh) * 2009-04-29 2010-11-03 深圳市比克电池有限公司 一种电池及其制造方法
US20140099532A1 (en) * 2012-10-09 2014-04-10 Samsung Sdi Co., Ltd. Secondary battery
CN103904279B (zh) * 2014-02-25 2016-09-07 江苏华东锂电技术研究院有限公司 软包装锂离子电池组用电池隔板及电池组
CN204144329U (zh) * 2014-08-06 2015-02-04 江苏华东锂电技术研究院有限公司 电池单体及电池组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411081A (zh) * 2002-11-15 2003-04-16 中信国安盟固利电源技术有限公司 软包装液态锂离子蓄电池
CN201498537U (zh) * 2008-04-11 2010-06-02 于湘勇 具有防爆功能的塑胶、塑胶膜锂电池盖板
CN204189831U (zh) * 2014-08-06 2015-03-04 江苏华东锂电技术研究院有限公司 电池单体及电池组

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321423A (zh) * 2018-03-01 2018-07-24 珠海格力电器股份有限公司 一种电池分容设备
CN108321423B (zh) * 2018-03-01 2024-03-22 珠海格力电器股份有限公司 一种电池分容设备
CN108365136A (zh) * 2018-03-16 2018-08-03 长沙优力电驱动系统有限公司 电芯封装盒、锂电池及电芯封装方法
CN108365136B (zh) * 2018-03-16 2024-04-09 长沙优力电驱动系统有限公司 电芯封装盒、锂电池及电芯封装方法
CN112350031A (zh) * 2019-07-22 2021-02-09 宁德新能源科技有限公司 电池
CN113131045A (zh) * 2020-01-13 2021-07-16 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN113131045B (zh) * 2020-01-13 2023-06-13 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN113285149A (zh) * 2020-02-18 2021-08-20 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
CN112676785A (zh) * 2020-12-31 2021-04-20 镇江龙源铝业有限公司 一种汽车电池散热用铝材的成型方法
CN112676785B (zh) * 2020-12-31 2024-03-15 镇江龙源铝业有限公司 一种汽车电池散热用铝材的成型方法
CN112968243B (zh) * 2021-02-02 2023-03-31 江苏海思联新能源科技有限公司 一种高温防爆保护结构的固态锂电池及其制造方法
CN112968243A (zh) * 2021-02-02 2021-06-15 江苏海思联新能源科技有限公司 一种高温防爆保护结构的固态锂电池及其制造方法
CN113904036B (zh) * 2021-10-08 2024-04-30 陕西奥林波斯电力能源有限责任公司 一种大容量单体电池及组装方法
CN113904036A (zh) * 2021-10-08 2022-01-07 陕西奥林波斯电力能源有限责任公司 一种大容量单体电池及组装方法
CN114335821A (zh) * 2022-01-05 2022-04-12 宁波容百新能源科技股份有限公司 软包电芯壳体及软包电芯
CN114335821B (zh) * 2022-01-05 2024-02-09 宁波容百新能源科技股份有限公司 软包电芯壳体及软包电芯
CN114824602A (zh) * 2022-03-31 2022-07-29 广东国光电子有限公司 一种组合电芯外壳及制作方法

Also Published As

Publication number Publication date
CN104183798B (zh) 2016-09-07
CN104183798A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2016019769A1 (zh) 电池单体及电池组
WO2021143668A1 (zh) 电池、电池模组、电池包及汽车
WO2015122667A1 (ko) 실링부에 홈을 포함하고 있는 파우치형 이차전지
WO2015127838A1 (zh) 电池模块
WO2015176592A1 (zh) 电池组及具有该电池组的电池模块
EP3890085B1 (en) Battery cell assembly, battery module and battery pack
WO2014027783A1 (ko) 벤팅 유도부를 포함하는 전지모듈
KR102058194B1 (ko) 배터리 모듈
WO2014126338A1 (ko) 안전성이 향상된 신규한 구조의 전지셀
US11837742B2 (en) Partition member and assembled battery
KR101233624B1 (ko) 이차전지 팩
JPH07263015A (ja) 鉛蓄電池
CN104347907A (zh) 一种电池、电池模块以及车辆
WO2023078360A1 (zh) 电池包、车辆和用电装置
WO2014107093A1 (ko) 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지
US11264668B2 (en) Battery module having improved cooling structure
KR20140004835A (ko) 전지팩
WO2021159965A1 (zh) 一种电池、电池模组、电池包以及电动车
CN204144329U (zh) 电池单体及电池组
WO2017039352A1 (ko) 향상된 냉각구조를 갖는 배터리 모듈
CN204189831U (zh) 电池单体及电池组
WO2022170998A1 (zh) 一种电池和电子设备
CN211957702U (zh) 一种释热防爆型锂离子电池
CN208690310U (zh) 一种电池及电池模组
CN220628178U (zh) 电池单体及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830453

Country of ref document: EP

Kind code of ref document: A1