WO2016019727A1 - 利用水泥基材料的自振频率检测其凝结时间的装置 - Google Patents

利用水泥基材料的自振频率检测其凝结时间的装置 Download PDF

Info

Publication number
WO2016019727A1
WO2016019727A1 PCT/CN2015/074561 CN2015074561W WO2016019727A1 WO 2016019727 A1 WO2016019727 A1 WO 2016019727A1 CN 2015074561 W CN2015074561 W CN 2015074561W WO 2016019727 A1 WO2016019727 A1 WO 2016019727A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
test piece
initial
exciter
sensor
Prior art date
Application number
PCT/CN2015/074561
Other languages
English (en)
French (fr)
Inventor
陈志远
王振振
李萌
陈军琪
谭恺炎
吴优
张文锋
卢龙
李方杰
洪水英
杨静文
陈琳
Original Assignee
葛洲坝集团试验检测有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 葛洲坝集团试验检测有限公司 filed Critical 葛洲坝集团试验检测有限公司
Priority to DE202015103063.0U priority Critical patent/DE202015103063U1/de
Publication of WO2016019727A1 publication Critical patent/WO2016019727A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass

Definitions

  • the utility model relates to the performance testing of building materials, in particular to a method and a device for detecting the setting time of the self-vibrating frequency of the cement-based material.
  • the penetration resistance method used in the measurement of concrete setting time is to press the stylus of the specified shape into the sample 25 mm deep several times during the concrete condensing process, thereby measuring the penetration resistance, and the penetration resistance is measured to be 3.5 MPa. That is, it is considered that the initial setting time is reached, and the penetration resistance is measured to be 28 MPa, that is, the final setting time is considered to be reached.
  • This method is greatly influenced by human factors, and the measurement accuracy is not high.
  • the purpose of the utility model is to provide a device for detecting the condensation time of the cement-based material by using the self-vibration frequency of the cement-based material, which can improve the test precision of the cement-based material setting time, realize the automatic test, reduce the interference of human factors, and reduce the test.
  • the physical labor of the personnel avoiding waiting for a long time on duty.
  • the technical solution adopted by the present invention is that the utility model provides a device for testing by the above method, including a trial mold, and the test mold is provided with a preliminary solidification test piece to be tested, and the initial condensation is performed.
  • the top center of the base test piece is provided with a vibration sensor, the tail cone of the vibration sensor is fixed to the initial condensation base test piece, the vibration sensor is connected to the vibration data acquisition device, and the vibration exciter is arranged above the edge of the initial condensation base test piece to excite the vibration device.
  • the device is connected to an FPGA module for controlling its timing excitation, and the vibration data acquisition device and the FPGA module are respectively connected to the industrial computer.
  • the test piece has a rectangular parallelepiped shape and has a size of 300 mm in length, 150 mm in width and 150 mm in height, and the top of the test die is open.
  • the vibration sensor is a vibration speed sensor, a vibration acceleration sensor, or a vibration displacement sensor.
  • the sampling frequency of the vibration data acquisition device should be set to be greater than 2.5 times the initial self-vibration frequency of the initial condensation base test piece, and can usually be set to 5 to 10 times. Such a sampling frequency conforms to the sampling theorem, which ensures that the correct initial condensation natural frequency and final condensation natural frequency are analyzed from the acquired waveform.
  • the exciter is an electromagnetic exciter.
  • the bottom of the cylindrical casing has a diameter of 50 mm to 80 mm.
  • a sheet layer or a film layer is disposed between the exciter and the initial setting substrate to prevent adhesion between the exciter and the surface of the initial setting substrate.
  • the initial solidified base test piece adopts a base test piece made of fresh concrete, mortar and cement slurry.
  • the self-vibration frequency of the cuboid initial setting specimen made of cement-based material is related to its size, elastic modulus and self-weight. Among these influencing parameters, the size is fixed and the self-weight is relatively stable. The most obvious parameter is elasticity. Modulus, and the modulus of elasticity gradually increases with the increase of the setting time of the material. Therefore, in theory, the natural vibration frequency can be used as a reflection of the state of condensation of the material. It is feasible to test the setting time with the natural frequency.
  • Cement-based materials can be divided into three categories, concrete, mortar and cement slurry.
  • the characteristics of the condensation state of these three types of materials are clearly defined in their respective original test methods, such as concrete: the judgment characteristics of the initial setting state
  • the penetration resistance reaches 3.5 MPa
  • the final condensing state is the penetration resistance of 28 MPa
  • the mortar the condensed state is defined as the penetration resistance of 0.5 MPa
  • the cement slurry the initial condensed state is characterized by a sigma sinking material of 300 g mass.
  • the middle distance from the bottom plate is 4 ⁇ 1mm, and the final condensing state is judged to be that the stylus of 300g mass is submerged into the material by 0.5mm from the bottom plate.
  • the coagulation time is tested by the frequency method.
  • the characteristic of the coagulation state needs to be specified first, that is, when the self-vibration frequency of the initial coagulation matrix test piece reaches a value, it is judged that the material is coagulated, and the self-vibration frequency value is a fixed value.
  • the existing clotting time measurement method and the currently proposed method for determining the clotting time by frequency can simultaneously test and compare the same material.
  • the elastic modulus should be A relatively stable value, together with the density of the same type of material is basically stable, and the size of the initial set of the test piece is fixed. Therefore, under the specified condensed state, the natural frequency of the initial set of the test piece should be relatively stable, and the variation range is not large. The test results also found that this is indeed the case. In this way, for each type of material in concrete, mortar and cement slurry, different ratios are used, and multiple comparison tests are carried out respectively. The average value can be used as the initial coagulation of each type of cement-based material. Frequency, final condensation natural frequency. These frequency values can be specified in the form of test procedures for use in the industry.
  • the stylus shall be pressed into the initial condensed matrix test piece several times to a certain depth, leaving a plurality of holes on the surface of the initial condensed matrix test piece. In this way, when the stylus is pressed again, the original hole will affect the accuracy of the latest measurement; some initial setting specimens with a particularly long setting time, the test is not finished, and the surface of the initial condensed base test piece is already full.
  • the device tests the clotting time by testing the natural frequency of the initial condensed matrix test piece, which makes up for the deficiencies of the existing methods. Since the device tests the natural frequency of the entire initial set of test specimens, it reflects the characteristics of the entire initial set of test specimens, and the measured values are more representative. Compared with the original test device and method, the disturbance of the initial condensation base test piece is reduced, and the accuracy of the measurement value is increased; the initial solidification test piece is not frequently moved, and the physical strength is saved; no manual reading is required, and manual reading is avoided. The error brought about; no need to manually hold for a long time, save labor and time.
  • FIG. 1 is a schematic structural view of a testing device provided by the present invention.
  • a device for detecting the setting time of the self-vibrating frequency of the cement-based material includes a trial die 7 , the test die 7 is provided with a preliminary gel test piece 6 to be tested, and the initial gel base test piece 6 is The top center is provided with a vibration sensor 1, the tail cone of the vibration sensor 1 is fixed in the initial condensation base test piece 6, and the vibration sensor 1 is connected to the vibration data acquisition device 3; the vibration exciter 2 is in contact with the surface of the initial condensation base test piece 6, The exciter 2 is connected to the FPGA module 4 for controlling its timing excitation, and the vibration data collecting device 3 and the FPGA module 4 are respectively connected to the industrial computer 5.
  • the test die 7 has a rectangular parallelepiped shape and has a size of 300 mm in length, 150 mm in width, and 150 mm in height, and the top of the test die 7 is open.
  • the vibration sensor 1 is a vibration speed sensor, a vibration acceleration sensor, or a vibration displacement sensor.
  • the frequency band of the vibration sensor should contain the initial self-oscillation frequency and the final condensation natural frequency.
  • the vibration exciter 2 is an electromagnetic exciter, and the bottom plate of the cylindrical casing has a diameter of 50 mm to 80 mm; and the striking force of the exciter is 0.3 kgf to 1 kgf.
  • a sheet layer or a film layer is disposed between the exciter 2 and the initial gel base test piece 6 to prevent the two from sticking.
  • the initial setting base test piece 6 is a base test piece made of fresh concrete, mortar or cement slurry.
  • the test die 7 has a rectangular parallelepiped shape and has a size of 300 mm in length, 150 mm in width, and 150 mm in height, and the top of the test die 7 is open.
  • the FPGA module can be purchased directly from the market, such as the Cyclone II series of ALTERA manufacturers.
  • EP2C5Q208 type the opening and closing of the relay of the FPGA module is controlled by the industrial computer, and the industrial computer controls the vibration data acquisition device to perform the test operation, and can receive, store and analyze the vibration data.
  • the time interval of the excitation control is controlled by the industrial computer, and the vibration of the initial condensation base is excited by the FPGA module controlling the vibration oscillator timing.
  • the vibration data acquisition device collects the vibration of the initial condensation base test piece through the vibration sensor, The collected data is transmitted to the industrial computer, and then the collected vibration data and time are processed by the industrial computer, and the relationship between the natural frequency and the time can be obtained. Finally, the initial self-vibration frequency and the final condensation natural frequency are obtained. Corresponding initial setting time point and final setting time point.
  • the utility model provides a device for detecting the setting time of a self-vibrating frequency of a cement-based material, comprising a trial die, wherein the test die has a rectangular parallelepiped shape and the top is open; the test die is provided with a preliminary solidified test piece to be tested, initially The top center of the gel matrix test piece is provided with a vibration sensor, the tail cone of the vibration sensor is fixed to the initial condensation base test piece, the vibration sensor is connected to the vibration data acquisition device, and the vibration data acquisition device is connected to the industrial control machine; the vibration exciter is set at the beginning The surface of the gel test piece, the paper plate layer or the film layer is further disposed between the vibration exciter and the initial gel base test piece to prevent the two from being bonded.
  • the initial set base test piece is made of fresh concrete, mortar and cement.
  • the test piece has a rectangular parallelepiped shape and has a size of 300 mm in length, 150 mm in width, and 150 mm in height. This size is similar to the 150mm cube test mode used in the existing method. This size is easy to connect with the existing method, and is also suitable for the arrangement of the vibration exciter and the general vibration sensor. In addition, the test mode has on the market. Ready-made products do not require additional design and processing. Other similarly sized test patterns having these characteristics can also be used.
  • the vibration sensor is a vibration speed sensor, a vibration acceleration sensor or a vibration displacement sensor.
  • the frequency band of the vibration sensor should contain the initial self-oscillation frequency and the final condensation natural frequency.
  • the exciter is an electromagnetic exciter, and the bottom of the cylindrical casing has a diameter of 50 mm to 80 mm; and the striking force of the exciter is 0.3 kgf to 1 kgf.
  • the utility model can also be controlled without using the FPGA module and the industrial computer, directly performing the timing excitation by manually controlling the vibration exciter, recording the data collected by the vibration sensor 1, and finally obtaining the relationship between the natural frequency and the time.
  • the corresponding initial condensation time point and final condensation time point are obtained by the initial condensation natural frequency and the final condensation natural frequency.
  • the device tests the clotting time by testing the natural frequency of the initial condensed matrix test piece, which makes up for the deficiencies of the existing methods. Since the device tests the natural frequency of the entire initial set of test specimens, it reflects the characteristics of the entire initial set of test specimens, and the measured values are more representative. Compared with the original test device and method, the disturbance of the initial condensation base test piece is reduced, and the accuracy of the measurement value is increased; the initial solidification test piece is not frequently moved, and the physical strength is saved; no manual reading is required, and manual reading is avoided. The error brought about; no need to manually hold for a long time, save labor and time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

利用水泥基材料的自振频率检测其凝结时间的装置,包括试模(7),试模(7)内装有待测的初凝基体试件(6),初凝基体试件(6)的顶部中心设有振动传感器(1),振动传感器(1)的尾锥固定到初凝基体试件(6)内,振动传感器(1)连接到振动数据采集装置(3),初凝基体试件(6)的边缘上方设有激振器(2),激振器(2)与用于控制其定时激振的FPGA模块(4)连接,振动数据采集装置(3)和FPGA模块(4)分别连接到工控机(5)。

Description

利用水泥基材料的自振频率检测其凝结时间的装置
本实用新型涉及建筑材料性能检测,具体为一种利用水泥基材料的自振频率检测其凝结时间的方法及装置。
测试新拌混凝土、砂浆和水泥浆等水泥基材料的凝结时间通常采用将测针压入材料一定深度的方法进行。比如混凝土凝结时间测定时使用的贯入阻力法,就是在混凝土凝结过程中多次将规定形状的测针压入试样25mm深,从而测得贯入阻力,至贯入阻力测值为3.5MPa,即认为到达初凝时间,至贯入阻力测值为28MPa,即认为到达终凝时间。这种方法受人为因素影响大,测量精度不高;测试过程中需要人工多次搬动初凝基体试件,按压测针,读取和记录数据,且需要测试人员长时间值班守候,有时凝结时间长,值守时间达40多个小时,费时费力。
本实用新型的目的是针对以上问题,提供一种利用水泥基材料的自振频率检测其凝结时间的装置,可以提高水泥基材料凝结时间的测试精度,实现自动化测试,减少人为因素干扰,减轻测试人员的体力劳动,避免长时间值班守候。
为解决上述技术问题,本实用新型所采用的技术方案是,本实用新型提供了一种利用上述方法进行测试的装置,包括试模,试模内装有待测的初凝基体试件,初凝基体试件的顶部中心设有振动传感器,振动传感器的尾锥固定到初凝基体试件内,振动传感器连接到振动数据采集装置,初凝基体试件的边缘上方设有激振器,激振器与用于控制其定时激振的FPGA模块连接,振动数据采集装置和FPGA模块分别连接到工控机。
所述试模为长方体状,其尺寸为长300mm,宽150mm,高150mm,试模顶部敞开。
所述振动传感器为振动速度传感器、振动加速度传感器或振动位移传感器。振动数据采集装置的采样频率应设置为大于初凝基体试件终凝自振频率的2.5倍,通常可设置为5到10倍。这样的采样频率符合采样定理,能保证从采集到的波形中分析出正确的初凝自振频率和终凝自振频率。
所述激振器为电磁激振器。其筒形外壳的底板直径为50mm至80mm。
所述激振器与初凝基体试件之间设有纸片层或薄膜层,防止激振器与初凝基体试件表面的粘结。
所述初凝基体试件采用新拌混凝土、砂浆、水泥浆制成的基体试件。采用水泥基材料制作成的长方体初凝基体试件,其自振频率与其尺寸、弹性模量和自重有关,在这些影响参数中,尺寸固定不变,自重相对稳定,影响最明显的参数是弹性模量,并且弹性模量随材料的凝结时间的增加而逐渐变大,所以从理论上说,自振频率可以作为材料凝结状态的一种反映,用自振频率测试凝结时间具有可行性。而水泥基材料可以分为三类,混凝土、砂浆和水泥浆,这三类材料的凝结状态的特征在其各自的原有测试方法中都有明确规定,比如混凝土:初凝状态的判断特征规定为贯入阻力达到3.5MPa,终凝状态为贯入阻力达到28MPa;砂浆:凝结状态规定为贯入阻力达到0.5MPa;水泥浆:初凝状态的判断特征规定为300g质量的测针沉入材料中距底板4±1mm,终凝状态的判断特征规定为300g质量的测针沉入材料中距底板0.5mm。
用频率的方法测试凝结时间,和原来方法一样也需要先行规定凝结状态的特征,即初凝基体试件的自振频率达到何值时判断为材料凝结,该自振频率值为一固定值。为得到材料凝结状态对应的自振频率值,用已有的凝结时间测定方法和现在提出的用频率测定凝结时间的方法同时对同一材料进行测试比对即可。从理论上说,对于水泥基材料中的混凝土、砂浆和水泥浆中的任意一种,即使是组成成分的配合比不同,当其达到已有规范规定的凝结状态时,其弹性模量应为一相对稳定值,再加上同一类材料的密度基本稳定,初凝基体试件尺寸固定,所以,其规定凝结状态下,初凝基体试件的自振频率应该相对稳定,变化幅度不大,试验结果也发现,的确如此。这样,对混凝土、砂浆和水泥浆中的每一类材料,使用不同的配合比,分别进行多次比对试验,取其平均值,即可作为每一类水泥基材料各自的初凝自振频率、终凝自振频率。这些频率值可以以试验规程的方式规定下来,供业内使用。
水泥基材料,包括混凝土、砂浆和水泥浆的现有的凝结时间测试方法,都要将测针多次压入初凝基体试件到一定深度,在初凝基体试件表面留下多个孔洞,这样,再次压入测针时,原有的孔洞会影响到最新测值的准确性;有些凝结时间特别长的初凝基体试件,试验还未结束,初凝基体试件表面已经布满孔洞,以至于找不到新的测针压入位置,使试验无法进行;由于制作初凝基体试件时内部总会存在不均匀性,所以即使是同一时间点在同一初凝基体试件上不同的测试位置处的测值也会存在较大不同;受测试方法的制约,原有的方法及装置更适宜于手工操作,测针压入速度和压入深度靠人工控制,稳定性差;人工读取测值,且测力装置在测针压入过程中指针抖动,又影响测试结果的准确性;测试过程中,需要人工长时间值守,有的要长达数十个小时,浪费时间,浪费人力;每一次压入测针,都需要人工搬动初凝基体试件,调整位置,劳动强度大。
本实用新型具有以下有益效果:
该装置通过测试初凝基体试件的自振频率,实现对凝结时间的测试,弥补了现有方法的不足。由于该装置测试的是整个初凝基体试件的自振频率,反映整个初凝基体试件的特性,测值更具有代表性。相比原有的测试装置及方法减少了对初凝基体试件的扰动,增加了测值的正确性;不必频繁搬动初凝基体试件,节省了体力;无须人工读数,避免了人工读数带来的误差;无须人工长时间值守,省工省时。
图1为本实用新型提供的测试装置的结构示意图。
下面结合实施例来进一步说明本实用新型,但本实用新型要求保护的范围并不局限于实施例表述的范围。
实施例1:
如图1所示,一种利用水泥基材料的自振频率检测其凝结时间的装置,包括试模7,试模7内装有待测的初凝基体试件6,初凝基体试件6的顶部中心设有振动传感器1,振动传感器1的尾锥固定到初凝基体试件6内,振动传感器1连接到振动数据采集装置3;激振器2与初凝基体试件6的表面接触,激振器2与用于控制其定时激振的FPGA模块4连接,振动数据采集装置3和FPGA模块4分别连接到工控机5。
所述试模7为长方体状,其尺寸为长300mm,宽150mm,高150mm,试模7顶部敞开。
所述振动传感器1为振动速度传感器、振动加速度传感器或振动位移传感器。振动传感器的频带应能包含初凝自振频率和终凝自振频率。
所述激振器2为电磁激振器,其筒形外壳的底板直径为50mm至80mm;激振器的打击力度为0.3kgf至1kgf。
所述激振器2与初凝基体试件6之间设有纸片层或薄膜层,防止两者粘结。
所述初凝基体试件6采用新拌混凝土、砂浆、水泥浆制成的基体试件。
所述试模7为长方体状,其尺寸为长300mm,宽150mm,高150mm,试模7顶部敞开。
所述的FPGA模块可以从市场上直接购置,如ALTERA厂家的Cyclone II系列 EP2C5Q208型,FPGA模块的继电器的开合通过工控机控制,工控机控制振动数据采集装置进行测试作业,并能接收、存储和分析振动数据。
工作原理:采用工控机控制激振的时间间隔,通过FPGA模块控制激振器定时对初凝基体试件进行激振,同时,振动数据采集装置通过振动传感器采集初凝基体试件的振动,将采集到的数据传递给工控机,然后通过工控机对采集的振动数据和时间进行处理,可以得到自振频率与时间的关系曲线图,最后通过初凝自振频率及终凝自振频率,得到对应的初凝时间点和终凝时间点。
实施例2:
本实用新型提供一种利用水泥基材料的自振频率检测其凝结时间的装置,包括试模,所述试模为长方体状,顶部敞开;试模内装有待测的初凝基体试件,初凝基体试件的顶部中心设有振动传感器,振动传感器的尾锥固定到初凝基体试件内,振动传感器连接到振动数据采集装置,振动数据采集装置连接到工控机;激振器设置于初凝基体试件的表面,激振器与初凝基体试件之间还设有纸片层或薄膜层,防止两者粘结,所述初凝基体试件为采用新拌混凝土、砂浆、水泥浆制成的基体试件。
进一步的,所述试模为长方体状,其尺寸为长300mm,宽150mm,高150mm。这种尺寸与现有方法使用的150mm立方体试模比较接近,选用这种尺寸易于和现有的方法接轨,也适合于激振器和通用的振动传感器的布置,另外该试模在市场上有现成的产品,不需另外设计加工。其它具有这些特点的类似尺寸的试模也可以使用。
进一步的,所述振动传感器为振动速度传感器、振动加速度传感器或振动位移传感器。振动传感器的频带应能包含初凝自振频率和终凝自振频率。
进一步的,所述激振器为电磁激振器,其筒形外壳的底板直径为50mm至80mm;激振器的打击力度为0.3kgf至1kgf。
另外,本实用新型也可不采用FPGA模块及工控机进行控制,直接通过人工控制激振器进行定时激振,并对振动传感器1采集的数据进行记录,最后处理得到自振频率与时间的关系曲线图,通过初凝自振频率及终凝自振频率,得到对应的初凝时间点和终凝时间点。
该装置通过测试初凝基体试件的自振频率,实现对凝结时间的测试,弥补了现有方法的不足。由于该装置测试的是整个初凝基体试件的自振频率,反映整个初凝基体试件的特性,测值更具有代表性。相比原有的测试装置及方法减少了对初凝基体试件的扰动,增加了测值的正确性;不必频繁搬动初凝基体试件,节省了体力;无须人工读数,避免了人工读数带来的误差;无须人工长时间值守,省工省时。

Claims (6)

  1. 一种利用水泥基材料的自振频率检测其凝结时间的装置,其特征在于:包括试模(7),试模(7)内装有待测的初凝基体试件(6),初凝基体试件(6)的顶部中心设有振动传感器(1),振动传感器(1)的尾锥固定到初凝基体试件(6)内,振动传感器(1)连接到振动数据采集装置(3);激振器(2)与初凝基体试件(6)的表面接触,激振器(2)与用于控制其定时激振的FPGA模块(4)连接,振动数据采集装置(3)和FPGA模块(4)分别连接到工控机(5)。
  2. 根据权利要求1所述的装置,其特征在于:所述试模(7)为长方体状,其尺寸为长300mm,宽150mm,高150mm,试模(7)顶部敞开。
  3. 根据权利要求1所述的装置,其特征在于:所述振动传感器(1)为振动速度传感器、振动加速度传感器或振动位移传感器。
  4. 根据权利要求1所述的装置,其特征在于:所述激振器(2)为电磁激振器,其筒形外壳的底板直径为50mm至80mm。
  5. 根据权利要求1-4之一所述的装置,其特征在于:所述激振器(2)与初凝基体试件(6)之间设有纸片层或薄膜层。
  6. 根据权利要求1-4之一所述的装置,其特征在于:所述初凝基体试件(6)采用新拌混凝土、砂浆、水泥浆制成的基体试件。
PCT/CN2015/074561 2014-08-04 2015-03-19 利用水泥基材料的自振频率检测其凝结时间的装置 WO2016019727A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202015103063.0U DE202015103063U1 (de) 2015-03-19 2015-06-11 Vorrichtung zum Prüfen von Abbindezeit von Zementmaterialien mithilfe deren Eigenfrequenz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420437396.1 2014-08-04
CN201420437396.1U CN204008566U (zh) 2014-08-04 2014-08-04 利用水泥基材料的自振频率检测其凝结时间的装置

Publications (1)

Publication Number Publication Date
WO2016019727A1 true WO2016019727A1 (zh) 2016-02-11

Family

ID=52048546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074561 WO2016019727A1 (zh) 2014-08-04 2015-03-19 利用水泥基材料的自振频率检测其凝结时间的装置

Country Status (2)

Country Link
CN (1) CN204008566U (zh)
WO (1) WO2016019727A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624626A (zh) * 2021-07-22 2021-11-09 四川省机械研究设计院(集团)有限公司 石膏胶凝材料凝结硬化检测系统及方法
CN114136839A (zh) * 2021-12-07 2022-03-04 中交第一航务工程局有限公司 一种混凝土凝结状态测试装置及方法
WO2024129702A1 (en) * 2022-12-12 2024-06-20 Board Of Regents For The Oklahoma Agricultural And Mechanical Colleges Apparatus and method for measuring workability of concrete

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198588B (zh) * 2014-08-04 2016-06-29 葛洲坝集团试验检测有限公司 利用水泥基材料的自振频率检测其凝结时间的方法及装置
CN113092733B (zh) * 2021-03-25 2023-01-31 北新建材(天津)有限公司 一种混合机的防铸机检测系统及防铸机方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2611900Y (zh) * 2003-05-09 2004-04-14 付汉生 水泥凝结时间自动测定仪
CN200953020Y (zh) * 2006-09-14 2007-09-26 中国建筑材料科学研究总院 一种自动测定水泥凝结时间的设备
CN101271101A (zh) * 2007-03-19 2008-09-24 青岛科技大学 水泥标准稠度与凝结时间测量装置
CN102590483A (zh) * 2011-12-29 2012-07-18 江苏博特新材料有限公司 水泥基材料凝结时间的测试方法
CN103163284A (zh) * 2013-02-27 2013-06-19 浙江土工仪器制造有限公司 一种水泥凝结时间测定仪
WO2013097172A1 (zh) * 2011-12-30 2013-07-04 江苏博特新材料有限公司 水泥基材料凝结时间的测试方法
JP2013160546A (ja) * 2012-02-02 2013-08-19 Shimizu Corp コンクリート品質管理試験方法
CN203203990U (zh) * 2013-01-07 2013-09-18 中铁隧道集团有限公司 一种在高温条件下水泥凝结时间的测试装置
CN104198588A (zh) * 2014-08-04 2014-12-10 葛洲坝集团试验检测有限公司 利用水泥基材料的自振频率检测其凝结时间的方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2611900Y (zh) * 2003-05-09 2004-04-14 付汉生 水泥凝结时间自动测定仪
CN200953020Y (zh) * 2006-09-14 2007-09-26 中国建筑材料科学研究总院 一种自动测定水泥凝结时间的设备
CN101271101A (zh) * 2007-03-19 2008-09-24 青岛科技大学 水泥标准稠度与凝结时间测量装置
CN102590483A (zh) * 2011-12-29 2012-07-18 江苏博特新材料有限公司 水泥基材料凝结时间的测试方法
WO2013097172A1 (zh) * 2011-12-30 2013-07-04 江苏博特新材料有限公司 水泥基材料凝结时间的测试方法
JP2013160546A (ja) * 2012-02-02 2013-08-19 Shimizu Corp コンクリート品質管理試験方法
CN203203990U (zh) * 2013-01-07 2013-09-18 中铁隧道集团有限公司 一种在高温条件下水泥凝结时间的测试装置
CN103163284A (zh) * 2013-02-27 2013-06-19 浙江土工仪器制造有限公司 一种水泥凝结时间测定仪
CN104198588A (zh) * 2014-08-04 2014-12-10 葛洲坝集团试验检测有限公司 利用水泥基材料的自振频率检测其凝结时间的方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624626A (zh) * 2021-07-22 2021-11-09 四川省机械研究设计院(集团)有限公司 石膏胶凝材料凝结硬化检测系统及方法
CN113624626B (zh) * 2021-07-22 2024-05-07 四川省机械研究设计院(集团)有限公司 石膏胶凝材料凝结硬化检测系统及方法
CN114136839A (zh) * 2021-12-07 2022-03-04 中交第一航务工程局有限公司 一种混凝土凝结状态测试装置及方法
CN114136839B (zh) * 2021-12-07 2024-05-24 中交第一航务工程局有限公司 一种混凝土凝结状态测试装置及方法
WO2024129702A1 (en) * 2022-12-12 2024-06-20 Board Of Regents For The Oklahoma Agricultural And Mechanical Colleges Apparatus and method for measuring workability of concrete

Also Published As

Publication number Publication date
CN204008566U (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2016019727A1 (zh) 利用水泥基材料的自振频率检测其凝结时间的装置
Saliba et al. Identification of damage mechanisms in concrete under high level creep by the acoustic emission technique
CN113218766B (zh) 一种基于矩张量分析的岩石起裂应力与损伤应力辨识方法
CN104198588B (zh) 利用水泥基材料的自振频率检测其凝结时间的方法及装置
CN107991186B (zh) 含裂隙类岩石抗拉强度测试用试验装置及方法
CN104865163B (zh) 一种无损的测量及推定混凝土耐久性能的方法及系统
CN105784521A (zh) 一种混凝土全自动贯入阻力仪及凝结时间测量方法
CN200986544Y (zh) 水泥基材料抗裂性能测试仪的变形感应装置
CN112343571A (zh) 一种可实现深层页岩多尺度水压裂缝动态监测的实验方法
CN105759017A (zh) 一种水泥基材料外方内圆抗开裂性能评价装置及评价方法
CN107271280A (zh) 一种冲击回波‑回弹综合评定混凝土抗压强度方法
CN103454202A (zh) 一种沥青混合料的集料比表面积的测试方法
CN118010965A (zh) 一种混凝土性能检测数据处理方法
CN103954691A (zh) 一种材料成分分数无损检测方法
CN207163353U (zh) 用于测试板材变形的试验架
CN206399899U (zh) 立方体试件单轴压缩声发射试验的传感器固定装置
CN108490161B (zh) 一种全自动水泥凝结时间测定装置
CN110940731A (zh) 一种小锤敲击检测辅助装置
CN202974227U (zh) 一种多通道全自动混凝土收缩膨胀仪
CN108387717A (zh) 一种混凝土开裂敏感性的测量系统及其测量方法
CN101609067A (zh) 一种耐火砖内部缺陷无损量化检测方法及装置
CN103983391A (zh) 一种木材干缩力测试装置
CN1017648B (zh) 湿型砂紧实率、透气性和湿压强度快速测定方法及测定仪
CN106226168B (zh) 一种基于机器视觉的自动化弯曲试验装置及方法
CN101520403B (zh) 一种测量玻璃纸滑度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829749

Country of ref document: EP

Kind code of ref document: A1