WO2016019537A1 - 远红外成像透镜组、物镜及火灾火源探测仪 - Google Patents

远红外成像透镜组、物镜及火灾火源探测仪 Download PDF

Info

Publication number
WO2016019537A1
WO2016019537A1 PCT/CN2014/083851 CN2014083851W WO2016019537A1 WO 2016019537 A1 WO2016019537 A1 WO 2016019537A1 CN 2014083851 W CN2014083851 W CN 2014083851W WO 2016019537 A1 WO2016019537 A1 WO 2016019537A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
lens
infrared imaging
far infrared
curvature
Prior art date
Application number
PCT/CN2014/083851
Other languages
English (en)
French (fr)
Inventor
李家英
周朝明
孙博
黄海
陈玉庆
高云峰
Original Assignee
深圳市大族激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to US15/322,557 priority Critical patent/US20170139188A1/en
Priority to CN201480079482.2A priority patent/CN106662729B/zh
Priority to JP2017501174A priority patent/JP6337196B2/ja
Priority to DE112014006674.5T priority patent/DE112014006674B4/de
Priority to PCT/CN2014/083851 priority patent/WO2016019537A1/zh
Publication of WO2016019537A1 publication Critical patent/WO2016019537A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/005Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the invention relates to the field of optics, in particular to a far infrared imaging lens group, a far infrared imaging objective lens and a fire source detector.
  • the light of the fire source is a long-wave far-infrared light, which has a strong and far-reaching penetration force, and can detect the fire source by detecting the far-infrared rays of the fire source.
  • a far infrared imaging lens group comprising a first lens, a second lens and a third lens arranged in sequence along a main axis, the first lens having a first curved surface and a second curved surface, the first curved surface having a radius of curvature of 57 ⁇ (1 ⁇ 5%) mm, the radius of curvature of the second curved surface is 85 ⁇ (1 ⁇ 5%) mm;
  • the second lens has a third curved surface and a fourth curved surface, and the radius of curvature of the third curved surface is 210 ⁇ (1) ⁇ 5%) mm, the radius of curvature of the fourth curved surface is 37 ⁇ (1 ⁇ 5%) mm;
  • the third lens has a fifth curved surface and a sixth curved surface, and the radius of curvature of the fifth curved surface is 100 ⁇ (1 ⁇ 5) %) mm, the radius of curvature of the sixth curved surface is 400 ⁇ (1 ⁇ 5%) mm; wherein the first curved surface, the second curved surface, the third
  • the spacing between the second curved surface and the third curved surface is 15 Millimeter; the spacing between the fourth curved surface and the fifth curved surface is 30 mm.
  • the first lens has a center thickness of 5 x (1 ⁇ 5%) mm.
  • the second lens has a center thickness of 2 x (1 ⁇ 5%) mm.
  • the third lens has a center thickness of 3 x (1 ⁇ 5%) mm.
  • the first lens is made of Ge.
  • the second lens is made of ZnSe.
  • the third lens is made of Ge.
  • a far infrared imaging objective includes a lens barrel and a lens group as described above for accommodating the lens group.
  • a fire source detector includes a far infrared imaging objective and a thermal receiver as described above, the thermal receiver being disposed at a focus of the objective lens.
  • the fire source detector and the objective lens and the lens group thereof can detect distant targets in an environment such as night and fog, and in particular, can distinguish the position of the fire source in a dense smoke environment, and can be widely applied to fire protection, monitoring, and the like. High-voltage line detection and other occasions.
  • FIG. 1 is a schematic structural view of a lens group of an embodiment
  • FIG. 2 is an objective lens transfer function curve based on the lens group of FIG. 1;
  • Figure 3 is a perspective view of an objective lens of the lens group based on Figure 1;
  • FIG. 4 is a wide beam diagram of the objective lens based on the lens group of FIG. 1 over the entire image plane.
  • the far-infrared imaging lens group 10 includes a first lens 100, a second lens 200, and a third lens 300 which are sequentially arranged along a main axis.
  • the first lens 100 is a meniscus lens
  • the second lens 200 is a meniscus lens
  • the third lens 300 is a meniscus lens.
  • the major axis of the lens is the axis that passes through the center of the lens and is perpendicular to the lens.
  • the first lens 100, the second lens 200, and the third lens 300 have their major axes coincident.
  • the lens group of this embodiment is mainly used for detecting far-infrared light, particularly far-infrared light having a wavelength of 10640 nm.
  • far-infrared light particularly far-infrared light having a wavelength of 10640 nm.
  • the light from a fire source in a fire In Fig. 1, the left side is the object side and the right side is the image side.
  • the light from the far-infrared source is incident from the object side and is clearly imaged on the focal plane of the image side of the lens group.
  • the first lens 100 has a first curved surface 102 and a second curved surface 104.
  • the first curved surface 102 is convex toward the object side
  • the second curved surface 104 is concave toward the first curved surface 102 (that is, the second curved surface 104 is convex toward the object side).
  • the first curved surface 102 has a radius of curvature of 57 ⁇ (1 ⁇ 5%) mm
  • the second curved surface has a radius of curvature of 85 ⁇ (1 ⁇ 5%) mm.
  • the center thickness of the first lens 100 (that is, the thickness of the first lens 100 on the main axis) is 5 ⁇ (1 ⁇ 5%) mm.
  • the first lens 100 can be made of a material Ge.
  • the second lens 200 has a third curved surface 202 and a fourth curved surface 204.
  • the third curved surface 202 is convex toward the object side
  • the fourth curved surface 204 is concave toward the third curved surface 202 (that is, the fourth curved surface 204 is convex toward the object side).
  • the third curved surface 202 has a radius of curvature of 210 ⁇ (1 ⁇ 5%) mm
  • the fourth curved surface 204 has a radius of curvature of 37 ⁇ (1 ⁇ 5%) mm.
  • the center thickness of the second lens 200 (that is, the thickness of the second lens 200 on the main axis) is 2 ⁇ (1 ⁇ 5%) mm.
  • the second lens 200 can be made of the material ZnSe.
  • the third lens 300 has a fifth curved surface 302 and a sixth curved surface 304.
  • the fifth curved surface 302 is convex toward the object side
  • the sixth curved surface 304 is concave toward the fifth curved surface 302 (that is, the sixth curved surface 304 is convex toward the object side).
  • the fifth curved surface 302 has a radius of curvature of 100 ⁇ (1 ⁇ 5%) mm
  • the sixth curved surface 304 has a radius of curvature of 400 ⁇ (1 ⁇ 5%) mm.
  • the center thickness of the third lens 300 (that is, the thickness of the third lens 300 on the main axis) is 3 ⁇ (1 ⁇ 5%) mm.
  • the third lens 300 can be made of a material Ge.
  • the spacing between the second curved surface 104 and the third curved surface 202 is 15 Millimeter.
  • the spacing between the fourth curved surface 204 and the fifth curved surface 302 is 30 mm.
  • each lens is as follows. The above dimensions can be floated within a tolerance of ⁇ 5%.
  • the curved surface 102 has a radius of curvature of 57 mm;
  • the curved surface 104 has a radius of curvature of 85 mm;
  • the material is Ge;
  • the curved surface 202 has a radius of curvature of 210 mm;
  • the curved surface 204 has a radius of curvature of 37 mm;
  • the material is ZnSe
  • the curved surface 302 has a radius of curvature of 100 mm;
  • Curve 304 has a radius of curvature of 400 mm;
  • the material is Ge;
  • the curved surface 104 of the lens 100 and the curved surface 202 of the lens 200 are 15 mm apart; the curved surface 204 of the lens 200 and the curved surface 302 of the lens 300 are 30 mm apart.
  • the overall focal length ⁇ ' 75mm
  • Fig. 3 is a view of the objective lens beamlet based on the lens group, which achieves an ideal level regardless of dispersion or distortion.
  • Fig. 4 is a wide beam diagram of the objective lens based on the lens group on the entire image surface, and the dispersion is between 7-14 micrometers, which can fully satisfy the requirements of the heat sensitive element.
  • a far infrared imaging objective lens By assembling the above lens group in the lens barrel, a far infrared imaging objective lens can be formed.
  • the overall length of the objective lens is 95 mm.
  • the above far infrared imaging objective can be used for fire source detection in fire.
  • a thermal receiver is provided at the focal plane of the far infrared imaging objective.
  • the far-infrared source is received by the thermal receiver through the focus of the objective lens.
  • fire source detection is realized.
  • the above fire source detector and its objective lens and lens group can detect far-distance targets in the environment of night and fog by detecting far-infrared light, and in particular, can distinguish the position of the fire source in the smoke environment, and can be widely applied. For fire, monitoring, high-voltage line detection and other occasions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lenses (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种远红外成像透镜组(10)、使用该远红外成像透镜组(10)的物镜以及使用该物镜的火灾火源探测仪,远红外成像透镜组(10)包括依次沿主轴排列的第一透镜(100)、第二透镜(200)和第三透镜(300):所述第一透镜(100)具有第一曲面(102)和第二曲面(104),所述第一曲面(102)的曲率半径为57×(1±5%)毫米,第二曲面(104)的曲率半径为85×(1±5%)毫米;所述第二透镜(200)具有第三曲面(202)和第四曲面(204),所述第三曲面(202)的曲率半径为210×(1±5%)毫米,第四曲面(204)的曲率半径为37×(1±5%)毫米;所述第三透镜(300)具有第五曲面(302)和第六曲面(304),所述第五曲面(302)的曲率半径为100×(1±5%)毫米,第六曲面(304)的曲率半径为400×(1±5%)毫米;其中,所述第一曲面(102)、第二曲面(104)、第三曲面(202)、第四曲面(204)、第五曲面(302)、第六曲面(304)依序排列、且均凸向物体一侧。

Description

远红外成像透镜组、物镜及火灾火源探测仪
【技术领域】
本发明涉及光学领域,特别是涉及一种远红外成像透镜组、一种远红外成像物镜及一种火灾火源探测仪。
【背景技术】
火灾发生时,由于引火材料不同难以判断火源位置,尤其是许多材料会散发出大量的浓烟,消防人员难以靠近,并遮挡视线,难以发现火源,以至消防措施无从下手。能够透过浓烟直接找到火源就变得非常重要。
火源的光线是一种长波的远红外线,有很强很远的穿透力,可以通过检测火源的远红外线来发现火源。
【发明内容】
基于此,有必要提供一种可以汇聚远红外线的透镜组。
此外,还提供一种远红外成像物镜。
以及一种火灾火源探测仪。
一种远红外成像透镜组,包括依次沿主轴排列的第一透镜、第二透镜和第三透镜,所述第一透镜具有第一曲面和第二曲面,所述第一曲面曲率半径为57×(1±5%)毫米,第二曲面曲率半径为85×(1±5%)毫米;所述第二透镜具有第三曲面和第四曲面,所述第三曲面曲率半径为210×(1±5%)毫米,第四曲面曲率半径为37×(1±5%)毫米;所述第三透镜具有第五曲面和第六曲面,所述第五曲面曲率半径为100×(1±5%)毫米,第六曲面曲率半径为400×(1±5%)毫米;其中,所述第一曲面、第二曲面、第三曲面、第四曲面、第五曲面、第六曲面依序排列、且均凸向物体一侧。
在其中一个实施例中,所述第二曲面和第三曲面之间的间距为15 毫米;所述第四曲面和第五曲面之间的间距为30毫米。
在其中一个实施例中,所述第一透镜的中心厚度为5×(1±5%)毫米。
在其中一个实施例中,所述第二透镜的中心厚度为2×(1±5%)毫米。
在其中一个实施例中,所述第三透镜的中心厚度为3×(1±5%)毫米。
在其中一个实施例中,所述第一透镜的制作材料为Ge。
在其中一个实施例中,所述第二透镜的制作材料为ZnSe。
在其中一个实施例中,所述第三透镜的制作材料为Ge。
一种远红外成像物镜,包括镜筒和如上所述的透镜组,所述镜筒用于容纳所述透镜组。
一种火灾火源探测仪,包括如上所述的远红外成像物镜和热敏接收器,所述热敏接收器设于所述物镜的焦点处。
上述火灾火源探测仪及其物镜和透镜组,可以在黑夜、大雾等环境下探测远处目标,特别是可在浓烟环境下分辨出火源的位置,可广泛应用于消防、监控、高压线探测等场合。
【附图说明】
图1为一实施例的透镜组结构示意图;
图2为基于图1的透镜组的物镜传递函数曲线;
图3为基于图1的透镜组的物镜细光束图;
图4为基于图1的透镜组的物镜在整个像面上的宽光束图。
【具体实施方式】
如图1所示,为一实施例的远红外成像透镜组排列示意图。该远红外成像透镜组10包括依次沿主轴排列的第一透镜100、第二透镜200和第三透镜300。第一透镜100为弯月凸透镜,第二透镜200为弯月凹透镜,第三透镜300为弯月凸透镜。透镜的主轴是穿过透镜中心并与透镜垂直的轴。第一透镜100、第二透镜200和第三透镜300主轴重合。
本实施例的透镜组主要用于探测远红外光,特别是波长为10640纳米的远红外光。例如火灾中火源所发出的光线。图1中的左侧为物侧,右侧为像侧。远红外光源的光线从物侧入射,并在透镜组像侧的焦平面上清晰成像。
具体地,第一透镜100具有第一曲面102和第二曲面104。第一曲面102向物方凸出,第二曲面104相对于第一曲面102向内凹(也即第二曲面104向物方凸出)。第一曲面102的曲率半径为57×(1±5%)毫米,第二曲面曲率半径为85×(1±5%)毫米。第一透镜100的中心厚度(也即第一透镜100在主轴上的厚度)为5×(1±5%)毫米。第一透镜100可采用材料Ge制作。
第二透镜200具有第三曲面202和第四曲面204。第三曲面202向物方凸出,第四曲面204相对于第三曲面202向内凹(也即第四曲面204向物方凸出)。第三曲面202曲率半径为210×(1±5%)毫米,第四曲面204曲率半径为37×(1±5%)毫米。第二透镜200的中心厚度(也即第二透镜200在主轴上的厚度)为2×(1±5%)毫米。第二透镜200可采用材料ZnSe制作。
第三透镜300具有第五曲面302和第六曲面304。第五曲面302向物方凸出,第六曲面304相对于第五曲面302向内凹(也即第六曲面304向物方凸出)。第五曲面302曲率半径为100×(1±5%)毫米,第六曲面304曲率半径为400×(1±5%)毫米。第三透镜300的中心厚度(也即第三透镜300在主轴上的厚度)为3×(1±5%)毫米。第三透镜300可采用材料Ge制作。
进一步地,第二曲面104和第三曲面202之间的间距为15 毫米。第四曲面204和第五曲面302之间的间距为30毫米。
在一个较优的实施例中,各透镜的尺寸及位置关系如下所示。上述尺寸在±5%的公差范围内浮动均可。
透镜100:
曲面102曲率半径57毫米;
曲面104曲率半径85毫米;
中心厚度5毫米;
材料为Ge;
透镜200:
曲面202曲率半径210毫米;
曲面204曲率半径37毫米;
中心厚度2毫米;
材料为ZnSe;
透镜300:
曲面302曲率半径100毫米;
曲面304曲率半径400毫米;
中心厚度3毫米;
材料为Ge;
透镜100的曲面104和透镜200的曲面202距离为15毫米;透镜200的曲面204和透镜300的曲面302距离为30毫米。
该透镜组的通光的波长λ=10640nm;
整体焦距ƒ′=75mm;
D/ƒ=1:1.6;
2η(视场)=25.4mm(针对1寸的热敏接收器)
图2是基于该透镜组的物镜传递函数M.T.F,当分辨率为20线对/mm时,MTF值已达到0.5,由此可见成像质量已相当理想。
图3是基于该透镜组的该物镜细光束图,无论是弥散或畸变都达到了理想水平。
图4是基于该透镜组的该物镜在整个像面上的宽光束图,其弥散大小都在7-14微米之间,可充分满足热敏元件的要求。
将上述透镜组组装在镜筒中,可以形成远红外成像物镜。物镜的整体长度为95毫米。
上述远红外成像物镜可用于火灾中的火源探测。在远红外成像物镜的焦平面处,设置热敏接收器。远红外光源通过物镜的聚焦,由热敏接收器接收。进而实现火灾火源探测。
上述火灾火源探测仪及其物镜和透镜组,可以通过检测远红外光在黑夜、大雾等环境下探测远处目标,特别是可在浓烟环境下分辨出火源的位置,可广泛应用于消防、监控、高压线探测等场合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种远红外成像透镜组,包括依次沿主轴排列的第一透镜、第二透镜和第三透镜,其特征在于:
    所述第一透镜具有第一曲面和第二曲面,所述第一曲面曲率半径为57×(1±5%)毫米,第二曲面曲率半径为85×(1±5%)毫米;
    所述第二透镜具有第三曲面和第四曲面,所述第三曲面曲率半径为210×(1±5%)毫米,第四曲面曲率半径为37×(1±5%)毫米;
    所述第三透镜具有第五曲面和第六曲面,所述第五曲面曲率半径为100×(1±5%)毫米,第六曲面曲率半径为400×(1±5%)毫米;
    其中,所述第一曲面、第二曲面、第三曲面、第四曲面、第五曲面、第六曲面依序排列、且均凸向物体一侧。
  2. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第二曲面和第三曲面之间的间距为15 毫米;所述第四曲面和第五曲面之间的间距为30毫米。
  3. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第一透镜的中心厚度为5×(1±5%)毫米。
  4. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第二透镜的中心厚度为2×(1±5%)毫米。
  5. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第三透镜的中心厚度为3×(1±5%)毫米。
  6. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第一透镜的制作材料为Ge。
  7. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第二透镜的制作材料为ZnSe。
  8. 根据权利要求1所述的远红外成像透镜组,其特征在于,所述第三透镜的制作材料为Ge。
  9. 一种远红外成像物镜,包括镜筒和如权利要求1~8任一项所述的透镜组,所述镜筒用于容纳所述透镜组。
  10. 一种火灾火源探测仪,包括如权利要求9的远红外成像物镜和热敏接收器,所述热敏接收器设于所述物镜的焦点处。
PCT/CN2014/083851 2014-08-07 2014-08-07 远红外成像透镜组、物镜及火灾火源探测仪 WO2016019537A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/322,557 US20170139188A1 (en) 2014-08-07 2014-08-07 Far Infrared Imaging Lens Set, Objective Lens And Fire Source Detector
CN201480079482.2A CN106662729B (zh) 2014-08-07 2014-08-07 远红外成像透镜组、物镜及火灾火源探测仪
JP2017501174A JP6337196B2 (ja) 2014-08-07 2014-08-07 遠赤外結像レンズセット、対物レンズ、及び火源検出器
DE112014006674.5T DE112014006674B4 (de) 2014-08-07 2014-08-07 Linsensatz zur Bilderfassung von langwelligem Infrarot, Objektiv und Brandherddetektor
PCT/CN2014/083851 WO2016019537A1 (zh) 2014-08-07 2014-08-07 远红外成像透镜组、物镜及火灾火源探测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083851 WO2016019537A1 (zh) 2014-08-07 2014-08-07 远红外成像透镜组、物镜及火灾火源探测仪

Publications (1)

Publication Number Publication Date
WO2016019537A1 true WO2016019537A1 (zh) 2016-02-11

Family

ID=55263016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083851 WO2016019537A1 (zh) 2014-08-07 2014-08-07 远红外成像透镜组、物镜及火灾火源探测仪

Country Status (5)

Country Link
US (1) US20170139188A1 (zh)
JP (1) JP6337196B2 (zh)
CN (1) CN106662729B (zh)
DE (1) DE112014006674B4 (zh)
WO (1) WO2016019537A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357028B (zh) * 2017-07-04 2022-08-19 西安中科立德红外科技有限公司 一种宽温度范围的光学无热化镜头
CN115453722B (zh) * 2022-06-08 2024-07-09 长春精仪光电技术有限公司 一种高分辨率长波红外成像光学系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204726A (ja) * 1983-05-10 1984-11-20 Minolta Camera Co Ltd 炎検知器
US5214532A (en) * 1992-04-29 1993-05-25 The United States Of America As Represented By The Secretary Of The Army Afocal objective lens
US5808799A (en) * 1996-10-31 1998-09-15 Raytheon Ti Systems, Inc. Infrared lens assembly with athermalization element and method
CN201037948Y (zh) * 2007-03-29 2008-03-19 公安部上海消防研究所 具有自动变焦性能的视频火焰探测装置
CN102103219A (zh) * 2010-11-25 2011-06-22 西安新竹防灾救生设备有限公司 一种火源定位探测装置
CN202216765U (zh) * 2011-09-07 2012-05-09 福建省白沙消防工贸有限公司 一种远程红外探火装置
CN102681147A (zh) * 2011-02-22 2012-09-19 株式会社腾龙 红外线透镜
US20120275016A1 (en) * 2009-08-25 2012-11-01 StingRay Optics, LLC Achromatic visible to far infrared objective lens

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1462892A (en) 1974-10-02 1977-01-26 Rank Organisation Ltd Lenses
JP2867413B2 (ja) * 1989-03-29 1999-03-08 ミノルタ株式会社 複写装置用レンズ系
DE4331735C1 (de) * 1993-09-17 1995-03-02 Steinheil Optronik Gmbh Objektiv
GB9809736D0 (en) * 1998-05-08 1998-07-08 Pilkington Perkin Elmer Ltd Objective lens system
JP2001033689A (ja) * 1999-07-26 2001-02-09 Fuji Photo Optical Co Ltd 明るく広角な赤外線レンズ
JP4631728B2 (ja) * 2006-01-30 2011-02-16 住友電気工業株式会社 赤外線レンズ、赤外線カメラ及びナイトビジョン
EP2226666A1 (en) * 2006-01-30 2010-09-08 Sumitomo Electric Industries, Ltd. Infrared lens, infrared camera, and night vision
JP2009063941A (ja) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
JP2009063942A (ja) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
TW200918978A (en) * 2007-10-16 2009-05-01 Aptek Optical Corp Camera lens and related image reception device capable of filtering infrared and reducing production cost
US8101918B1 (en) * 2009-05-13 2012-01-24 Itt Manufacturing Enterprises, Inc. Re-imaging infrared lenses
TWI418841B (zh) * 2010-03-16 2013-12-11 Largan Precision Co Ltd 攝像光學系統
JP2012103461A (ja) * 2010-11-10 2012-05-31 Topcon Corp 赤外線光学系
JP2012173561A (ja) * 2011-02-22 2012-09-10 Tamron Co Ltd 赤外線レンズ
KR101290518B1 (ko) * 2011-11-16 2013-07-26 삼성테크윈 주식회사 적외선 광학 렌즈계
JP5906859B2 (ja) * 2012-03-21 2016-04-20 株式会社タムロン 赤外線用光学系
EP2908163B1 (en) * 2012-10-31 2017-10-04 Han's Laser Technology Industry Group Co., Ltd. F-theta lens and laser processing device for far-infrared laser processing
JP2014109638A (ja) * 2012-11-30 2014-06-12 Tamron Co Ltd 遠赤外線レンズ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204726A (ja) * 1983-05-10 1984-11-20 Minolta Camera Co Ltd 炎検知器
US5214532A (en) * 1992-04-29 1993-05-25 The United States Of America As Represented By The Secretary Of The Army Afocal objective lens
US5808799A (en) * 1996-10-31 1998-09-15 Raytheon Ti Systems, Inc. Infrared lens assembly with athermalization element and method
CN201037948Y (zh) * 2007-03-29 2008-03-19 公安部上海消防研究所 具有自动变焦性能的视频火焰探测装置
US20120275016A1 (en) * 2009-08-25 2012-11-01 StingRay Optics, LLC Achromatic visible to far infrared objective lens
CN102103219A (zh) * 2010-11-25 2011-06-22 西安新竹防灾救生设备有限公司 一种火源定位探测装置
CN102681147A (zh) * 2011-02-22 2012-09-19 株式会社腾龙 红外线透镜
CN202216765U (zh) * 2011-09-07 2012-05-09 福建省白沙消防工贸有限公司 一种远程红外探火装置

Also Published As

Publication number Publication date
CN106662729A (zh) 2017-05-10
JP6337196B2 (ja) 2018-06-06
US20170139188A1 (en) 2017-05-18
CN106662729B (zh) 2019-09-17
DE112014006674B4 (de) 2018-10-31
DE112014006674T5 (de) 2017-02-16
JP2017526953A (ja) 2017-09-14

Similar Documents

Publication Publication Date Title
WO2017023086A1 (ko) 촬상렌즈
CA2696775A1 (en) Compact two-element infrared objective lens and ir or thermal sight for weapon having viewing optics
WO2013051744A1 (ko) 단일렌즈로 전방위를 촬영하는 동기식 카메라 렌즈모듈
WO2021225351A1 (ko) 도트 사이트 장치
WO2016019537A1 (zh) 远红外成像透镜组、物镜及火灾火源探测仪
WO2015024233A1 (zh) 红外大幅面远心激光打标Fθ镜头
CN102830485B (zh) 变光栏红外双视场光学镜头
WO2014067103A1 (zh) 一种近红外激光聚焦镜头及激光印刷设备
WO2004099841A3 (en) Compact wide-field-of-view imaging optical system
WO2016163707A1 (ko) 고해상도 광시야각 원적외선 광학계
WO2011059232A2 (ko) 열영상 현미경용 광학계
WO2023204478A1 (ko) 고 분해능을 갖도록 하는 이미징용 광학계
WO2011155757A2 (ko) 엘이디 조명 광학 시스템
CN204945480U (zh) 大靶面连续变焦光学系统
WO2016019539A1 (zh) 远红外成像透镜组、物镜及探测仪
WO2019203376A1 (ko) 도트사이트 겸용 외부 목표물 관측 장치
WO2018056683A1 (ko) 수평화각 54도의 장파장 적외선 카메라 및 카메라용 렌즈
WO2019098405A1 (ko) 원거리 감시용 단적외선 카메라 광학계
CN101706588A (zh) 一种采用鱼眼镜头和远心光路的全天空大气重力波成像仪
CN115185074A (zh) 一种折反式小型化短波红外成像光学系统
CN113419327A (zh) 一种近红外广角镜头
CN106646831A (zh) 一种非球面折反射全景成像镜头
CN207216122U (zh) 一种大光圈无衍射面卡塞格林式镜头
WO2018101520A1 (ko) 영상왜곡이 최소화된 원적외선 광시야각 광학계
CN106842525B (zh) 一种日盲紫外波段大靶面双焦距镜头光学系统及其成像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006674

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15322557

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017501174

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14899435

Country of ref document: EP

Kind code of ref document: A1