WO2014067103A1 - 一种近红外激光聚焦镜头及激光印刷设备 - Google Patents

一种近红外激光聚焦镜头及激光印刷设备 Download PDF

Info

Publication number
WO2014067103A1
WO2014067103A1 PCT/CN2012/083858 CN2012083858W WO2014067103A1 WO 2014067103 A1 WO2014067103 A1 WO 2014067103A1 CN 2012083858 W CN2012083858 W CN 2012083858W WO 2014067103 A1 WO2014067103 A1 WO 2014067103A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curved surface
infrared laser
focusing lens
lenses
Prior art date
Application number
PCT/CN2012/083858
Other languages
English (en)
French (fr)
Inventor
李家英
周朝明
孙博
高云峰
Original Assignee
深圳市大族激光科技股份有限公司
深圳市大族数控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大族激光科技股份有限公司, 深圳市大族数控科技有限公司 filed Critical 深圳市大族激光科技股份有限公司
Priority to PCT/CN2012/083858 priority Critical patent/WO2014067103A1/zh
Priority to CN201280076750.6A priority patent/CN104813214B/zh
Priority to JP2015540010A priority patent/JP6046264B2/ja
Priority to US14/439,360 priority patent/US9533514B2/en
Priority to EP12887440.1A priority patent/EP2908164B1/en
Publication of WO2014067103A1 publication Critical patent/WO2014067103A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/44Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements
    • B41J2/442Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using single radiation source per colour, e.g. lighting beams or shutter arrangements using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/455Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using laser arrays, the laser array being smaller than the medium to be recorded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details

Definitions

  • the invention belongs to the field of optical technology, and in particular relates to a near-infrared laser focusing lens and a laser printing device.
  • laser printing technology has been widely used in electronic typesetting, laser plate making and other fields, which greatly simplifies the printing technology.
  • the digitalization of laser printing can realize long-distance plate making and printing, and accelerate the speed of news publishing. It also greatly saves cost and manpower investment, and the application of laser in the printing field has enabled the printing industry to develop rapidly.
  • Laser printing technology has been realized, in addition to relying on the widespread use of fiber lasers, but also thanks to the continuous upgrading of optical focusing system parameters.
  • Laser printing equipment has a focusing lens.
  • the focusing lens needs to have a large relative aperture and field of view angle, and the working distance is required to be as long as possible.
  • Most of the existing focusing lenses for laser printing use a microscope and focus on the ultraviolet laser. Although this microscope has a large relative aperture, its field of view is small, the working distance is short, the operation is inconvenient, affecting the focusing effect, thereby affecting the printing quality, the printing fineness and clarity are not ideal, and the color reproduction is not true. Therefore, there is a need to propose a new type of focus lens for laser printing.
  • the invention provides a near-infrared laser focusing lens, which aims to solve the problem that the existing ultraviolet lens has a small relative aperture and a short working distance, resulting in poor focusing effect and affecting printing quality.
  • a near-infrared laser focusing lens comprising a first lens, a second lens, a third lens, a fourth lens and a fifth lens arranged coaxially in the transmission direction of the incident beam;
  • the first lens is a plano-concave negative lens
  • the second and third lenses are double convex positive lenses
  • the fourth and fifth lenses are meniscus positive lenses
  • the concave surface of the first lens is opposite to the second lens, and the intermediate portions of the fourth and fifth lenses are respectively protruded in a direction opposite to the transmission direction of the incident light beam.
  • a laser printing apparatus comprising a fiber laser, a printing drum, and a focusing lens for focusing laser light emitted from the fiber laser onto the printing drum, wherein the focusing lens adopts the near-infrared laser focusing lens .
  • the invention can form a clear image of near-infrared light, can effectively correct the geometric aberration of the lens, obtain a clear flat image field, and have a large relative aperture and field of view.
  • the lens is a microscope objective that combines a large field of view, large relative aperture, long working distance and flat field.
  • the printing apparatus using such a lens has high printing fineness and sharpness, and the color reproduction is more realistic, and the lens has a long working distance, which makes it more convenient to operate.
  • FIG. 1 is a schematic structural view of a near-infrared laser focusing lens according to an embodiment of the present invention
  • FIG. 2 is a geometric aberration diagram of a near-infrared laser focusing lens according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a dispersion pattern of a near-infrared laser focusing lens according to an embodiment of the present invention
  • FIG. 4 is a graph showing a transfer function M.T.F of a near-infrared laser focus lens according to an embodiment of the present invention
  • FIG. 5 is a graph showing an optical transfer function O.T.F of a near-infrared laser focusing lens according to an embodiment of the present invention
  • Figure 6 is a schematic view showing the structure of a laser printing apparatus according to an embodiment of the present invention.
  • FIG 1 A schematic structural view of a near-infrared laser focusing lens according to an embodiment of the present invention is shown. For convenience of explanation, only parts related to the present embodiment are shown.
  • the near-infrared laser focusing lens includes a first lens L1, a second lens L2, and a third lens which are sequentially disposed coaxially along a transmission direction of the incident beam.
  • the first lens L1 is a plano-concave negative lens
  • the incident surface is a plane
  • the exit surface is a concave surface
  • the concave surface is opposite to the second lens L2
  • the third lens L3 is a double convex positive lens
  • the incident surface and the exit surface are convex on both sides
  • the fourth lens L4 and the fifth lens L5 It is a meniscus positive lens, and the curvature radius of the incident surface of the two lenses is smaller than the radius of curvature of the exit surface, that is, the fourth lens L4 and the fifth lens L5
  • the middle portion of the opposite direction of the incident light beam is convex, that is, convex toward the object side.
  • parameters such as surface curvature and lens thickness of each lens are optimally designed.
  • the first lens L1 The first curved surface S1 and the second curved surface S2 have a radius of curvature of ⁇ , 25.5 mm
  • the second lens L2 includes a third curved surface S3 and a fourth curved surface S4, respectively having a radius of curvature of 500 mm.
  • the third lens L3 includes a fifth curved surface S5 and a sixth curved surface S6 having a radius of curvature of 200 mm and -100 mm, respectively; and the fourth lens L4 includes a seventh curved surface S7 And the eighth curved surface S8 has a radius of curvature of 40 mm and 130 mm, respectively; the fifth lens L5 includes a ninth curved surface S9 and a tenth curved surface S10, and the radius of curvature is 20 mm, respectively. 30mm .
  • the negative sign in the above parameters means that the spherical center of the surface is in the object space, and the positive and negative signs are not considered as positive numbers, and the center of the spherical surface is located in the image space.
  • the first to tenth curved surfaces are sequentially arranged along the laser light transmission direction, and the radius of curvature of each of the curved surfaces is not the only option, and both exist. 5% tolerance range.
  • the center thickness D and the surface pitch d of the first to fifth lenses are further Special design is carried out.
  • the center thicknesses D1, D2, D3, D4, and D5 of the first to fifth lenses are 3mm, 6mm, 5mm, 5mm, 4mm, respectively.
  • the tolerance is 5%.
  • the distance d1 between the second curved surface S2 of the first lens L1 and the third curved surface S3 of the second lens L2 on the optical axis is 20 mm; the second lens L2 The fourth curved surface S4 and the fifth curved surface S5 of the third lens L3 have a distance d2 of 70 mm on the optical axis; the distance between the sixth curved surface S6 and the seventh curved surface S7 on the optical axis is 0.2 mm.
  • the eighth surface S8 and the ninth curved surface S9 have a pitch of 0.2 mm on the optical axis. The tolerance of each of the above surface pitches is 5%.
  • the above lens is preferably made of the following material, and the ratio of the material refractive index to the Abbe number of the first lens L1 is 1.5/64.
  • the materials of the second, third, fourth, and fifth lenses may be the same, and the ratio of the refractive index to the Abbe number is 1.8/25, and the tolerance of each refractive index and the Abbe number is 5%.
  • a sixth lens L6 may be further added to the light emitting side of the fifth lens L5, and the sixth lens L6 Preferably, it is a planar lens comprising an eleventh curved surface S11 and a twelfth curved surface S12, and the eleventh curved surface S11 and the twelfth curved surface S12 have a radius of curvature of ⁇ .
  • the sixth lens L6 It is mainly used to protect other imaging lenses in the lens to prevent other lenses from being affected by dust, moisture, high temperature or low temperature.
  • the sixth lens L6 can select the same material as the first lens L1, and the ratio of the refractive index to the Abbe number Nd/Vd is 1.5/64 with a tolerance of 5%.
  • the center thickness D6 can be 1 mm and the tolerance is 5%; and the eleventh surface S11 of the sixth lens L6 and the tenth surface of the fifth lens L5 The spacing of the S10 on the optical axis is 4.4mm and the tolerance is still 5%.
  • the lens can be regarded as a microscope objective of large relative aperture, long working distance, large field of view and flat field in geometric optics.
  • the lens is a microscope objective that combines a large field of view, a large relative aperture, a long working distance, and a flat image field. Effectively improve printing fineness and clarity, color reproduction is more realistic, and because of its long working distance, it is more convenient to operate.
  • Figures 2 ⁇ 5 characterize the imaging quality of the F ⁇ lens for far-infrared laser cutting from different evaluation angles.
  • Figure 2 shows the geometric aberration curve, which shows 6
  • the aberrations in different fields of view, the left and right images in the aberration diagrams in each field of view represent the aberrations of the meridional and arc out directions respectively.
  • the graph shows that the geometric aberration of the lens is well corrected and imaged. Clear.
  • Figure 3 shows the diffuse spots in different fields of view.
  • the reference range of this figure is 2 ⁇ m. It can be seen from the figure that the diffuse speckle is small and the energy concentration is high, which is beneficial to improve the printing precision.
  • Figure 4 shows the transfer function M.T.F and the horizontal axis represents the number of pairs per mm. Xlp/mm The vertical axis represents the percentage. As a laser-printed lens, it requires a very high resolution. From this figure, it can be seen that the transfer function M.T.F is still as high as 60% when the resolution is 500 lp/mm. , fully meet the printing requirements.
  • Figure 5 shows the optical transfer function O.T.F, and the horizontal axis represents the field of view.
  • the field of view of this figure is 2mm.
  • the vertical axis represents the percentage of the transfer function, and the higher the value, the better.
  • Figure 5 shows that when the field of view is 2mm, the transfer function has reached 100% when the line number is 200lp/mm. Can meet the printing requirements very well.
  • the large field of view, large aperture, and ultra-long working distance of the focus lens The image quality has reached the ideal level of the limit value, completely flat field.
  • the wave difference is less than 0.1 ⁇ (0.1) in the ⁇ 4mm imaging range. Double incident wavelength), high printing accuracy.
  • the present invention further provides a laser printing apparatus, comprising a fiber laser 601 and a high speed rotating printing drum 602, with reference to FIG.
  • the printing drum 602 is provided with a printing medium layer 603, and a focusing lens 604 is disposed between the fiber laser 601 and the printing drum 602 for the fiber laser 601.
  • the emitted laser light is focused onto a print dielectric layer 603 on the print drum 602, the focus lens 604
  • the near-infrared laser focusing lens provided by the invention is used to realize high-definition, high-precision, color-true laser printing.
  • the output end of the fiber laser 601 can be connected with a plurality of dense optical fibers 605 For transmitting laser light to the near-infrared laser focusing lens 604, in this embodiment, 64 fibers can be used for laser transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Lenses (AREA)
  • Laser Beam Printer (AREA)

Abstract

一种近红外激光聚焦镜头及激光印刷设备,镜头包括沿入射光线的传输方向依次共轴设置的第一、第二、第三、第四及第五透镜(Ll、L2、L3、L4、L5);第一透镜(L1)为平凹负透镜,第二、三透镜(L2、L3)为双凸正透镜,第四、五透镜(L4、L5)为弯月形正透镜;第一透镜(L1)的凹面(S2)与第二透镜(L2)相对,第四、五透镜(L4、L5)的中间部分均逆向入射光束的传输方向凸出。通过对透镜的形状和相对位置进行设计后,可以对近红外光成清晰的像,能够有效校正镜头的几何像差,获得清晰平像场;并且具有较大相对孔径和视场以及较长的工作距离,该镜头是一种兼具大视场、大相对孔径、长工作距离及平像场的显微物镜,可提高印刷精细度及清晰度,色彩还原更真实,且更加便于操作。

Description

一种近红外激光聚焦镜头及激光印刷设备 技术领域
本发明属于光学技术领域,特别涉及一种近红外激光聚焦镜头及激光印刷设备。
背景技术
随着激光加工技术的发展,激光印刷技术被大量应用于电子排版、激光制版等领域,大幅度地简化了印刷技术,激光印刷的数字化可以实现远距离制版及印刷,加速了新闻出版的速度,也大大地节约了成本和人力投入,激光在印刷领域的应用,使印刷行业飞速发展。
激光印刷技术得以实现,除了依赖于光纤激光器的广泛使用,还得益于光学聚焦系统参数的不断升级。激光印刷设备中都具有聚焦镜头,聚焦镜头需要有较大的相对孔径及视场角,且要求工作距离越长越好,现有用于激光印刷的聚焦镜头大多应用显微镜,并对紫外激光聚焦,这种显微镜虽然具有较大的相对孔径,但其视场角较小,工作距离很短,操作不便,影响聚焦效果,进而影响印刷质量,印刷精细度及清晰度不理想,色彩还原不真实。因此,需要提出一种新型的用于激光印刷的聚焦镜头。
技术问题
本发明的目的 在于提供一种近红外激光聚焦镜头,旨在解决现有紫外镜头相对孔径小、工作距离短,导致聚焦效果不好而影响印刷质量 的问题。
技术解决方案
本发明是这样实现的, 一种近红外激光聚焦镜头,包括沿入射光束的传输方向依次共轴设置的第一透镜、第二透镜、第三透镜、第四透镜及第五透镜;
所述第一透镜为平凹负透镜,所述第二、第三透镜为双凸正透镜,所述第四、第五透镜为弯月形正透镜;
所述第一透镜的凹面与所述第二透镜相对,所述第四、第五透镜的中间部分均逆向所述入射光束的传输方向凸出。
本发明的另一目的 在于提供一种激光印刷装设备,包括光纤激光器、印刷鼓,以及用于将所述光纤激光器发出的激光聚焦到所述印刷鼓上的聚焦镜头,所聚焦镜头采用所述的近红外激光聚焦镜头。
有益效果
本发明通过对透镜的形状和相对位置进行上述设计后,可以对近红外光成清晰的像,能够有效校正镜头的几何像差,获得清晰平像场;并且具有较大相对孔径和视场以及较长的工作距离, 该镜头是一种兼具大视场、大相对孔径、长工作距离及平像场的显微物镜。进而,采用这种镜头的印刷设备具有较高的印刷精细度及清晰度,色彩还原更真实,同时由于镜头的工作距离长,使其更加便于操作。
附图说明
图 1 是本发明实施例近红外激光聚焦镜头的结构示意图;
图 2 是本发明实施例近红外激光聚焦镜头的几何像差曲线图;
图 3 是本发明实施例近红外激光聚焦镜头的弥散斑示意图;
图 4 是本发明实施例近红外激光聚焦镜头的传递函数 M.T.F 曲线图;
图 5 是本发明实施例近红外激光聚焦镜头的光学传递函数 O.T.F 曲线图;
图 6 是本发明实施例激光印刷设备的结构示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行更加详细的描述:
图 1 示出了本发明实施例提供的近红外激光聚焦镜头的结构示意图,为了便于说明,仅示出了与本实施例相关的部分。
该近红外激光聚焦镜头包括沿入射光束的传输方向依次共轴设置的第一透镜 L1 、第二透镜 L2 、第三透镜 L3 、第四透镜 L4 及第五透镜 L5 。其中,第一透镜 L1 为平凹负透镜,入射面为平面,出射面为凹面,该凹面与第二透镜 L2 相对;第二透镜 L2 和第三透镜 L3 均为双凸正透镜,其入射面和出射面向两侧凸出;第四透镜 L4 、第五透镜 L5 为弯月形正透镜,且这两个透镜的入射面的曲率半径小于出射面的曲率半径,即第四透镜 L4 、第五透镜 L5 的中间部分均逆向入射光束的传输方向凸出,即向物方凸出。
进一步的,本实施例对各透镜的表面曲率及透镜厚度等参数进行了优化设计。具体的,第一透镜 L1 包括第一曲面 S1 和第二曲面 S2 ,曲率半径分别为∞, 25.5mm ;第二透镜 L2 包括第三曲面 S3 和第四曲面 S4 ,曲率半径分别为 500mm , -60mm ;第三透镜 L3 包括第五曲面 S5 和第六曲面 S6 ,曲率半径分别为 200mm , -100mm ;第四透镜 L4 包括第七曲面 S7 和第八曲面 S8 ,曲率半径分别为 40mm , 130mm ;第五透镜 L5 包括第九曲面 S9 和第十曲面 S10 ,曲率半径分别为 20mm , 30mm 。上述参数中的负号代表曲面的球心位于物方空间,未带有正、负号的视为正号,代表曲面的球心位于像方空间。上述第一至第十曲面沿激光传输方向依次排布,且上述各曲面的曲率半径并不是唯一的选择,均存在 5% 的公差范围。
进一步的,本实施例还对第一至第五透镜的中心厚度 D 及曲面间距 d 进行了特殊设计,具体的,第一至第五透镜的中心厚度 D1 、 D2 、 D3 、 D4 、 D5 分别为 3mm , 6mm , 5mm , 5mm , 4mm ,公差均为 5% 。并且,第一透镜 L1 的第二曲面 S2 与第二透镜 L2 的第三曲面 S3 在光轴上的间距 d1 为 20mm ;第二透镜 L2 的第四曲面 S4 与第三透镜 L3 的第五曲面 S5 在光轴上的间距 d2 为 70mm ;第六曲面 S6 与第七曲面 S7 在光轴上的间距为 0.2mm ;第八曲面 S8 与第九曲面 S9 在光轴上的间距为 0.2mm 。上述各曲面间距的公差均为 5% 。
另外,上述透镜优选以下材料制作,第一透镜 L1 的材料折射率与阿贝数之比 Nd/Vd 为 1.5/64 ,第二、第三、第四、第五透镜的材料可以相同,其折射率与阿贝数之比 Nd/Vd 为 1.8/25 ,各折射率与阿贝数的公差均为 5% 。
进一步的,本实施例还可以在第五透镜 L5 的出光侧增设第六透镜 L6 ,该第六透镜 L6 优选为平面透镜,其包括第十一曲面 S11 和第十二曲面 S12 ,第十一曲面 S11 和第十二曲面 S12 的曲率半径均为∞。该第六透镜 L6 主要用于保护镜头内其他成像透镜,避免其他透镜受到灰尘、湿气、高温或低温等影响。
具体的,第六透镜 L6 可与第一透镜 L1 选择相同材料,其折射率与阿贝数之比 Nd/Vd 为 1.5/64 ,公差为 5% 。其中心厚度 D6 可以为 1mm ,公差为 5% ;并且,第六透镜 L6 的第十一曲面 S11 和第五透镜 L5 的第十曲面 S10 在光轴上的间距 d5 可为 4.4mm ,公差仍为 5% 。
根据上述内容,以下提供一种具体结构的近红外激光聚焦镜头,具体参考表 1 。
表 1. 近红外激光聚焦镜头的结构参数
Figure PCTCN2012083858-appb-M000001
该近红外激光聚焦镜头具有下述光学特性:
通光波长 λ=830nm ;
焦距 ƒ =19mm ;
相对孔径 D′/ ƒ =1 : 0.85 ;
视场 2η=4mm ,视场角 2ω=12° ;
工作距离(扣除保护玻璃) L′=0.95 ƒ ,实际工作距离 L0′=1.2 ƒ ;
放大率 Γ=6X 。
根据上述数据可见,该镜头在几何光学中可视为大相对孔径、长工作距离、大视场、平像场的显微物镜。
通过对上述透镜的形状和相对位置及参数进行上述设计后,可以对近红外光(如波长 λ=830nm )成清晰的像,能够有效校正镜头的几何像差,获得清晰平像场;并且具有较大相对孔径和视场以及较长的工作距离,具体的,其相对孔径 D′/ ƒ (通光孔径与焦距之比) 可达到 1 : 0.85 ,视场 2η 约为 4mm ,视场角 2ω 约为 12° , 工作距离 L′ 至少为 0.95 ƒ ,因此,该镜头是一种兼具大视场、大相对孔径、长工作距离及平像场的显微物镜, 可 有效提高印刷精细度及清晰度,色彩还原更真实,同时由于其工作距离长,使其更加便于操作。
图 2~5 分别从不同的评价角度表征了该远红外激光切割用 Fθ 镜头的成像质量。
图 2 表示几何像差曲线,图中示出了 6 个不同视场下的像差,每个视场下的像差图中的左、右图分别代表子午和弧失方向的像差,该曲线图表明该镜头的几何像差得到良好校正,成像清晰。
图 3 表示不同视场下的弥散斑, 此图参考范围为 2μm ,由图中可见弥散斑较小,能量集中度高,有益于提高印刷精度。
图 4 表示传递函数 M.T.F ,横轴代表每毫米线对数量 Xlp/mm ,纵轴代表百分比。作为激光密排印刷镜头,要求具有非常高的分辨率,由此图可以看出,当分辨率为 500lp/mm 时,传递函数 M.T.F 依然高达 60% ,完全满足印刷要求。
图 5 表示光学传递函数 O.T.F ,横轴代表视场,本图视场为 2mm ,纵轴代表传递函数百分比,数值越高越好。图 5 表示视场 2mm 时,线对数是 200lp/mm 时,传递函数已经达到 100% ,可以很好的满足印刷要求。
根据上述附图可见,该大视场、大口径、超长工作距离的聚焦镜头的 成像质量达到了理想水平的极限数值,完全是平像场。采用该镜头作为印刷设备的显微物镜,在 Φ4mm 成像范围内,其波差小于 0.1λ ( 0.1 倍入射波长),印刷精度较高。
本发明进一步提供一种激光印刷设备,参考图 6 ,包括光纤激光器 601 和可高速旋转的印刷鼓 602 ,当然,印刷鼓 602 上设有印刷介质层 603 ,在光纤激光器 601 和印刷鼓 602 之间设置聚焦镜头 604 ,用于将光纤激光器 601 发出的激光聚焦到印刷鼓 602 上的印刷介质层 603 上,该聚焦镜头 604 采用本发明提供的近红外激光聚镜头,以实现高清晰、高精度、色彩真实的激光印刷。
进一步的,光纤激光器 601 的输出端可以连接有多条密布的光纤 605 ,用于将激光传输至近红外激光聚焦镜头 604 ,本实施例可以采用 64 根光纤进行激光的传输。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种近红外激光聚焦镜头,其特征在于,包括沿入射光束的传输方向依次共轴设置的第一透镜、第二透镜、第三透镜、第四透镜及第五透镜;
    所述第一透镜为平凹负透镜,所述第二、第三透镜为双凸正透镜,所述第四、第五透镜为弯月形正透镜;
    所述第一透镜的凹面与所述第二透镜相对,所述第四、第五透镜的中间部分均逆向所述入射光束的传输方向凸出。
  2. 如权利要求 1 所述的近红外激光聚焦镜头,其特征在于,所述第一透镜包括第一曲面和第二曲面,所述第二透镜包括第三曲面和第四曲面,所述第三透镜包括第五曲面和第六曲面,所述第四透镜包括第七曲面和第八曲面,所述第五透镜包括第九曲面和第十曲面,所述第一至第十曲面沿所述入射光束的传输方向依次排布;
    所述第一至第十曲面的曲率半径依次为:∞, 25.5mm , 500mm , -60mm , 200mm , -100mm , 40mm , 130mm , 20mm , 30mm ,公差均为 5% 。
  3. 如权利要求 2 所述的近红外激光聚焦镜头,其特征在于,所述第一至第五透镜的中心厚度依次为: 3mm , 6mm , 5mm , 5mm , 4mm ,公差均为 5% 。
  4. 如权利要求 3 所述的近红外激光聚焦镜头,其特征在于,
    所述第二曲面与第三曲面在光轴上的间距为 20mm ;
    所述第四曲面与第五曲面在光轴上的间距为 70mm ;
    所述第六曲面与第七曲面在光轴上的间距为 0.2mm ;
    所述第八曲面与第九曲面在光轴上的间距为 0.2mm ;
    各所述间距的公差均为 5% 。
  5. 如权利要求 1 至 4 任一项所述的近红外激光聚焦镜头,其特征在于,所述第一透镜的折射率与阿贝数之比为 1.5/64 ;
    所述第二、第三、第四、第五透镜的折射率与阿贝数之比为 1.8/25 ;
    各所述折射率与阿贝数的公差均为 5% 。
  6. 如权利要求 2 至 4 任一项所述的近红外激光聚焦镜头,其特征在于,还包括第六透镜,位于所述第五透镜的出光侧,所述第六透镜包括第十一曲面和第十二曲面,所述第十一曲面和第十二曲面的曲率半径均为∞;所述第十一曲面与所述第十曲面在光轴上的间距为 4.4mm ,公差为 5% 。
  7. 如权利要求 6 所述的近红外激光聚焦镜头,其特征在于,所述第六透镜的折射率与阿贝数之比为 1.5/64 ,公差为 5% 。
  8. 如权利要求 6 所述的近红外激光聚焦镜头,其特征在于,所述第六透镜的中心厚度为 1mm ,公差为 5% 。
  9. 一种激光印刷设备,包括光纤激光器、印刷鼓,以及用于将所述光纤激光器发出的激光聚焦到所述印刷鼓上的聚焦镜头,其特征在于,所聚焦镜头采用权利要求 1~8 任一项所述的近红外激光聚焦镜头。
  10. 如权利要求 9 所述的激光印刷设备,其特征在于,所述光纤激光器的输出端连接有用于将激光传输至所述近红外激光聚焦镜头的多根并排密布的光纤。
PCT/CN2012/083858 2012-10-31 2012-10-31 一种近红外激光聚焦镜头及激光印刷设备 WO2014067103A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/083858 WO2014067103A1 (zh) 2012-10-31 2012-10-31 一种近红外激光聚焦镜头及激光印刷设备
CN201280076750.6A CN104813214B (zh) 2012-10-31 2012-10-31 一种近红外激光聚焦镜头及激光印刷设备
JP2015540010A JP6046264B2 (ja) 2012-10-31 2012-10-31 近赤外線レーザフォーカスレンズ及びレーザ印刷デバイス
US14/439,360 US9533514B2 (en) 2012-10-31 2012-10-31 Near-infrared laser focusing lens and laser printing device
EP12887440.1A EP2908164B1 (en) 2012-10-31 2012-10-31 Near-infrared laser focusing lens and laser printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083858 WO2014067103A1 (zh) 2012-10-31 2012-10-31 一种近红外激光聚焦镜头及激光印刷设备

Publications (1)

Publication Number Publication Date
WO2014067103A1 true WO2014067103A1 (zh) 2014-05-08

Family

ID=50626329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083858 WO2014067103A1 (zh) 2012-10-31 2012-10-31 一种近红外激光聚焦镜头及激光印刷设备

Country Status (5)

Country Link
US (1) US9533514B2 (zh)
EP (1) EP2908164B1 (zh)
JP (1) JP6046264B2 (zh)
CN (1) CN104813214B (zh)
WO (1) WO2014067103A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351459A (zh) * 2019-06-18 2019-10-18 惠州市星聚宇光学有限公司 用于手机摄像的微距成像系统
CN111505795A (zh) * 2019-01-30 2020-08-07 成都理想境界科技有限公司 一种投影物镜

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892046B (zh) * 2016-03-24 2018-08-31 武汉华工激光工程有限责任公司 红外二维扫描镜组
CN112305726B (zh) * 2020-12-30 2021-04-02 武汉华工激光工程有限责任公司 校正沿着光束传播方向的光学聚焦点分布状态的物镜
CN113467059B (zh) * 2021-09-03 2022-02-11 江西联创电子有限公司 红外共焦广角镜头
CN118033875B (zh) * 2024-04-09 2024-06-18 宁波舜宇光电信息有限公司 一种广角对焦光学成像镜头及成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072518A (en) * 1997-05-21 2000-06-06 Creo Products Inc. Method for rapid imaging of thermographic materials by extending exposure time in a single beam laser scanner
EP1519210A1 (de) * 2003-09-27 2005-03-30 CARL ZEISS JENA GmbH Stereoskopisches Mikroskopobjektiv
CN101093275A (zh) * 2007-07-13 2007-12-26 中国科学院上海光学精密机械研究所 大口径激光成像镜头
CN101827707A (zh) * 2007-10-17 2010-09-08 伊斯曼柯达公司 创建均匀成像表面
CN102193170A (zh) * 2010-03-05 2011-09-21 株式会社腾龙 红外线变焦镜头
RU2434256C1 (ru) * 2010-08-12 2011-11-20 Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП) Светосильный широкоугольный линзовый объектив для инфракрасной области спектра

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046410B2 (ja) * 1980-10-08 1985-10-16 オリンパス光学工業株式会社 内視鏡対物レンズ
JPS61173215A (ja) * 1985-01-28 1986-08-04 Minolta Camera Co Ltd コリメ−タレンズ
JPH07128592A (ja) * 1993-11-04 1995-05-19 Olympus Optical Co Ltd 縮小投影レンズ
USRE37376E1 (en) 1996-08-16 2001-09-18 Creo Products Inc. Method for rapid imaging of thermographic materials by extending exposure time in a single beam laser scanner
US5852490A (en) * 1996-09-30 1998-12-22 Nikon Corporation Projection exposure method and apparatus
JP2002236268A (ja) * 2001-02-07 2002-08-23 Fuji Photo Film Co Ltd 走査光学系、画像記録用露光装置
WO2004053534A2 (en) * 2002-12-06 2004-06-24 Newport Corporation High resolution objective lens assembly
JP4618531B2 (ja) * 2004-03-15 2011-01-26 株式会社ニコン レーザ加工用光学系及びこれを用いたレーザ加工装置
US20050213171A1 (en) * 2004-03-29 2005-09-29 Fuji Photo Film Co., Ltd. Method of exposure recording on a planographic printing plate and an apparatus for practicing the method
TWI307813B (en) * 2006-10-23 2009-03-21 Young Optics Inc Zoom lens
EP2397880B1 (en) * 2010-06-16 2017-04-12 Ricoh Company, Ltd. Image-forming lens, and camera device and portable information terminal device with the image-forming lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072518A (en) * 1997-05-21 2000-06-06 Creo Products Inc. Method for rapid imaging of thermographic materials by extending exposure time in a single beam laser scanner
EP1519210A1 (de) * 2003-09-27 2005-03-30 CARL ZEISS JENA GmbH Stereoskopisches Mikroskopobjektiv
CN101093275A (zh) * 2007-07-13 2007-12-26 中国科学院上海光学精密机械研究所 大口径激光成像镜头
CN101827707A (zh) * 2007-10-17 2010-09-08 伊斯曼柯达公司 创建均匀成像表面
CN102193170A (zh) * 2010-03-05 2011-09-21 株式会社腾龙 红外线变焦镜头
RU2434256C1 (ru) * 2010-08-12 2011-11-20 Федеральное государственное унитарное предприятие Научно-исследовательский институт комплексных испытаний оптико-электронных приборов и систем (ФГУП НИИКИ ОЭП) Светосильный широкоугольный линзовый объектив для инфракрасной области спектра

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505795A (zh) * 2019-01-30 2020-08-07 成都理想境界科技有限公司 一种投影物镜
CN111505795B (zh) * 2019-01-30 2022-05-20 成都理想境界科技有限公司 一种投影物镜
CN110351459A (zh) * 2019-06-18 2019-10-18 惠州市星聚宇光学有限公司 用于手机摄像的微距成像系统
CN110351459B (zh) * 2019-06-18 2021-02-09 惠州市星聚宇光学有限公司 用于手机摄像的微距成像系统

Also Published As

Publication number Publication date
CN104813214B (zh) 2017-03-22
JP2016503514A (ja) 2016-02-04
US20150298465A1 (en) 2015-10-22
JP6046264B2 (ja) 2016-12-14
EP2908164A4 (en) 2016-08-03
EP2908164B1 (en) 2018-07-04
EP2908164A1 (en) 2015-08-19
US9533514B2 (en) 2017-01-03
CN104813214A (zh) 2015-07-29
CN104813214A8 (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2014067103A1 (zh) 一种近红外激光聚焦镜头及激光印刷设备
WO2014067085A1 (zh) 一种超紫外激光打标Fθ镜头及激光加工设备
BRPI0904353A2 (pt) lente zoom, e, aparelho de captura de imagem
JP2000321499A5 (zh)
CN110261999B (zh) 光学系统和成像镜头
WO2022032920A1 (zh) 投影镜头
WO2014067097A1 (zh) 一种远红外激光加工用Fθ镜头及激光加工设备
CN206270646U (zh) 720°全景摄像系统
CN111443463B (zh) 一种超宽光谱波段成像镜头
WO2014012417A1 (zh) 一种绿光激光变倍扩束系统及激光加工设备
US7477460B2 (en) Image reading lens and image reading apparatus
JP2002014282A (ja) 内視鏡対物変倍光学系
WO2016086377A1 (zh) 3d打印机、打印方法及镜头模组
WO2014012415A1 (zh) 一种紫外激光变倍扩束系统及激光加工设备
JP2021071662A5 (zh)
CN115032776A (zh) 一种长焦长法兰视频镜头
WO2016033730A1 (zh) 光学镜头
CN106908933A (zh) 三晶片高清晰度医用彩色视频转接镜头
WO2016086376A1 (zh) 3d打印机及其采用的镜头模组
CN207301460U (zh) 一种实现激光扫描与同轴监控一体的高倍显微物镜光路系统
JP4435340B2 (ja) 赤外線レンズ
US6233101B1 (en) Modified gaussian lens
KR100272337B1 (ko) 고정초점렌즈
GB2573928A (en) Two-group-type zoom lens and usage method therefor, and imaging apparatus comprising same
WO2016082172A1 (zh) 激光刻线用光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14439360

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015540010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012887440

Country of ref document: EP