WO2011155757A2 - 엘이디 조명 광학 시스템 - Google Patents
엘이디 조명 광학 시스템 Download PDFInfo
- Publication number
- WO2011155757A2 WO2011155757A2 PCT/KR2011/004156 KR2011004156W WO2011155757A2 WO 2011155757 A2 WO2011155757 A2 WO 2011155757A2 KR 2011004156 W KR2011004156 W KR 2011004156W WO 2011155757 A2 WO2011155757 A2 WO 2011155757A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens group
- optical system
- lens
- light source
- illumination
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/143—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
- G02B15/1431—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
- G02B15/143107—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged +++
Definitions
- the present invention relates to an infrared LED illumination optical system, and in conjunction with a day and night surveillance camera with a zoom function, irradiation of infrared light, which is configured for night surveillance according to the size and distance of the subject during the zooming operation of the optical system for imaging. It also relates to an LED lighting optical system that can be adjusted accordingly.
- Surveillance cameras installed indoors and outdoors should perform their functions perfectly in dark conditions such as nighttime or darkrooms, in addition to daylight or artificial light sources in the visible range.
- an infrared surveillance camera using an infrared light source is generally used, and in this case, an infrared light source is circularly positioned around a camera module for photographing or an infrared lighting system is separately installed.
- an infrared light source is circularly positioned around a camera module for photographing or an infrared lighting system is separately installed.
- the conventional optical illumination system for surveillance camera imaging a change in the size and distance of a subject occurs due to variation, and in this method, since the divergence angle is fixed when irradiated with infrared rays, an appropriate radiation intensity corresponding to the moving object range is fixed. There was a problem that can not produce efficiency.
- the infrared light used in the conventional night vision camera has a fixed divergence angle, so it is not a problem when a short-range subject is irradiated.
- the range is only a fraction of the area irradiated by the infrared illumination system, which is very inefficient because of the amount of light that is unnecessarily irradiated out of the shooting range.
- the present invention is to solve the above-mentioned conventional problems, an object of the present invention is to provide an infrared LED illumination optical system that can have an irradiation area corresponding to the change in the size and distance of the subject due to the zoom function of the surveillance camera. It is possible to increase the irradiation efficiency by providing, to reduce the number of light sources (LEDs) used to lower the manufacturing cost and to be able to manufacture small.
- LEDs light sources
- an illumination optical system for constituting a plurality of lens groups sequentially from a light source side along an optical axis.
- a third lens group G3 having a positive refractive power wherein the second lens group G2 is moved along the optical axis to change an angle to be illuminated.
- F (g1) is an effective focal length of the first lens group G1
- EFL is an effective focal length of the optical system.
- D (2) is the moving distance of the second lens group G2 moving to change the illumination angle
- T is the optical total length
- Conditional Expression 1 Alternatively, the following Conditional Expression 1 and Conditional Expression 2 are satisfied.
- F (g1) is an effective focal length of the first lens group G1
- EFL is an effective focal length of the optical system.
- D (2) is the moving distance of the second lens group G2 moving to change the illumination angle
- T is the optical total length
- the first lens group G1 has a fixed position without moving on an optical axis in order to collimate the light emitted from the light source.
- L1 and L2 of the first lens group G1 have a positive refractive power, and the lens is configured to bring the power of L1 close to the light source larger than L2 to minimize the light loss as much as possible.
- the present invention as described above, by providing an infrared LED zoom flash illumination optical system capable of having an irradiation area corresponding to the size of the subject and the change in distance from the subject due to the zoom function of the surveillance camera to increase the irradiation efficiency.
- the number of LEDs is reduced, thereby reducing the manufacturing cost and making it possible to manufacture in a small size.
- Example 1 is a representative view of the present invention, a configuration diagram in Example 1
- Example 2 is a configuration diagram according to a zoom position in Example 1 of the present invention.
- Example 3 is a view showing a change in angle of view for each zoom position in Example 1 of the present invention.
- L1 first lens
- L2 second lens
- L3 third lens
- L4 fourth lens
- G1 first lens group
- G2 second lens group
- FIG. 1 is a configuration diagram of an illumination optical system according to an embodiment of the present invention
- FIG. 2 is a configuration diagram according to a zoom position in an embodiment of the present invention
- FIG. 3 is a view angle change according to a zoom position in an embodiment of the present invention. It is a figure which shows.
- the lens group configuration according to the present invention will be described with reference to FIG. 1.
- the first lens group G1 having positive refractive power sequentially from the light source LED side along the optical axis, It is comprised including the 2nd lens group G2 which has, and the 3rd lens group G3 which has positive refractive power.
- the light emitted from the light source is first collimated by the positive refractive power of the first lens group G1, and the light is condensed by the refractive power of the second lens group G2.
- Light condensed between the second lens group G2 and the third lens group G3 is collimated by the third lens group G3 which also has a positive refractive power, or is focused by passing through the third lens group G3. It is widely divergent after forming.
- light emitted from the light source LED having a divergence angle in a range of 120 ° to 140 ° is generally parallel light as much as it passes through the first lens group G1.
- a collimator lens that collects light emitted from the LED having a wide divergence angle is essential.
- the collimator lens group is formed using two lenses in order to make the parallel light as much as possible from the light emitted from the LED using the first lens group G1. In case of collimation using only one lens, it is difficult to manufacture due to excessive power of the lens.
- both L1 (first lens) and L2 (second lens) of the first lens group G1 have positive refractive power, and the power of L1 (first lens) close to the light source to collect the optical paths as described above. It is preferable to configure the lens so that L2 is larger than L2 (second lens) so that light loss is minimized as much as possible.
- the second lens group G2 is moved to adjust the divergence angle of the light passing through the entire optical system.
- the first lens group G1 and the third lens group G3 positioned in the front-back direction of the subject of the second lens group G2 on the optical axis are fixed without position.
- the present invention to manufacture a lens to satisfy the following conditional expression 1.
- F (g1) is the effective focal length of the first lens group G1
- EFL is the effective focal length of the optical system.
- conditional expression 1 when the value is biased to the lower limit, a problem occurs in the lens shape and workability due to the high power of the first lens group G1. Since it is impossible to do so, the light efficiency of the optical system is lowered.
- the lens is manufactured so that the moving distance of the second lens group G2 of the present invention satisfies the following conditional expression (2).
- D (2) is the moving distance of the second lens group G2 that moves to change the illumination angle
- T is the optical total length
- Table 1 to Table 3 show data values of each lens according to an exemplary embodiment of the present invention having characteristics satisfying the above Conditional Expression 1 or / and Conditional Expression 2.
- Table 1 shows the optical data of the embodiment
- Table 2 shows the distance by the zoom position of the embodiment
- Table 3 shows the focal length and angle of view of the embodiment.
- the curvature radius, thickness and distance of each surface, and the glass code of the material indicate the refractive index and the dispersion value.
- Table 2 shows the distance by zoom position (*) indicated in the thickness and distance of Table 1
- Table 3 shows the focal length and angle of view for each zoom position of the embodiment composed of Table 2 in Table 1.
- FIG. 2 is a configuration diagram of each zoom position according to the embodiment, and FIG. 3 illustrates a change in an angle of view for each zoom position.
- the zoom position according to FIG. 2 it may be classified into a wide-angle end, a middle end, and a telephoto end, and as shown in FIG. 3, the variation may be changed according to the position change of the second lens group G2. It can be seen that.
- the focus by the first lens group G1 and the second lens group G2 converges between the second lens group G2 and the third lens group G3, and the second lens group ( The shift of focus occurs according to the change of position of G2).
- the focus is passed through the third lens group G3 and the light is emitted at a wide angle of view.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Securing Globes, Refractors, Reflectors Or The Like (AREA)
- Stroboscope Apparatuses (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
본 발명은, 적외선 LED를 광원으로 하여 광학계를 LED광원과 결합하여 적외선 조명을 하고자 하는 화각을 광학계의 변배에 따라 조절 가능하게 한 조명 광학 시스템에 관한 것으로서, 이를 위한 구성은, 광축을 따라서 광원(LED) 측으로부터 조명하고자 하는 방향으로 순차적으로 다수의 렌즈 군을 구성하는 조명 시스템에 있어서, 양의 굴절력을 갖는 제 1 렌즈군(G1)과; 양의 굴절력을 갖는 제 2 렌즈군(G2)과; 양의 굴절력을 갖는 제 3 렌즈군(G3);을 포함하여 구성하며, 상기 제 2 렌즈군(G2)을 움직여 조명하고자 하는 조사각도를 변경하도록 하는 것을 특징으로 한다. 이에 의할 경우에는 피사체의 크기 및 피사체와의 거리 변화에 상응하는 조사 면적을 갖도록 할 수 있는 적외선 LED 조명 광학 시스템을 제공할 수 있어 조사 효율을 높일 수 있게 된다.
Description
본 발명은 적외선 LED 조명 광학 시스템에 관한 것으로, 줌 기능이 있는 주야간 감시용 카메라와 연동하여 촬상용 광학계의 변배(zooming) 동작 시 피사체의 크기 및 거리에 따라서 야간 감시를 위한 구성인 적외선 조명의 조사 면적도 그에 맞게 조절해 줄 수 있는 LED 조명 광학 시스템에 관한 것이다.
실내 및 실외에 설치되는 감시용 카메라는 주간의 태양광 혹은 가시광선 영역의 인공 광원이 존재하는 경우 외에 야간이나 암실 같은 어두운 상황에서도 그 기능을 온전하게 수행하여야 한다. 이를 위해서 일반적으로 적외선 광원을 이용한 적외선 감시용 카메라가 사용되며, 이 경우 촬상용 카메라 모듈 주변에 원형으로 적외선 광원을 위치시키거나 외부에 적외선 조명 시스템을 따로 설치하는 방식을 주로 사용하고 있다. 하지만 기존의 감시 카메라 촬상용 광학 조명 시스템에서는 변배에 따른 피사체의 크기와 거리의 변화가 발생하며, 상기 방법으로는 적외선을 조사할 경우 발산각이 고정되어 있으므로 유동적인 피사체 범위에 상응하는 적절한 복사 조도 효율을 낼 수 없는 문제점이 있었다.
즉, 기존의 일반적인 야간 감시용 카메라에 사용되는 적외선 조명은 발산각이 고정되어 있기 때문에 근거리의 피사체를 조사할 경우에는 문제가 없지만, 야간 100m 이상의 원거리 피사체를 촬영할 경우 실제 촬상용 광학계가 수용하는 촬영 범위는 적외선 조명 시스템이 조사하는 면적의 극히 일부분이며, 촬영 범위 바깥쪽으로 불필요하게 조사되는 광이 많으므로 매우 비효율적이다.
또한, 야간 감시를 위해 필수적인 적외선 광원을 위해 다수의LED(Light Emitting Diode)가 사용되므로 감시용 카메라의 제조 단가가 높아지며, 무게와 부피가 증가하여 소형 광학계를 구성하기 어려운 문제점이 있었다.
본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 감시용 카메라의 줌 기능으로 인한 피사체의 크기 및 거리의 변화에 상응하는 조사 면적을 갖도록 해줄 수 있는 적외선 LED 조명 광학 시스템을 제공하여 조사 효율을 높일 수 있고, 사용되는 광원(LED)의 개수를 줄여 제조 단가를 낮추고 소형으로 제작 가능하도록 하는 데 있다.
상기한 종래 문제점을 해결하고 본 발명에 따른 기술적 과제를 해결하기 위한 본 발명의 구성은, 광축을 따라서 광원 측으로부터 순차적으로 다수의 렌즈 군을 구성하는 조명 광학 시스템에 있어서, LED 광원과; 양의 굴절력을 갖는 제 1 렌즈군(G1)과; 양의 굴절력을 갖는 제 2 렌즈군(G2); 및 양의 굴절력을 갖는 제 3 렌즈군(G3);을 포함하여 구성하며, 상기 제 2 렌즈군(G2)을 광축을 따라서 이동시켜 조명하고자 하는 각도를 변경하는 것을 특징으로 한다.
이 때, 하기 조건식 1을 만족하도록 하는 것을 특징으로 한다.
(여기에서 F(g1)은 제 1 렌즈군(G1)의 유효초점거리(Effective Focal Length)이고, EFL는 광학계 전체 유효초점거리(Effective Focal Length)이다.)
또는, 하기 조건식 2를 만족하는 것을 특징으로 한다.
(여기에서 D(2)는 조명각을 변경하기 위하여 이동하는 제 2 렌즈군(G2)의 이동 거리이고, T는 전체광학전장(optical total length)이다.)
또는, 하기 조건식 1 및 조건식 2를 동시에 만족하는 것을 특징으로 한다.
(여기에서 F(g1)은 제 1 렌즈군(G1)의 유효초점거리(Effective Focal Length)이고, EFL는 광학계 전체 유효초점거리(Effective Focal Length)이다.)
(여기에서 D(2)는 조명각을 변경하기 위하여 이동하는 제 2 렌즈군(G2)의 이동 거리이고, T는 전체광학전장(optical total length)이다.)
그리고, 상기 제 2 렌즈군이 이동 할 시 상기 제1 렌즈군(G1)은 광원에서 나오는 광을 Collimation하기 위하여 광축 상에서 움직임을 갖지 않고 위치가 고정인 것을 특징으로 한다.
또한, 상기 제1 렌즈군(G1)의 L1, L2 모두 양의 굴절력을 갖고, 광원에 근접한 L1의 파워를 L2보다 크게 가져가 광손실을 최대한 적게 하도록 렌즈를 구성한 것을 특징으로 한다.
본 발명은 이상에서와 같이, 감시용 카메라의 줌 기능으로 인한 피사체의 크기 및 피사체와의 거리 변화에 상응하는 조사 면적을 갖도록 할 수 있는 적외선 LED 줌 플래시 조명 광학 시스템을 제공하여 조사 효율을 높일 수 있고, LED의 개수를 줄여 제조 단가를 낮추고 소형으로 제작 가능하도록 하는 효과가 있다.
도 1 은 본 발명의 대표도, 실시 예 1에 있어서 구성도
도 2 는 본 발명의 실시 예 1에 있어서의 줌 위치 별 구성도
도 3 은 본 발명의 실시 예 1에 있어서의 줌 위치 별 화각 변화를 나타내는 도면
*부호의 설명
L1: 제1렌즈 L2: 제2렌즈
L3: 제3렌즈 L4: 제4렌즈
L5: 제5렌즈
G1 : 제 1 렌즈군 G2 : 제 2 렌즈군
G3 : 제 3 렌즈군
LED: 발광 다이오드(Light Emitting Diode)
이하 본 발명에 따른 적외선 LED 조명 광학 시스템에서의 렌즈 구성 및 다양한 실험 조건식을 만족하는 렌즈군 및 각 렌즈의 특징을 첨부되는 도면, 조건식, 표, 수학식을 이용하여 상세하게 설명하면 다음과 같다.
도 1 은 본 발명의 실시 예에 있어서의 조명 광학 시스템 구성도, 도 2 는 본 발명의 실시 예에 있어서의 줌위치 별 구성도, 도 3 은 본 발명의 실시 예에 있어서의 줌위치 별 화각 변화를 나타내는 도면이다.
먼저 도 1을 참조하여 본 발명에 따른 렌즈군 구성을 설명하면, 도시된 바와 같이, 광축을 따라서 광원(LED) 측으로부터 순차적으로 양의 굴절력을 갖는 제 1 렌즈군(G1), 양의 굴절력을 갖는 제 2 렌즈군(G2), 양의 굴절력을 갖는 제 3 렌즈군(G3)을 포함하여 구성된다.
이 경우, 광원에서 나온 광은 제1 렌즈군(G1)의 양의 굴절력에 의하여 1차 Collimation 되고, 제 2 렌즈군(G2)의 굴절력에 의하여 집광하게 된다. 제2 렌즈군(G2)과 제3 렌즈군(G3) 사이에서 집광된 광은 역시 양의 굴절력을 갖는 제3 렌즈군(G3)에 의하여 Collimation 되거나, 제3 렌즈군(G3)을 지나 초점을 맺은 후 넓게 발산된다.
이 경우, 일반적으로 120˚내지 140˚ 범위의 발산각을 갖는 광원(LED)에서 나오는 광이 상기 제1렌즈군(G1)을 통과하면서 최대한 평행광이 된다.
일반적으로 LED는 대부분 램버시안(Lambertian) 배광 분포를 갖고 그에 따른 반치폭(Full Width at Half Maximum)으로 LED의 발산각이 대략 120˚~140˚ 임을 알 수 있다. 이에 따라서, 광학계의 광효율을 높여주기 위해서는 넓은 발산각을 갖는 LED에서 나오는 광을 모아주는 역할을 하는 Collimator Lens가 필수적이다.
본 발명에서는, 상기 제 1 렌즈군(G1)을 이용하여 LED에서 나오는 광을 최대한 평행광을 만들어 주며, 렌즈의 높은 파워를 분배하기 위해 2매의 렌즈를 사용하여 Collimator 렌즈군을 형성하였다. 렌즈를 하나만 이용하여 Collimation 할 경우 렌즈의 과한 파워로 제작이 어려운 형상이 나타나게 된다.
이를 위하여 상기한 바와 같이 광로를 모아주기 위하여 제 1 렌즈군(G1)의 L1(제1 렌즈), L2(제 2 렌즈) 모두 양의 굴절력을 갖고, 광원에 근접한 L1(제 1 렌즈)의 파워를 L2(제 2 렌즈)보다 크게 가져가 광손실을 최대한 적게 하도록 렌즈를 구성함이 바람직하다.
그리고, 상기 제 2 렌즈군(G2)을 이동시켜 전체 광학계를 통과하여 나오는 광의 발산각을 조절하게 된다. 이 경우, 광축 상에서 제 2 렌즈군(G2)의 피사체 전후 방향에 위치되는 제 1 렌즈군(G1) 및 제 3 렌즈군(G3)은 움직임을 갖지 않고 위치 고정되어 있다.
한편, 상기와 같은 렌즈 구성을 갖는 조명 광학 시스템에 있어서, 본 발명은 다음의 조건식 1을 만족할 수 있도록 렌즈를 제작함이 바람직하다.
여기에서 F(g1)은 제 1 렌즈군(G1)의 유효초점거리(Effective Focal Length)이고, EFL는 광학계 전체 유효초점거리(Effective Focal Length)이다.
상기 조건식 1에서 값이 하한치로 치우칠 경우 제 1 렌즈군(G1)의 높은 파워로 인하여 렌즈 형상 및 가공성에 문제가 발생하며, 그 값이 상한치로 치우칠 경우 LED에서 나오는 넓은 발산각의 광을 충분히 Collimation 할 수 없게 되므로 광학계의 광효율이 낮아지게 된다.
또한, 상기 구성을 갖는 줌렌즈에 있어서, 본 발명의 제2렌즈군(G2)의 이동거리는 다음의 조건식 2를 만족할 수 있도록 렌즈를 제작함이 바람직하다.
여기에서 D(2)는 조명각을 변경하기 위하여 이동하는 제 2 렌즈군(G2)의 이동 거리이고, T는 전체광학전장(optical total length)이다.
상기 조건식 2에서 값이 하한치로 치우칠 경우 광각단의 화각이 좁아지므로 일반적으로 65˚의 화각을 갖는 촬상계의 촬영 범위를 만족시킬 수 없게 된다. 또한, 그 값이 상한치로 치우칠 경우 광각단에서 굴절되어 상면 외부로 손실되는 광이 발생하거나, 전반사로 인하여 상면에 도달하지 않는 광이 발생하여 광학계의 광효율이 저하된다.
상기한 조건식 1 또는/및 조건식 2를 만족하는 특징을 가지는 본 발명의 실시 예에 따른 각 렌즈의 데이터 값이 표 1 내지 표 3에 표시되어 있다. 여기에서, 표 1은 실시 예의 광학 데이타를 나타내고, 표 2는 실시 예의 줌 위치 별 거리를 나타내고, 표 3은 실시 예의 초점거리 및 화각을 나타낸다.
[표 1]
상기 [표1]에서는 각 면의 곡률반경, 두께 및 거리, 소재의 Glass Code로 굴절율 및 분산치를 표시하고 있다.
[표 2]
[표 2]는 표 1의 두께 및 거리에서 (*)표기 된 줌 위치 별 거리를 나타내고 표 3은 표 1에서 표 2로 구성된 실시 예의 줌 위치 별 초점거리 및 화각을 나타낸다.
[표 3]
표 3을 참조하여 보면 광각단에서는 65°의 화각으로 가까운 촬영 범위를, 망원단에서는 10°의 좁은 화각으로 먼 거리의 촬영 범위를 조사하게 됨을 알 수 있다.
도 2는 상기 실시 예에 따른 줌 위치 별 구성도이고, 도 3은 줌 위치 별 화각 변화를 도시하고 있다.
도 2에 따른 줌 위치에 따라서 광각단(Wide), 중간단(Middle), 망원단(Tele)으로 구분이 가능하고, 도 3에서와 같이 제 2 렌즈군(G2)의 위치 변화에 따라 변배가 되는 것을 알 수 있다.
망원단에서는 제 1 렌즈군(G1)과 제 2 렌즈군(G2)에 의한 초점이 제 2 렌즈군(G2)과 제 3 렌즈군(G3) 사이에서 모이고, 광각단으로 갈수록 제 2 렌즈군(G2)의 위치 변화에 따른 초점의 이동으로 화각에 변화가 발생한다. 광각단에서는 제 3 렌즈군(G3)을 지나 초점이 맺힌 후 넓은 화각으로 발산하는 것을 알 수 있다.
상기 기술된 상세한 설명 및 실시 예는 본 발명의 권리범위를 한정하는 것이 아닌 예시적인 것에 불과한 것으로, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.
Claims (6)
- 광축을 따라서 광원 측으로부터 순차적으로 다수의 렌즈 군을 구성하는 조명 광학 시스템에 있어서,LED 광원과;양의 굴절력을 갖는 제 1 렌즈군(G1)과;양의 굴절력을 갖는 제 2 렌즈군(G2); 및양의 굴절력을 갖는 제 3 렌즈군(G3);을 포함하여 구성하며,상기 제 2 렌즈군(G2)을 광축을 따라서 이동시켜 조명하고자 하는 각도를 변경하는 것을 특징으로 하는 LED 조명 광학 시스템.
- 제 1항 내지 제 4항 중 어느 한 항에 있어서,상기 제 2 렌즈군(G2)의 광축을 따른 움직임 시 상기 제1 렌즈군(G1)은 광원에서 나오는 광을 Collimation하기 위하여 광축 상에서 움직임을 갖지 않고 위치가 고정인 것을 특징으로 하는 LED 조명 광학 시스템.
- 제 5항에 있어서,상기 제1 렌즈군(G1)의 L1, L2 모두 양의 굴절력을 갖고, 광원에 근접한 L1의 파워를 L2보다 크게 가져가 광손실을 최대한 적게 하도록 렌즈를 구성한 것을 특징으로 하는 LED 조명 광학 시스템.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100053560A KR101159688B1 (ko) | 2010-06-07 | 2010-06-07 | 엘이디 조명 광학 시스템 |
KR10-2010-0053560 | 2010-06-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011155757A2 true WO2011155757A2 (ko) | 2011-12-15 |
WO2011155757A3 WO2011155757A3 (ko) | 2012-04-19 |
Family
ID=45098523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/004156 WO2011155757A2 (ko) | 2010-06-07 | 2011-06-07 | 엘이디 조명 광학 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101159688B1 (ko) |
WO (1) | WO2011155757A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019098405A1 (ko) * | 2017-11-15 | 2019-05-23 | (주)토핀스 | 원거리 감시용 단적외선 카메라 광학계 |
CN113625508A (zh) * | 2021-08-18 | 2021-11-09 | 长春电子科技学院 | 高变倍比照明光学系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101919735B1 (ko) * | 2018-07-16 | 2018-11-16 | (주)카네비컴 | 발광 빔 각도 조절이 가능한 광학계, 라이다 센서 및 이의 발광 각도 조절 방법 |
KR102218927B1 (ko) * | 2020-08-20 | 2021-02-23 | 주식회사 빛글 | 렌즈 어셈블리 및 이를 이용한 고보 조명장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010055209A1 (en) * | 2000-06-27 | 2001-12-27 | Coemar S.P.A. | Light projector, particularly for projecting light with variable dimensions and coloring |
KR20040095027A (ko) * | 2003-05-06 | 2004-11-12 | 김두근 | 광 발산 조정용 적외선 조명장치 |
JP2007199573A (ja) * | 2006-01-30 | 2007-08-09 | Sumitomo Electric Ind Ltd | 赤外線レンズ、赤外線カメラ及びナイトビジョン |
-
2010
- 2010-06-07 KR KR1020100053560A patent/KR101159688B1/ko active IP Right Grant
-
2011
- 2011-06-07 WO PCT/KR2011/004156 patent/WO2011155757A2/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010055209A1 (en) * | 2000-06-27 | 2001-12-27 | Coemar S.P.A. | Light projector, particularly for projecting light with variable dimensions and coloring |
KR20040095027A (ko) * | 2003-05-06 | 2004-11-12 | 김두근 | 광 발산 조정용 적외선 조명장치 |
JP2007199573A (ja) * | 2006-01-30 | 2007-08-09 | Sumitomo Electric Ind Ltd | 赤外線レンズ、赤外線カメラ及びナイトビジョン |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019098405A1 (ko) * | 2017-11-15 | 2019-05-23 | (주)토핀스 | 원거리 감시용 단적외선 카메라 광학계 |
CN113625508A (zh) * | 2021-08-18 | 2021-11-09 | 长春电子科技学院 | 高变倍比照明光学系统 |
Also Published As
Publication number | Publication date |
---|---|
KR101159688B1 (ko) | 2012-06-25 |
KR20110133903A (ko) | 2011-12-14 |
WO2011155757A3 (ko) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017023086A1 (ko) | 촬상렌즈 | |
JP2019185015A (ja) | 固定焦点レンズ | |
KR20180076743A (ko) | 촬상 광학계 | |
CN103403603B (zh) | 变焦镜头和成像设备 | |
WO2016190625A1 (ko) | 광시야 비열화 적외선 렌즈모듈 | |
TW200720695A (en) | Zoom lens and imaging apparatus | |
WO2011155757A2 (ko) | 엘이디 조명 광학 시스템 | |
KR20200003552A (ko) | 촬상 광학계 | |
KR20170043277A (ko) | 촬상 광학계 | |
KR200438209Y1 (ko) | 가시광선 및 근적외선 감시카메라의 초점 가변형 렌즈 | |
KR101289797B1 (ko) | 줌 조명 시스템 및 이를 채용한 촬상 장치 | |
TW202040207A (zh) | 取像鏡頭及其製造方法 | |
KR102609154B1 (ko) | 촬상 광학계 | |
US20150124341A1 (en) | Macro conversion lens | |
KR101859701B1 (ko) | 조명 렌즈계 및 이를 포함한 조명 광학계 | |
CN212259082U (zh) | 一种终端设备 | |
WO2016163707A1 (ko) | 고해상도 광시야각 원적외선 광학계 | |
CN209511892U (zh) | 一种矩形光斑的闪光灯透镜系统 | |
KR20170057211A (ko) | 촬상 광학계 | |
WO2019117615A1 (ko) | 광고립 소자 | |
CN221056748U (zh) | 一种变倍投影灯镜头 | |
CN201141936Y (zh) | Dlp长后工作距变焦投影镜头 | |
KR20190014053A (ko) | 촬상 광학계 | |
KR102597147B1 (ko) | 촬상 광학계 | |
KR102597156B1 (ko) | 촬상 광학계 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11792668 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11792668 Country of ref document: EP Kind code of ref document: A2 |