WO2016017856A1 - 능동질량감쇠장치의 최적제어력 산정 및 제어방법 - Google Patents

능동질량감쇠장치의 최적제어력 산정 및 제어방법 Download PDF

Info

Publication number
WO2016017856A1
WO2016017856A1 PCT/KR2014/009727 KR2014009727W WO2016017856A1 WO 2016017856 A1 WO2016017856 A1 WO 2016017856A1 KR 2014009727 W KR2014009727 W KR 2014009727W WO 2016017856 A1 WO2016017856 A1 WO 2016017856A1
Authority
WO
WIPO (PCT)
Prior art keywords
active mass
control
displacement
damping device
mass damping
Prior art date
Application number
PCT/KR2014/009727
Other languages
English (en)
French (fr)
Inventor
이상현
우성식
정란
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Priority to US15/037,309 priority Critical patent/US10253841B2/en
Publication of WO2016017856A1 publication Critical patent/WO2016017856A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1011Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper

Definitions

  • the present invention relates to controlling vibration generated in a structure, and more particularly, to an optimum control force calculation and control method of an active mass damping device used for the vibration control of a structure.
  • Mass vibration suppressor is an additional vibration system with mass, and its dynamic characteristics are synchronized with the vibration response of the structure to increase the vibration through resonance, thereby controlling the vibration of the structure.
  • Most of these mass type vibration suppression devices are installed at the position where the response of the structure is maximum, that is, installed at a part of the uppermost floor, and thus are widely used for reinforcing wind resistance in new and existing structures due to flexibility of structure design and ease of management.
  • Such mass damping devices can be classified into passive tuned mass dampers (TMD) and active mass dampers (AMD), especially active mass dampers for passive control. Only about one third of the mass is required, and much research has been done recently.
  • the active mass damping device calculates the control force according to the real-time control method based on the response such as acceleration, velocity, and displacement generated in the structure by the wind load, and then generates the control force through the motor drive connected to the mass body.
  • Current real-time control method for the active control and the Linear Quadratic Regulator (LQR) according to the analysis region Linear Quadratic Regulator (LQR) according to the analysis region, Linear Quadratic Gaussian continuous time-domain techniques dioxide and time domain techniques, such as frequency domain techniques, such as H 2, such as (LQG), non-linear There is also Bang-Bang control method.
  • LQR Linear Quadratic Regulator
  • Prior art document 5 compares LQG, which is a time domain control method, and H2, which is a frequency domain control method, and confirms that the control of the structure through the H2 control method can concentrate the control force in the low frequency region.
  • the first active mass damping device to which the actual active control method was applied was the Kyobashi Seiwa Building in Japan in 1989. Two active mass damping devices were installed to control the vibration caused by strong winds and moderate earthquakes, thereby increasing usability. It became.
  • HMD Hybrid mass damper
  • Incheon Airport control tower 2000 with the support of design and manufacturer of overseas active mass damper
  • active mass damper was installed at L hotel in Ulsan in 2007.
  • active control methods which are the core of active mass damping devices, are all designed by foreign companies, and there is no installation using domestic technology.
  • Korean Patent No. 1390502 discloses a multiple degree of freedom active mass damping device, but its effective control force calculation and control are somewhat inadequate.
  • Patent Document 1 Korean Registered Patent KR 1390502 B1
  • Non-Patent Document 1 Chung, L.L., Reinhorn, A.M. and Soong, T.T., Experiments on Active Control of Seismic Structures, Journal of Engineering Mechanics, ASCE, Vol. 114, 1988, pp. 241-256.
  • Non-Patent Document 2 2. Chung, L.L., Lin, R.C., Soong, T.T., and Reinhorn, A.M., Experiments on Active Control for MDOF Seismic Structures, Journal of Engineering Mechanics, ASCE, Vol. 115, No. 8, 1989, pp. 1609-1627
  • Non-Patent Document 3 Tamura, K., Shiba, K., Inada, Y., and Wada, A. (1994). Control Gain Scheduling of a Hybrid Mass Damper System against Wind Response of Tall Buildings. Proc. of the First World Conference on Structural Control, FA2: 1322.
  • Non-Patent Document 4 Gattulli, V. and Soong, T.T. (1994). Nonlinear Control Laws for Enhancement the Structural Control Effectiveness. Proc. 5th U.S. National Conference on Earthquake Engineering, Chicago, IL.
  • Non-Patent Document 5 Min Kyung-won, Kim Jin-gu, Seong Chun Kim, Ran Ran, A Comparative Study of Active Control Algorithm According to Weight Function, Korean Society of Computational Structural Engineering, Vol.14, No.2, 2001, pp.173 ⁇ 179.
  • an object of the present invention is designed and manufactured for the first time using a domestic proprietary technology to calculate the optimum control force using the weighting function and the origin correction signal to the active mass damping device to control the device.
  • an object of the present invention is to provide an optimal control force calculation method and control method for an active mass damper using an input filter in order to increase control efficiency.
  • an optimal control force calculation method and a control method of an active mass damping apparatus include: (a) sensing the frequency and acceleration generated in a structure in a sensor in real time; (b) calculating acceleration and displacement by integrating the acceleration in an integral calculation module; (c) calculating, by the control force calculation module, an optimum control force using the calculated speed, displacement, weighting function according to the displacement, and origin correction signal; And (d) controlling the driving of the actuator according to the calculated optimum control force.
  • the flow phenomenon of the moving mass can be controlled by the weighting function and the origin correction signal, and stable control at the origin is also possible.
  • accurate control signal generation and performance that can satisfy the control target for each mode can be achieved.
  • FIG. 1 is a schematic diagram of an optimum control force calculation and control system of an active mass damping apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an active mass damping device according to an embodiment of the present invention.
  • Figure 3 is a flow chart of the optimum control force calculation and control method of the active mass damping device according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the speed and the displacement of the active mass damping device, (a) is a graph showing the weighting function of the control force, (b) is a diagram showing the change of the origin correction signal according to the speed and displacement to be.
  • Fig. 5 is a diagram showing the displacements of the active mass damping device, respectively, in the case of non-application (a) and application (b).
  • FIG. 6A is a graph showing the acceleration of the structure and the acceleration, the displacement, and the speed of the active mass damping device according to the weighting function.
  • FIG. 6B is a graph showing the acceleration of the structure and the acceleration, displacement, and velocity of the active mass damping device according to the application of the weighting function.
  • FIG. 7 is a graph showing an acceleration response relationship between a structure and an active mass damping device.
  • FIG. 8 is a view showing the acceleration response of the structure during the non-control (a), control (b) in the secondary mode.
  • FIG. 9 is a view showing the displacement of the active mass damping device during non-control (a) and control (b) in the same secondary mode as in FIG. 7.
  • FIG 10 is a diagram illustrating a phase difference according to a filtering bandwidth in the low pass filter (a) and the high pass filter (b).
  • FIG. 11 shows the results of the respective filter processing for the structure response, showing the results of the low pass filter, the high pass filter and the cutoff frequency band filter from above.
  • 13 is a diagram showing the structure response in the secondary mode.
  • FIG. 14 is a diagram showing the structure response in the tertiary mode.
  • Active mass damping device 100 is installed on the structure (S), the actuator 400 connected to the active mass damping device 100 based on the structure response such as acceleration, speed, displacement generated in the structure due to wind load, etc. By controlling the vibration of the structure by moving the mass contained in the active mass damping device 100 by driving.
  • the active mass damping device 100 includes a frame 160, a guide rail 140, a roller 150, a mass body 110, and an elastic body 120. ), And attenuator 130.
  • the mass body 110 is arranged to move up and down through the guide rail 140 and the roller 150 on the frame 160, the elastic body 120 and the damping body 130 supports the mass body 110 from the bottom do.
  • the frame 160 is fixed to the structure S, and when the structure S vibrates up and down, the mass body 110 moves up and down relatively on the frame 160 to absorb the vertical vibration of the structure S. Perform. At this time, the elastic body 120 and the damping body 130 controls the movement of the mass body 110 to effectively damp the up and down vibration of the structure (S).
  • the active mass damping device 100 is an example of a terminal induction active mass damping device that attenuates the vibration in the vertical direction of the structure S. It can be clearly understood by those skilled in the art from the following description that will be applicable to the active mass damping device having a degree of freedom attenuating the bow, such active mass damping devices are also known (Patent Document 1, etc.), the configuration itself Detailed descriptions thereof will be omitted.
  • the sensor 200 is installed in the structure to sense the structure response (frequency and acceleration) generated in the structure (S).
  • the controller 300 is connected to the sensor 200, and includes an integral calculation module 320 and a control force calculation module 330 to calculate an optimum control force (V input ) of the active mass damping device 100. The detailed procedure will be described later.
  • the integral calculation module 320 calculates the velocity and displacement by integrating the acceleration sensed by the sensor 200, and the integral calculation module 320 may be a Kalman filter and removes the error of the sensed acceleration. do.
  • the Kalman filter can be applied when the measured value of an object includes a probabilistic error, and the state at a specific point of time has a linear relationship with the state of the previous point in time. For example, you can measure the position, velocity, and acceleration of a measurement object, but this measurement might contain errors. In this case, the Kalman filter can be used to estimate the position of the object.
  • the control force calculation module 330 calculates the optimal control force (V input ) of the active mass damping device 100 by using the speed and displacement calculated by the integral calculation module 320, and at this time, a weighting function G 1 according to the displacement. ) And zero point correction signal G 2 , which is one of the key technical features of the present invention. Detailed description will be described later.
  • the actuator 400 is connected to the control unit 300 and the active mass damping device 100 and is driven according to the optimum control force V input input from the control unit 300 to control the moving distance of the mass body 110.
  • the active mass damping device 100 (indicated by AMD in the drawing) is the mass of only the portion of the active mass damping device 100 moving in the direction to be controlled from the total mass of the active mass damping device 100 and the mass body 110 in that direction. It is a device to control the vibration of the structure by transmitting the inertia force corresponding to the product of acceleration.
  • f AMD is the inertia force
  • m AMD is the mass of the active mass damper
  • a AMD is the acceleration of the mass
  • the frequency and acceleration generated in the structure in the sensor is sensed in real time (S100).
  • the acceleration is integrated in the integral calculation module as shown in Equations 2 and 3 to calculate the speed and the displacement (S200).
  • a AMD is the acceleration of the AMD mass
  • V AMD is the velocity of the AMD mass
  • D AMD is the displacement of the AMD mass
  • Equations 2 and 3 when the acceleration A AMD occurs in the mass of the active mass damper according to the vibration of the structure, the speed V AMD and the displacement D AMD are generated as a result of the acceleration integration.
  • the maximum velocity ( ⁇ max ) and the maximum displacement (d max ) among the generated velocity V AMD and the displacement D AMD are 400 of the actuator, which is the most important parameter in the control of the active mass damping apparatus 100, respectively.
  • the acceleration (A AMD ) as the velocity (V AMD ) and the displacement (D AMD ) may be calculated by applying a Kalman filter as described above, rather than a simple integral, and the detailed description thereof will be given by an experimental example. It will be described later.
  • the control force calculation module 330 calculates the input (S300).
  • the calculation of the optimal control force (V input ) of the active mass damping device 100 is to ensure the control performance while minimizing the mass of the mass body 110, the capacity of the actuator 400, and the moving distance (stroke) of the mass body 110. It is the most important factor.
  • the mass of the active mass damping device 100 is minimized, acceleration is inevitably increased in order to realize a damping force of a desired size. Accordingly, the maximum velocity ⁇ max and the maximum displacement d max of the mass body 110 are increased. In addition, the capacity of the actuator 400 and the length of the guide rail 130 for implementing the same also increase.
  • the weighting function (G 1 ) according to the displacement of the mass body 110 to the optimum control force (V input ) and the zero point correction signal (G 2 ) Apply.
  • the weighting function G 1 is set as a cos function according to the current displacement d (t) of the active mass damping device 100 as shown in Equation 5 below, and is a function inputted to the value of the speed according to the displacement section. with, in the minimum displacement (d min) is less than the duration of the interval so that the calculated speed value to implement and, at least over the displacement (d min) and less restricted (maximum) displacement (d max) to reduce the operation speed.
  • the velocity value is zeroed to prevent the displacement of the mass body 110 from occurring beyond the limit (maximum) displacement (d max ).
  • the calculated speed changes according to the current displacement d (t) of the active mass damping device 100 (see FIG. 3 (a)).
  • the origin correction signal G1 is an element for implementing a continuous control force within the effective control range in the control process of the active mass damping device 100, and returns to the set origin again when the mass body 110 exceeds a predetermined moving distance.
  • a speed input speed separate from the control speed of the actuator 400 in order to behave as it is, it can be expressed as shown in Equation 6 below.
  • Equation 6 ⁇ max is the maximum speed of the active mass damping device 100 applied for origin correction, d 0 is the displacement boundary value of the active mass damping device 100 to which the maximum speed is applied, and d (t) is The displacement of the active mass damping device 100 at the time point.
  • the controller 300 controls the driving of the actuator 400 according to the calculated optimum control force (V input ) (S400).
  • control unit 300 further includes a band pass filter module 310, and in addition, the band pass filter module 110 filters only a predetermined bandwidth among the frequencies sensed by the sensor 200 to integrate the integral calculation module 320. It may further comprise the step of inputting (S150).
  • a digital filter using a post-processing technique through various numerical analysis programs is used, and the digital filter can be applied to a filter having no magnitude and phase error for a desired frequency response.
  • An analog filter that can filter only the required bandwidth should be applied.
  • the Butterworth filter which is often used for such an analog filter, is configured as shown in Equation 7 below, and the amplitude characteristic is almost flat in the pass band so that there is no pulsation and it decreases through the cutoff frequency.
  • the transition band which is an intermediate region between the pass band and the block band, is determined according to the order of the filter.
  • the target structure in which the active mass damping device is installed is a 39-story compound-use structure, and in 2011, the vibration occurred due to the vertical resonance caused by the group rhythm movement.
  • the wind tunnel test was performed during the investigation into the cause of the accident and the wind load was measured by the wind tunnel during the typhoon for BOLAVEN, No. 15 Typhoon 2012, based on AIJ-2004.
  • the maximum acceleration was 12.04cm / sec 2 , which is much higher than the H-90 level of Japanese residential performance guideline, which is much higher than the H-70 (6.32cm / sec 2 ) limit of general office use structure.
  • the installation of the active mass damping device was decided, and an analytical study was conducted to select the control method of the device.
  • the frequency of the horizontal primary mode confirmed by the structural analysis results and the vibration measurement during the typhoon was 0.1907Hz, and the mode damping ratio was 1%. Accordingly, in order to reduce the H-70 level, which is the usability limit of office-use structures in the Japanese Resident Performance Guidelines, it was found that the acceleration of the response should be reduced by 50%.
  • TMD passive tuned mass damper
  • the limit (max) displacement (d max ) is ⁇ 500mm in consideration of the length ( ⁇ 600mm) and limit switch ( ⁇ 500mm) of the guide rail 130 of the active mass damping device designed through the analysis.
  • the experiment was carried out in the experimental building by setting other correction values.
  • Figure 5 (a) shows the displacement of the active mass damping device 100 during vibration suppression, the displacement is greatly increased in the case of using a general integral filter is the limiting displacement (d max ) of the active mass damping device 100 to be installed It can be confirmed that it goes over ⁇ 500mm and goes over -2000mm. On the other hand, the displacement of the Kalman filter can be seen to operate safely within the limit displacement (d max ).
  • FIG. 5 (b) shows the displacement of the active mass damping device 100 during vibration damping, and applies the zero point correction signal G 2 .
  • the zero point correction signal G 2 is not applied (a large increase in the active mass damping device 100 in FIG. 5 (a) is reduced, it is confirmed that the displacement operates within the limit displacement (d max ) of ⁇ 500mm. .
  • the control performance test was performed after the setting and correction values were reflected in the control unit.
  • a pendulum having a natural frequency of 0.2 Hz was installed, and a sensor 200 was attached thereto to sense the vibration and acceleration and inputted to the controller 300.
  • the setting for the weighting function G 1 and the zero point correction signal G 2 input to the control unit 300 sets the minimum displacement d min , which is a variable of the weighting function G 1 , to 200 mm, and the limiting displacement d max .
  • FIGS. 6A and 6B show the acceleration (V AMD ), displacement (D AMD ), and speed (V AMD ) responses of the structure and the active mass damping device 100 with and without the correction of the zero point correction signal G 2 . . Excitation is different from the waveform and magnitude of the acceleration inputted separately through the attraction force, but when the zero point correction signal (G 2 ) is not input, as shown in Figure 6a, when the acceleration of up to 0.2m / sec 2 is active After the displacement of the mass damper increases to + 300mm, it can be seen that the limiting displacement (d max ) is not exceeded.
  • FIG. 7 The results of comparing the input acceleration and the output acceleration of the active mass damper according to the weighting function G 1 and the zero point correction signal G 2 shown in FIG. 6B are shown in FIG. 7. As shown in FIG. 7, it can be seen that the input acceleration and the output acceleration accordingly show exactly 90 ° phase.
  • the system identification of the structure (S) is performed through a sine wave test using the excitation function of the active mass damping device. As shown in Table 2, the control target frequency, mass, and damping ratio, which are the characteristics of each mode, were extracted.
  • the weighting function G 1 set the minimum displacement (d min ) to 300 mm and the limiting displacement (d max ) to 500 mm, and the zero point correction signal (G 2 ) set the maximum speed ( ⁇ max ) to 0.04 m / sec.
  • the boundary displacement d 0 was set to 300 mm.
  • Figure 8 shows the structure acceleration response by the first control experiment for 0.213Hz in the secondary mode.
  • 8 (a) shows the free vibration state after exciting 0.213Hz for 100 seconds using the excitation mode of the active mass damping device 100
  • FIG. 8 (b) shows 160 seconds after the same vibration frequency, This is the result of real control through mode execution.
  • the control is controlled for 0.213Hz after starting the control, but after the momentary vibration reduction, it is shown to amplify the acceleration response of the structure again.
  • Fig. 9 shows the displacement history in the same control experiment, which is a result of applying the weighting function G 1 and the zero point correction signal G 2 .
  • the excitation displacement of the active mass damping device 100 is constantly excited at 200 mm, and as shown in FIG.
  • FIG. 9 (b) it can be seen that after 160 seconds of excitation, the position of the mass body 110 returns to the initial position according to the mode change, and then greatly decreases after a maximum displacement of 400 mm occurs with the start of control.
  • the weighting function G 1 does not cause the movement beyond the limit displacement (d max ), and it can be confirmed that the control is performed based on the origin in the subsequent control section.
  • the controller 300 determines that the control efficiency is reduced when the additional mode is controlled, and the band pass filter module 310 is designed as a method for preventing the excitation of the corresponding mode at the input stage.
  • the bandpass filter module 310 performed filtering on the response of the structure sensed in the first control experiment to design the bandpass filter module 310 using the Butterworth filter as described above.
  • the order (N) of the filter which determines the width of the transition band, is set to 1, and then the actual response and the post-filtering response are filtered through a low-pass filter design for the sensed response by 0.2 intervals from 0.2 Hz to 0.6 Hz. After confirming the phase difference, the phase difference after reducing the high pass filter from 0.18Hz to 0.01Hz was confirmed.
  • FIG. 10 shows the phase difference between the response sensed by the low and high pass filters and the response of each filter section.
  • the phase difference decreases as the cutoff frequency increases. As the frequency decreases, the phase difference appears to decrease.
  • a cutoff frequency having a zero phase difference by the low pass filter section and the high pass filter was selected, and the phase differences were compared.
  • FIG. 11 shows the results of the respective filter processing for the structure response and the bandpass filter results obtained by selecting a cutoff frequency having a phase difference of 0 when controlling at 0.213 Hz among the first measurement results.
  • the pass filter is formed later than the actual response, and the high pass filter is formed faster than the actual response.
  • the filter with the cutoff frequency of each filter shows the filtered response without the actual response and the error.
  • the secondary control experiment results for the three control modes performed are divided into the short-side (Y1, Y2) and long-side (X1) direction responses of the structure S, FIG. 12.
  • Y1, Y2 short-side
  • X1 long-side
  • FIG. 14 In order to examine the accurate control performance, a low pass filter treatment with a band of 0.7 Hz was performed, including the response of 0.676 Hz, which was the vibration-induced frequency in the first experiment.
  • FIG. 12 shows the response of the structure S in each direction during the non-control / control for the first mode (0.200 Hz). After completion of the excitation, the short-side (Y1, Y2) responses are equally reduced by the control mode. Able to know. It can be seen that the long side X1 response increases after the start of the excitation and a response occurs 10 seconds after the end of the excitation.
  • FIG. 13 is a control result for the secondary mode (0.213 Hz).
  • the response continues after 10 seconds after the end of the excitation, but the response decreases.
  • Y2 After decreasing the response continuously, we can see that the response decreases by more than 50% in the free vibration section.
  • the long side X1 response reduces vibration similarly to the first mode control, but the response decrease is larger.
  • FIG. 14 shows the control result for the tertiary mode. Unlike the first and second modes, it can be seen that the maximum acceleration magnitudes of the short side directions Y1 and Y2 are different and the long side direction X1 has almost no response. This indicates that the tertiary mode is a rotational mode according to the center of mass, so that the Y2 response close to the center of mass is smaller than the Y1 response. In addition, since the vibration does not occur in the long side direction in the rotation mode in the short side direction, it is judged that there is almost no X1 response.
  • the vibration control effect tends to be controlled within two cycles, and is much larger than the first and second modes. This indicates that the mode participating mass to mass of the vibration damper is much smaller than that of the first and second modes, which shows a large control effect.
  • the time history of the control effect of each control mode was confirmed, and the attenuation ratio of each mode was extracted using the logarithmic reduction method based on the free vibration response according to the control, and is shown in Table 3 below.
  • the damping ratios for each mode before control were 1.4%, 1.6%, and 1.3% for each control mode, and increased to 4.6%, 5.3%, and 6.7% after control.
  • the flow phenomenon of the moving mass can be controlled by the weighting function and the origin correction signal, and stable control is possible at the origin, and also the band pass By removing signals other than the control mode through the filter, accurate control signal generation and performance to satisfy the control target for each mode can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Medical Informatics (AREA)
  • Algebra (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

본 발명은 구조물의 진동 제어에 이용되는 능동질량감쇠장치의 최적제어력 산정 및 제어방법에 관한 것으로, (a) 센서(200)에서 구조물(S)에 발생하는 구조물 응답인 진동수 및 가속도 응답이 실시간으로 센싱되는 단계; (b) 적분연산모듈(320)에서 상기 가속도 응답이 적분되어 속도 및 변위가 연산되는 단계; (c) 제어력연산모듈(330)에서 상기 연산된 속도, 변위, 상기 변위에 따른 가중함수(G1) 및 원점보정신호(G2)를 이용하여 최적제어력(Vinput)이 연산되는 단계; 및 (d) 상기 연산된 최적제어력(Vinput)에 따라 액츄에이터(400)의 구동을 제어하는 단계;를 포함하는 것을 특징으로 하며, 이에 의하면, 가중함수와 원점보정신호에 의해 이동질량체의 흐름현상을 제어하고, 원점에서 안정적인 제어가 가능하고, 또한 대역통과필터를 통해 제어 모드 이외의 신호를 제거함으로써, 정확한 제어 신호 생성과 함께 각 모드에 대한 제어 목표를 만족할 수 있는 성능을 발휘할 수 있다.

Description

능동질량감쇠장치의 최적제어력 산정 및 제어방법
본 발명은 구조물에 발생하는 진동을 제어하는 것에 관한 것으로, 보다 상세하게는 구조물의 진동 제어에 이용되는 능동질량감쇠장치의 최적제어력 산정 및 제어방법에 관한 것이다.
바람하중에 의한 구조물 또는 교량의 진동 저감을 위한 기술로 질량형 제진장치의 사용이 증가하고 있다. 질량형 제진장치는 질량을 갖는 부가의 진동계로 구조물의 진동응답에 자신의 동적 특성이 동조되어 공진을 통한 진동 증가가 발생하고 이를 통해 구조물의 진동을 제어하는 방법이다. 이러한 질량형 제진장치는 대부분 구조물의 응답이 최대인 위치, 즉 최상층의 일부에 설치하기 때문에 구조물 설계의 유연함과 관리의 용이성 등에 의해 신축 및 기존 구조물에 내풍보강 시 많이 사용되고 있다. 이러한 질량형 제진장치는 수동형인 동조질량감쇠장치(Tuned Mass Damper, TMD)와 능동형인 능동질량감쇠장치(Active Mass Damper, AMD)로 구분할 수 있으며, 특히 능동질량감쇠장치는 동일한 제어효과를 위해 수동형보다 1/3 정도의 질량만이 요구되어 최근 많은 연구가 이루어지고 있다. 능동질량감쇠장치는 바람하중에 의해 구조물에 발생하는 가속도, 속도, 변위와 같은 응답을 바탕으로 실시간 제어방법에 따라 제어력 산정 후, 질량체에 연결된 모터 구동를 통해 제어력을 발생시킨다. 현재 능동제어를 위한 실시간 제어방법은 해석 영역에 따라 Linear Quadratic Regulator(LQR), Linear Quadratic Gaussian(LQG) 등과 같은 연속시간영역 기법과 이산화 시간영역기법, H2와 같은 진동수 영역기법 등이 있고, 비선형 제어방법인 Bang-Bang 제어기법도 있다.
선행기술문헌 1, 2는 단자유도 및 3자유도 시스템에 LQR 방법을 적용한 능동 강선시스템(Active tendon system)에 대한 해석적 연구를 수행하였으며, 이후 Chung(1989) 등과 Reinhorn(1989) 등은 6층 높이의 모델 구조물에 능동제어 방법을 적용하였다.
선행기술문헌 3, 4는 제어시 사용하는 구동기(Actuator)의 힘과 스트로크(Stroke)의 한계를 고려한 제어방법을 연구하였으며, Gattuli와 Soong은 능동제어 시스템의 효율성을 증가시키기 위한 비선형 제어알고즘에 대한 연구를 수행하였다.
선행기술문헌 5는 시간영역 제어방법인 LQG와 주파수 영역 제어방법인 H2에 대한 비교를 통해 H2 제어방법을 통한 구조물 제어가 제어력을 저주파수 영역에 집중시킬 수 있음을 확인하였다.
실제 능동제어방법이 최초로 적용된 능동질량감쇠장치는 1989년 일본의 Kyobashi Seiwa 빌딩이며, 2대의 능동질량감쇠장치를 설치하여 강풍과 보통 규모의 지진에 의해 발생하는 진동을 제어하여, 사용성을 증가시키는데 사용되었다.
국내에서는 해외 능동질량감쇠장치 설계, 제작 업체의 지원을 통해 2000년 인천공항 관제탑에 수동/능동 제어가 가능한 HMD(Hybrid mass damper)가 설치되었고, 2007년 울산의 L호텔에 능동질량감쇠장치가 설치되었으나, 능동질량감쇠장치의 핵심이라 할 수 있는 능동제어방법은 모두 해외 전문업체에서 설계한 것으로, 국내 독자 기술을 이용한 설치는 전무한 상태이다.
또한, 본 출원인의 발명인 한국등록특허 제 1390502 호에는 다자유도 능동질량감쇠장치에 대하여 개시되어 있으나, 이의 효과적인 제어력 산정 및 제어에는 다소 미흡한 부분이 있다.
*선행기술문헌
(특허문헌 1) 1. 한국등록특허 KR 1390502 B1
(비특허문헌 1)1. Chung, L.L., Reinhorn, A.M. and Soong, T.T., Experiments on Active Control of Seismic Structures, Journal of Engineering Mechanics, ASCE, Vol. 114, 1988, pp. 241~256.
(비특허문헌 2)2. Chung, L.L., Lin, R.C., Soong, T.T., and Reinhorn, A.M., Experiments on Active Control for MDOF Seismic Structures, Journal of Engineering Mechanics, ASCE, Vol.115, No. 8, 1989, pp. 1609~1627
(비특허문헌 3)3. Tamura, K., Shiba, K., Inada, Y., and Wada, A. (1994). Control Gain Scheduling of a Hybrid Mass Damper System Against Wind Response of Tall Buildings. Proc. of the First World Conference on Structural Control, FA2: 1322.
(비특허문헌 4)4. Gattulli, V. and Soong, T.T. (1994). Nonlinear Control Laws for Enhancement the Structural Control Effectiveness. Proc. 5th U.S. National Conference on Earthquake Engineering, Chicago, IL.
(비특허문헌 5)5. 민경원, 김진구, 김성춘, 정란, 가중함수에 따른 능동제어 알고리듬의 비교 연구, 한국전산구조공학회 논문집, 제14권, 제2호, 2001, pp.173~179.
이에 본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 국내 독자의 기술을 사용하여 최초로 설계/제작하여 능동질량감쇠장치에 가중함수와 원점보정신호를 이용한 최적제어력을 산정하여 장치를 제어하고, 또한, 제어 효율을 높이기 위하여 입력 필터를 이용한 능동질량감쇠장치의 최적제어력 산정방법 및 제어방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명에 따른 능동질량감쇠장치의 최적제어력 산정방법 및 제어방법은, (a) 센서에서 구조물에 발생하는 진동수 및 가속도가 실시간으로 센싱되는 단계; (b) 적분연산모듈에서 상기 가속도가 적분되어 속도 및 변위가 연산되는 단계; (c) 제어력연산모듈에서 상기 연산된 속도, 변위, 상기 변위에 따른 가중함수 및 원점보정 신호를 이용하여 최적제어력이 연산되는 단계; 및 (d) 상기 연산된 최적제어력에 따라 액츄에이터의 구동을 제어하는 단계;를 포함하는 것을 특징으로 한다.
상기한 바와 같은 본 발명에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어 방법/시스템에 의하면, 가중함수와 원점보정신호에 의해 이동질량체의 흐름현상을 제어하고, 원점에서 안정적인 제어가 가능하고, 또한 대역통과필터를 통해 제어 모드 이외의 신호를 제거함으로써, 정확한 제어 신호 생성과 함께 각 모드에 대한 제어 목표를 만족할 수 있는 성능을 발휘할 수 있다.
도 1은 본 발명의 일 실시예에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어 시스템의 개략도이다.
도 2는 본 발명의 일 실시예에 따른 능동질량감쇠장치의 개략도이다.
도 3은 본 발명의 일 실시예에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어 방법의 흐름도이다.
도 4는 능동질량감쇠장치의 속도-변위와의 관계를 나타낸 그래프로서, (a)는 제어력에 대한 가중함수를 나타낸 그래프이며, (b)는 속도와 변위에 따른 원점보정신호의 변화를 나타낸 도면이다.
도 5는 원점보정신호를 비적용(a)한 경우와 적용(b)한 경우의 능동질량감쇠장치의 변위를 각각 나타낸 도면이다.
도 6a는 가중함수에 적용에 따른 구조물 가속도 및 능동질량감쇠장치의 가속도, 변위, 속도를 나타낸 그래프로서, 원점보정신호를 추가로 적용하지 않은 경우의 상태를 나타낸 도면이다.
도 6b는 가중함수의 적용에 따른 구조물 가속도 및 능동질량감쇠장치의 가속도, 변위, 속도를 나타낸 그래프로서, 원점보정신호를 추가로 적용한 경우의 상태를 나타낸 도면이다.
도 7은 구조물과 능동질량감쇠장치의 가속도 응답 관계를 나타낸 그래프이다.
도 8은 2차 모드에서 비제어(a), 제어(b)시 구조물의 가속도 응답을 나타낸 도면이다.
도 9는 도 7과 동일한 2차 모드에서 비제어(a), 제어(b)시의 능동질량감쇠장치의 변위를 나타낸 도면이다.
도 10은 저역 통과 필터(a) 및 고역 통과 필터(b)에 있어서, 필터링 대역폭에 따른 위상차를 나타낸 도면이다.
도 11은 구조물 응답에 대한 각각의 필터 처리결과를 나타낸 도면으로, 위에서 부터 저역 통과 필터, 고역 통과 필터 및 차단 주파수 대역 필터의 결과를 나타낸다.
도 12는 1차 모드에서의 구조물 응답을 나타낸 도면이다.
도 13은 2차 모드에서의 구조물 응답을 나타낸 도면이다.
도 14는 3차 모드에서의 구조물 응답을 나타낸 도면이다.
본 발명에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어방법의 바람직한 실시 예를 도 1 내지 도 13을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 기술되어야 할 것이다.
이하 도 1 내지 14를 참조하여 본 발명의 일 실시예에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어방법을 설명하면 다음과 같다.
1. 능동질량감쇠장치의 최적제어력 산정 및 제어시스템의 설명
먼저, 능동질량감쇠장치의 최적제어력 산정 및 제어방법을 수행하기 위한 시스템을 설명한다.
본 발명에 따른 능동질량감쇠장치의 최적제어력을 산정 및 제어하기 위한 시스템은, 도 1에 도시된 바와 같이 능동질량감쇠장치(100), 센서(200), 제어부(300) 및 액츄에이터(400)를 포함한다.
능동질량감쇠장치(100)는 구조물(S)에 설치되며, 풍하중 등으로 인하여 구조물에 발생하는 가속도, 속도, 변위와 같은 구조물 응답을 바탕으로 하여 능동질량감쇠장치(100)에 연결되는 액츄에이터(400)의 구동을 통해 능동질량감쇠장치(100)에 포함된 질량체를 이동시켜 구조물의 진동을 제어한다.
능동질량감쇠장치(100)의 일례로서, 도 2에 도시된 바와 같이 능동질량감쇠장치(100)는 프레임(160), 가이드레일(140), 롤러(150), 질량체(110), 탄성체(120), 및 감쇠체(130)를 포함할 수 있다.
질량체(110)는 프레임(160) 위에서 가이드레일(140)과 롤러(150)를 통해서 상하로 움직임이 가능하도록 배치되고, 탄성체(120)와 감쇠체(130)는 질량체(110)를 하부에서 지지한다.
프레임(160)은 구조물(S)에 고정되어, 구조물(S)이 상하로 진동하면, 질량체(110)가 프레임(160) 위에서 상대적으로 상하로 움직이면서 구조물(S)의 상하진동을 흡수하는 기능을 수행한다. 이때, 탄성체(120)와 감쇠체(130)는 질량체(110)의 움직임을 제어하여 구조물(S)의 상하 진동을 효과적으로 감쇠할 수 있도록 한다.
상기 일례로든 능동질량감쇠장치(100)는, 구조물(S)의 수직방향의 진동을 감쇠하는 단자유도의 능동질량감쇠장치를 예로 들었으나, 수평방향의 진동은 물론이고 수직, 수평방향의 진동을 보두 감쇠하는 다자유도의 능동질량감쇠장치에도 적용될 수 있음은 하기 후술할 기재로부터 통상의 기술자가 명확히 이해할 수 있을 것이며, 이와 같은 능동질량감쇠장치들 역시 공지된바(특허문헌 1등), 구성 자체의 상세한 설명은 생략한다.
센서(200)는 구조물에 설치되어 구조물(S)에 발생하는 구조물 응답(진동수 및 가속도)을 센싱한다.
제어부(300)는 센서(200)와 연결되며, 적분연산모듈(320) 및 제어력연산모듈(330)을 포함하여, 능동질량감쇠장치(100)의 최적제어력(Vinput)을 연산한다. 상세한 과정은 후술한다.
적분연산모듈(320)에서는 센서(200)에서 센싱된 가속도를 적분함으로써 속도 및 변위를 연산하며, 적분연산모듈(320)은 칼만필터(Kalman filter)일 수 있고, 상기 센싱된 가속도의 오차를 제거한다.
칼만필터는 물체의 측정값에 확률적인 오차가 포함되고, 또한 물체의 특정 시점에서의 상태는 이전시점의 상태와 선형적인 관계를 가지고 있는 경우 적용이 가능하다. 예를 들어 측정 물체의 위치, 속도 및 가속도 등을 측정할 수 있지만 이측정값에 오차가 포함되어 있을 수 있다. 이 경우, 연속적으로 측정하는 값들을 칼만필터를 이용해서 해당 물체의 위치를 추정할 수 있다.
제어력연산모듈(330)에서는 적분연산모듈(320)에서 연산된 속도, 변위를 이용하여 능동질량감쇠장치(100)의 최적제어력(Vinput)을 연산하며, 이때 추가적으로 변위에 따른 가중함수(G1) 및 원점보정신호(G2)를 이용하고, 이는 본 발명의 핵심적인 기술적 특징 중 하나이다. 상세한 설명은 후술한다.
연산된 최적제어력(Vinput)을 후술할 액츄에이터(400)에 입력하여 액츄에이터(400)의 구동력을 제어하고, 이에 따라 능동질량감쇠장치(100)에 포함된 질량체(110)의 이동 거리(스트로크, Stroke)가 제어된다.
액츄에이터(400)는 제어부(300) 및 능동질량감쇠장치(100)와 연결되며, 제어부(300)에서 입력된 최적제어력(Vinput)에 따라 구동되어, 질량체(110)의 이동거리를 제어한다.
2. 능동질량감쇠장치의 최적제어력 산정 및 제어방법의 설명
이하, 본 발명의 일 실시예에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어방법을 첨부된 도 3 내지 도 14 및 실험예를 들어 상세히 설명한다.
능동질량감쇠장치(100, 도면에는 AMD로 표기)는 하기 식 1과 같이 능동질량감쇠장치(100)의 전체 질량 중에서 제어대상 방향으로 이동하는 부분만의 질량과 그 방향으로 질량체(110)에 발생한 가속도의 곱에 해당하는 관성력을 구조물에 전달하여 구조물의 진동을 제어하는 장치이다.
수학식 1
Figure PCTKR2014009727-appb-M000001
식 1 중, fAMD는 관성력, mAMD는 능동질량감쇠장치의 질량, AAMD는 질량체의 가속도
먼저, 센서에서 구조물에 발생하는 진동수 및 가속도가 실시간으로 센싱된다(S100).
다음, 적분연산모듈에서 하기 식 2 및 3과 같이 가속도가 적분되어 속도 및 변위가 연산된다(S200).
수학식 2
Figure PCTKR2014009727-appb-M000002
수학식 3
Figure PCTKR2014009727-appb-M000003
식 2, 3 중 AAMD는 AMD 질량체의 가속도, VAMD는 AMD 질량체의 속도, DAMD는 AMD 질량체의 변위.
상기 식 2 및 3에서와 같이 구조물의 진동에 따라 능동질량감쇠장치의 질량체에 가속도(AAMD)가 발생하면 가속도 적분의 결과로 속도(VAMD)와 변위(DAMD)가 발생한다. 이때, 발생하는 속도(VAMD)와 변위(DAMD) 중 최대속도(υmax)와 최대변위(dmax)는 각각 능동질량감쇠장치(100)의 제어에 있어서 가장 중요한 파라미터인 액츄에이터의(400) 구동과 가이드레일(130) 스트로크의 크기를 결정한다. 이러한 주요 파라미터를 실시간으로 센싱하고 산정하여 실시간으로 제어한다.
또한, 가속도(AAMD)를 속도(VAMD) 및 변위(DAMD)로 연산하기 위하여 단순적분이 아닌 상기한 바와 같이 칼만필터를 적용하여 연산될 수 있고, 이에 대한 상세한 설명은 실험예를 들어 후술한다.
다음, 제어력연산모듈(330)에서 속도(VAMD), 변위(DAMD), 가중함수(G1) 및 원점보정신호(G2)를 이용하여 능동질량감쇠장치(100)의 최적제어력(Vinput)을 연산한다(S300).
능동질량감쇠장치(100)의 최적제어력(Vinput) 산정은, 질량체(110)의 질량, 액츄에이터(400)의 용량 및 질량체(110)의 이동거리(스트로크)를 최소화하면서도 제어성능을 확보하는 것이 가장 중요한 요소이다.
그러나, 능동질량감쇠장치(100)의 질량을 최소화하면 원하는 크기의 감쇠력을 구현하기 위하여 가속도가 증가할 수밖에 없고, 이에 따라 질량체(110)의 최대속도(υmax)와 최대변위(dmax)가 증가하고 이를 구현하기 위한 액츄에이터(400)의 용량과 가이드레일(130)의 길이도 증가하게 된다.
따라서, 설치공간의 한계에 따라 요구되는 변위를 만족시키지 못하는 경우가 발생할 수 있고, 최대변위(dmax) 이상의 가속도 센싱 및 입력으로 인하여 질량체(110)의 이동거리가 가이드레일(130)의 길이를 초과하는 경우가 발생할 수도 있다.
이러한 제어 오류를 방지하기 위하여 본 발명에서는 하기 식 4와 같이 최적제어력(Vinput)에 질량체(110)의 변위에 따른 가중함수(G1)와 등속도 원점보정을 위한 원점보정신호(G2)를 적용한다.
수학식 4
Figure PCTKR2014009727-appb-M000004
이러한 각각의 가중함수(G1)와 원점보정신호(G2)를 통해 능동질량감쇠장치(100)에 작용하는 변위 및 속도의 관계를 도 3에 나타내었다. 이와 같이, 가중함수(G1)는 하기 식 5와 같이 능동질량감쇠장치(100)의 현재변위(d(t))에 따른 cos함수로 설정하여, 변위구간에 따른 속도의 값에 입력되는 함수로, 최소변위(dmin) 구간 미만에서는 연산된 속도값이 구현되도록 하고, 최소변위(dmin) 이상과 제한(최대)변위(dmax) 이하의 구간에서는 연산된 속도를 감소시킨다. 그리고, 제한(최대)변위(dmax)를 초과하는 경우에는 속도 값을 0으로 만듦으로써 질량체(110)의 변위가 제한(최대)변위(dmax) 이상 발생하는 것을 방지한다. 즉, 능동질량감쇠장치(100)의 현재변위(d(t))에 따라 연산된 속도가 변화하게 된다(도 3(a) 참조).
수학식 5
Figure PCTKR2014009727-appb-M000005
원점보정신호(G1)는 능동질량감쇠장치(100)의 제어과정에서 유효한 제어범위 이내에서 지속적인 제어력을 구현하기 위한 요소로서, 질량체(110)가 설정된 일정 이동거리를 초과하는 경우 다시 설정된 원점으로 돌아오면서 거동하도록 하기 위한, 액츄에이터(400)의 제어 속도와는 별개의 속도 입력 속도로서, 하기 식 6과 같이 나타낼 수 있다.
수학식 6
Figure PCTKR2014009727-appb-M000006
식 6에서, υmax는 원점보정을 위해 적용되는 능동질량감쇠장치(100)의 최대속도, d0는 최대속도가 적용되는 능동질량감쇠장치(100)의 변위경계값, d(t)는 현재 시점에서의 능동질량감쇠장치(100)의 변위이다.
도 4 및 식 3에 나타낸 바와 같이, 능동질량감쇠장치(100)가 원점에 있는 경우는 이동하는 질량체(110)의 속도가 0이 되고, 능동질량감쇠장치의 변위가 d0에 가까워질수록 υmax의 속도로 상승하여 d0를 초과하는 구간에서는 원점을 항하여 등속도 운동을 하게 된다(도 3(b) 참조).
다음, 제어부(300)는 연산된 최적제어력(Vinput)에 따라 액츄에이터(400)의 구동을 제어한다(S400).
그리고, 제어부(300)는 대역통과필터모듈(310)을 더 포함하여, 대역통과필터모듈(110)에서 추가적으로, 센서(200)에서 센싱된 진동수 중 기설정된 대역폭만을 필터링하여 적분연산모듈(320)로 입력하는 단계를 더 포함할 수 있다(S150).
일반적으로 센싱된 진동수 응답에 대한 필터처리를 하는 경우, 다양한 수치해석 프로그램을 통한 후처리 기법을 사용한 디지털 필터를 사용하며, 디지털 필터는 원하는 진동수 응답에 대하여 크기 및 위상의 오차가 없는 필터 적용이 가능하나, 능동질량감쇠장치에서와 같이 구조물의 진동수 응답에 대한 실시간 센싱을 통하여 제어력을 연산하는 경우에는 센싱된 구조물의 진동수 응답이 위상차 없이 제어부에 입력되어야만 정확한 제어신호 생성이 가능하므로, 위상차를 최소화하고 요구되는 대역폭만을 필터링 할 수 있는 아날로그 필터가 적용되어야 한다. 이와 같은 아날로그 필터에 많이 사용하는 것은 버터워스(Butterworth)필터로서, 하기 식 7과 같이 구성되며, 진폭 특성이 통과역에서는 거의 평탄하여 맥동이 존재하지 않고, 차단 주파수를 지나면서 감소하게 된다. 또한, 식 7에서와 같이 필터의 차수에 따라서 통과대역과 차단대역의 중간영역인 전이대역이 결정된다.
수학식 7
Figure PCTKR2014009727-appb-M000007
식 7에서,
Figure PCTKR2014009727-appb-I000001
는 N차 함수, ω0는 차단 주파수
<실험예>
이하에서는 본 발명의 일 실시예에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어방법을 적용한 실험예를 보인다.
1) 능동질량감쇠장치 설계 및 설치 개요
본 발명에서 능동질량감쇠장치를 설치한 대상 구조물은 39층 높이의 복합용도 구조물로, 2011년 집단 리듬운동에 의한 연직방향 공진현상에 따른 진동이 발생하여 사회적으로 큰 관심이 되었던 건물이다. 대상 구조물에 대한 사고원인 조사 단계에서 수행한 풍동실험 및 2012년 제 15 호 태풍인 볼라벤(BOLAVEN)에 대한 태풍시 풍진동 현장계측을 통한 풍하중에 따른 거주자의 사용성을 AIJ-2004을 바탕으로 평가한 결과, 최대가속도가 12.04cm/sec2로 이는 일본 거주성능지침의 H-90 수준으로 일반적인 사무용도 구조물의 사용성 한계인 H-70(6.32cm/sec2) 수준을 크게 상회하는 것으로 나타났다. 이에 풍하중에 의한 거주자의 사용성 향상을 위한 방안으로 능동질량감쇠장치의 설치를 결정하였고, 장치의 제어 방법을 선정하기 위한 해석연구를 수행하였다.
먼저, 구조해석 결과 및 태풍시 진동 계측을 통해 확인한 수평방향 1차 모드의 진동수는 0.1907Hz 였고, 모드 감쇠비는 1%로 확인되었다. 이에 따라 일본 거주성능지침의 사무용도 구조물의 사용성 한계인 H-70 수준으로 감소시키기 위해서는 발생한 응답에 대해서 50%의 가속도를 저감시켜야 하는 것으로 파악되었다.
목표 성능을 설정한 후, 질량감쇠장치를 수동 또는 능동으로 결정하는 단계에서 초기에는 수동형인 동조질량감쇠장치(TMD, Tuned Mass Damper)를 통한 검토를 수행하였다. 동조질량감쇠장치 설계를 위한 설계를 통해 확인한 최소요구질량은 104ton(질량비 1.1%)이고, 안전율을 고려하여 120ton의 질량으로 결정하였다. 하지만 설치 대상 구조물에 대한 제진장치 설치에 따른 안정성 검토 결과, 구조보강 없이 설치 가능한 질량이 최대 80ton으로 확인되어, 능동질량감쇠장치(AMD)로 설계를 변경하였으며, 이의 사양은 하기 표 1과 같다.
표 1
Figure PCTKR2014009727-appb-T000001
2) 가중함수(G1) 및 원점보정신호(G2) 검증
상기한 바와 같이 해석을 통하여 설계된 능동질량감쇠장치의 가이드레일(130)의 길이(±600mm) 및 리미트 스위치(Limit switch, ±500mm) 등을 고려하여 제한(최대)변위(dmax)를 ±500mm로 설정하여 기타 보정값을 설정하여 실험동에서 실험을 수행하였다.
도 5(a)는 제진시 능동질량감쇠장치(100)의 변위를 나타낸 것으로, 일반 적분필터를 사용하는 경우 변위가 크게 증가하여 설치대상 능동질량감쇠장치(100)의 제한변위(dmax)인 ±500mm를 초과하여 -2000mm이상 까지 가는 것을 확인할 수 있다. 반면 칼만필터를 적용한 경우의 변위는 제한변위(dmax) 내에서 안전하게 작동하는 것을 확인할 수 있다.
도 5(b)는 제진시 능동질량감쇠장치(100)의 변위를 나타낸 것으로, 원점보정신호(G2)를 적용한 것이다. 원점보정신호(G2)를 적용하지 않은 경우(도 5(a)에 크게 증가하였던 능동질량감쇠장치(100)의 변위가 감소하여 제한변위(dmax)인 ±500mm 내에서 작동함을 확인하였다.
이러한 결과를 바탕으로, 상기 설정 및 보정값을 제어부에 반영한 후, 제어성능시험을 수행하였다. 이때, 구조물의 진동 및 가속도 응답을 모사하기 위하여 고유진동수가 0.2Hz인 진자를 설치하고, 이에 센서(200)를 부착하여 진동 및 가속도를 센싱하고 제어부(300)에 입력하였다.
제어부(300)에 입력된 가중함수(G1)와 원점보정신호(G2)에 대한 설정은 가중함수(G1)의 변수인 최소변위(dmin)를 200mm, 제한변위(dmax)를 300mm로 설정하고, 원점보정신호(G2) 입력 여부에 따른 변위를 검토하기 위하여 경계변위(d0)인 200mm 상태에서 최대속도(υmax)를 0, 0.01m/sec으로 구분하여 입력하고 검토하였다.
도 6a, b는 실험을 통해 원점보정신호(G2) 보정 유무에 따른 구조물 및 능동질량감쇠장치(100)의 가속도(VAMD), 변위(DAMD), 속도(VAMD) 응답을 나타낸 것이다. 가진은 인력을 통해 개별적으로 가진 하였기에 입력된 가속도의 파형 및 크기 등은 다르나, 도 6a와 같이 원점보정신호(G2)가 입력되지 않은 경우, 최대 0.2m/sec2의 가속도가 입력되는 경우 능동질량감쇠장치의 변위가 +300mm까지 증가한 후, 제한변위(dmax)를 초과하지 않는 것을 알 수 있다. 하지만 원점보정신호(G2)의 입력 없이 제한변위(dmax)에 도달하는 경우에는 입력속도가 계속 발생하는 경우에도 반대방향으로 변위가 발생하지 못한 상태로 제한변위(dmax) 상태에서 머무르게 되고, 최소변위(dmin)와 제한변위(dmax) 구간에서 능동질량감쇠장치의 감속에 따른 가속도 증가현상이 발생함을 알 수 있다. 그러나 도 6b 에서와 같이 가중함수(G1)와 원점보정신호(G2)가 모두 적용된 경우에는 입력된 가속도 응답에 대해서 능동질량감쇠장치의 변위가 거의 원점에서 평균을 이루는 것을 알 수 있다. 또한 원점보정신호(G2)에 의해 가중함수(G1)의 제한변위(dmax)에 근접하지 않게 되어 가속도가 크게 증가하는 현상도 발생하지 않음을 알 수 있다.
도 6b에 나타낸 가중함수(G1) 및 원점보정신호(G2)에 따른 입력 가속도와 능동질량감쇠장치 출력가속도를 비교한 결과를 도 7에 나타내었다. 도 7에서와 같이 입력된 가속도와 그에 따른 출력가속도가 정확하게 90°위상을 보임을 확인할 수 있다.
3) 입력필터 적용 및 실험
상기 실험이 완료된 능동질량감쇠장치를 현장(실제 구조물(S))에 설치 후, 능동질량감쇠장치의 가진기능을 이용한 정현파 가진 실험(Sine Swept Test)을 통해 구조물(S)에 대한 시스템 식별을 수행하여, 하기 표 2와 같이 각 모드의 특성인 제어대상 진동수, 질량 및 감쇠비를 추출하였다.
표 2
Figure PCTKR2014009727-appb-T000002
또한, 추출된 모드 특성을 바탕으로 제어 모드에 대한 모드 벡터를 구성한 후, 실제 제어연산을 담당하는 제어부(300)에 입력하여, 제어 실험을 수행하였다.
1차 제어실험에서는 상기 표 2와 같이 파악된 3개의 제어모드에 대해서 능동질량감쇠장치를 통한 가진 후, 자유진동시키는 비제진 실험과, 동일한 가진 후에 제진모드로 변환을 통한 제진 실험을 수행하였다. 이때, 가중함수(G1)는 최소변위(dmin)를 300mm, 제한변위(dmax)를 500mm로 설정하였고, 원점보정신호(G2)는 최대속도(υmax)를 0.04m/sec로 설정하고, 경계변위(d0)를 300mm로 설정하였다.
도 8은 2차 모드인 0.213Hz에 대한 1차 제어 실험에 의한 구조물 가속도 응답을 나타낸 것이다. 도 8(a)는 능동질량감쇠장치(100)의 가진모드를 사용하여 0.213Hz를 100초간 가진 후, 자유진동 상태를 확인 것이고, 도 8(b)는 동일한 가진 주파수로 160초 가진 후, 제진모드 실행을 통해 실제 제어를 수행한 결과이다. 그림에서와 같이, 제어를 시작한 후 0.213Hz에 대한 제어를 하고 있으나, 순간적인 진동 감소 이후 다시 구조물의 가속도 응답을 증폭시키는 것으로 나타났다.
실험 종료 후, 능동질량감쇠장치에 의해 증폭된 구간에 대한 주파수 분석 결과, 설계한 제어부(300)의 제어 모드 범위를 초과한 구조물의 응답이 제어부(300)에 입력신호를 생성시키고, 그에 대한 제어를 위한 신호를 발생시켰으나, 설계 범위 이상의 주파수에 대한 제어 위상이 90°를 이루지 못해, 가진을 하는 것으로 나타났다.
도 9는 동일한 제어실험에서의 변위 이력을 나타낸 것으로, 가중함수(G1) 및 원점보정신호(G2)를 적용하여 검토한 결과이다. 그림에서와 같이 능동질량감쇠장치(100)의 가진 변위는 200mm로 일정하게 가진된 것을 확인할 수 있으며, 도 9(a)와 같이 비제어시에는 가진 종료후 이동변위가 없음을 알 수 있다. 도 9(b)에서는 160초 가진 후, 모드 변경에 따라 질량체(110)의 위치가 초기 위치로 되돌아 온 후 제어 시작과 함께 최대 400mm의 변위가 발생한 후 크게 감소하는 것을 알 수 있다. 하지만 가중함수(G1)에 의해 제한변위(dmax) 이상의 이동은 발생하지 않고, 이후 제어 구간에서도 원점을 중심으로 한 제어가 이루어지고 있음을 확인할 수 있다.
1차 제어 실험 이후 파악된 3개의 제어모드 이외에 대한 추가의 시스템 식별을 통해 0.676Hz의 모드가 있음을 확인하였다. 다만, 제어부(300)의 경우, 추가의 모드를 제어하는 경우 제어 효율을 감소시키는 것으로 판단하여, 입력 단계에서 해당 모드의 가진을 방지하기 위한 방안으로 대역통과필터모듈(310) 설계를 수행하였다.
대역통과필터모듈(310)은 상기한 바와 같이 버터워스 필터를 사용한 대역통과필터모듈(310) 설계를 위해 1차 제어실험에서 센싱된 구조물 응답에 대한 필터링을 수행하였다. 먼저, 전이대역의 폭을 결정하는 필터의 차수(N)를 1로 한 후, 센싱된 응답에 대한 저역통과필터 설계를 통해 0.2Hz 에서 0.6Hz 범위를 0.01간격으로 필터링하여 실제 응답과 필터링 후 응답의 위상차를 확인하고, 이후 고역통과필터를 0.18Hz에서 0.01Hz까지 감소시킨 후의 위상차를 확인하였다.
도 10은 이러한 저역 및 고역 통과 필터에 따라 센싱된 응답과 필터구간별 응답의 위상차를 나타낸 것으로, 저역 통과 필터에서는 차단 주파수가 증가함에 따라 위상차가 감소함을 알 수 있으며, 반대로 고역 통과 필터에서는 차단 주파수가 감소함에 따라 위상차가 감소하는 것으로 나타났다. 이러한 필터 방법에 따라 나타나는 위상차를 감안하여 저역 통과 필터 구간과 고역 통과 필터에 의한 위상차가 0인 차단 주파수를 선정하였고, 그에 따른 위상차를 비교하였다.
도 11은 1차 계측 결과 중, 0.213Hz에 대한 제어 시, 구조물 응답에 대한 각각의 필터 처리결과와 위상차가 0인 차단 주파수를 선정하여 확인한 대역 통과 필터 결과를 나타낸 것이다 도 11에서와 같이, 저역 통과 필터는 실제 응답보다 응답이 늦게 형성되고, 고역 통과 필터는 실제 응답보다 빠르게 형성됨을 알 수 있다. 각 필터의 차단 주파수를 대역으로 한 필터에서는 실제 응답과 오차가 없는 필터링 된 응답이 나타남을 알 수 있다.
대역통과필터모듈(310) 구성 및 입력 완료 후, 수행한 3개의 제어 모드에 대한 2차 제어실험 결과를 구조물(S)의 단변(Y1, Y2), 장변(X1)방향 응답으로 구분하여 도 12 내지 도 14에 나타내었다. 정확한 제어 성능을 검토하기 위하여 1차 실험에서 진동증폭을 일으킨 진동수인 0.676Hz의 응답을 포함하여 0.7Hz의 대역을 갖는 저역통과 필터 처리를 하였다.
도 12는 1차 모드(0.200Hz)에 대한 비제어/제어 시 구조물(S)의 응답을 방향별로 나타낸 것으로, 가진 종료 후, 제어모드에 의해 단변(Y1, Y2)응답이 동일하게 감소함을 알 수 있다. 장변(X1) 응답은 가진 시작 후, 10초 이후에 응답이 발생하여 가진 종료 후에도 응답이 증가하는 것을 알 수 있다.
도 13은 2차 모드(0.213Hz)에 대한 제어결과로, 비제어 모드에서는 가진 종료 후에도 10초간 응답이 지속된 후 응답이 감소하나, 제어를 수행하는 경우에는 제어 시작과 함께 단변방향(Y1, Y2) 응답을 지속적으로 감소시킨 후 자유진동 구간에서 응답이 50%이상 감소시키는 것을 알 수 있다. 장변방향(X1) 응답은 1차 모드 제어와 유사하게 진동을 감소시키고 있으나, 응답 감소량이 더 크게 나타나고 있다.
도 14는 3차 모드에 대한 제어결과를 보여주며, 1, 2차 모드와 달리 단변방향(Y1, Y2) 응답의 최대 가속도 크기가 다르고 장변방향(X1)은 거의 응답이 없음을 알 수 있다. 이는 3차 모드가 질량중심에 따른 회전 모드임을 나타내는 것이며, 이에 따라 질량 중심에 가까운 Y2 응답이 Y1 응답보다 작게 나타나는 것이다. 또한 단변방향에 회전 모드로 장변방향으로는 진동이 발생하지 않아 X1 응답이 거의 없는 것으로 판단된다.
진동 제어 효과는 2 사이클 이내에서 제어가 되는 경향을 보이고 있으며, 1, 2 차 모드보다 매우 큰 제어 효과이다. 이는 제진장치의 질량 대비 모드 참여질량이 1, 2차 모드보다 매우 작아, 큰 제어 효과를 보이는 것이다.
각 제어 모드별 제어효과에 대한 시간이력을 확인하였고, 제어에 따른 자유진동응답을 바탕으로 대수감소법을 사용하여 각 모드별 감쇠비를 추출하여, 하기 표 3에 나타내었다. 제어 전 모드별 감쇠비는 각 제어 모드별로 1.4%, 1.6%, 그리고 1.3% 이고, 제어 후에는 4.6%, 5.3%, 그리고 6.7%로 증가하였다.
표 3
Figure PCTKR2014009727-appb-T000003
상기한 바와 같이 본 발명에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어방법에 의하면, 가중함수와 원점보정신호에 의해 이동질량체의 흐름현상을 제어하고, 원점에서 안정적인 제어가 가능하고, 또한 대역통과필터를 통해 제어 모드 이외의 신호를 제거함으로써, 정확한 제어 신호 생성과 함께 각 모드에 대한 제어 목표를 만족할 수 있는 성능을 발휘할 수 있다.
상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 당업계에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. (a) 센서(200)에서 구조물(S)에 발생하는 구조물 응답인 진동수 및 가속도 응답(AAMD)이 실시간으로 센싱되는 단계;
    (b) 적분연산모듈(320)에서 상기 가속도 응답이 적분되어 능동질량감쇠장치(100)의 속도(VAMD) 및 변위(DAMD)가 연산되는 단계;
    (c) 제어력연산모듈(330)에서 상기 연산된 속도(VAMD), 변위(DAMD), 상기 변위(DAMD)에 따른 가중함수(G1) 및 원점보정신호(G2)를 이용하여 최적제어력(Vinput)이 연산되는 단계; 및
    (d) 상기 연산된 최적제어력(Vinput)에 따라 액츄에이터(400)의 구동을 제어하는 단계;를 포함하는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
  2. 제 1 항에 있어서,
    상기 적분연산모듈(320)은 칼만필터(kalman filter)인,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
  3. 제 2 항에 있어서,
    상기 (b) 단계에서,
    상기 속도(VAMD) 및 변위(DAMD)의 연산은 하기 식에 의하여 연산되는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
    Figure PCTKR2014009727-appb-I000002
    Figure PCTKR2014009727-appb-I000003
  4. 제 1 항에 있어서,
    상기 (d) 단계에서,
    상기 가중함수(G1) 및 상기 원점보정신호(G2)를 이용한 상기 최적제어력(Vinput)의 연산은 하기 식에 의하여 연산되는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
    Figure PCTKR2014009727-appb-I000004
  5. 제 4 항에 있어서,
    상기 가중함수(G1)는 하기 식에 의하여 연산되며,
    능동질량감쇠장치의 현재변위 변화에 따라 상기 속도(VAMD)가 변화하는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
    Figure PCTKR2014009727-appb-I000005
    상기 식 중, d(t)는 능동질량감쇠장치의 현재변위, dmin은 능동질량감쇠장치의 최소변위, dmax는 능동질량감쇠장치의 제한변위
  6. 제 4 항에 있어서,
    상기 원점보정신호(G2)는 하기 식에 의하여 연산되는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
    Figure PCTKR2014009727-appb-I000006
    상기 식 중, υmax는 원점보정을 위해 적용되는 능동질량감쇠장치의 최대속도, d0는 최대속도가 적용되는 제진장치의 변위경계값, d(t)는 현재시점에서의 능동질량감쇠장치의 변위
  7. 제 1 항에 있어서,
    상기 (a) 와 (c) 단계 사이에,
    대역통과필터모듈(310)에서 상기 센싱된 진동수 중 기 설정된 대역폭만을 필터링하는 단계;를 더 포함하는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
  8. 제 7 항에 있어서,
    상기 대역통과필터모듈(310)은 아날로그 필터이며, 버터워스(Butterworth) 설계법으로서 설계되고, 하기 식에 의하여 상기 기 설정된 대역폭이 연산되는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
    Figure PCTKR2014009727-appb-I000007
    식 7에서,
    Figure PCTKR2014009727-appb-I000008
    는 N차 함수, ω0는 차단 주파수
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 각 단계가 반복적으로 수행되는,
    능동질량감쇠장치의 최적제어력 산정 및 제어방법.
  10. 제 9 항에 따른 능동질량감쇠장치의 최적제어력 산정 및 제어방법을 수행하는,
    능동질량감쇠장치의 최적제어력 산정 및 제어시스템.
PCT/KR2014/009727 2014-07-29 2014-10-16 능동질량감쇠장치의 최적제어력 산정 및 제어방법 WO2016017856A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/037,309 US10253841B2 (en) 2014-07-29 2014-10-16 Method for calculating optimal control force of active mass damper and controlling active mass damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0096795 2014-07-29
KR1020140096795A KR101525741B1 (ko) 2014-07-29 2014-07-29 능동질량감쇠장치의 최적제어력 산정 및 제어방법

Publications (1)

Publication Number Publication Date
WO2016017856A1 true WO2016017856A1 (ko) 2016-02-04

Family

ID=53499588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009727 WO2016017856A1 (ko) 2014-07-29 2014-10-16 능동질량감쇠장치의 최적제어력 산정 및 제어방법

Country Status (3)

Country Link
US (1) US10253841B2 (ko)
KR (1) KR101525741B1 (ko)
WO (1) WO2016017856A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102353783B1 (ko) * 2016-06-29 2022-01-19 일리노이즈 툴 워크스 인코포레이티드 가변 시스템 파라미터들의 실시간 보상을 갖는 시험 시스템
WO2019033153A1 (en) * 2017-08-14 2019-02-21 Tu Phung SYSTEM AND METHOD FOR MITIGATING DYNAMIC VIBRATIONS OF SILO
JP6913571B2 (ja) * 2017-08-28 2021-08-04 株式会社竹中工務店 振動モード予測装置及び振動モード予測モデル学習装置
CN108875271A (zh) * 2018-07-10 2018-11-23 安徽水利开发股份有限公司 含随机参数结构系统的主动质量阻尼器抗震鲁棒设计方法
CN110704905B (zh) * 2019-09-16 2023-04-18 东南大学 一种斜拉索多阶模态振动控制的黏滞阻尼器优化设计方法
CN113916359B (zh) * 2021-09-16 2023-08-08 许昌许继风电科技有限公司 振动开关调试方法及装置
CN114935890B (zh) * 2022-04-18 2023-04-18 西北工业大学 基于强化学习的大型柔性结构传感器作动器优化配置方法
CN115144173B (zh) * 2022-09-05 2022-11-25 济南百顿机械设备有限公司 一种基于智能压电阻尼器的输电塔监测方法及设备
CN116577996B (zh) * 2023-07-06 2023-10-20 华南理工大学 一种柔性土木结构振动的可移动主动控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225526A (ja) * 2007-03-08 2008-09-25 Kajima Corp アクティブ制振制御システム及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617106B2 (ja) * 1987-10-16 1997-06-04 株式会社ブリヂストン 建物用振動制御装置
US4935838A (en) * 1988-08-25 1990-06-19 Westinghouse Electric Corp. Structural magnetic vibration controller and method for actively controlling vibrations on stationary components of rotary machinery
JP2905367B2 (ja) * 1993-07-07 1999-06-14 オイレス工業株式会社 建物の制振方法およびその装置
DE102006046593B4 (de) * 2006-09-30 2009-12-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Vorrichtung zur Reduktion von Schwingungen einer Struktur
US8800736B2 (en) * 2008-05-30 2014-08-12 Design, Imaging & Control, Inc. Adjustable tuned mass damper systems
DE102010021867A1 (de) * 2010-05-28 2011-12-01 Eurocopter Deutschland Gmbh Kraftgenerator zur Anbringung an einer Struktur
EP2574819B1 (de) * 2011-09-30 2014-04-23 Siemens Aktiengesellschaft Geschwindigkeitsproportionale aktive Schwingungsdämpfung
KR101390502B1 (ko) 2012-02-03 2014-04-30 단국대학교 산학협력단 복합형 진동 제어장치
JP6037888B2 (ja) * 2013-02-22 2016-12-07 三菱重工メカトロシステムズ株式会社 制振装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225526A (ja) * 2007-03-08 2008-09-25 Kajima Corp アクティブ制振制御システム及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG, EUN AE ET AL.: "Across-Wind Response Control of a Building Structure using an Active Mass Dampe", JOURNAL OF THE WIND ENGINEERING INSTITUTE OF KOREA, vol. 17, no. 1, March 2013 (2013-03-01), pages 15 - 25 *

Also Published As

Publication number Publication date
US10253841B2 (en) 2019-04-09
KR101525741B1 (ko) 2015-06-04
US20170130802A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
WO2016017856A1 (ko) 능동질량감쇠장치의 최적제어력 산정 및 제어방법
Wu et al. Active control of transmission tower under stochastic wind
JP2009041954A (ja) 絶対変位検出方法及びその方法を用いた絶対変位センサ
Wang et al. Application of a movable active vibration control system on a floating raft
Díaz et al. Robust saturated control of human-induced floor vibrations via a proof-mass actuator
Abdel-Mooty et al. Time-Delay Compensation in Active Damping of Stuctures
Wu et al. Vibration control of a flexible beam driven by a ball-screw stage with adaptive notch filters and a line enhancer
Benosman Lyapunov-based control of the sway dynamics for elevator ropes
Preumont et al. Hybrid mass damper: a tutorial example
WO2011027933A1 (ko) 모터의 모션제어를 위한 비례미적분 제어장치 및 그 제어방법
JP2009029578A (ja) タワークレーンの地震応答制御方法及び装置
JP2010024708A (ja) 構造物の連結制震構造
JP6405735B2 (ja) 絶対変位センサ
JP2016003936A (ja) 絶対変位センサ
Abreu et al. Robust control of a two-floors building model using active mass driver
Seto et al. Vibration control of bridge towers using a lumped modeling approach
JP4239362B2 (ja) アクティブ制振方法
KR101980421B1 (ko) 능동질량감쇠시스템 및 이를 이용한 구조물의 진동 제어 방법
JP6451094B2 (ja) 絶対変位センサ
JP3899891B2 (ja) 絶対速度・絶対変位検出方法及びその方法を用いた絶対速度・絶対変位センサ
Šuránek et al. Experimental Model for Active Vibration Control on Lattice Structure
JP2844606B2 (ja) 構造物制振装置
JPS58221038A (ja) 防振装置
Snamina et al. Active control strategy for reduction of vibrations in mast exposed to ground motions
JPH03140647A (ja) 制振装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037309

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898602

Country of ref document: EP

Kind code of ref document: A1