WO2016017808A1 - Optical inspection method for display cell having flexible thin-film structure and pseudo-terminal unit used in said method - Google Patents

Optical inspection method for display cell having flexible thin-film structure and pseudo-terminal unit used in said method Download PDF

Info

Publication number
WO2016017808A1
WO2016017808A1 PCT/JP2015/071836 JP2015071836W WO2016017808A1 WO 2016017808 A1 WO2016017808 A1 WO 2016017808A1 JP 2015071836 W JP2015071836 W JP 2015071836W WO 2016017808 A1 WO2016017808 A1 WO 2016017808A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
cell
display cell
motherboard
film
Prior art date
Application number
PCT/JP2015/071836
Other languages
French (fr)
Japanese (ja)
Inventor
多公歳 中西
創矢 徐
智 小塩
村上 奈穗
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016017808A1 publication Critical patent/WO2016017808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a method for inspecting a display cell having a flexible thin film structure to which an optical functional film is bonded, and a pseudo terminal unit used in the method.
  • the present invention is not limited, but it can be formed into a flexible thin film structure such as an organic EL display cell, and is used in a display cell inspection method and an optical function film bonded thereto.
  • the pseudo terminal unit is not limited, but it can be formed into a flexible thin film structure such as an organic EL display cell, and is used in a display cell inspection method and an optical function film bonded thereto.
  • the organic EL display cell can be formed in a flexible thin film structure, a display device using the display cell is configured to be a curved surface, or the entire display device is configured to be flexible so that it can be rolled or bent.
  • This type of display cell is generally formed by forming a resin film such as a polyimide resin on a heat-resistant substrate such as a glass substrate, and using the resin film as a base material for forming a film-shaped display cell. It is manufactured by forming display cells on the material. An optical functional film is bonded to the display surface of the display cell manufactured in this way via an adhesive layer.
  • a display cell having a relatively small size used for a display device of a smartphone or tablet size is manufactured by forming a large number of cells on one substrate.
  • Patent Document 1 Korean Patent Application Publication No. 10-1174834
  • a resin film such as a polyimide resin is formed on a glass substrate, and the resin film is used as a base material for forming a film display cell.
  • a large number of display cells arranged in a plurality of rows and columns are formed on the substrate, the entire surface thereof is covered with a process film, and then the substrate on which the display cells are formed is peeled from the glass substrate.
  • the individual film-shaped display cells are divided so that the terminal portions including the electrical terminals for electrical connection formed on one side of the individual film-shaped display cells are exposed.
  • Each film-like display cell is formed by peeling off the process film at a location corresponding to the terminal portion.
  • optical inspection is performed on the display cell thus formed.
  • This optical inspection is usually a surface defect inspection by reflected light and a lighting inspection in which the display cell is in an excited state by applying excitation power to the display cell to check whether the operation of the display cell is normal. It is performed in two stages. In the latter lighting test, in order to apply excitation power to each display cell, a pseudo terminal having an electrical connection terminal connected to the electrical connection terminal of the display cell is used.
  • the inspection is usually performed by attaching a protective film to the front surface of the display cell.
  • a protective film it is necessary to peel off the protective film in a later step, which increases the number of steps.
  • a precise excited state inspection cannot be performed.
  • the time and labor required for the inspection increase if the individual display cells are individually excited to perform the defect inspection. This is not preferable.
  • the present invention performs a defect inspection of a display cell in an excited state without attaching a protective film to a display cell having a flexible thin film structure formed on a resin substrate. It is a problem to be solved to provide an inspection method that enables the inspection.
  • another object of the present invention is to provide a method capable of performing an excited state inspection of a display cell with high efficiency in a configuration in which a plurality of display cells are formed on a cell motherboard.
  • Still another object of the present invention is to provide a pseudo terminal unit used for defect inspection in an excited state of a display cell in a cell motherboard in which a plurality of display cells are formed.
  • the present invention provides an optical inspection method for a display cell having a flexible thin film structure, which can solve the above-described problems.
  • This method A mother board structure including at least a cell mother board composed of a resin base material and at least one display cell having a display surface with a flexible thin film structure formed on the resin base material.
  • the display surface of the display cell has a rectangular shape having two short sides and two long sides, and the display cell has an electrical connection terminal along one of the short side and the long side. It is preferable that the cell mother board is sent in the feeding direction in a state in which the terminal portion of the display cell is lateral to the feeding direction.
  • the cell motherboard includes at least one display cell column arranged in a vertical column parallel to the feed direction, and the defect inspection performed in the excited state of the display cell is performed by the cell motherboard.
  • a window corresponding to the display surface of the display cell is formed by an outer frame having a shape corresponding to the periphery of the display frame and a crosspiece provided in the outer frame, and a terminal of the display cell is formed along one side of each of the windows.
  • a pseudo terminal unit in which an electrical connection terminal corresponding to the electrical connection terminal of the portion is arranged is overlaid on the cell motherboard, and the electrical connection terminal of the pseudo terminal unit is connected to the electrical connection terminal of the display cell. This is done by supplying excitation power to.
  • the cell motherboard includes a plurality of columns of display cells arranged in a vertical column parallel to the feed direction, and the defect inspection performed in the excited state of the display cell is performed on the cell motherboard.
  • a window corresponding to the display surface of the display cell is formed in a vertical and horizontal matrix by an outer frame having a shape corresponding to the periphery, and a horizontal beam and a vertical beam provided in the outer frame, and one side in each of the windows
  • a pseudo terminal unit in which an electrical connection terminal corresponding to the electrical connection terminal of the terminal portion of the display cell is placed along the cell motherboard, and the electrical connection terminal of the pseudo terminal unit is connected to the electrical connection terminal of the display cell. The excitation power is supplied to the pseudo terminal unit.
  • the cell motherboard includes at least a plurality of display cells arranged in a vertical row parallel to the feed direction, and the terminal portions of the plurality of display cells are all in a state of being horizontally oriented with respect to the feed direction. It can be sent in the feed direction.
  • the optical functional film can include at least a polarizer.
  • the optical functional film is a laminate of a polarizer and a quarter-wave retardation film, and the laminate is attached to the display surface so that the quarter-wave retardation film faces the display cell. It is preferable that they are combined.
  • the display cell can be an organic EL display cell.
  • the display device has a rectangular display surface having two short sides and two long sides, and an electrical connection terminal is provided along one of the short side and the long side.
  • a plurality of display cells having a structure with a terminal portion formed therein, and a plurality of display cells arranged in a vertical column, and a plurality of columns of display cells arranged simultaneously, the plurality of display cells on the cell motherboard are simultaneously excited.
  • a pseudo terminal unit for applying excitation power which is used to perform a defect inspection of the display cell in a state.
  • the pseudo terminal unit includes an outer frame having a shape corresponding to the periphery of the cell motherboard, a horizontal beam and a vertical beam provided in the outer frame, and a plurality of display cells formed by the horizontal beam and the vertical beam.
  • An excitation power source connection for supplying excitation power to the supply electrical connection terminal.
  • the inspection when a display cell is inspected in an excited state, the inspection is performed in a state where an adhesive layer is formed on the display surface of the display cell, so that the adhesive layer can act as a protective layer. It is possible to omit the protective film peeling step compared to the case of using the protective film. In addition, since the inspection in the excited state is performed before the optical functional film is bonded to the display surface, it is possible to perform a precise inspection compared to the inspection performed after the optical functional film is bonded.
  • the pseudo terminal unit according to the present invention can simultaneously activate a plurality of display cells on the cell motherboard, thereby enabling inspection with high efficiency.
  • FIG. 1 It is a top view which shows an example of the optical display cell which can be used in the method of one Embodiment of this invention. It is a perspective view which shows roughly an example of the manufacturing process of the organic electroluminescent display cell which has a comparatively small display screen.
  • An example of the cell assembly mother board to which the method of the present invention is applied is shown.
  • (A) is a top view and
  • (b) is a sectional view.
  • (A) (b) (c) (d) is a figure which shows each step of surface protection film peeling operation
  • FIG. 1 shows an example of an optical display cell 1 to which the method of one embodiment can be applied to the present invention.
  • the optical display cell 1 has a rectangular shape having a short side 1a and a long side 1b in plan view, and a terminal portion 1c having a predetermined width is formed along one short side 1a.
  • a number of electrical terminals 2 for electrical connection are arranged on the terminal portion 1c.
  • a region excluding the terminal portion 2 of the optical display cell 1 is a display region 1d.
  • the display area 1d has a width W in the horizontal direction and a length L in the vertical direction.
  • the optical display cell 1 is preferably an organic EL display cell, but the method of the present invention can be applied to any display cell having a flexible thin film structure.
  • the optical display cell 1 can have various screen sizes from a relatively small size for mobile phones or smartphones or tablets to a relatively large size for television applications.
  • FIG. 2 is a perspective view schematically showing an example of a manufacturing process of an organic EL display cell having a relatively small display screen for use in a smartphone or a tablet.
  • a glass substrate 3 is prepared as a heat-resistant substrate, and a heat-resistant resin material, preferably a polyimide resin, is applied to the glass substrate 3 to a predetermined thickness and dried, whereby a resin base material is obtained. 4 is formed.
  • a heat resistant resin material polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), etc. can be used in addition to polyimide resin.
  • a flexible ceramic sheet as described in JP 2007-157501 A (Patent Document 3), or JP 2013-63892 A (Patent Document 4)
  • flexible glass as described in JP 2010-13250 A (Patent Document 5) and JP 2013-35158 A (Patent Document 6).
  • a flexible ceramic sheet or flexible glass is used as the substrate, it is not necessary to use the glass substrate 3.
  • a plurality of organic EL display cells 1 are formed on the resin base material 4 in a state of being arranged in a vertical and horizontal matrix by a known manufacturing method, and the resin base material 4 and the display cells 1 are cell assembly motherboards. B is formed. When there is one display cell formed on the resin substrate 4, this is called a cell motherboard. In the conventional method, the surface protective film 5 is then bonded so as to cover the organic EL display cell 1 formed on the resin substrate 4.
  • the cell assembly mother board B or the one in which the cell mother board is bonded to a heat resistant substrate such as the glass substrate 3 may be referred to as a mother board structure.
  • FIG. 3 (a) is a plan view showing the cell assembly mother board B without the surface protective film 5 attached thereto
  • FIG. 3 (b) is a cross-sectional view taken along the line bb of FIG.
  • a state in which the cell assembly mother board B on which the surface protective film 5 is bonded is arranged on the glass substrate 3 is shown.
  • a plurality of optical display cells 1 constitute vertical columns and horizontal rows with the terminal portions 1a oriented in the horizontal direction.
  • the cell aggregate motherboard B has a rectangular shape having a short side B-1 and a long side B-2.
  • a reference mark m serving as a reference point is attached by printing, engraving, or other appropriate technique.
  • the reference mark m is referred to as a reference when the mother board B is positioned.
  • the cell assembly mother board B is sent in the direction indicated by the arrow A in FIG.
  • the cell assembly mother board B in the state having the glass substrate 3 is sent to the glass substrate peeling position where the glass substrate 3 is peeled after passing through the defect inspection of the optical display cell 1.
  • the optical functional film is bonded.
  • an optical inspection of the cell assembly motherboard B is performed prior to transferring the cell assembly motherboard B having the glass substrate 3 to the optical functional film bonding position. In preparation for this optical inspection, conventionally, it is necessary to peel the surface protective film 5 from the cell assembly motherboard B. In FIG. 4, the procedure which peels the surface protection film 5 is shown.
  • the cell assembly mother board B is held by the vacuum holding force on the suction holding board 10 supported by the guide 15 and the support mechanism 13, and the surface protection film is peeled off at the position shown in FIG. It is sent to the position and raised to a predetermined height by the lifting mechanism at the position shown in FIG.
  • This predetermined height is a height at which the upper surface of the surface protective film 5 of the cell assembly mother board B can contact the adhesive tape 16d positioned between the pair of pressing rolls 16c with a predetermined contact pressure.
  • the cell assembly mother board B raised to the predetermined height by the elevating mechanism is sent to the position below the peeling adhesive tape driving device 16 as it is.
  • the upper surface of the surface protection film 5 of the mother board B contacts the adhesive surface of the adhesive tape 16d in a pressed state between the pair of pressing rolls 16c.
  • the adhesive force of the adhesive tape 16d to the surface protective film 5 is larger than the adhesive force of the surface protective film 5 to the optical display cell 1, so that the surface protective film 5 adheres to the adhesive tape 16d and is on the resin substrate 4. It peels from the optical display cell 1 arrange
  • the peeled surface protective film 5 is taken up together with the adhesive tape 16d by a take-up roll 16b.
  • the mother board B from which the surface protective film 5 has been peeled is lowered to the height at the time of feeding at the position shown in FIG. 4A by the lifting mechanism at the position shown in FIG.
  • the pressure-sensitive adhesive layer is applied to the display cells on the cell assembly mother board B without performing the bonding of the surface protective film and, therefore, without requiring the peeling of the surface protective film.
  • the cell assembly mother board B manufactured by the manufacturing process of FIG. 2 is sent to the pressure-sensitive adhesive layer application position including the pressure-sensitive adhesive layer application mechanism 20.
  • FIG. 8 is a schematic side view showing the entire pressure-sensitive adhesive layer application mechanism 20.
  • the adhesive layer application mechanism 20 includes an adhesive tape roll 22 in which a long adhesive tape 21 is wound in a roll shape.
  • the pressure-sensitive adhesive tape 21 is fed out from the roll 22 at a constant speed by a pair of drive rolls 23.
  • the pressure-sensitive adhesive tape 21 has a configuration in which a pressure-sensitive adhesive layer 21b is formed on one surface of the tape base material 21a.
  • the adhesive tape 21 fed from the adhesive roll 22 by the pair of drive rolls 23 is cut and formed through a guide roll 24, a dancer roll 25, a guide roll 26 and a guide roll 27 that are movable in the vertical direction.
  • the cut forming mechanism 28 includes a cutting blade 29 and a pair of drive rolls 30 for feeding.
  • the cut forming mechanism 28 operates the cutting blade 29 in a state where the drive roll 30 is stopped and the feeding of the adhesive tape 21 is stopped at the cut forming position, and only the adhesive layer 21b is left leaving the tape base material 21e.
  • a cut 28a is formed in the width direction. The interval between the cuts 28a is a distance corresponding to the length L in the vertical direction of each display cell 1 on the mother board B.
  • the pressure-sensitive adhesive layer 21b is cut in the width direction by the cuts 28a to become a pressure-sensitive adhesive sheet 21c having a horizontal width W and a vertical method length L of the display cell.
  • the some adhesive sheet 21c is continuously formed on the tape base material 21a, and these adhesive sheets 21c are supported by the tape base material 21a, and are sent to a bonding position.
  • the dancer roll 25 is elastically biased upward, and a pair of drive rolls 23 that continuously drive the adhesive tape 21 in the feeding direction, and the feeding of the adhesive tape 21 is stopped at the time of cutting, and the cutting ends. It is an adjustment roll that acts to adjust the tape feed between a pair of drive rolls 30 that are driven for a predetermined distance later. That is, during the stop period of the drive roll 30, the dancer roll 25 moves upward so as to absorb the feed of the drive roll 23 by the urging force, and when the drive roll 30 starts operating, By the tensile force applied to the adhesive tape 21 by 30, it operates to move downward against the urging force.
  • a series of pressure-sensitive adhesive sheets 21c formed by the cuts 28a passes through a guide roll 31 and a guide roll 32 while passing through a dancer roll 33 having the same configuration as the dancer roll 25 while being supported by the tape base material 21a. Guided by guide rolls 34, 35, 36, and 37 and sent to the bonding position.
  • a laminating roll 38 and a carrier film peeling mechanism 39 are provided at the laminating position.
  • the laminating roll 38 is movably disposed between the upper drawing position and the lower pressing position, and among the continuous adhesive sheets 21c supported by the tape base material 21a, the leading adhesive sheet 21c.
  • the tape base material peeling mechanism 39 includes a peeling blade that acts to fold the tape base material 21a at an acute angle and peel the leading optical film sheet 21c from the tape base material 21a at the bonding position.
  • a tape base material take-up roll 40 is disposed to take up the tape base material 21a folded back at an acute angle.
  • the tape base material 21 a peeled off from the pressure-sensitive adhesive sheet 21 c is sent to the take-up roll 40 through the guide roll 41 and the pair of take-up drive rolls 42, and is taken up by the take-up roll 40.
  • the operation of the drive roll 30 and the cutting blade 29 is controlled by a control device not shown in FIG. That is, the control device stores information related to the size and position of the display cell 1 on the mother board B, and the control device drives the driving roll 30 and the cutting blade based on the information about the longitudinal length L of the display cell 1. 29 is controlled to form cuts 28a in the adhesive tape 21 at longitudinal intervals corresponding to the longitudinal length L of the display cell 1.
  • a sheet position detection device 43 that detects the front end of the adhesive sheet 21c is provided on the upstream side of the pasting position, and information about the front end position of the adhesive sheet 21c sent to the pasting position is controlled. To provide.
  • This adhesive sheet tip position information is stored in the control device, and the control device uses the adhesive sheet tip position information and the position information of the mother board B acquired from the suction holding board 10 to take up the driving roll 30 and the winding roll.
  • the operation of the drive roll 42 is controlled in accordance with the movement of the suction holding board 10, and the bonding of the adhesive sheet 21 c peeled off from the tape base material 21 a on the mother board B in the bonding position is performed.
  • the display cell 1 is adjusted so as to align with the tip of the display cell 1.
  • the adhesive sheet 21c and the mother board B are sent at a synchronized speed.
  • the laminating roll 38 descends to the lower pressing position and presses the adhesive sheet 21 f against the display surface of the display cell 1. In this way, the adhesive layer is applied to the display cell 1.
  • FIG. 9 is a schematic diagram showing an example of an order in which the adhesive sheet 21c is sequentially bonded to the display cells 1 arranged in a matrix form on the mother board B.
  • the laminating mechanism 20 has a fixed lateral position with respect to the feed direction, and the suction holding disk 10 that holds the mother board B is mounted on the support mechanism 13 so as to be movable in the lateral direction. ing.
  • the position of the mother board B is controlled so that the first display cell 1 in the leftmost display cell row is first positioned at the bonding position.
  • the adhesive sheet 21c is bonded to the display portion 1d of the display cell 1 at the head of the left end column.
  • the mother board B is displaced in the left horizontal direction with respect to the feed direction by a distance corresponding to the horizontal interval of the display cell rows.
  • the first display cell 1 in the second column from the left is positioned at the bonding position.
  • the adhesive sheet 21f is bonded to the display portion 1d of the display cell 1 by the same operation as described above.
  • the mother board B is displaced leftward by the same operation, and the adhesive sheet 21c is bonded.
  • the bonding of the adhesive sheet 21c to the first display cell is completed. This state is shown in FIG.
  • the suction holding platen 10 is driven in the feed direction by a distance corresponding to the interval between the display cells 1 in each column, and the second display cell 1 from the top of the rightmost column is positioned at the bonding position, and similarly.
  • an adhesive sheet 21 f is bonded to the display portion 1 d of the cell 1.
  • the mother board B is driven in the feeding direction, and the adhesive sheet 21c is bonded by the same operation.
  • the cell assembly mother board B having the adhesive sheet 21c applied to the display surface of the display cell 1 is sent to the inspection position.
  • the optical inspection is performed in two stages: a surface reflection inspection shown in FIG. 5A and a lighting inspection of the display cell shown in FIG.
  • a light source 70 and a light receiver 71 are provided as an inspection apparatus for the surface reflection inspection, and the cell assembly mother board B is supported by the suction holding board 10 and below the reflection inspection apparatus. Moved to. At this position, light from the light source 70 is applied to the surface of the optical display cell 1 that is the subject, and is reflected by the surface of the optical display cell 1 to enter the light receiver 71, whereby the surface of the optical display cell 1. A defect is detected.
  • FIG. 5B shows an outline of the lighting inspection in which the display cell 1 is excited, and a plurality of detectors 72 for detecting the light emission state of the optical display cell 1 are arranged in a line. Since the cell assembly mother board B manufactured by the process shown in FIG. 2 has a configuration in which a plurality of optical display cells 1 are arranged in a vertical and horizontal matrix, in this embodiment, all of the cell assembly motherboard B in the cell assembly motherboard B is provided. A pseudo terminal unit 75 shown in FIGS. 6A and 6B is used to cause the optical display cell 1 to be excited simultaneously.
  • the pseudo terminal unit 75 includes a rectangular outer frame 75a corresponding to the rectangular shape of the cell assembly motherboard B, a plurality of horizontal bars 75b, and a plurality of vertical bars 75c.
  • the outer frame 75a rectangular windows 75d arranged vertically and horizontally so as to correspond to the arrangement of the optical display cells 1 in the cell assembly motherboard B are formed.
  • a connection terminal 76 is arranged at a position corresponding to the terminal 2 arranged in the terminal portion 1c of each optical display cell 1 along one short side of each window 75d.
  • the pseudo terminal unit 75 is provided with power supply terminals 77a and 77b for supplying excitation power to the terminal 2 of each optical display cell 1 in the cell assembly motherboard B.
  • FIG. 6B shows the back surface of the pseudo terminal unit 75.
  • the back surface of the pseudo terminal unit 75 is connected to the positive terminal of the connection terminal 76 to the positive power supply terminal 77a.
  • Connection line 78a and a connection line 78b for connecting the negative terminal of the connection terminal 76 to the negative power supply terminal 77b.
  • the positive power supply terminal 77a and the negative power supply terminal 77b are connected to the positive terminal 79a and the negative terminal 79b of the power supply source 79, respectively.
  • FIG. 7 shows a state in which the pseudo terminal unit 75 shown in FIG. 6 is used.
  • the pseudo terminal unit 75 is placed on the cell assembly motherboard B so that the outer frame 75a overlaps the peripheral edge of the cell assembly motherboard B.
  • the window 75d of the pseudo terminal unit 75 overlaps the optical display cell 1 in the cell assembly motherboard B, respectively.
  • the detector 72 inspects the operating state of each cell 1 for each emission color.
  • FIG. 10 is a schematic view of an optical display panel manufacturing apparatus 80 according to an embodiment of the present invention for laminating optical functional films.
  • the cell assembly mother board B is sent to the optical display panel manufacturing apparatus 80 shown in FIG. 10 while being held on the suction holding board 10.
  • the device 80 includes a tape feeding roller 81 and a plurality of guide rollers 84a, 84b, 84c, 84d, and 84e.
  • a tape 83 roll 83 a of an optical functional film 83 is attached to the tape supply roller 81.
  • the optical functional film 83 includes a long web-shaped polarizing film in which a protective film 83c such as a TAC film is bonded to both sides of a polarizer 83b, and an adhesive layer 83e.
  • the polarizer 83b and the retardation film 83e are arranged so that the absorption axis of the polarizer 83b and the slow axis or fast axis of the retardation film 83e intersect at an angle in the range of 45 ° ⁇ 5 °.
  • the optical functional film 83 has a long continuous web shape, but has a width that can cover the upper surface of the entire display cells arranged in multiple rows on the mother board B.
  • the optical functional film 83 may be configured such that, in the configuration shown in FIG. 11, a 1 ⁇ 2 retardation film is interposed between the polarizing film and the 1 ⁇ 4 wavelength retardation film 83d. .
  • the slow axis or the fast axis of the 1/2 retardation film is arranged so as to intersect the absorption axis of the polarizer 83b at an angle in the range of 15 ° ⁇ 5 °.
  • the slow axis or fast axis of the film and the slow axis or fast axis of the quarter-wave retardation film 83d are arranged to intersect at an angle in the range of 60 ° ⁇ 5 °.
  • a roll 83a of the optical functional film 83 configured so that each optical functional film has a width corresponding to the lateral width W of each of the display cells 1 arranged in a plurality of rows on the motherboard B. As many as the number of columns in the vertical direction of the display cells 1 on the mother board B are arranged in parallel in the horizontal direction, and the optical functional film 83 is simultaneously bonded to the display surface of the display cells 1 in each column. You can also
  • the absorption axis of the polarizer 83b is parallel to the length direction of the polarizer 83b, and the slow axis of the retardation film 83d is 45 ° with respect to the length direction of the retardation film 83d.
  • the structure is oriented obliquely by an angle in the range of ⁇ 5 °.
  • the oblique stretching there are detailed descriptions in Japanese Patent Application No. 2013-070787 (Patent Document 7) and Japanese Patent Application No. 2013-070789 (Patent Document 8), and the phase difference stretched by the methods described in these documents.
  • a film can be used.
  • a film having reverse dispersion characteristics in which the retardation becomes smaller toward the shorter wavelength side according to the wavelength can be used.
  • Retardation films having reverse dispersion characteristics are described in Japanese Patent No. 5204200 (Patent Document 9), Japanese Patent No. 5448264 (Patent Document 10), and the like, and are described in these patent applications in the method of this embodiment.
  • a retardation film having reverse dispersion characteristics can be used.
  • the optical functional film 83 is unwound from the roll 83a and is passed in the horizontal direction along the lower traveling path of the guide rollers 84b, 84c, 84d, 84e so that the adhesive layer 83c faces downward.
  • the cell assembly mother board B in which the adhesive sheet 21c is bonded to the display surface of the optical display cell 1 is held in the horizontal direction while being held on the suction holding board 10 together with the glass substrate 3 bonded to the mother board B.
  • the optical display panel manufacturing apparatus 80 shown in FIG. 10 includes an optical function film bonding position I, a glass substrate peeling position II, an adhesive layer application position III, a composite film bonding position IV, and an optical display cell cutting position V. And have.
  • the cell assembly mother board B in which the adhesive sheet 21c is bonded to the display surface of the optical display cell 1 and the glass substrate 3 are supported by the support mechanism 13 of the suction holding disk 10.
  • the height is adjusted using a height adjusting mechanism provided in the.
  • the height to be adjusted is such that the pressure-sensitive adhesive sheet 21c bonded to the optical display cell 1 on the cell assembly motherboard B comes into contact with the retardation film 83d of the optical function film 83 with a predetermined contact pressure. is there.
  • the cell assembly mother board B and the glass substrate 3 on the suction holding board 10 adjusted in height are fed under the second guide roller 84b from the left in FIG.
  • the optical functional film 83 fed out from the roll 83a has its retardation film 83d pressed against the adhesive sheet 21f on the cell assembly motherboard B by the guide roller 84b. In this way, the optical functional film 83 is bonded to the cell assembly motherboard B.
  • the optical functional film 83 is driven in the feeding direction indicated by the arrow A in FIG. While the cell assembly motherboard B passes through the optical function film bonding position I, the optical function film 83 is bonded to the adhesive sheets 21c of all the display cells on the cell assembly motherboard B. After the cell assembly motherboard B passes through the optical function film bonding position I, the vacuum suction force of the suction holding board 10 is released, and the cell assembly motherboard B and the glass substrate 3 are supported only by the optical function film 83. It becomes a state.
  • the cell assembly mother board B and the glass substrate supported by the optical functional film 83 are then sent to the glass substrate peeling position II.
  • the glass substrate 3 is peeled off from the resin base material 4 by a known method such as laser irradiation.
  • a technique for peeling a glass substrate from a resin base material by laser irradiation is described in, for example, International Publication No. WO2009 / 104371 (Patent Document 2).
  • Patent Document 2 The cell assembly mother board B from which the glass substrate 3 has been peeled is sent to the adhesive layer application position III.
  • the optical functional film 83 and the cell assembly motherboard B supported by the optical functional film 83 are sandwiched below the guide rollers 84c and 84d located above the optical functional film 83.
  • the rollers 85a and 85b are disposed so as to face the guide rollers 84c and 84d.
  • an adhesive tape supply roller 87 is provided at the adhesive layer application position III, and a roll 86 a of the adhesive tape 86 is supported on the supply roller 87.
  • the pressure-sensitive adhesive tape 86 includes a pressure-sensitive adhesive layer 86b, a first release liner 86c bonded to one side of the pressure-sensitive adhesive layer 86b, and a second release bonded to the other side of the pressure-sensitive adhesive layer 86b. It comprises a liner 86d.
  • the adhesive tape 86 fed out from the roll 86 a passes through the guide roller 88 and is sent between the roller 85 a and the cell assembly motherboard B supported by the carrier tape 83.
  • the adhesive tape 86 is unrolled from the roll 86a and before reaching the guide roller 88, the first release liner 86c is peeled off and the adhesive layer 86b is exposed. The peeled first release liner 86c is taken up by the take-up roller 89a.
  • the pressure-sensitive adhesive tape 86 is sent between the roller 84 c and the roller 85 a so that the exposed pressure-sensitive adhesive layer 86 b is in contact with the resin base material 4 on the lower surface of the cell assembly motherboard B supported by the carrier tape 83. .
  • the adhesive layer 86b is pressed against the resin substrate 4 on the lower surface of the cell assembly motherboard B by the rollers 84c and 85a and joined to the cell assembly motherboard B.
  • the cell assembly motherboard B and the adhesive tape 86 are sent between the rollers 84d and 85b, and the second release liner 86d is peeled from the adhesive layer 86b.
  • the peeled second release liner 86d is taken up by the take-up roller 89b.
  • the cell assembly mother board B having the adhesive layer 86b on the lower surface is supported by the optical function film 83 and sent to the composite film laminating position IV.
  • a roll 90a of the composite film 90 is disposed, and the composite film 90 fed out from the roll 90a is below the guide roller 84e by a guide roller 91 disposed below the guide roller 84e. It is pressed against the adhesive layer 86b applied to the lower surface of the cell assembly mother board B that has reached the position. In this way, the composite film is bonded to the cell assembly motherboard B.
  • the cell assembly mother board B is supported by the optical function film 83 bonded to the upper surface and the composite film 90 bonded to the lower surface.
  • a pair of drive rollers 91a and 91b can be provided in order to drive the laminate composed of the optical function film 83, the composite film 90, and the cell assembly mother board B in the feeding direction.
  • the composite film 90 is configured as a laminate including a light shielding film layer and a film layer having impact resistance and heat dissipation.
  • an ordinary back surface protective film may be used instead of the composite film.
  • the cell assembly mother board B in which the optical functional film 83 is bonded to the upper surface and the composite film 90 is bonded to the lower surface is sent to the optical display cell cutting position V.
  • This cutting position V is provided with a support belt 92 made of a synthetic resin that receives the composite film 90 and a cutting blade 93, and the cell assembly mother board B is cut to separate individual optical display cells 1.
  • the optical functional film 83 bonded to the upper surface of the cell assembly mother board B is cut in accordance with the size of the display surface 1d of each display cell 1.
  • the mechanism and operation for cutting described above are well known, and detailed description thereof is omitted here.
  • FIG. 12 shows an apparatus according to another embodiment for laminating an optical functional film. Since this apparatus has the same basic configuration and operation as the apparatus 80 shown in FIG. 10, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the apparatus shown in FIG. 12 is different from the apparatus 80 shown in FIG. 10 in that the cell assembly mother board B which is passed between the rollers 84c and 85a and the adhesive layer 86b is provided on the lower surface is provided with the optical functional film 83 and It is to be wound around the roll 100 in the form of a laminate together with the second release liner 86d.
  • the laminated body wound up by the roll 100 can be unwound from the roll 100 and processed at the composite film laminating position IV and the optical display cell cutting position V in another step.
  • the method of the present invention can also be applied to the display cells 1 arranged in a vertical row on the mother board B.
  • An example is shown in FIG.
  • the display cell 1 is arranged on the mother board B so that the terminal portion 1c is lateral to the column direction.
  • the application of the adhesive layer to the display surface 1 of the display cell 1 is performed by displaying the adhesive sheet 21c cut in advance from the top of the column in the display cell 1 in the same manner as the operation described with reference to FIG. This can be done by bonding to the part 1d.
  • the method of the present invention can also be applied to display cells having a flexible sheet structure having a relatively large size. Examples thereof are shown in FIGS.
  • the display cell is an organic EL cell
  • the cell itself can have a thin flexible sheet structure.
  • an optical display cell 101 having a flexible sheet structure has a rectangular shape having a short side 101a and a long side 101b, a terminal portion 101c positioned along the short side 101a, and a length L in the vertical direction. And a display portion 101d having a lateral width W.
  • the display cell 101 is formed on a base material 102 made of a heat-resistant resin material such as polyimide at the manufacturing stage. The manufacturing process is the same as the process described with reference to FIG.
  • the resin base material 102 is formed in a film shape on the glass substrate 3, and the optical display cell 101 such as an organic EL display cell is formed thereon.
  • the adhesive sheet 21 c is bonded to the display surface 101 d of the display cell 101.
  • a mechanism similar to the adhesive layer application mechanism 20 shown in FIG. 8 can be employed.
  • the optical film 21 fed out from the tape-shaped adhesive roll 22 has a width corresponding to the width W of the display cell 101 shown in FIG.
  • the structure of the bonding part is shown schematically. The operation in the bonding portion is the same as that described above with reference to FIG. 8, and corresponding portions are denoted by the same reference numerals.

Abstract

An optical inspection method for a display cell having a flexible thin-film structure includes: a step for conveying a motherboard structure including at least a cell motherboard comprising a resin substrate and at least one display cell formed on the resin substrate and having a flexible thin-film structure and a display surface in a conveyance direction such that the display surface of the display cell faces upward; a step for forming an adhesive layer on the display surface of the display cell of the motherboard structure conveyed in the conveyance direction; a step for putting the display cell having the adhesive layer formed on the display surface thereof in an excited state by supplying excitation power to the display cell and searching for defects in the display cell in the excited state; and a step for adhering an optical functional film to the adhesive layer formed on the display surface of the display cell for which defect inspection has been completed. As a result, a display cell formed on a resin substrate and having a flexible thin-film structure can be inspected for defects in an excited state without a protective film being adhered to the display cell.

Description

可撓性薄膜構造の表示セルの光学検査方法及びその方法に使用される疑似端子ユニットOptical inspection method for display cell of flexible thin film structure and pseudo terminal unit used in the method
 本発明は、光学機能フィルムが貼り合わされる可撓性薄膜構造の表示セルの検査方法及びその方法に使用される疑似端子ユニットに関する。特に本発明は、限定的な意味ではないが、有機EL表示セルのような可撓性薄膜構造に形成することができ、光学機能フィルムが貼り合わされる表示セルの検査方法及びその方法に使用される疑似端子ユニットに関する。 The present invention relates to a method for inspecting a display cell having a flexible thin film structure to which an optical functional film is bonded, and a pseudo terminal unit used in the method. In particular, the present invention is not limited, but it can be formed into a flexible thin film structure such as an organic EL display cell, and is used in a display cell inspection method and an optical function film bonded thereto. The pseudo terminal unit.
 有機EL表示セルは、可撓性薄膜構造に形成できるため、該表示セルを使用する表示装置を曲面に構成したり、表示装置全体を可撓性に構成してロール巻き又は折り曲げ可能とすることも可能である。この種の表示セルは、一般に、ガラス基板のような耐熱性基板上にポリイミド樹脂のような樹脂の膜を形成して、該樹脂膜によりフィルム状表示セル形成のための基材とし、該基材の上に表示セルを形成することによって製造される。このようにして製造された表示セルの表示面には、粘着剤層を介して光学機能フィルムが貼り合わされる。 Since the organic EL display cell can be formed in a flexible thin film structure, a display device using the display cell is configured to be a curved surface, or the entire display device is configured to be flexible so that it can be rolled or bent. Is also possible. This type of display cell is generally formed by forming a resin film such as a polyimide resin on a heat-resistant substrate such as a glass substrate, and using the resin film as a base material for forming a film-shaped display cell. It is manufactured by forming display cells on the material. An optical functional film is bonded to the display surface of the display cell manufactured in this way via an adhesive layer.
 また、スマートフォン又はタブレットサイズの表示装置に使用される比較的小さい寸法の表示セルは、一つの基板上に多数のセルを形成することにより製造される。このような比較的小さい画面サイズの有機EL表示セルを工業的に製造する方法を記載した文献として、韓国特許出願公開公報10-1174834号(特許文献1)がある。この特許文献1に記載された方法によれば、ガラス基板の上にポリイミド樹脂のような樹脂の膜を形成して、該樹脂膜によりフィルム状表示セル形成のための基材とする。そして、該基材上に、縦横の複数列に配置された多数の表示セルを形成し、その全面を工程フィルムにより覆い、次いで、該表示セルが形成された基材をガラス基板から剥離する。その後、工程フィルムが貼り合わされた状態で、個々のフィルム状表示セルを分断し、個々のフィルム状表示セルの1辺に形成された電気接続用の電気端子を備える端子部分が剥き出しになるように、該端子部分に対応する個所において、該工程フィルムを剥がすことにより、個々のフィルム状表示セルを形成する。 Also, a display cell having a relatively small size used for a display device of a smartphone or tablet size is manufactured by forming a large number of cells on one substrate. As a document describing a method for industrially manufacturing such an organic EL display cell having a relatively small screen size, there is Korean Patent Application Publication No. 10-1174834 (Patent Document 1). According to the method described in Patent Document 1, a resin film such as a polyimide resin is formed on a glass substrate, and the resin film is used as a base material for forming a film display cell. Then, a large number of display cells arranged in a plurality of rows and columns are formed on the substrate, the entire surface thereof is covered with a process film, and then the substrate on which the display cells are formed is peeled from the glass substrate. After that, in the state where the process film is bonded, the individual film-shaped display cells are divided so that the terminal portions including the electrical terminals for electrical connection formed on one side of the individual film-shaped display cells are exposed. Each film-like display cell is formed by peeling off the process film at a location corresponding to the terminal portion.
 このようにして形成された表示セルに対し、光学検査が行われる。この光学検査は、通常は、反射光による表面欠陥検査と、表示セルに励起電力を印加することにより該表示セルを励起状態にして該表示セルの動作が正常であるかどうかを検査する点灯検査の2段階で行われる。後者の点灯検査においては、各表示セルに励起電力を印加するために、該表示セルの電気接続端子に接続される電気接続端子をもった疑似端子を使用する。 An optical inspection is performed on the display cell thus formed. This optical inspection is usually a surface defect inspection by reflected light and a lighting inspection in which the display cell is in an excited state by applying excitation power to the display cell to check whether the operation of the display cell is normal. It is performed in two stages. In the latter lighting test, in order to apply excitation power to each display cell, a pseudo terminal having an electrical connection terminal connected to the electrical connection terminal of the display cell is used.
 表示セルの励起状態で遂行される欠陥検査に際しては、該表示セルが製造された直後の状態でこの検査を行うと、表示セルの表示面に異物が付着して表示セルの機能を劣化させる恐れがある。そのため、通常は、表示セルの前面に保護フィルムを貼り合わせて検査を行う。しかし、保護フィルムを使用すると、後の工程において該保護フィルムを剥がすことが必要になり、工数が増加する。そこで、光学機能フィルムを表示面に貼り合わせた後で検査を行うことが考えられるが、光学機能フィルムが表示面に貼り合わされた状態では、精密な励起状態検査をおこなうことができない。 In the defect inspection performed in the excited state of the display cell, if this inspection is performed in a state immediately after the display cell is manufactured, foreign matter may adhere to the display surface of the display cell and the function of the display cell may be deteriorated. There is. Therefore, the inspection is usually performed by attaching a protective film to the front surface of the display cell. However, when a protective film is used, it is necessary to peel off the protective film in a later step, which increases the number of steps. Thus, it is conceivable to perform an inspection after the optical functional film is bonded to the display surface. However, in a state where the optical functional film is bonded to the display surface, a precise excited state inspection cannot be performed.
 さらに、セルマザーボード上に複数の表示セルが縦横の行列状に配置された構成の場合には、個々の表示セルを個別に励起状態にして欠陥検査を行うと、検査に要する時間と労力が増大することになり、好ましくない。 Furthermore, in the case of a configuration in which a plurality of display cells are arranged in rows and columns on the cell motherboard, the time and labor required for the inspection increase if the individual display cells are individually excited to perform the defect inspection. This is not preferable.
韓国特許出願公開公報10-1174834号Korean Patent Application Publication No. 10-1174834 国際公開公報WO2009/104371A1International Publication WO2009 / 104371A1 特開2007-157501号公報JP 2007-157501 A 特開2013-63892号公報JP 2013-63892 A 特開2010-13250号公報JP 2010-13250 A 特開2013-35158号公報JP 2013-35158 A 特願2013-070787号Japanese Patent Application No. 2013-070787 特願2013-070789号Japanese Patent Application No. 2013-070789 特許第5204200号Japanese Patent No. 5204200 特許第5448264号Patent No. 5448264
 本発明は、上述した状況に対処するため、樹脂基材上に形成された可撓性薄膜構造の表示セルに対し保護フィルムを貼り合わせることなく、励起状態での表示セルの欠陥検査を行うことができるようにする検査方法を提供することを解決すべき課題とする。 In order to cope with the above-described situation, the present invention performs a defect inspection of a display cell in an excited state without attaching a protective film to a display cell having a flexible thin film structure formed on a resin substrate. It is a problem to be solved to provide an inspection method that enables the inspection.
 さらに、本発明の別の課題は、セルマザーボード上に複数の表示セルが形成された構成において、高い効率で表示セルの励起状態検査を遂行できる方法を提供することである。 Furthermore, another object of the present invention is to provide a method capable of performing an excited state inspection of a display cell with high efficiency in a configuration in which a plurality of display cells are formed on a cell motherboard.
 本発明のさらに別の課題は、複数の表示セルが形成されたセルマザーボードにおける表示セルの励起状態での欠陥検査に使用される疑似端子ユニットを提供することである。 Still another object of the present invention is to provide a pseudo terminal unit used for defect inspection in an excited state of a display cell in a cell motherboard in which a plurality of display cells are formed.
 本発明は、上述した課題を解決することができる、可撓性薄膜構造の表示セルの光学検査方法を提供する。この方法は、
 樹脂基材と、該樹脂基材上に形成された、可撓性薄膜構造で表示面を有する少なくとも1つの表示セルとからなるセルマザーボードを少なくとも含むマザーボード構造体を、該表示セルの表示面が上向きになる状態で送り方向に送る段階と、
 該送り方向に送られるマザーボード構造体の表示セルの表示面に、粘着剤層を形成する段階と、
 表示セルの表示面に粘着剤層が形成された表示セルに励起電力を供給して該表示セルを励起状態にし、励起状態にある該表示セルについて欠陥検査を行う段階と、
 欠陥検査が終わった前記表示セルの表示面に形成された前記粘着剤層に光学機能フィルムを貼り合わせる段階と、
を含む。
The present invention provides an optical inspection method for a display cell having a flexible thin film structure, which can solve the above-described problems. This method
A mother board structure including at least a cell mother board composed of a resin base material and at least one display cell having a display surface with a flexible thin film structure formed on the resin base material. Sending in the feed direction while facing upward,
Forming a pressure-sensitive adhesive layer on the display surface of the display cell of the mother board structure sent in the feeding direction;
Supplying excitation power to a display cell having a pressure-sensitive adhesive layer formed on the display surface of the display cell to bring the display cell into an excited state, and performing a defect inspection on the display cell in the excited state;
Bonding an optical functional film to the adhesive layer formed on the display surface of the display cell after the defect inspection;
including.
 この場合において、表示セルの表示面は、2つの短辺と2つの長辺とを有する矩形形状とし、該表示セルは、短辺及び長辺のうちの1つの辺に沿って電気接続端子をもった端子部分が形成された構成で、セルマザーボードは、該表示セルの端子部分が送り方向に対し横向きになる状態で該送り方向に送られるようにすることが好ましい。 In this case, the display surface of the display cell has a rectangular shape having two short sides and two long sides, and the display cell has an electrical connection terminal along one of the short side and the long side. It is preferable that the cell mother board is sent in the feeding direction in a state in which the terminal portion of the display cell is lateral to the feeding direction.
 さらに別の好ましい形態では、セルマザーボードは、送り方向に平行な縦方向の列に配置された複数の表示セルの縦列を少なくとも1つ含み、表示セルの励起状態で行われる欠陥検査は、セルマザーボードの周辺に対応する形状の外枠と、該外枠内に設けられた桟部材により表示セルの表示面に対応する窓が形成され、該窓の各々における1つの辺に沿って表示セルの端子部分の電気接続端子に対応する電気接続端子が配置された疑似端子ユニットを、該セルマザーボードに重ねて、該疑似端子ユニットの電気接続端子を表示セルの電気接続端子に接続し、該疑似端子ユニットに励起電力を供給することによって行われるようにする。 In still another preferred embodiment, the cell motherboard includes at least one display cell column arranged in a vertical column parallel to the feed direction, and the defect inspection performed in the excited state of the display cell is performed by the cell motherboard. A window corresponding to the display surface of the display cell is formed by an outer frame having a shape corresponding to the periphery of the display frame and a crosspiece provided in the outer frame, and a terminal of the display cell is formed along one side of each of the windows. A pseudo terminal unit in which an electrical connection terminal corresponding to the electrical connection terminal of the portion is arranged is overlaid on the cell motherboard, and the electrical connection terminal of the pseudo terminal unit is connected to the electrical connection terminal of the display cell. This is done by supplying excitation power to.
 さらに別の好ましい態様では、セルマザーボードは、送り方向に平行な縦方向の列に配置された複数の表示セルの縦列を複数列含み、表示セルの励起状態で行われる欠陥検査は、セルマザーボードの周辺に対応する形状の外枠と、該外枠内に設けられた横桟及び縦桟により表示セルの表示面に対応する窓が縦横の行列状に形成され、該窓の各々における1つの辺に沿って表示セルの端子部分の電気接続端子に対応する電気接続端子が配置された疑似端子ユニットを、セルマザーボードに重ねて、該疑似端子ユニットの電気接続端子を表示セルの電気接続端子に接続し、該疑似端子ユニットに励起電力を供給することによって行われる。 In still another preferred embodiment, the cell motherboard includes a plurality of columns of display cells arranged in a vertical column parallel to the feed direction, and the defect inspection performed in the excited state of the display cell is performed on the cell motherboard. A window corresponding to the display surface of the display cell is formed in a vertical and horizontal matrix by an outer frame having a shape corresponding to the periphery, and a horizontal beam and a vertical beam provided in the outer frame, and one side in each of the windows A pseudo terminal unit in which an electrical connection terminal corresponding to the electrical connection terminal of the terminal portion of the display cell is placed along the cell motherboard, and the electrical connection terminal of the pseudo terminal unit is connected to the electrical connection terminal of the display cell. The excitation power is supplied to the pseudo terminal unit.
 本発明においては、セルマザーボードは、少なくとも送り方向に平行な縦方向の列に配置された複数の表示セルを含み、複数の表示セルの端子部分は、すべて送り方向に対し横向きになる状態で該送り方向に送られるようにすることができる。光学機能フィルムは偏光子を少なくとも含むものとすることができる。この場合において、光学機能フィルムは、偏光子と、1/4波長位相差フィルムとの積層体とし、該積層体は、1/4波長位相差フィルムが表示セルに面するように表示面に貼り合わされることが好ましい。表示セルは、有機EL表示セルとすることができる。 In the present invention, the cell motherboard includes at least a plurality of display cells arranged in a vertical row parallel to the feed direction, and the terminal portions of the plurality of display cells are all in a state of being horizontally oriented with respect to the feed direction. It can be sent in the feed direction. The optical functional film can include at least a polarizer. In this case, the optical functional film is a laminate of a polarizer and a quarter-wave retardation film, and the laminate is attached to the display surface so that the quarter-wave retardation film faces the display cell. It is preferable that they are combined. The display cell can be an organic EL display cell.
 本発明のさらに別の態様においては、2つの短辺と2つの長辺とを有する矩形形状の表示面を有し、該短辺及び長辺のうちの1つの辺に沿って電気接続端子をもった端子部分が形成された構成の表示セルが複数個、縦方向の列に配置された表示セルの縦列を複数列含むセルマザーボードに対し、該セルマザーボード上の該複数の表示セルを同時に励起状態にして該表示セルの欠陥検査を行うために使用される励起電力印加用の疑似端子ユニットが提供される。この疑似端子ユニットは、セルマザーボードの周辺に対応する形状の外枠と、該外枠内に設けられた横桟及び縦桟と、該横桟及び縦桟により形成された、複数の表示セルの表示面のそれぞれに対応する窓と、該窓の各々における1つの辺に沿って表示セルの端子部分の電気接続端子に対応する位置に配置された励起電力供給用電気接続端子と、該励起電力供給用電気接続端子に励起電力を供給するための励起電力源接続部と、を含む。 In still another aspect of the present invention, the display device has a rectangular display surface having two short sides and two long sides, and an electrical connection terminal is provided along one of the short side and the long side. A plurality of display cells having a structure with a terminal portion formed therein, and a plurality of display cells arranged in a vertical column, and a plurality of columns of display cells arranged simultaneously, the plurality of display cells on the cell motherboard are simultaneously excited. There is provided a pseudo terminal unit for applying excitation power, which is used to perform a defect inspection of the display cell in a state. The pseudo terminal unit includes an outer frame having a shape corresponding to the periphery of the cell motherboard, a horizontal beam and a vertical beam provided in the outer frame, and a plurality of display cells formed by the horizontal beam and the vertical beam. A window corresponding to each of the display surfaces; an electrical connection terminal for supplying excitation power disposed at a position corresponding to an electrical connection terminal of a terminal portion of the display cell along one side of each of the windows; and the excitation power An excitation power source connection for supplying excitation power to the supply electrical connection terminal.
 本発明の方法によれば、表示セルを励起状態で検査する場合に、該表示セルの表示面に粘着剤層を形成した状態で検査を行うので、粘着剤層を保護層として作用させることができ、保護フィルムを使用する場合に比べて、保護フィルム剥離工程を省くことが可能になる。また、表示面に光学機能フィルムを貼り合わせる前に励起状態での検査を行うので、光学機能フィルムを貼り合わせた後に行う検査に比べて、精密な検査を行うことが可能になる。 According to the method of the present invention, when a display cell is inspected in an excited state, the inspection is performed in a state where an adhesive layer is formed on the display surface of the display cell, so that the adhesive layer can act as a protective layer. It is possible to omit the protective film peeling step compared to the case of using the protective film. In addition, since the inspection in the excited state is performed before the optical functional film is bonded to the display surface, it is possible to perform a precise inspection compared to the inspection performed after the optical functional film is bonded.
 さらに、本発明による疑似端子ユニットは、セルマザーボード上の複数の表示セルを同時に励起状態にすることができるので、高い効率での検査を可能にする。 Furthermore, the pseudo terminal unit according to the present invention can simultaneously activate a plurality of display cells on the cell motherboard, thereby enabling inspection with high efficiency.
本発明の一実施形態の方法において使用することができる光学表示セルの一例を示す平面図である。It is a top view which shows an example of the optical display cell which can be used in the method of one Embodiment of this invention. 比較的小型の表示画面を有する有機EL表示セルの製造工程の一例を概略的に示す斜視図である。It is a perspective view which shows roughly an example of the manufacturing process of the organic electroluminescent display cell which has a comparatively small display screen. 本発明の方法が適用されるセル集合体マザーボードの一例を示すものであり、(a)は平面図、(b)は断面図である。An example of the cell assembly mother board to which the method of the present invention is applied is shown. (A) is a top view and (b) is a sectional view. (a)(b)(c)(d)は、表面保護フィルム剥離動作の各段階を示す図である。(A) (b) (c) (d) is a figure which shows each step of surface protection film peeling operation | movement. 光学検査装置の構成を示す概略図で、(a)は反射検査装置を、(b)は点灯検査装置を、それぞれ示す。It is the schematic which shows the structure of an optical inspection apparatus, (a) shows a reflection inspection apparatus, (b) shows a lighting inspection apparatus, respectively. 図2に示すセル集合体マザーボードの点灯検査のための疑似端子ユニットを示す平面図である。It is a top view which shows the pseudo | simulation terminal unit for the lighting test | inspection of the cell assembly motherboard shown in FIG. 図6に示す疑似端子ユニットを用いて点灯検査を行う状態を示す斜視図である。It is a perspective view which shows the state which performs a lighting test | inspection using the pseudo terminal unit shown in FIG. 粘着剤層付与機構の全体を示す概略側面図である。It is a schematic side view which shows the whole adhesive layer provision mechanism. (a)(b)(c)(d)(e)は、本発明の一実施形態による、セル集合体マザーボードにおける粘着剤シートの貼合せ順序を示す概略図である。(A) (b) (c) (d) (e) is the schematic which shows the bonding order of the adhesive sheet in the cell assembly motherboard by one Embodiment of this invention. 本発明の光学機能フィルム貼合せ方法を実施するための、一実施形態による光学表示パネル製造装置の概略図である。It is the schematic of the optical display panel manufacturing apparatus by one Embodiment for enforcing the optical function film bonding method of this invention. 光学機能フィルムの一例を示す拡大断面図である。It is an expanded sectional view showing an example of an optical functional film. 本発明の光学機能フィルム貼合せ方法を実施するための、他の実施形態による装置の概略図である。It is the schematic of the apparatus by other embodiment for enforcing the optical function film bonding method of this invention. 表示セルが縦一列に配置された実施形態における粘着剤層付与の一例を示す斜視図である。It is a perspective view which shows an example of adhesive layer provision in embodiment with which the display cell is arrange | positioned at 1 vertical line. 大きいサイズの柔軟性シート構造の表示セルを有するセルマザーボードの一例を示す平面図である。It is a top view which shows an example of the cell motherboard which has a display cell of a flexible sheet structure of a large size. 図14に示す例に対する粘着剤層付与動作を示す斜視図である。It is a perspective view which shows the adhesive layer provision operation | movement with respect to the example shown in FIG.
 図1に、本発明に一実施形態の方法を適用する-ことができる光学表示セル1の一例を示す。この光学表示セル1は平面形状が短辺1aと長辺1bとを有する長方形形状であり、一方の短辺1aに沿って所定幅の端子部分1cが形成されている。この端子部分1cには、電気接続のための多数の電気端子2が配置されている。光学表示セル1の端子部分2を除く領域が表示領域1dとなる。この表示領域1dは、横方向の幅Wと縦方向の長さLとを有する。本発明の方法を実施するためには、光学表示セル1は有機EL表示セルであることが好ましいが、可撓性薄膜構造の表示セルであれば、本発明の方法を適用することができる。光学表示セル1は、携帯電話又はスマートフォン、或いはタブレット用途の比較的小型のものから、テレビ用途の比較的大きなものまで、種々の画面サイズを有するものとすることができる。 FIG. 1 shows an example of an optical display cell 1 to which the method of one embodiment can be applied to the present invention. The optical display cell 1 has a rectangular shape having a short side 1a and a long side 1b in plan view, and a terminal portion 1c having a predetermined width is formed along one short side 1a. A number of electrical terminals 2 for electrical connection are arranged on the terminal portion 1c. A region excluding the terminal portion 2 of the optical display cell 1 is a display region 1d. The display area 1d has a width W in the horizontal direction and a length L in the vertical direction. In order to carry out the method of the present invention, the optical display cell 1 is preferably an organic EL display cell, but the method of the present invention can be applied to any display cell having a flexible thin film structure. The optical display cell 1 can have various screen sizes from a relatively small size for mobile phones or smartphones or tablets to a relatively large size for television applications.
 図2は、スマートフォン或いはタブレット用途のような比較的小型の表示画面を有する有機EL表示セルの製造工程の一例を概略的に示す斜視図である。この工程においては、耐熱性基板として先ずガラス基板3が準備され、該ガラス基板3上に、耐熱性樹脂材料、好ましくはポリイミド樹脂が所定厚さに塗布され、乾燥されることによって、樹脂基材4が形成される。耐熱性樹脂材料としては、ポリイミド樹脂の他、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などを使用することができる。その他に、基材の材料としては、特開2007-157501号公報(特許文献3)に記載されているような可撓性セラミックシート、或いは、特開2013-63892号公報(特許文献4)、特開2010-13250号公報(特許文献5)、特開2013-35158号公報(特許文献6)に記載されているような可撓性のガラスを使用することもできる。可撓性セラミックシート又は可撓性ガラスを基材として使用する場合には、ガラス基板3を使用する必要はない。 FIG. 2 is a perspective view schematically showing an example of a manufacturing process of an organic EL display cell having a relatively small display screen for use in a smartphone or a tablet. In this step, first, a glass substrate 3 is prepared as a heat-resistant substrate, and a heat-resistant resin material, preferably a polyimide resin, is applied to the glass substrate 3 to a predetermined thickness and dried, whereby a resin base material is obtained. 4 is formed. As a heat resistant resin material, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), etc. can be used in addition to polyimide resin. In addition, as a material of the base material, a flexible ceramic sheet as described in JP 2007-157501 A (Patent Document 3), or JP 2013-63892 A (Patent Document 4), It is also possible to use flexible glass as described in JP 2010-13250 A (Patent Document 5) and JP 2013-35158 A (Patent Document 6). When a flexible ceramic sheet or flexible glass is used as the substrate, it is not necessary to use the glass substrate 3.
 この樹脂基材4上に、複数の有機EL表示セル1が、周知の製造方法により、縦横の行列状に配列された状態で形成されて、樹脂基材4と表示セル1がセル集合体マザーボードBを形成する。樹脂基材4上に形成された表示セルが1個である場合には、これをセルマザーボードと呼ぶ。従来の方法では、その後、樹脂基材4上に形成された有機EL表示セル1を覆うように、表面保護フィルム5が貼り合わされる。セル集合体マザーボードB又はセルマザーボードがガラス基板3のような耐熱性基板に接合された状態のものをマザーボード構造体と呼ぶ場合がある。 A plurality of organic EL display cells 1 are formed on the resin base material 4 in a state of being arranged in a vertical and horizontal matrix by a known manufacturing method, and the resin base material 4 and the display cells 1 are cell assembly motherboards. B is formed. When there is one display cell formed on the resin substrate 4, this is called a cell motherboard. In the conventional method, the surface protective film 5 is then bonded so as to cover the organic EL display cell 1 formed on the resin substrate 4. The cell assembly mother board B or the one in which the cell mother board is bonded to a heat resistant substrate such as the glass substrate 3 may be referred to as a mother board structure.
 図3(a)は、表面保護フィルム5が貼り合わされていない、セル集合体マザーボードBを示す平面図であり、同図(b)は、図4のb-b線における断面図であるが、従来の製造方法におけるように、表面保護フィルム5が貼り合わされたセル集合体マザーボードBがガラス基板3上に配置された状態を示す。図3(a)に示すように、セル集合体マザーボードBにおいては、複数の光学表示セル1が、端子部分1aが横方向に向けられる状態で、縦方向の列及び横方向の行を構成するように、行列配置される。セル集合体マザーボードBは、図3(a)に示すように、短辺B-1と長辺B-2とを有する矩形形状であり、一方の短辺B-1の両端近傍にマザーボードBの基準点となる基準標識mが、印字、刻印その他の適当な手法により付されている。この基準標識mは、マザーボードBの位置決めを行う場合に基準として参照される。光学フィルムの貼り合わせに際しては、セル集合体マザーボードBは、図3(a)に矢印Aで示す方向、すなわち縦方向に送られる。 FIG. 3 (a) is a plan view showing the cell assembly mother board B without the surface protective film 5 attached thereto, and FIG. 3 (b) is a cross-sectional view taken along the line bb of FIG. As in the conventional manufacturing method, a state in which the cell assembly mother board B on which the surface protective film 5 is bonded is arranged on the glass substrate 3 is shown. As shown in FIG. 3 (a), in the cell assembly motherboard B, a plurality of optical display cells 1 constitute vertical columns and horizontal rows with the terminal portions 1a oriented in the horizontal direction. As shown in FIG. As shown in FIG. 3A, the cell aggregate motherboard B has a rectangular shape having a short side B-1 and a long side B-2. A reference mark m serving as a reference point is attached by printing, engraving, or other appropriate technique. The reference mark m is referred to as a reference when the mother board B is positioned. When the optical film is bonded, the cell assembly mother board B is sent in the direction indicated by the arrow A in FIG.
 ガラス基板3を有する状態のセル集合体マザーボードBは、光学表示セル1の欠点検査を経たのちに、ガラス基板3を剥離するガラス基板剥離位置に送られる。このガラス基板剥離位置へのガラス基板3を有する状態のセル集合体マザーボードBの移送に際して、光学機能フィルムの貼り合わせが行われる。ガラス基板3を有する状態のセル集合体マザーボードBを光学機能フィルム貼合せ位置に移送するに先立って、セル集合体マザーボードBの光学検査が行われる。この光学検査に備えて、従来は、セル集合体マザーボードBから表面保護フィルム5を剥離する必要があった。図4に、表面保護フィルム5を剥離する手順を示す。 The cell assembly mother board B in the state having the glass substrate 3 is sent to the glass substrate peeling position where the glass substrate 3 is peeled after passing through the defect inspection of the optical display cell 1. When the cell assembly mother board B having the glass substrate 3 to the glass substrate peeling position is transferred, the optical functional film is bonded. Prior to transferring the cell assembly motherboard B having the glass substrate 3 to the optical functional film bonding position, an optical inspection of the cell assembly motherboard B is performed. In preparation for this optical inspection, conventionally, it is necessary to peel the surface protective film 5 from the cell assembly motherboard B. In FIG. 4, the procedure which peels the surface protection film 5 is shown.
 図4を参照すると、セル集合体マザーボードBは、ガイド15及び支持機構13に支持された吸引保持盤10上に真空吸引力により保持されて、図4(a)に示す位置で表面保護フィルム剥離位置に送り込まれ、図4(b)に示す位置において昇降機構により所定高さまで上昇させられる。この所定高さは、セル集合体マザーボードBの表面保護フィルム5の上面が、一対の押圧ロール16c間に位置する粘着テープ16dに所定の接触圧で接触できる高さである。 Referring to FIG. 4, the cell assembly mother board B is held by the vacuum holding force on the suction holding board 10 supported by the guide 15 and the support mechanism 13, and the surface protection film is peeled off at the position shown in FIG. It is sent to the position and raised to a predetermined height by the lifting mechanism at the position shown in FIG. This predetermined height is a height at which the upper surface of the surface protective film 5 of the cell assembly mother board B can contact the adhesive tape 16d positioned between the pair of pressing rolls 16c with a predetermined contact pressure.
 昇降機構により所定高さまで上昇させられたセル集合体マザーボードBは、そのまま剥離用粘着テープ駆動装置16の下方の位置に送られる。ここで、マザーボードBの表面保護フィルム5の上面が、一対の押圧ロール16cの間において粘着テープ16dの粘着面に押圧状態で接触する。粘着テープ16dの表面保護フィルム5に対する接着力は、表面保護フィルム5の光学表示セル1に対する接着力よりも大きく、したがって、表面保護フィルム5は、粘着テープ16dに付着して、樹脂基材4上に配置された光学表示セル1から剥離される。剥離された表面保護フィルム5は、巻き取りロール16bにより粘着テープ16dとともに巻き取られる。表面保護フィルム5が剥離されたマザーボードBは、図(d)に示す位置において昇降機構により、図4(a)の位置における送り込み時の高さまで下降させられて、光学検査位置に送られる。 The cell assembly mother board B raised to the predetermined height by the elevating mechanism is sent to the position below the peeling adhesive tape driving device 16 as it is. Here, the upper surface of the surface protection film 5 of the mother board B contacts the adhesive surface of the adhesive tape 16d in a pressed state between the pair of pressing rolls 16c. The adhesive force of the adhesive tape 16d to the surface protective film 5 is larger than the adhesive force of the surface protective film 5 to the optical display cell 1, so that the surface protective film 5 adheres to the adhesive tape 16d and is on the resin substrate 4. It peels from the optical display cell 1 arrange | positioned. The peeled surface protective film 5 is taken up together with the adhesive tape 16d by a take-up roll 16b. The mother board B from which the surface protective film 5 has been peeled is lowered to the height at the time of feeding at the position shown in FIG. 4A by the lifting mechanism at the position shown in FIG.
 以上が、従来の方法において必要とされた表面保護フィルムの剥離動作である。本発明においては、この表面保護フィルムの貼り合わせを行うことなく、したがって、表面保護フィルムの剥離を必要とせずに、セル集合体マザーボードB上の表示セルに対して粘着剤層が付与される。このために、図2の製造工程により製造されたセル集合体マザーボードBは、粘着剤層付与機構20を備える粘着剤層付与位置に送られる。図8は、粘着剤層付与機構20の全体を示す概略側面図である。 The above is the peeling operation of the surface protective film required in the conventional method. In the present invention, the pressure-sensitive adhesive layer is applied to the display cells on the cell assembly mother board B without performing the bonding of the surface protective film and, therefore, without requiring the peeling of the surface protective film. For this purpose, the cell assembly mother board B manufactured by the manufacturing process of FIG. 2 is sent to the pressure-sensitive adhesive layer application position including the pressure-sensitive adhesive layer application mechanism 20. FIG. 8 is a schematic side view showing the entire pressure-sensitive adhesive layer application mechanism 20.
 粘着剤層付与機構20は、長尺の粘着剤テープ21をロール状に巻いた粘着剤テープロール22を備える。粘着剤テープ21は、一対の駆動ロール23によりロール22から一定の速度で繰り出される。本実施形態においては、粘着剤テープ21は、テープ基材21aの片側の面に粘着剤層21bが形成された構成である。 The adhesive layer application mechanism 20 includes an adhesive tape roll 22 in which a long adhesive tape 21 is wound in a roll shape. The pressure-sensitive adhesive tape 21 is fed out from the roll 22 at a constant speed by a pair of drive rolls 23. In this embodiment, the pressure-sensitive adhesive tape 21 has a configuration in which a pressure-sensitive adhesive layer 21b is formed on one surface of the tape base material 21a.
 図8を参照すると、一対の駆動ロール23により粘着剤ロール22から繰り出された粘着剤テープ21は、ガイドロール24、上下方向に可動なダンサーロール25及びガイドロール26及びガイドロール27を経て切り込み形成機構28に送られる。切り込み形成機構28は、切断刃29と送り出し用の一対の駆動ロール30とからなる。この切り込み形成機構28は、切り込み形成位置において駆動ロール30を停止させ、粘着剤テープ21の送りを停止させた状態で、切断刃29を作動させ、テープ基材21eを残して粘着剤層21bのみに、その幅方向に切り込み28aを形成する。この切り込み28aの間隔は、マザーボードB上の各表示セル1の縦方向の長さLに対応する距離である。したがって、粘着剤層21bは、切り込み28aにより幅方向に切断されて、表示セルの横方向幅Wと縦方法長さLを有する粘着剤シート21cとなる。このようにして、テープ基材21a上には、複数の粘着剤シート21cが連続的に形成され、これらの粘着剤シート21cは、テープ基材21aに支持されて貼合せ位置に送られる。 Referring to FIG. 8, the adhesive tape 21 fed from the adhesive roll 22 by the pair of drive rolls 23 is cut and formed through a guide roll 24, a dancer roll 25, a guide roll 26 and a guide roll 27 that are movable in the vertical direction. Sent to mechanism 28. The cut forming mechanism 28 includes a cutting blade 29 and a pair of drive rolls 30 for feeding. The cut forming mechanism 28 operates the cutting blade 29 in a state where the drive roll 30 is stopped and the feeding of the adhesive tape 21 is stopped at the cut forming position, and only the adhesive layer 21b is left leaving the tape base material 21e. In addition, a cut 28a is formed in the width direction. The interval between the cuts 28a is a distance corresponding to the length L in the vertical direction of each display cell 1 on the mother board B. Therefore, the pressure-sensitive adhesive layer 21b is cut in the width direction by the cuts 28a to become a pressure-sensitive adhesive sheet 21c having a horizontal width W and a vertical method length L of the display cell. Thus, the some adhesive sheet 21c is continuously formed on the tape base material 21a, and these adhesive sheets 21c are supported by the tape base material 21a, and are sent to a bonding position.
 ダンサーロール25は、上向きに弾性的に付勢されており、連続的に粘着剤テープ21を送り方向に駆動する一対の駆動ロール23と、切断時には粘着剤テープ21の送りを停止し、切断終了後に所定距離だけ駆動を行う一対の駆動ロール30との間でテープ送りの調整を行うように作用する調整ロールである。すなわち、駆動ロール30の停止期間においては、ダンサーロール25は、付勢力により駆動ロール23の送り分を吸収するように上方に移動し、駆動ロール30の作動が開始されたときに、該駆動ロール30により粘着剤テープ21に加えられる引張力により、付勢力に抗して下方に移動するように動作する。 The dancer roll 25 is elastically biased upward, and a pair of drive rolls 23 that continuously drive the adhesive tape 21 in the feeding direction, and the feeding of the adhesive tape 21 is stopped at the time of cutting, and the cutting ends. It is an adjustment roll that acts to adjust the tape feed between a pair of drive rolls 30 that are driven for a predetermined distance later. That is, during the stop period of the drive roll 30, the dancer roll 25 moves upward so as to absorb the feed of the drive roll 23 by the urging force, and when the drive roll 30 starts operating, By the tensile force applied to the adhesive tape 21 by 30, it operates to move downward against the urging force.
 切り込み28aにより形成された一連の粘着剤シート21cは、テープ基材21aに支持された状態で、ガイドロール31、及びガイドロール32を経て、ダンサーロール25と同様な構成のダンサーロール33を通り、ガイドロール34、35、36、37により案内されて貼合せ位置に送られる。 A series of pressure-sensitive adhesive sheets 21c formed by the cuts 28a passes through a guide roll 31 and a guide roll 32 while passing through a dancer roll 33 having the same configuration as the dancer roll 25 while being supported by the tape base material 21a. Guided by guide rolls 34, 35, 36, and 37 and sent to the bonding position.
 貼合せ位置には、貼合せロール38とキャリアフィルム剥離機構39が備えられている。貼合せロール38は、上方の引込み位置と下方の押圧位置との間を可動に配置されており、テープ基材21aに支持された連続する粘着剤シート21cのうち、先頭の粘着剤シート21cの先端が、貼合せ対象の表示セル1の先端に位置整合した状態になったとき、上方位置から下方の押圧位置まで下降して、粘着剤シート21cをマザーボードB上の表示セル1に押し付けて、その表示面に粘着剤層を付与する。 A laminating roll 38 and a carrier film peeling mechanism 39 are provided at the laminating position. The laminating roll 38 is movably disposed between the upper drawing position and the lower pressing position, and among the continuous adhesive sheets 21c supported by the tape base material 21a, the leading adhesive sheet 21c. When the tip is aligned with the tip of the display cell 1 to be bonded, the tip is lowered from the upper position to the lower pressing position, and the adhesive sheet 21c is pressed against the display cell 1 on the mother board B, An adhesive layer is provided on the display surface.
 テープ基材剥離機構39は、貼合せ位置において、テープ基材21aを鋭角に折り返して、先頭の光学フィルムシート21cを該テープ基材21aから剥がすように作用する剥離ブレードを備える。鋭角に折り返されたテープ基材21aを引き取るためにテープ基材巻き取りロール40が配置される。粘着剤シート21cから剥がされたテープ基材21aは、ガイドロール41及び一対の巻き取り用駆動ロール42を経て、巻き取りロール40に送られ、該巻き取りロール40に巻き取られる。 The tape base material peeling mechanism 39 includes a peeling blade that acts to fold the tape base material 21a at an acute angle and peel the leading optical film sheet 21c from the tape base material 21a at the bonding position. A tape base material take-up roll 40 is disposed to take up the tape base material 21a folded back at an acute angle. The tape base material 21 a peeled off from the pressure-sensitive adhesive sheet 21 c is sent to the take-up roll 40 through the guide roll 41 and the pair of take-up drive rolls 42, and is taken up by the take-up roll 40.
 駆動ロール30及び切断刃29の作動は、図8には示していない制御装置により制御される。すなわち、制御装置は、マザーボードB上の表示セル1の寸法及び位置に関する情報を格納しており、表示セル1の縦方向長さLの情報に基づいて制御装置が駆動ロール30の駆動と切断刃29の作動を制御して、表示セル1の縦方向長さLに対応する長さ方向間隔で、粘着剤テープ21に切り込み28aを形成する。また、貼合せ位置の上流側には、粘着剤シート21cの先端を検出するシート位置検出装置43が設けられており、貼合せ位置に送られる粘着剤シート21cの先端位置についての情報を制御装置に提供する。この粘着剤シート先端位置情報は、制御装置に格納され、制御装置は、この粘着剤シート先端位置情報と、吸引保持盤10から取得したマザーボードBの位置情報に基づき、駆動ロール30と巻き取り用駆動ロール42の作動を、吸引保持盤10の動きに対応させて制御し、テープ基材21aから剥がされた粘着剤シート21cの先端が、貼合せ位置にあるマザーボードB上の貼り合わせが行われる表示セル1の先端に位置整合するように調節する。位置整合が達成されると、粘着剤シート21cとマザーボードBは、同期した速度で送られる。貼合せロール38が下方の押圧位置に下降して、粘着剤シート21fを表示セル1の表示面に押し付ける。このようにして、表示セル1への粘着剤層の付与が行われる。 The operation of the drive roll 30 and the cutting blade 29 is controlled by a control device not shown in FIG. That is, the control device stores information related to the size and position of the display cell 1 on the mother board B, and the control device drives the driving roll 30 and the cutting blade based on the information about the longitudinal length L of the display cell 1. 29 is controlled to form cuts 28a in the adhesive tape 21 at longitudinal intervals corresponding to the longitudinal length L of the display cell 1. In addition, a sheet position detection device 43 that detects the front end of the adhesive sheet 21c is provided on the upstream side of the pasting position, and information about the front end position of the adhesive sheet 21c sent to the pasting position is controlled. To provide. This adhesive sheet tip position information is stored in the control device, and the control device uses the adhesive sheet tip position information and the position information of the mother board B acquired from the suction holding board 10 to take up the driving roll 30 and the winding roll. The operation of the drive roll 42 is controlled in accordance with the movement of the suction holding board 10, and the bonding of the adhesive sheet 21 c peeled off from the tape base material 21 a on the mother board B in the bonding position is performed. The display cell 1 is adjusted so as to align with the tip of the display cell 1. When the alignment is achieved, the adhesive sheet 21c and the mother board B are sent at a synchronized speed. The laminating roll 38 descends to the lower pressing position and presses the adhesive sheet 21 f against the display surface of the display cell 1. In this way, the adhesive layer is applied to the display cell 1.
 図9は、粘着剤シート21cを、マザーボードB上において縦横の行列状に配列された表示セル1に順次に貼り合わせる順序の一例を示す概略図である。この図示例においては、貼合せ機構20は、送り方向に対する横方向位置が固定されており、マザーボードBを保持する吸引保持盤10は、支持機構13上に横方向移動が可能なように取り付けられている。図9(a)に示すように、マザーボードBの位置は、最初に左端の表示セル列の先頭の表示セル1が貼合せ位置に位置決めされるように制御される。この状態で、図8に関連して前述したように、粘着剤シート21cが左端列先頭の表示セル1の表示部1dに貼り合わされる。 FIG. 9 is a schematic diagram showing an example of an order in which the adhesive sheet 21c is sequentially bonded to the display cells 1 arranged in a matrix form on the mother board B. As shown in FIG. In this illustrated example, the laminating mechanism 20 has a fixed lateral position with respect to the feed direction, and the suction holding disk 10 that holds the mother board B is mounted on the support mechanism 13 so as to be movable in the lateral direction. ing. As shown in FIG. 9A, the position of the mother board B is controlled so that the first display cell 1 in the leftmost display cell row is first positioned at the bonding position. In this state, as described above with reference to FIG. 8, the adhesive sheet 21c is bonded to the display portion 1d of the display cell 1 at the head of the left end column.
 次いで、吸引保持盤10を横方向に動かすことにより、マザーボードBが送り方向に対して左横方向に、表示セル列の横方向間隔に相当する距離だけ変位させられる。この横変位により、図9(b)に示すように、左から2番目の列の先頭の表示セル1が貼合せ位置に位置決めされる。そして、前述と同様の動作により、この表示セル1の表示部1dに粘着剤シート21fが貼り合わされる。その後、同様の操作によりマザーボードBが左横方向に変位させられて、粘着剤シート21cの貼り合わせが行われる。表示セル1が3列に配置されている図示例の場合には、これで先頭の表示セルへの粘着剤シート21cの貼り合わせは完了する。この状態を図9(c)に示す。 Next, by moving the suction holding board 10 in the horizontal direction, the mother board B is displaced in the left horizontal direction with respect to the feed direction by a distance corresponding to the horizontal interval of the display cell rows. By this lateral displacement, as shown in FIG. 9B, the first display cell 1 in the second column from the left is positioned at the bonding position. Then, the adhesive sheet 21f is bonded to the display portion 1d of the display cell 1 by the same operation as described above. Thereafter, the mother board B is displaced leftward by the same operation, and the adhesive sheet 21c is bonded. In the illustrated example in which the display cells 1 are arranged in three rows, the bonding of the adhesive sheet 21c to the first display cell is completed. This state is shown in FIG.
 次に、各縦列における表示セル1の間隔に相当する距離だけ吸引保持盤10が送り方向に駆動され、右端の列の先頭から2番目の表示セル1が貼合せ位置に位置決めされ、同様にして、図9(d)に示すように、このセル1の表示部1dに粘着剤シート21fが貼り合わされる。その後、図9(e)に示すように、マザーボードBが送り方向に駆動されて、同様な操作により、粘着剤シート21cの貼合せが行われる。 Next, the suction holding platen 10 is driven in the feed direction by a distance corresponding to the interval between the display cells 1 in each column, and the second display cell 1 from the top of the rightmost column is positioned at the bonding position, and similarly. As shown in FIG. 9 (d), an adhesive sheet 21 f is bonded to the display portion 1 d of the cell 1. Thereafter, as shown in FIG. 9 (e), the mother board B is driven in the feeding direction, and the adhesive sheet 21c is bonded by the same operation.
 このようにして粘着剤シート21cが表示セル1の表示面に付与されたセル集合体マザーボードBは、検査位置に送られる。本発明に一実施形態においては、光学検査は、図5(a)に示す表面反射検査と図5(b)に示す表示セルの点灯検査の2段階で行われる。図5(a)に示すように、表面反射検査の検査装置として、光源70と受光器71が備えられ、セル集合体マザーボードBは吸引保持盤10に支持された状態で、反射検査装置の下に移動させられる。この位置で、光源70からの光が被検体である光学表示セル1の表面に当てられ、光学表示セル1の表面で反射して受光器71に入射することにより、該光学表示セル1の表面欠陥が検出される。 Thus, the cell assembly mother board B having the adhesive sheet 21c applied to the display surface of the display cell 1 is sent to the inspection position. In one embodiment of the present invention, the optical inspection is performed in two stages: a surface reflection inspection shown in FIG. 5A and a lighting inspection of the display cell shown in FIG. As shown in FIG. 5A, a light source 70 and a light receiver 71 are provided as an inspection apparatus for the surface reflection inspection, and the cell assembly mother board B is supported by the suction holding board 10 and below the reflection inspection apparatus. Moved to. At this position, light from the light source 70 is applied to the surface of the optical display cell 1 that is the subject, and is reflected by the surface of the optical display cell 1 to enter the light receiver 71, whereby the surface of the optical display cell 1. A defect is detected.
 図5(b)は、表示セル1を励起した点灯検査の概要を示すもので、光学表示セル1の発光状態を検出するための検出器72が複数個、一列に並べられている。図2に示す工程により製造されたセル集合体マザーボードBは、複数の光学表示セル1が縦横の行列状に配列された構成を有するので、この実施形態では、セル集合体マザーボードB内のすべての光学表示セル1が同時に励起されるようにするための、図6(a)(b)に示す疑似端子ユニット75を使用する。 FIG. 5B shows an outline of the lighting inspection in which the display cell 1 is excited, and a plurality of detectors 72 for detecting the light emission state of the optical display cell 1 are arranged in a line. Since the cell assembly mother board B manufactured by the process shown in FIG. 2 has a configuration in which a plurality of optical display cells 1 are arranged in a vertical and horizontal matrix, in this embodiment, all of the cell assembly motherboard B in the cell assembly motherboard B is provided. A pseudo terminal unit 75 shown in FIGS. 6A and 6B is used to cause the optical display cell 1 to be excited simultaneously.
 図6(a)を参照すると、疑似端子ユニット75は、セル集合体マザーボードBの矩形形状に対応する矩形形状の外枠75aと、複数個の横桟75bと、複数個の縦桟75cとを備えており、外枠75a内に、セル集合体マザーボードB内における光学表示セル1の配列に対応するように縦横に配列された矩形形状の窓75dが形成されている。各々の窓75dの一つの短辺に沿って、各光学表示セル1の端子部分1cに配置された端子2に対応する位置に、接続用端子76が配置されている。また、疑似端子ユニット75には、セル集合体マザーボードB内の各光学表示セル1の端子2に励起電力を供給するための電力供給端子77a、77bが設けられる。 Referring to FIG. 6 (a), the pseudo terminal unit 75 includes a rectangular outer frame 75a corresponding to the rectangular shape of the cell assembly motherboard B, a plurality of horizontal bars 75b, and a plurality of vertical bars 75c. In the outer frame 75a, rectangular windows 75d arranged vertically and horizontally so as to correspond to the arrangement of the optical display cells 1 in the cell assembly motherboard B are formed. A connection terminal 76 is arranged at a position corresponding to the terminal 2 arranged in the terminal portion 1c of each optical display cell 1 along one short side of each window 75d. Further, the pseudo terminal unit 75 is provided with power supply terminals 77a and 77b for supplying excitation power to the terminal 2 of each optical display cell 1 in the cell assembly motherboard B.
 図6(b)は、該疑似端子ユニット75の裏面を示すもので、該疑似端子ユニット75の裏面には、接続用端子76のうちの正極側端子を正極側電力供給端子77aに接続するための接続線78aと、接続用端子76のうちの負極側端子を負極側電力供給端子77bに接続するための接続線78bが設けられている。正極側電力供給端子77aと負極側電力供給端子77bは、それぞれ電力供給源79の正極側端子79aと、負極側端子79bに接続されている。 FIG. 6B shows the back surface of the pseudo terminal unit 75. The back surface of the pseudo terminal unit 75 is connected to the positive terminal of the connection terminal 76 to the positive power supply terminal 77a. Connection line 78a and a connection line 78b for connecting the negative terminal of the connection terminal 76 to the negative power supply terminal 77b. The positive power supply terminal 77a and the negative power supply terminal 77b are connected to the positive terminal 79a and the negative terminal 79b of the power supply source 79, respectively.
 図7に、図6に示す疑似端子ユニット75を使用する状態を示す。疑似端子ユニット75は、外枠75aがセル集合体マザーボードBの周縁部に重なるように、該セル集合体マザーボードB上に置かれる。この状態で、疑似端子ユニット75の窓75dは、それぞれセル集合体マザーボードB内の光学表示セル1に重なる。ここで、疑似端子ユニット75に励起電力を供給すると、セル集合体マザーボードBの光学表示セル1のすべてが、同時に励起状態になる。そこで、検出器72により各セル1の作動状態を各発光色について検査する。この疑似端子ユニット75を使用することにより、複数の光学表示セルを有するマザーボードにおいて、すべてのセルを一斉に励起状態として検査を行うことが可能になる。 FIG. 7 shows a state in which the pseudo terminal unit 75 shown in FIG. 6 is used. The pseudo terminal unit 75 is placed on the cell assembly motherboard B so that the outer frame 75a overlaps the peripheral edge of the cell assembly motherboard B. In this state, the window 75d of the pseudo terminal unit 75 overlaps the optical display cell 1 in the cell assembly motherboard B, respectively. Here, when excitation power is supplied to the pseudo terminal unit 75, all of the optical display cells 1 of the cell assembly motherboard B are simultaneously excited. Therefore, the detector 72 inspects the operating state of each cell 1 for each emission color. By using the pseudo terminal unit 75, in a mother board having a plurality of optical display cells, it is possible to inspect all the cells at the same time in an excited state.
 図10は、光学機能フィルム貼合せのための、本発明の一実施形態による光学表示パネル製造装置80の概略図である。上述の工程により、すべての表示セル1に対する光学検査が完了すると、セル集合体マザーボードBは、吸引保持盤10上に保持された状態で、図10に示す光学表示パネル製造装置80に送られる。 FIG. 10 is a schematic view of an optical display panel manufacturing apparatus 80 according to an embodiment of the present invention for laminating optical functional films. When the optical inspection for all the display cells 1 is completed by the above-described steps, the cell assembly mother board B is sent to the optical display panel manufacturing apparatus 80 shown in FIG. 10 while being held on the suction holding board 10.
 この装置80は、テープ繰出しローラ81と、複数の案内ローラ84a、84b、84c、84d、84eとを備える。テープ繰出しローラ81には、テープ状の光学機能フィルム83のロール83aが取り付けられる。光学機能フィルム83は、図11に示すように、偏光子83bの両側にTACフィルムのような保護フィルム83cが貼り合わされた長尺ウェブ状の偏光フィルムと、粘着剤層83eを介して該偏光フィルムに接合された長尺ウェブ状の1/4波長(λ)位相差フィルム83dとからなる積層構成である。偏光子83bと位相差フィルム83eとは、該偏光子83bの吸収軸と位相差フィルム83eの遅相軸又は進相軸とが45°±5°の範囲の角度で交差するように配置する。この光学機能フィルム83は、長尺の連続ウェブ形状であるが、その幅は、マザーボードB上に複数列に配置された表示セル全体の上面を覆うことができる横方向幅を有する。別の態様においては、光学機能フィルム83は、図11に示す構成において、偏光フィルムと1/4波長位相差フィルム83dとの間に1/2位相差フィルムを介在させたものとすることができる。この場合の1/2位相差フィルムの遅相軸又は進相軸は、該偏光子83bの吸収軸に対し15°±5°の範囲の角度で交差するように配置し、1/2位相差フィルムの遅相軸又は進相軸と1/4波長位相差フィルム83dの遅相軸又は進相軸とは、60°±5°の範囲の角度で交差するように配置する。 The device 80 includes a tape feeding roller 81 and a plurality of guide rollers 84a, 84b, 84c, 84d, and 84e. A tape 83 roll 83 a of an optical functional film 83 is attached to the tape supply roller 81. As shown in FIG. 11, the optical functional film 83 includes a long web-shaped polarizing film in which a protective film 83c such as a TAC film is bonded to both sides of a polarizer 83b, and an adhesive layer 83e. A laminated web composed of a quarter-wave (λ) retardation film 83d bonded to the long web. The polarizer 83b and the retardation film 83e are arranged so that the absorption axis of the polarizer 83b and the slow axis or fast axis of the retardation film 83e intersect at an angle in the range of 45 ° ± 5 °. The optical functional film 83 has a long continuous web shape, but has a width that can cover the upper surface of the entire display cells arranged in multiple rows on the mother board B. In another aspect, the optical functional film 83 may be configured such that, in the configuration shown in FIG. 11, a ½ retardation film is interposed between the polarizing film and the ¼ wavelength retardation film 83d. . In this case, the slow axis or the fast axis of the 1/2 retardation film is arranged so as to intersect the absorption axis of the polarizer 83b at an angle in the range of 15 ° ± 5 °. The slow axis or fast axis of the film and the slow axis or fast axis of the quarter-wave retardation film 83d are arranged to intersect at an angle in the range of 60 ° ± 5 °.
 代替的には、各々の光学機能フィルムがマザーボードB上に複数列に配置された表示セル1の各々の横方向幅Wに対応する幅を有するように構成された光学機能フィルム83のロール83aを、マザーボードB上の表示セル1の縦方向の列の数に相当する数だけ、横方向に並列に配置し、それぞれの列の表示セル1の表示面に光学機能フィルム83を同時に貼り合わせるようにすることもできる。 Alternatively, a roll 83a of the optical functional film 83 configured so that each optical functional film has a width corresponding to the lateral width W of each of the display cells 1 arranged in a plurality of rows on the motherboard B. As many as the number of columns in the vertical direction of the display cells 1 on the mother board B are arranged in parallel in the horizontal direction, and the optical functional film 83 is simultaneously bonded to the display surface of the display cells 1 in each column. You can also
 本実施形態の場合、偏光子83bの吸収軸は、該偏光子83bの長さ方向に平行とし、位相差フィルム83dの遅相軸が、該位相差フィルム83dの長さ方向に対して45°±5°の範囲の角度だけ斜め方向に向いた構成とする。このためには、位相差フィルム83dの製造段階で、該フィルムを斜め延伸する必要がある。この斜め延伸に関しては、特願2013-070787号(特許文献7)、特願2013-070789号(特許文献8)に詳細な記載があり、これらの文献に記載された方法により延伸された位相差フィルムを使用することができる。また、位相差フィルム83dとして、位相差が波長に応じて短波長側ほど小さくなる逆分散特性をもったフィルムを使用することができる。逆分散特性を有する位相差フィルムは、特許第5204200号(特許文献9)、特許第5448264号(特許文献10)等に記載があり、本実施形態の方法においては、これらの特許出願に記載された逆分散特性の位相差フィルムを使用することができる。 In this embodiment, the absorption axis of the polarizer 83b is parallel to the length direction of the polarizer 83b, and the slow axis of the retardation film 83d is 45 ° with respect to the length direction of the retardation film 83d. The structure is oriented obliquely by an angle in the range of ± 5 °. For this purpose, it is necessary to obliquely stretch the film at the stage of producing the retardation film 83d. Regarding the oblique stretching, there are detailed descriptions in Japanese Patent Application No. 2013-070787 (Patent Document 7) and Japanese Patent Application No. 2013-070789 (Patent Document 8), and the phase difference stretched by the methods described in these documents. A film can be used. In addition, as the retardation film 83d, a film having reverse dispersion characteristics in which the retardation becomes smaller toward the shorter wavelength side according to the wavelength can be used. Retardation films having reverse dispersion characteristics are described in Japanese Patent No. 5204200 (Patent Document 9), Japanese Patent No. 5448264 (Patent Document 10), and the like, and are described in these patent applications in the method of this embodiment. In addition, a retardation film having reverse dispersion characteristics can be used.
 光学機能フィルム83は、ロール83aから繰り出され、粘着剤層83cが下向きになるように、案内ローラ84b、84c、84d、84eの下側の走行路に沿って水平方向に通される。光学表示セル1の表示面に粘着剤シート21cが貼り合わされたセル集合体マザーボードBは、該マザーボードBに接合されているガラス基板3とともに、吸引保持盤10上に保持された状態で、水平方向に延びるキャリアテープ83の下方の位置に送られる。 The optical functional film 83 is unwound from the roll 83a and is passed in the horizontal direction along the lower traveling path of the guide rollers 84b, 84c, 84d, 84e so that the adhesive layer 83c faces downward. The cell assembly mother board B in which the adhesive sheet 21c is bonded to the display surface of the optical display cell 1 is held in the horizontal direction while being held on the suction holding board 10 together with the glass substrate 3 bonded to the mother board B. To the position below the carrier tape 83 extending in
 図10に示す光学表示パネル製造装置80は、光学機能フィルム貼合せ位置Iと、ガラス基板剥離位置IIと、粘着剤層付与位置IIIと、複合フィルム貼合せ位置IVと、光学表示セル切断位置Vとを有する。光学表示セル1の表示面に粘着剤シート21cが貼り合わされたセル集合体マザーボードBと、ガラス基板3とは、光学機能フィルム貼合せ位置Iに到達する前に、吸引保持盤10の支持機構13に設けた高さ調節機構を用いて高さ調節される。調節される高さは、セル集合体マザーボードB上の光学表示セル1に貼り合わされた粘着剤シート21cが、光学機能フィルム83の位相差フィルム83dに所定の接触圧で接触するような高さである。高さ調節された吸引保持盤10上のセル集合体マザーボードB及びガラス基板3は、図10において左から2番目の案内ローラ84bの下に送り込まれる。ここで、ロール83aから繰り出された光学機能フィルム83は、その位相差フィルム83dが案内ローラ84bによってセル集合体マザーボードB上の粘着剤シート21fに押し付けられる。このようにして、光学機能フィルム83がセル集合体マザーボードBに接合される。 The optical display panel manufacturing apparatus 80 shown in FIG. 10 includes an optical function film bonding position I, a glass substrate peeling position II, an adhesive layer application position III, a composite film bonding position IV, and an optical display cell cutting position V. And have. Before reaching the optical function film bonding position I, the cell assembly mother board B in which the adhesive sheet 21c is bonded to the display surface of the optical display cell 1 and the glass substrate 3 are supported by the support mechanism 13 of the suction holding disk 10. The height is adjusted using a height adjusting mechanism provided in the. The height to be adjusted is such that the pressure-sensitive adhesive sheet 21c bonded to the optical display cell 1 on the cell assembly motherboard B comes into contact with the retardation film 83d of the optical function film 83 with a predetermined contact pressure. is there. The cell assembly mother board B and the glass substrate 3 on the suction holding board 10 adjusted in height are fed under the second guide roller 84b from the left in FIG. Here, the optical functional film 83 fed out from the roll 83a has its retardation film 83d pressed against the adhesive sheet 21f on the cell assembly motherboard B by the guide roller 84b. In this way, the optical functional film 83 is bonded to the cell assembly motherboard B.
 この過程において、光学機能フィルム83は、図10に矢印Aで示す送り方向に、吸引保持盤10と同期した速度で駆動される。セル集合体マザーボードBが光学機能フィルム貼合位置Iを通過する間に、セル集合体マザーボードB上のすべての表示セルの粘着剤シート21cに光学機能フィルム83が接合される。セル集合体マザーボードBが光学機能フィルム貼合位置Iを通り抜けた後で、吸引保持盤10の真空吸引力が解除され、セル集合体マザーボードBとガラス基板3は、光学機能フィルム83のみによって支持される状態になる。 In this process, the optical functional film 83 is driven in the feeding direction indicated by the arrow A in FIG. While the cell assembly motherboard B passes through the optical function film bonding position I, the optical function film 83 is bonded to the adhesive sheets 21c of all the display cells on the cell assembly motherboard B. After the cell assembly motherboard B passes through the optical function film bonding position I, the vacuum suction force of the suction holding board 10 is released, and the cell assembly motherboard B and the glass substrate 3 are supported only by the optical function film 83. It becomes a state.
 光学機能フィルム83に支持されたセル集合体マザーボードBとガラス基板は、次にガラス基板剥離位置IIに送られる。この位置IIにおいて、ガラス基板3が、レーザ照射等の公知の方法により、樹脂基材4から剥がされる。レーザ照射によりガラス基板を樹脂基材から剥がす技術は、例えば、国際公開公報WO2009/104371号(特許文献2)に記載されている。ガラス基板3が剥がされたセル集合体マザーボードBは、粘着剤層付与位置IIIに送られる。 The cell assembly mother board B and the glass substrate supported by the optical functional film 83 are then sent to the glass substrate peeling position II. At this position II, the glass substrate 3 is peeled off from the resin base material 4 by a known method such as laser irradiation. A technique for peeling a glass substrate from a resin base material by laser irradiation is described in, for example, International Publication No. WO2009 / 104371 (Patent Document 2). The cell assembly mother board B from which the glass substrate 3 has been peeled is sent to the adhesive layer application position III.
 粘着剤層付与位置IIIには、光学機能フィルム83の上側に位置する案内ローラ84c、84dの下側に、光学機能フィルム83と該光学機能フィルム83により支持されたセル集合体マザーボードBとを挟んで該案内ローラ84c、84dに対向するように、ローラ85a、85bが配置されている。さらに、粘着剤層付与位置IIIには、粘着剤テープ繰り出しローラ87が設けられ、該繰り出しローラ87上に、粘着剤テープ86のロール86aが支持されている。粘着剤テープ86は、粘着剤層86bと、該粘着剤層86bの一方の側に貼り合わされた第1の剥離ライナー86cと、該粘着剤層86bの他方の側に貼り合わされた第2の剥離ライナー86dとからなる。ロール86aから繰り出された粘着剤テープ86は、案内ローラ88を経て、ローラ85aとキャリアテープ83に支持されたセル集合体マザーボードBとの間に送られる。 At the adhesive layer application position III, the optical functional film 83 and the cell assembly motherboard B supported by the optical functional film 83 are sandwiched below the guide rollers 84c and 84d located above the optical functional film 83. The rollers 85a and 85b are disposed so as to face the guide rollers 84c and 84d. Further, an adhesive tape supply roller 87 is provided at the adhesive layer application position III, and a roll 86 a of the adhesive tape 86 is supported on the supply roller 87. The pressure-sensitive adhesive tape 86 includes a pressure-sensitive adhesive layer 86b, a first release liner 86c bonded to one side of the pressure-sensitive adhesive layer 86b, and a second release bonded to the other side of the pressure-sensitive adhesive layer 86b. It comprises a liner 86d. The adhesive tape 86 fed out from the roll 86 a passes through the guide roller 88 and is sent between the roller 85 a and the cell assembly motherboard B supported by the carrier tape 83.
 この過程において、粘着剤テープ86は、ロール86aから繰り出された後、案内ローラ88に到達する前に、第1の剥離ライナー86cが剥離されて、粘着剤層86bが露出された状態になる。剥離された第1の剥離ライナー86cは、巻取りローラ89aにより巻き取られる。次いで、粘着剤テープ86は、露出された粘着剤層86bがキャリアテープ83に支持されたセル集合体マザーボードBの下面の樹脂基材4に接するように、ローラ84cとローラ85aの間に送られる。粘着剤層86bは、ローラ84c、85aによりセル集合体マザーボードBの下面の樹脂基材4に押し付けられて該セル集合体マザーボードBに接合される。この状態で、セル集合体マザーボードBと粘着剤テープ86は、ローラ84dとローラ85bの間に送られ、ここで、第2の剥離ライナー86dが粘着剤層86bから剥離される。剥離された第2の剥離ライナー86dは、巻取りローラ89bにより巻き取られる。 In this process, the adhesive tape 86 is unrolled from the roll 86a and before reaching the guide roller 88, the first release liner 86c is peeled off and the adhesive layer 86b is exposed. The peeled first release liner 86c is taken up by the take-up roller 89a. Next, the pressure-sensitive adhesive tape 86 is sent between the roller 84 c and the roller 85 a so that the exposed pressure-sensitive adhesive layer 86 b is in contact with the resin base material 4 on the lower surface of the cell assembly motherboard B supported by the carrier tape 83. . The adhesive layer 86b is pressed against the resin substrate 4 on the lower surface of the cell assembly motherboard B by the rollers 84c and 85a and joined to the cell assembly motherboard B. In this state, the cell assembly motherboard B and the adhesive tape 86 are sent between the rollers 84d and 85b, and the second release liner 86d is peeled from the adhesive layer 86b. The peeled second release liner 86d is taken up by the take-up roller 89b.
 粘着剤層86bが下面に付与されたセル集合体マザーボードBは、光学機能フィルム83に支持されて複合フィルム貼合せ位置IVに送られる。この位置IVには、複合フィルム90のロール90aが配置されており、該ロール90aから繰り出された複合フィルム90は、案内ローラ84eの下側に配置された案内ローラ91により、案内ローラ84eの下方位置に到達したセル集合体マザーボードBの下面に付与された粘着剤層86bに押し付けられる。このようにして、複合フィルムがセル集合体マザーボードBに貼り合わされる。その後は、セル集合体マザーボードBは、上面に貼り合わされた光学機能フィルム83と、下面に貼り合わされた複合フィルム90とにより支持されることになる。光学機能フィルム83と複合フィルム90とセル集合体マザーボードBとからなる積層体を送り方向に駆動するために、一対の駆動ローラ91a、91bを設けることができる。本発明のこの実施形態においては、複合フィルム90は、遮光フィルムの層と耐衝撃性と放熱性を有するフィルムの層とからなる積層体として構成される。しかし、本発明の他の実施形態においては、この複合フィルムに変えて、通常の裏面保護フィルムを用いてもよい。 The cell assembly mother board B having the adhesive layer 86b on the lower surface is supported by the optical function film 83 and sent to the composite film laminating position IV. At this position IV, a roll 90a of the composite film 90 is disposed, and the composite film 90 fed out from the roll 90a is below the guide roller 84e by a guide roller 91 disposed below the guide roller 84e. It is pressed against the adhesive layer 86b applied to the lower surface of the cell assembly mother board B that has reached the position. In this way, the composite film is bonded to the cell assembly motherboard B. Thereafter, the cell assembly mother board B is supported by the optical function film 83 bonded to the upper surface and the composite film 90 bonded to the lower surface. A pair of drive rollers 91a and 91b can be provided in order to drive the laminate composed of the optical function film 83, the composite film 90, and the cell assembly mother board B in the feeding direction. In this embodiment of the present invention, the composite film 90 is configured as a laminate including a light shielding film layer and a film layer having impact resistance and heat dissipation. However, in another embodiment of the present invention, an ordinary back surface protective film may be used instead of the composite film.
 上面に光学機能フィルム83が貼り合わされ、下面に複合フィルム90が貼り合わされたセル集合体マザーボードBは、光学表示セル切断位置Vに送られる。この切断位置Vには、複合フィルム90を受ける合成樹脂製の支持ベルト92と切断刃93が備えられ、セル集合体マザーボードBを切断して個々の光学表示セル1を切り離す。この場合において、セル集合体マザーボードBの上面に貼合わされた光学機能フィルム83は、各々の表示セル1の表示面1dの寸法に合わせて切断される。上述した切断のための機構及び動作は周知であり、ここでは詳細な説明は省略する。 The cell assembly mother board B in which the optical functional film 83 is bonded to the upper surface and the composite film 90 is bonded to the lower surface is sent to the optical display cell cutting position V. This cutting position V is provided with a support belt 92 made of a synthetic resin that receives the composite film 90 and a cutting blade 93, and the cell assembly mother board B is cut to separate individual optical display cells 1. In this case, the optical functional film 83 bonded to the upper surface of the cell assembly mother board B is cut in accordance with the size of the display surface 1d of each display cell 1. The mechanism and operation for cutting described above are well known, and detailed description thereof is omitted here.
 図12に、光学機能フィルム貼合せるための、他の実施形態による装置を示す。この装置は、図10に示す装置80と対比して、基本的な構成及び動作が同じであるので、対応する部分は同一の符号で示し、詳細な説明は省略する。図12に示す装置が図10に示す装置80と異なる点は、ローラ84cとローラ85aの間に通されて下面に粘着剤層86bが付与されたセル集合体マザーボードBが、光学機能フィルム83及び第2の剥離ライナー86dとともに、積層体の形態でロール100に巻き取られることである。ロール100に巻き取られた積層体は、別の工程において、ロール100から繰り出して、複合フィルム貼合せ位置IV及び光学表示セル切断位置Vにおける処理を行うことができる。 FIG. 12 shows an apparatus according to another embodiment for laminating an optical functional film. Since this apparatus has the same basic configuration and operation as the apparatus 80 shown in FIG. 10, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted. The apparatus shown in FIG. 12 is different from the apparatus 80 shown in FIG. 10 in that the cell assembly mother board B which is passed between the rollers 84c and 85a and the adhesive layer 86b is provided on the lower surface is provided with the optical functional film 83 and It is to be wound around the roll 100 in the form of a laminate together with the second release liner 86d. The laminated body wound up by the roll 100 can be unwound from the roll 100 and processed at the composite film laminating position IV and the optical display cell cutting position V in another step.
 本発明の方法は、マザーボードB上に縦1列に配置された表示セル1にも適用することができる。その一例を図13に示す。この場合において、表示セル1は、端子部分1cが列の向きに対して横向きになるように、マザーボードB上に配置される。表示セル1の表示面1への粘着剤層付与は、図8に関連して説明した動作と同様な動作により、列の先頭から順に、予め切断した粘着剤シート21cを、表示セル1の表示部1dに貼り合わせることによって行うことができる。 The method of the present invention can also be applied to the display cells 1 arranged in a vertical row on the mother board B. An example is shown in FIG. In this case, the display cell 1 is arranged on the mother board B so that the terminal portion 1c is lateral to the column direction. The application of the adhesive layer to the display surface 1 of the display cell 1 is performed by displaying the adhesive sheet 21c cut in advance from the top of the column in the display cell 1 in the same manner as the operation described with reference to FIG. This can be done by bonding to the part 1d.
 本発明の方法は又、比較的大きいサイズの柔軟性シート構造の表示セルにも適用できる。その例を図14及び図15に示す。表示セルが有機ELセルである場合には、セル自体を薄い厚みの柔軟性シート構造とすることができる。図14を参照すると、柔軟性シート構造の光学表示セル101は、短辺101aと長辺101bとを有する矩形形状で、短辺101aに沿って位置する端子部分101cと、縦方向の長さLと横方向の幅Wとを有する表示部101dとを有する。この表示セル101は、製造段階で、ポリイミドのような耐熱樹脂材料からなる基材102上に形成される。製造工程は、図3について説明した工程と同様であり、ガラス基板3上に樹脂基材102がフィルム状に形成され、その上に、例えば有機EL表示セルのような光学表示セル101が形成される。図3の場合と異なる点は、本実施形態においては、基材102上に一つの表示セルが形成されることである。図3に関連して述べた工程におけると同様に、基材102上に光学表示セル101が形成された後、該表示セル101の表示面101dに粘着剤シート21cが貼り合わされる。本実施形態においては、このために、図8に示す粘着剤層付与機構20と同様の機構を採用することができる。この場合、テープ状の粘着剤のロール22から繰り出された光学フィルム21は、図16に示す表示セル101の幅Wに対応する幅を有する。図15に、貼合せ部の構成を概略的に示す。貼合せ部における作用は、図8について前述したものと同様であり、対応する部分は同一の符号で示す。 The method of the present invention can also be applied to display cells having a flexible sheet structure having a relatively large size. Examples thereof are shown in FIGS. When the display cell is an organic EL cell, the cell itself can have a thin flexible sheet structure. Referring to FIG. 14, an optical display cell 101 having a flexible sheet structure has a rectangular shape having a short side 101a and a long side 101b, a terminal portion 101c positioned along the short side 101a, and a length L in the vertical direction. And a display portion 101d having a lateral width W. The display cell 101 is formed on a base material 102 made of a heat-resistant resin material such as polyimide at the manufacturing stage. The manufacturing process is the same as the process described with reference to FIG. 3, the resin base material 102 is formed in a film shape on the glass substrate 3, and the optical display cell 101 such as an organic EL display cell is formed thereon. The A difference from the case of FIG. 3 is that one display cell is formed on the substrate 102 in the present embodiment. As in the process described with reference to FIG. 3, after the optical display cell 101 is formed on the substrate 102, the adhesive sheet 21 c is bonded to the display surface 101 d of the display cell 101. In the present embodiment, for this purpose, a mechanism similar to the adhesive layer application mechanism 20 shown in FIG. 8 can be employed. In this case, the optical film 21 fed out from the tape-shaped adhesive roll 22 has a width corresponding to the width W of the display cell 101 shown in FIG. In FIG. 15, the structure of the bonding part is shown schematically. The operation in the bonding portion is the same as that described above with reference to FIG. 8, and corresponding portions are denoted by the same reference numerals.
 以上、本発明を特定の実施形態について図示し、説明したが、本発明は、図示の実施形態に限定されるものではなく、本発明の範囲は、特許請求の範囲の請求項によってのみ定まるものである。 Although the present invention has been illustrated and described with respect to specific embodiments, the present invention is not limited to the illustrated embodiments, and the scope of the present invention is defined only by the claims of the claims. It is.
I・・・光学機能フィルム貼合せ位置
II・・・ガラス基板剥離位置
III・・・粘着剤層付与位置
IV・・・複合フィルム貼合せ位置
V・・・光学表示セル切断位置
W・・・横方向の幅
L・・・縦方向の長さ
B・・・セル集合体マザーボード
1・・・光学表示セル
1a・・・短辺
1b・・・長辺
1c・・・端子部分
1d・・・表示部分
3・・・ガラス基板
4・・・基材
5・・・表面保護フィルム
10・・・吸引保持盤
20・・・粘着剤層付与機構
21・・・粘着剤テープ
21f・・・粘着剤シート
22・・・粘着剤テープのロール
28・・・切り込み形成機構
28a・・・切り込み
29・・・切断刃
83・・・光学機能フィルム
83a・・・光学機能フィルムのロール
83b・・・偏光子
83d・・・1/4波長位相差フィルム
86・・・粘着剤テープ
90・・・複合フィルム
I ... Optical functional film laminating position II ... Glass substrate peeling position III ... Adhesive layer application position IV ... Composite film laminating position V ... Optical display cell cutting position W ... Horizontal Directional width L ... Vertical length B ... Cell assembly motherboard 1 ... Optical display cell 1a ... Short side 1b ... Long side 1c ... Terminal part 1d ... Display Part 3 ... Glass substrate 4 ... Base material 5 ... Surface protective film 10 ... Suction holding board 20 ... Adhesive layer application mechanism 21 ... Adhesive tape 21f ... Adhesive sheet 22 ... roll 28 of adhesive tape ... cut forming mechanism 28a ... cut 29 ... cutting blade 83 ... optical functional film 83a ... optical functional film roll 83b ... polarizer 83d ... 1/4 wavelength retardation film 86 ... Chakuzai tape 90 ... composite film

Claims (10)

  1.  樹脂基材と、該樹脂基材上に形成された、可撓性薄膜構造で表示面を有する少なくとも1つの表示セルとからなるセルマザーボードを少なくとも含むマザーボード構造体を、前記表示セルの前記表示面が上向きになる状態で送り方向に送る段階と、
     該送り方向に送られる前記マザーボード構造体の前記表示セルの前記表示面に、粘着剤層を形成する段階と、
     前記表示セルの前記表示面に粘着剤層が形成された前記表示セルに励起電力を供給して該表示セルを励起状態にし、励起状態にある該表示セルについて欠陥検査を行う段階と、
     欠陥検査が終わった前記表示セルの表示面に形成された前記粘着剤層に光学機能フィルムを貼り合わせる段階と、
    を含むことを特徴とする、可撓性薄膜構造の表示セルの光学検査方法。
    The display surface of the display cell includes a mother board structure including at least a cell motherboard formed of a resin base material and at least one display cell having a display surface with a flexible thin film structure formed on the resin base material. Sending in the feed direction with the
    Forming an adhesive layer on the display surface of the display cell of the motherboard structure that is sent in the feed direction;
    Supplying excitation power to the display cell having an adhesive layer formed on the display surface of the display cell to bring the display cell into an excited state, and performing a defect inspection on the display cell in the excited state;
    Bonding an optical functional film to the adhesive layer formed on the display surface of the display cell after the defect inspection;
    An optical inspection method for a display cell having a flexible thin film structure, comprising:
  2.  請求項1に記載した方法であって、前記表示セルの前記表示面は、2つの短辺と2つの長辺とを有する矩形形状であり、前記表示セルは、前記短辺及び長辺のうちの1つの辺に沿って電気接続端子をもった端子部分が形成された構成であり、前記セルマザーボードは、前記表示セルの前記端子部分が前記送り方向に対し横向きになる状態で該送り方向に送られることを特徴とする方法。 2. The method according to claim 1, wherein the display surface of the display cell has a rectangular shape having two short sides and two long sides, and the display cell includes the short side and the long side. A terminal portion having an electrical connection terminal is formed along one side of the cell motherboard, and the cell motherboard has the terminal portion of the display cell in a direction transverse to the feeding direction in the feeding direction. A method characterized by being sent.
  3.  請求項2に記載した方法であって、前記セルマザーボードは、前記送り方向に平行な縦方向の列に配置された複数の前記表示セルの縦列を少なくとも1つ含み、前記表示セルの励起状態で行われる前記欠陥検査は、前記セルマザーボードの周辺に対応する形状の外枠と、該外枠内に設けられた桟部材により前記表示セルの前記表示面に対応する窓が形成され、前記窓の各々における1つの辺に沿って前記表示セルの前記端子部分の電気接続端子に対応する電気接続端子が配置された疑似端子ユニットを、前記セルマザーボードに重ねて、該疑似端子ユニットの前記電気接続端子を前記表示セルの前記電気接続端子に接続し、前記疑似端子ユニットに励起電力を供給することによって行われることを特徴とする方法。 3. The method according to claim 2, wherein the cell motherboard includes at least one column of the plurality of display cells arranged in a column in a vertical direction parallel to the feeding direction, and in an excited state of the display cell. The defect inspection is performed by forming a window corresponding to the display surface of the display cell by an outer frame having a shape corresponding to the periphery of the cell motherboard and a crosspiece member provided in the outer frame. A pseudo terminal unit in which an electrical connection terminal corresponding to an electrical connection terminal of the terminal portion of the display cell is disposed along one side in each of the display cells is overlaid on the cell motherboard, and the electrical connection terminal of the pseudo terminal unit Connected to the electrical connection terminal of the display cell, and supplying excitation power to the pseudo terminal unit.
  4.  請求項2に記載した方法であって、前記セルマザーボードは、前記送り方向に平行な縦方向の列に配置された複数の前記表示セルの縦列を複数列含み、前記表示セルの励起状態で行われる前記欠陥検査は、前記セルマザーボードの周辺に対応する形状の外枠と、該外枠内に設けられた横桟及び縦桟により前記表示セルの前記表示面に対応する窓が縦横の行列状に形成され、前記窓の各々における1つの辺に沿って前記表示セルの前記端子部分の電気接続端子に対応する電気接続端子が配置された疑似端子ユニットを、前記セルマザーボードに重ねて、該疑似端子ユニットの前記電気接続端子を前記表示セルの前記電気接続端子に接続し、前記疑似端子ユニットに励起電力を供給することによって行われることを特徴とする方法。 3. The method according to claim 2, wherein the cell motherboard includes a plurality of columns of the plurality of display cells arranged in a vertical column parallel to the feeding direction, and the cell mother board is arranged in an excited state of the display cells. The defect inspection includes an outer frame having a shape corresponding to the periphery of the cell motherboard, and horizontal and vertical bars provided in the outer frame so that windows corresponding to the display surface of the display cell are vertically and horizontally arranged. A pseudo terminal unit formed on the cell motherboard and arranged on the cell motherboard along the one side of each of the windows, the electrical terminal corresponding to the electrical connection terminal of the terminal portion of the display cell being arranged. The method is performed by connecting the electrical connection terminal of the terminal unit to the electrical connection terminal of the display cell and supplying excitation power to the pseudo terminal unit.
  5.  請求項2から請求項4までのいずれか1項に記載した方法であって、前記セルマザーボードは、少なくとも前記送り方向に平行な縦方向の列に配置された複数の表示セルを含んでおり、前記複数の表示セルの前記端子部分は、すべて前記送り方向に対し横向きになる状態で該送り方向に送られることを特徴とする方法。 5. The method according to claim 2, wherein the cell motherboard includes at least a plurality of display cells arranged in a vertical row parallel to the feeding direction. The terminal portion of the plurality of display cells is sent in the feeding direction in a state where all the terminal portions are transverse to the feeding direction.
  6.  請求項1から請求項5までのいずれか1項に記載した方法であって、前記光学機能フィルムは偏光子を少なくとも含むことを特徴とする方法。 The method according to any one of claims 1 to 5, wherein the optical functional film includes at least a polarizer.
  7.  請求項6に記載した方法であって、前記光学機能フィルムは、偏光子と、1/4波長位相差フィルムとの積層体であり、該積層体は、前記1/4波長位相差フィルムが前記表示セルに面するように前記表示面に貼り合わされることを特徴とする方法。 The method according to claim 6, wherein the optical functional film is a laminate of a polarizer and a quarter-wave retardation film, and the laminate has the quarter-wave retardation film as the laminate. A method of bonding to the display surface so as to face the display cell.
  8.  請求項6に記載した方法であって、前記光学機能フィルムは、偏光子と、1/2波長位相差フィルムと、1/4波長位相差フィルムとがこの順で積層された積層体からなる反射防止フィルムであり、該積層体は、前記1/4波長位相差フィルムが前記表示セルに面するように前記表示面に貼り合わされることを特徴とする方法。 7. The method according to claim 6, wherein the optical functional film includes a laminate in which a polarizer, a half-wave retardation film, and a quarter-wave retardation film are laminated in this order. It is a prevention film, This laminated body is bonded together to the said display surface so that the said 1/4 wavelength phase difference film may face the said display cell.
  9.  請求項1から請求項8までのいずれか1項に記載の方法であって、前記表示セルは、有機EL表示セルであることを特徴とする方法。 The method according to any one of claims 1 to 8, wherein the display cell is an organic EL display cell.
  10.  2つの短辺と2つの長辺とを有する矩形形状の表示面を有し、前記短辺及び長辺のうちの1つの辺に沿って電気接続端子をもった端子部分が形成された構成の表示セルが複数個、縦方向の列に配置された表示セルの縦列を複数列含むセルマザーボードに対し、該セルマザーボード上の該複数の表示セルを同時に励起状態にして該表示セルの欠陥検査を行うために使用される励起電力印加用の疑似端子ユニットであって、
     前記セルマザーボードの周辺に対応する形状の外枠と、該外枠内に設けられた横桟及び縦桟と、該横桟及び縦桟により形成された、前記複数の表示セルの前記表示面のそれぞれに対応する窓と、前記窓の各々における1つの辺に沿って前記表示セルの前記端子部分の電気接続端子に対応する位置に配置された励起電力供給用電気接続端子と、前記励起電力供給用電気接続端子に励起電力を供給するための励起電力源接続部と、を含むことを特徴とする疑似端子ユニット。
    A rectangular display surface having two short sides and two long sides, and a terminal portion having an electrical connection terminal is formed along one of the short side and the long side. With respect to a cell motherboard including a plurality of display cells arranged in a vertical row, the display cells on the cell motherboard are simultaneously excited to inspect the display cells for defects. A pseudo terminal unit for applying excitation power used for performing,
    An outer frame having a shape corresponding to the periphery of the cell motherboard, a horizontal beam and a vertical beam provided in the outer frame, and the display surface of the plurality of display cells formed by the horizontal beam and the vertical beam. A corresponding window, an excitation power supply electrical connection terminal disposed at a position corresponding to an electrical connection terminal of the terminal portion of the display cell along one side of each of the windows, and the excitation power supply And an excitation power source connection for supplying excitation power to the electrical connection terminal.
PCT/JP2015/071836 2014-08-01 2015-07-31 Optical inspection method for display cell having flexible thin-film structure and pseudo-terminal unit used in said method WO2016017808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014158104A JP5892563B2 (en) 2014-08-01 2014-08-01 Optical inspection method for display cell of flexible thin film structure and pseudo terminal unit used in the method
JP2014-158104 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017808A1 true WO2016017808A1 (en) 2016-02-04

Family

ID=55217702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071836 WO2016017808A1 (en) 2014-08-01 2015-07-31 Optical inspection method for display cell having flexible thin-film structure and pseudo-terminal unit used in said method

Country Status (5)

Country Link
JP (1) JP5892563B2 (en)
KR (1) KR102454250B1 (en)
CN (2) CN108538742B (en)
TW (1) TWI630382B (en)
WO (1) WO2016017808A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113138A (en) * 2021-11-22 2022-03-01 合肥维信诺科技有限公司 Product registration detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036360A (en) * 2018-09-28 2020-04-07 주식회사 엘지화학 Method for determining cut positon of optical film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325890A (en) * 2003-04-25 2004-11-18 Nitto Denko Corp Optical functional layer, its evaluating method, optical element and image display device
JP2005233788A (en) * 2004-02-19 2005-09-02 Sony Corp Inspection device and inspection method
JP2008216810A (en) * 2007-03-06 2008-09-18 Uinzu:Kk Liquid crystal panel inspecting device and liquid crystal panel inspection method
JP2009093848A (en) * 2007-10-05 2009-04-30 Nikon Corp Defect inspection method and defect detecting device for electroluminescent element
JP2010169552A (en) * 2009-01-23 2010-08-05 Seiko Epson Corp Lighting inspection device and lighting inspection method
JP2010281926A (en) * 2009-06-03 2010-12-16 Hitachi Displays Ltd Display
JP2011232276A (en) * 2010-04-30 2011-11-17 Seiko Epson Corp Inspection device for luminescence panel and inspection method for luminescence panel

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524200B2 (en) 1973-08-16 1977-02-02
KR100758809B1 (en) * 2000-12-30 2007-09-13 엘지.필립스 엘시디 주식회사 Apparatus Of Inspfcting Liquid Crystal Display
US20050017268A1 (en) * 2001-09-07 2005-01-27 Masahide Tsukamoto Display apparatus and its manufacturing method
US6655788B1 (en) * 2002-05-17 2003-12-02 Viztec Inc. Composite structure for enhanced flexibility of electro-optic displays with sliding layers
KR100627371B1 (en) * 2005-04-01 2006-09-22 삼성에스디아이 주식회사 A plasma display panel
KR20060109194A (en) * 2005-04-15 2006-10-19 삼성전자주식회사 Testing method of liquid crystal display panel
CN1758062A (en) * 2005-11-16 2006-04-12 友达光电股份有限公司 Detecting device
JP4528923B2 (en) * 2005-12-05 2010-08-25 学校法人金沢工業大学 EL element
CN101145489A (en) * 2006-11-24 2008-03-19 乐金电子(南京)等离子有限公司 Plasma display panel
JP4404109B2 (en) * 2007-07-03 2010-01-27 ソニー株式会社 Manufacturing method of display device
CN101174834B (en) 2007-10-23 2012-01-04 无锡汉柏信息技术有限公司 Gain linearization method based on synchronous compensation of voltage controlled oscillator
WO2009104371A1 (en) 2008-02-20 2009-08-27 シャープ株式会社 Method for manufacturing flexible semiconductor substrate
JP5532507B2 (en) 2008-10-01 2014-06-25 日本電気硝子株式会社 Glass roll and glass roll processing method
JP5448264B2 (en) 2009-11-19 2014-03-19 三菱化学株式会社 Polycarbonate resin film and transparent film
JP5737625B2 (en) 2011-08-04 2015-06-17 大日本印刷株式会社 GLASS FILM LAMINATE, GLASS FILM LAMINATE ROLL, GLASS FILTER GLASS FILM LAMINATE AND GLASS FILM LAMINATE PROCESS
JP6016064B2 (en) 2011-09-02 2016-10-26 日本電気硝子株式会社 High refractive index glass
JP5755675B2 (en) 2013-03-29 2015-07-29 日東電工株式会社 Method for producing retardation film and method for producing circularly polarizing plate
JP2014194482A (en) 2013-03-29 2014-10-09 Nitto Denko Corp Method for manufacturing retardation film and method for manufacturing circular polarization plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325890A (en) * 2003-04-25 2004-11-18 Nitto Denko Corp Optical functional layer, its evaluating method, optical element and image display device
JP2005233788A (en) * 2004-02-19 2005-09-02 Sony Corp Inspection device and inspection method
JP2008216810A (en) * 2007-03-06 2008-09-18 Uinzu:Kk Liquid crystal panel inspecting device and liquid crystal panel inspection method
JP2009093848A (en) * 2007-10-05 2009-04-30 Nikon Corp Defect inspection method and defect detecting device for electroluminescent element
JP2010169552A (en) * 2009-01-23 2010-08-05 Seiko Epson Corp Lighting inspection device and lighting inspection method
JP2010281926A (en) * 2009-06-03 2010-12-16 Hitachi Displays Ltd Display
JP2011232276A (en) * 2010-04-30 2011-11-17 Seiko Epson Corp Inspection device for luminescence panel and inspection method for luminescence panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113138A (en) * 2021-11-22 2022-03-01 合肥维信诺科技有限公司 Product registration detection device

Also Published As

Publication number Publication date
CN108538742B (en) 2022-06-28
JP2016035409A (en) 2016-03-17
KR20160016593A (en) 2016-02-15
CN105321835B (en) 2018-09-18
TWI630382B (en) 2018-07-21
CN105321835A (en) 2016-02-10
TW201606289A (en) 2016-02-16
JP5892563B2 (en) 2016-03-23
CN108538742A (en) 2018-09-14
KR102454250B1 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP5911029B2 (en) Method for bonding optical functional film to display cell having flexible thin film structure
JP5954549B2 (en) Method for handling display cell of flexible thin film structure
JP5911035B2 (en) Method of attaching an optical film to an optical display cell
JP4415126B2 (en) Laminating film laminating equipment
TW201350988A (en) Production system of optical display device
JP6182805B2 (en) Optical display device production system
JP5892563B2 (en) Optical inspection method for display cell of flexible thin film structure and pseudo terminal unit used in the method
TW201345819A (en) Production system and production method of optical display device
WO2014148568A1 (en) System and method for producing optical display devices
WO2013165013A1 (en) System for producing and method for manufacturing optical display device
WO2015029998A1 (en) Film bonding device, optical-display-device production system, and optical-display-device production method
TWI702146B (en) System and apparatus for laminating optical film
JP7195312B2 (en) DISPLAY UNIT MANUFACTURING METHOD AND MANUFACTURING SYSTEM
TW201328855A (en) Manufacturing system and manufacturing method of optical display device
WO2015030113A1 (en) Film bonding device, optical-display-device production system, and optical-display-device production method
JP6193618B2 (en) Optical display device production system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827534

Country of ref document: EP

Kind code of ref document: A1