WO2016017356A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2016017356A1
WO2016017356A1 PCT/JP2015/068992 JP2015068992W WO2016017356A1 WO 2016017356 A1 WO2016017356 A1 WO 2016017356A1 JP 2015068992 W JP2015068992 W JP 2015068992W WO 2016017356 A1 WO2016017356 A1 WO 2016017356A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
user terminal
transmission
uplink
control
Prior art date
Application number
PCT/JP2015/068992
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/500,112 priority Critical patent/US20170265207A1/en
Priority to EP15826656.9A priority patent/EP3177090A4/en
Priority to JP2016538232A priority patent/JPWO2016017356A1/ja
Publication of WO2016017356A1 publication Critical patent/WO2016017356A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method applicable to a next generation communication system.
  • LTE Long Term Evolution
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE-A LTE Advanced or LTE enhancement
  • Frequency division duplex that divides uplink (UL) and downlink (DL) by frequency as duplex format (Duplex-mode) in radio communication of LTE and LTE-A systems, and uplink and downlink Is divided by time (TDD) (see FIGS. 1A and 1B).
  • FDD Frequency division duplex
  • Duplex-mode duplex format
  • TDD uplink and downlink Is divided by time
  • a plurality of frame configurations (UL / DL configuration (UL / DL configuration)) with different transmission ratios between uplink subframes (UL subframes) and downlink subframes (DL subframes) are defined.
  • UL subframes uplink subframes
  • DL subframes downlink subframes
  • FIG. 2 seven frame configurations of UL / DL configurations 0 to 6 are defined, subframes # 0 and # 5 are allocated to the downlink, and subframe # 2 is the uplink. Assigned to the link.
  • the system band of the LTE-A system includes at least one component carrier (CC: Component Carrier) having the system band of the LTE system as a unit. Collecting a plurality of component carriers (cells) to increase the bandwidth is called carrier aggregation (CA).
  • CC Component Carrier
  • the DL traffic volume and the UL traffic volume are different, and it is assumed that the DL traffic volume is larger than the UL traffic volume. Further, the ratio between the DL traffic volume and the UL traffic volume is not constant and varies with time or place.
  • the present invention has been made in view of the above points, and provides a radio base station, a user terminal, and a radio communication method capable of flexibly controlling UL transmission and DL transmission to improve throughput and communication quality in radio communication.
  • One purpose is to provide.
  • An aspect of the user terminal includes a transmitter that transmits uplink data using an uplink shared channel, a receiver that receives downlink control information and downlink data transmitted from a radio base station, and a received downlink data
  • a control unit that controls transmission of an acknowledgment signal, wherein the receiving unit receives downlink data (DL-PUSCH) transmitted using an uplink shared channel, and the control unit is configured for DL-PUSCH. Control is performed to transmit a delivery confirmation signal at a predetermined timing.
  • UL transmission and DL transmission can be flexibly controlled to improve the throughput and communication quality in wireless communication.
  • the frequency resource for UL cannot be used for DL communication in FDD, and the time resource for UL cannot be dynamically used for DL communication in TDD. Effective utilization of resources has become difficult.
  • the TDD UL time resource is changed to the DL time by changing the TDD UL / DL configuration to semi-static for each cell.
  • Utilization as a resource (eIMTA) is being studied.
  • the radio base station selects the UL / DL configuration (for example, UL / DL configurations 4, 5 and the like in FIG. 2 above) having a high DL subframe ratio according to the communication environment of the own cell. Resources can be secured.
  • the present inventors have focused on the fact that communication using the PUSCH format (D2D discovery / communication) is supported between user terminals in D2D (Device to Device) communication. That is, a user terminal that supports D2D communication has a function of receiving a signal (SC-FDMA signal) transmitted in the same format (PUSCH format) as PUSCH using UL resources.
  • the user terminal performs D2D discovery (D2D discovery) for finding other user terminals that can communicate.
  • D2D discovery the network allocates a periodic uplink resource (PUSCH) to each user terminal semi-statically as a D2D discovery resource.
  • the user terminal allocates a discovery signal (discovery signal) to the D2D discovery resource and transmits it. Further, the user terminal can find another user terminal capable of communication by receiving the discovery signal transmitted from the other user terminal.
  • PUSCH periodic uplink resource
  • discovery signal discovery signal
  • D2D communication it is considered to perform communication between user terminals using PUSCH resources.
  • the present inventors have focused on the fact that a predetermined UL resource is not always required between a radio base station and a user terminal when application of carrier aggregation (CA) is supported.
  • CA carrier aggregation
  • a radio base station performs DL communication in a PUSCH format using a UL resource (for example, PUSCH). That is, the radio base station assigns and transmits downlink data to the uplink shared channel (PUSCH) set in the UL subframe of the TDD cell and / or PUSCH set to the UL frequency of FDD.
  • the user terminal performs reception processing on downlink data assigned to PUSCH.
  • a downlink signal (for example, downlink data) transmitted from the radio base station using PUSCH is also referred to as DL-PUSCH (or DL-PUSCH signal).
  • FIG. 3 shows an example in which DL communication is performed using UL resources.
  • FIG. 3A shows a case where DL communication is performed using some UL resources (subframes # 2, # 3, # 6, and # 7) of FDD. That is, in some UL resources, a DL signal (DL-PUSCH) is transmitted from the radio base station to the user terminal using PUSCH. In other subframes, the user terminal transmits a UL signal using PUSCH as in the existing subframe.
  • DL-PUSCH DL signal
  • FIG. 3B shows a case where DL communication is performed using some UL resources (here, UL subframes # 2 and # 3) of TDD. That is, in some UL subframes of TDD, a DL signal (DL-PUSCH) is transmitted from the radio base station to the user terminal using PUSCH. In other subframes (here, UL subframes # 7 and # 8), the user terminal transmits a UL signal using PUSCH as in the existing LTE / LTE-A system.
  • FIG. 3B shows the TDD UL / DL configuration 1, the present embodiment is not limited to this.
  • the user terminal can be configured to notify the network in advance that it has the ability to receive DL-PUSCH (PUSCH reception capability).
  • the radio base station can selectively transmit the DL-PUSCH to a predetermined user terminal.
  • the PUSCH reception capability is defined as the capability of the user terminal, the radio base station can receive DL-PUSCH in an arbitrary frequency band when receiving a notification that the PUSCH reception capability has the PUSCH reception capability. Can be considered.
  • the PUSCH reception capability may be defined as the capability of the user terminal in a specific frequency band. In this case, the user terminal notifies the radio base station whether or not it has PUSCH reception capability in each frequency band in which it can communicate.
  • the radio base station can be configured to perform DL-PUSCH reception in a frequency band in which the user terminal has PUSCH reception capability.
  • the radio base station configures PUSCH reception in the UL resource for the user terminal.
  • the radio base station uses higher layer signaling (RRC signaling, broadcast signal, etc.) to notify the user terminal of information for setting (enable / disable) DL-PUSCH reception and information necessary for DL-PUSCH reception.
  • RRC signaling radio resource control
  • broadcast signal etc.
  • the radio base station can dynamically transmit information related to the DL-PUSCH reception instruction.
  • the user terminal confirms the presence / absence of a DL-PUSCH reception instruction and controls the operation according to the presence / absence of an instruction from the radio base station.
  • the user terminal performs reception processing (demodulation, etc.) on the DL-PUSCH received from the radio base station using UL resources (UL frequency in FDD, UL subframe in TDD), and then transmits data from the physical layer to the higher layer. I can pass.
  • UL resources can be dynamically used for DL communication in units of 1 ms corresponding to transmission time intervals (for example, subframes). Furthermore, by applying in combination with CA, it is possible to flexibly and dynamically use the UL frequency in FDD or TDD for DL communication.
  • a radio base station that performs DL-PUSCH transmission is a user terminal that performs UL transmission of PUSCH using UL resources or a user that performs D2D communication in physically or frequency adjacent cells. It can be regarded as equivalent to a terminal.
  • the reference signal (UL DM-RS) included in PUSCH is randomized (or whitened) by making the reference signal sequence and scramble code different between adjacent cells physically or in frequency. Can do. Therefore, by using PUSCH for DL communication using UL resources, even when collision with PUSCH transmitted by a user terminal in a physical or frequency neighboring cell occurs, interference randomization (or white) Therefore, deterioration due to interference can be minimized.
  • Hybrid ARQ retransmission control
  • the user terminal transmits an acknowledgment signal (HARQ-ACK) for the downlink shared channel (PDSCH) through the uplink control channel (PUCCH) and / or the uplink shared channel (PUSCH).
  • HARQ-ACK acknowledgment signal
  • the user terminal modulates HARQ-ACK with a predetermined method and feeds it back in a predetermined subframe after PDSCH reception.
  • L1 / L2 control signals such as downlink control channels (PDCCH and / or EPDCCH) and / or (2) higher layer signaling such as RRC.
  • the radio base station transmits a DL-PUSCH reception instruction (for example, also referred to as a DL-PUSCH grant) to the user terminal using a downlink control channel or higher layer signaling.
  • a delivery confirmation signal for the DL-PUSCH received by the user terminal is transmitted at a predetermined timing.
  • the user terminal feeds back a predetermined period (xms) after receiving the DL-PUSCH, or receives a downlink control channel (DL-PUSCH grant) indicating the DL-PUSCH for a predetermined period (xms).
  • DL-PUSCH grant downlink control channel
  • UL transmission and DL transmission can be flexibly controlled, thereby improving throughput and communication quality in wireless communication. Can be improved.
  • carrier aggregation (CA) or dual connectivity (DC) can be applied between a cell to which DL-PUSCH transmission / reception is applied and a cell to which DL-PUSCH transmission / reception is not applied.
  • CA carrier aggregation
  • DC dual connectivity
  • the CA can be applied with a cell that does not perform DL-PUSCH transmission / reception as a primary cell (PCell) and a cell that performs DL-PUSCH transmission / reception as a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • CA refers to integrating a plurality of component carriers (also referred to as CCs, carriers, cells, etc.) to increase the bandwidth.
  • CC component carriers
  • Each CC has, for example, a maximum bandwidth of 20 MHz, and a maximum bandwidth of 100 MHz is realized when a maximum of five CCs are integrated.
  • a scheduler of one radio base station controls scheduling of a plurality of CCs. From this, CA may be called CA in a base station (intra-eNB CA).
  • Dual connectivity is the same as CA in that a plurality of CCs are integrated to increase the bandwidth.
  • a plurality of schedulers are provided independently, and the plurality of schedulers control the scheduling of one or more cells (CC) under their jurisdiction. From this, DC may be called CA between base stations (inter-eNB CA).
  • inter-eNB CA base stations
  • carrier aggregation intra-eNB CA
  • a user terminal transmits a Hybrid ARQ at a predetermined timing after receiving a DL-PUSCH transmitted from a radio base station.
  • a predetermined timing (1) a value specified in a reference UL / DL configuration (DL reference UL-DL configuration), (2) a predetermined value (for example, 4 ms), or (3) TDD-FDD CA (TDD It can be determined based on the HARQ-ACK timing defined by (PCell).
  • the timings (1) to (3) will be described below.
  • the following (1) and (2) assume TDD and (3) assume FDD DL-PUSCH transmission / reception, but the present invention is not limited to this.
  • the user terminal that receives the DL-PUSCH can transmit HARQ-ACK for the received DL-PUSCH at a timing defined by the reference UL / DL configuration (DL reference UL-DL configuration) (see FIG. 4).
  • the reference UL / DL configuration refers to a UL / DL configuration used for HARQ timing.
  • the user terminal uses the table in which HARQ timing is defined based on the UL / DL configuration (base UL / DL configuration) set for data transmission and the reference UL / DL configuration, and uses the HARQ- of DL-PUSCH.
  • ACK transmission timing can be controlled.
  • the user terminal can use the HARQ timing defined in eIMTA as a reference UL / DL configuration.
  • a UL / DL configuration (reference UL / DL configuration) used for HARQ timing is set separately from the TDD UL / DL configuration (base UL / DL configuration) set in the user terminal.
  • TDD UL / DL configuration base UL / DL configuration
  • FIG. 5 shows the HARQ timing of the existing TDD
  • FIG. 6 shows the HARQ timing applicable in this embodiment.
  • FIG. 5A is a table showing HARQ timing in TDD of the existing system (LTE).
  • a DL subframe that feeds back HARQ-ACK is associated with each UL subframe of each UL / DL configuration.
  • the user terminal in subframe # 2 (UL subframe), performs HARQ for PDSCH transmitted in DL subframes 6, 7, and 11 subframes before the subframe.
  • -ACK is transmitted (see FIG. 5B).
  • FIG. 6A is a table in which HARQ timings in the UL / DL configuration 3 in FIG. 5A are extracted.
  • FIG. 6B is a table showing HARQ timing when the reference UL / DL configuration is used.
  • a base UL / DL configuration used by the user terminal and a reference UL / DL configuration (2, 4, 5) are defined for the base UL / DL configuration.
  • the user terminal selects the subframes 6, 7, and 11 subframes before the UL subframe # 2 as subframes that feed back HARQ-ACK in the UL subframe # 2 as in the existing system ( (See FIG. 6A). Further, in the UL subframe # 2, the user terminal selects a subframe that is 13, 12, 5, 4, 8, and 9 subframes before the UL subframe # 2 (see FIG. 6B).
  • the user terminal uses the subframe # 2 in consideration of the base UL / DL configuration and the reference UL / DL configuration, and 4, 5, 6, 7, 8, 9, 11, 12 from the subframe.
  • HARQ-ACK for the subframe 13 subframes before is transmitted (see FIG. 6C).
  • FIG. 6C shows HARQ timing based on the reference UL / DL configuration.
  • Information on the base UL / DL configuration and / or the reference UL / DL configuration is notified from the radio base station to the user terminal.
  • the user terminal controls the HARQ timing of the received downlink data (PDSCH, DL-PUSCH) based on the base UL / DL configuration notified from the radio base station and the reference UL / DL configuration.
  • the HARQ timing (table) defined in the reference UL / DL configuration of eIMTA can be used, whereas eIMTA receives DL data on PDSCH (see FIG. 7A).
  • the present embodiment is different in that DL data is received by PUSCH (see FIG. 7B).
  • the radio base station notifies the user terminal of the UL / DL configuration (base UL / DL configuration) to be applied in the TDD cell.
  • FIG. 7B shows a case where the base UL / DL configuration 3 is notified.
  • broadcast signal or higher layer signaling such as RRC signaling can be applied.
  • the radio base station notifies / configures DL-PUSCH reception and reference UL / DL configuration to the user terminal.
  • FIG. 7B shows a case where the reference UL / DL configuration 5 is notified.
  • broadcast signals or higher layer signaling such as RRC signaling, MAC control elements, physical control signals, and the like can be applied.
  • the radio base station instructs the user terminal to which DL-PUSCH is set to receive DL-PUSCH in a predetermined subframe.
  • FIG. 7B shows a case where subframes # 3 and # 4 are indicated as DL-PUSCH reception subframes.
  • broadcast signals or higher layer signaling such as RRC signaling, MAC control elements, physical control signals, and the like can be applied.
  • the user terminal performs a DL-PUSCH reception operation in a specified predetermined subframe, and transmits the result (HARQ-ACK) at a predetermined timing.
  • the radio base station When receiving the ACK from the user terminal, the radio base station performs the next data transmission assuming that the transmitted DL-PUSCH is successfully received by the user terminal. On the other hand, when the NACK is received from the user terminal, the DL-PUSCH retransmits the downlink data on the assumption that the user terminal receives a reception error.
  • DL communication since DL-PUSCH is performed using PUSCH (PUSCH format), the signal configuration is the same as UL communication (UL-PUSCH) of user terminals in other cells.
  • DL transmission using PUSCH is configured with data (DL-PUSCH) and a reference signal (DM-RS) for demodulating the data, similar to UL transmission using PUSCH.
  • DM-RS reference signal
  • DL-PUSCH DL communication using PUSCH
  • CRS cell-specific reference signal
  • CSI-RS channel state measurement signal
  • the radio base station lowers the transmission power compared to DL subframe (for example, user terminal DL-PUSCH can be transmitted with a maximum transmission power of. Thereby, the interference given to UL communication of an adjacent cell or an adjacent frequency can be reduced.
  • the PUSCH is a single carrier-based signal, the PAPR is small and the power utilization efficiency is high, so that it is possible to save power in the radio base station.
  • the user terminal can transmit HARQ-ACK for the received DL-PUSCH after a predetermined period. For example, the user terminal transmits HARQ-ACK 4 ms after receiving DL-PUSCH.
  • the user terminal adopts a configuration for performing communication with a carrier in which UL transmission is continuously maintained, for example, an FDD cell having a UL frequency and carrier aggregation (CA) or dual connectivity (DC) ( (See FIG. 9).
  • FIG. 9 shows a case where CC # 1 to which TDD is applied and CC # 0 to which FDD is applied apply CA.
  • the FDD cell can be a PCell or a PSCell that allows PUCCH allocation (transmission).
  • the user terminal feeds back HARQ-ACK corresponding to the DL-PUSCH using the FDD UL subframe 4 ms after the DL-PUSCH received subframe.
  • the user terminal receives the DL-PUSCH based on the information (DL-PUSCH setting, DL-PUSCH reception instruction) notified from the radio base station, as in (1) Reference UL / DL configuration. Controls HARQ-ACK transmission.
  • the user terminal can control the HARQ timing based on the HARQ timing (table) defined for FDD serving as SCell in TDD-FDD CA using TDD as PCell.
  • HARQ-ACK for PDSCH transmitted in FDD DL may be transmitted in TDD UL subframe serving as PCell.
  • the user terminal controls the HARQ timing of the HARQ-ACK using the reference UL / DL configuration. Therefore, when the UL subframe is used for DL-PUSCH, HARQ-ACK feedback can be controlled based on the reference UL / DL configuration.
  • a case is assumed in which UL-PDSCH is transmitted in FDD that does not apply CA.
  • a user terminal may transmit HARQ-ACK for PDSCH received in a DL subframe using a UL subframe after a predetermined period (for example, 4 ms). it can.
  • HARQ timing based on the reference UL / DL configuration selected in consideration of the DL-PUSCH transmission / reception subframe is applied in the UL frequency.
  • the HARQ timing defined for FDD-SCell is applied when TDD-FDD CA is TDD-PCell.
  • a UL / DL configuration corresponding to the reference UL / DL configuration set in the UL frequency can be applied.
  • FIG. 10A shows a table defining the HARQ timing of the FDD serving as the SCell in TDD-FDD CA (TDD is PCell).
  • FIG. 10B illustrates the HARQ timing of an FDD (SCell) that performs CA with a TDD cell to which the TDD UL / DL configuration 3 is applied as a PCell. As shown in FIG. 10B, HARQ-ACK corresponding to each DL subframe of the FDD cell is transmitted in a predetermined UL subframe of TDD.
  • FIG. 11 shows an example of HARQ timing when a part of the UL subframe of FDD is used for transmission of UL-PDSCH.
  • the HARQ timing of the reference UL / DL configuration 3 is applied to the UL frequency of the FDD, and the HARQ timing when the TDD that becomes the PCell in the TDD-FDD CA becomes the UL / DL configuration 3 is applied to the DL frequency.
  • the reference UL / DL configuration applied to the UL frequency may be a UL / DL configuration corresponding to a case where a subframe in which DL-PUSCH transmission is performed is assumed to be DL.
  • Information regarding part or all of the HARQ timing applied by the user terminal may be notified from the radio base station to the user terminal, or may be determined by the user terminal based on a subframe in which DL-PUSCH reception is performed. Good.
  • the information regarding part or all of the HARQ timing includes information regarding the UL / DL configuration applied to the UL frequency of the FDD, information regarding the reference UL / DL configuration applied to the DL frequency of the FDD, and the like.
  • the user terminal may define the HARQ timing for the DL frequency in accordance with the UL / DL configuration set to the UL frequency of the FDD.
  • the user terminal feeds back HARQ-ACK for DL-PUSCH at a timing after a predetermined period (xms) after receiving downlink control information (PDCCH / EPDCCH) indicating the DL-PUSCH.
  • a predetermined period xms
  • PDCCH downlink control information
  • the user terminal determines whether or not the DL-PUSCH received in a predetermined UL subframe is successfully received based on an instruction from the radio base station, and a predetermined period has elapsed since then.
  • HARQ-ACK is fed back in a subsequent (for example, after 4 ms) subframe.
  • the user terminal when the user terminal detects downlink control information (PDCCH / EPDCCH) received in a predetermined DL subframe, the user terminal determines whether or not the DL-PUSCH has been received at a predetermined timing after detection.
  • HARQ-ACK is fed back in a subframe after a predetermined period has elapsed since the detection of the downlink control information (for example, after 4 ms).
  • the control signal instructing DL reception and the DL data signal are multiplexed in the same subframe.
  • the control signal and the data signal are not necessarily multiplexed in the same subframe, and the timing at which the data signal is transmitted / received is delayed with respect to the timing at which the control signal is transmitted / received (a predetermined subframe). This is likely to be done after a frame).
  • the HARQ timing of the DL-PUSCH is controlled, and preparation for HARQ transmission is started when the control signal is detected. Therefore, the round trip delay of HARQ can be shortened, and the user experience communication speed can be improved.
  • the user terminal can control the feedback of the DL-PUSCH delivery confirmation signal (HARQ-ACK) at a predetermined timing.
  • HARQ-ACK DL-PUSCH delivery confirmation signal
  • radio resources determined implicitly based on a downlink control channel instructing DL-PUSCH reception, (2) instructing DL-PUSCH reception Radio resources that are explicitly indicated in the downlink control channel to be set, (3) radio resources that are implicitly determined by DL-PUSCH, or (4) upper layer signaling (RRC signaling, etc.) It is conceivable to use radio resources and the like.
  • a PUCCH resource assigned to a UL resource can be used as a radio resource to which a DL-PUSCH is assigned.
  • a user terminal can select a PUCCH resource based on a resource number of a downlink control channel (PDCCH and / or EPDCCH) instructing DL-PUSCH reception. For example, the user terminal transmits HARQ-ACK using a PUCCH resource determined based on a CCE index / ECCE index constituting a PDCCH / EPDCCH instructing reception of DL-PUSCH.
  • a downlink control channel (PDCCH and / or EPDCCH) instructing DL-PUSCH reception.
  • a grant (for example, UL grant) instructing DL-PUSCH reception and a PUCCH resource correspond to Implicit (see FIG. 12).
  • the PUCCH resource is determined using the CCE index (n CCE ) constituting the PUCCH. For example, it can be determined using the following equation (1).
  • the PUCCH resource is determined using the ECCE index (n ECCE ) constituting the EPUCCH. For example, it can be determined using the following equation (2).
  • a predetermined CCE index (CCE index having the smallest number) can be used.
  • Such a method reuses a method of determining a PUCCH resource by a PDCCH / EPDCCH resource number including a DL assignment in the existing LTE.
  • Implicit information used for selecting the PUCCH resource in addition to the resource number, the PDCCH / EPDCCH antenna port number, the mapping position of the reference signal, the PDCCH / EPDCCH or the parameter corresponding to the scramble cell ID (virtual) A cell ID (Virtual Cell ID)) may be included.
  • the circuit configuration of the user terminal is simplified and easily implemented by using the PUCCH assignment method for DL assignment (DL assignment) instructing PDSCH reception for HARQ-ACK transmission of DL-PUSCH. Can do.
  • PUCCH resource determined to be Explicit by downlink control channel A bit area for specifying a PUCCH resource may be introduced into the downlink control channel (PDCCH / EPDCCH).
  • the user terminal can determine the PUCCH resource based on information indicated in the bit area. That is, the PUCCH resource is instructed to be explicit by a grant (for example, UL grant) instructing DL-PUSCH reception (see FIG. 13A).
  • a plurality of PUCCH resources can be set in advance, and a predetermined PUCCH resource can be instructed to the user terminal.
  • the radio base station notifies / sets a plurality of PUCCH resources (1 st to 4 th PUCCH resource value) to the user terminal in advance using higher layer signaling such as RRC (see FIG. 13B).
  • the radio base station dynamically indicates to the user terminal which PUCCH resource to transmit the HARQ-ACK by using a PUCCH resource indicator bit (PUCCH resource indicator) included in the downlink control channel (see FIG. 13B).
  • PUCCH resource indicator PUCCH resource indicator
  • a bit (bit area) indicating a predetermined PUCCH resource may be newly added to downlink control information (DCI format), or an existing bit area may be used as a bit for indicating a PUCCH resource. Is possible.
  • the user terminal can select a PUCCH resource for transmitting HARQ-ACK based on the received information about the DL-PUSCH resource and the like.
  • DL-PUSCH allocation resource block (PRB) number and / or DM-RS sequence number, etc. can be used as information on DL-PUSCH resources. That is, the received DL-PUSCH and PUCCH resources correspond to Implicit (FIG. 14).
  • the DL-PUSCH PRB is duplicated only between MU-MIMO (Multi User-MIMO) user terminals.
  • MU-MIMO Multi User-MIMO
  • the PRB number is duplicated even if the PRB number is duplicated.
  • the user terminal when allocating DL-PUSCH HARQ-ACK to the PUCCH resource of the m-th subframe, the user terminal can control PUCCH resource allocation using the following equation (3).
  • N_PUCCH the number of PUCCH resources
  • HARQ-ACK for DL-PUSCH transmitted in subframe # 8 and subframe # 9 is fed back in the same UL subframe.
  • the user terminal has different offsets (offset is 0). PUCCH collision can be avoided by adding (including cases).
  • the subframe number shown in FIG. 15 corresponds to the subframe number in the case of going back with reference to the UL subframe that feeds back HARQ-ACK.
  • FIG. 16 is a schematic configuration diagram illustrating an example of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 is in a cell formed by a plurality of radio base stations 10 (11 and 12) and each radio base station 10, and is configured to be able to communicate with each radio base station 10.
  • Each of the radio base stations 10 is connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the radio base station 11 is composed of, for example, a macro base station having a relatively wide coverage, and forms a macro cell C1.
  • the radio base station 12 is configured by a small base station having local coverage, and forms a small cell C2.
  • the number of radio base stations 11 and 12 is not limited to the number shown in FIG.
  • the same frequency band may be used, or different frequency bands may be used.
  • the radio base stations 11 and 12 are connected to each other via an inter-base station interface (for example, optical fiber, X2 interface).
  • the macro base station 11 may be referred to as a radio base station, an eNodeB (eNB), a transmission point, or the like.
  • the small base station 12 may be called a pico base station, a femto base station, a Home eNodeB (HeNB), a transmission point, an RRH (Remote Radio Head), or the like.
  • the user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • the user terminal 20 can execute communication with other user terminals 20 via the radio base station 10.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, and predetermined SIB (System Information Block) are transmitted by PDSCH. Also, a synchronization signal, MIB (Master Information Block), etc. are transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits a HARQ delivery confirmation signal (ACK / NACK) to the PUSCH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel) and may be used to transmit DCI or the like in the same manner as the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. Physical Random Access Channel) is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH random access channel
  • User data and higher layer control information are transmitted by PUSCH.
  • DL transmission (DL-PUSCH transmission / reception) is performed using PUSCH set to a predetermined UL resource (UL subframe or UL frequency band).
  • downlink radio quality information CQI: Channel Quality Indicator
  • HARQ-ACK delivery confirmation signal
  • An acknowledgment signal for DL-PUSCH can also be transmitted using PUCCH.
  • a random access preamble (RA preamble) for establishing a connection with the cell is transmitted by the PRACH.
  • a channel quality measurement reference signal SRS: Sounding Reference Signal
  • DM-RS Demodulation Reference Signal
  • FIG. 17 is an overall configuration diagram of the radio base station 10 according to the present embodiment.
  • the radio base station 10 (including the radio base stations 11 and 12) includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, and a call processing unit 105. And a transmission path interface 106.
  • the transmission / reception unit 103 includes a transmission unit and a reception unit.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
  • Each transmitting / receiving unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna into a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 transmits information (enable / disable) for setting reception of downlink data (DL-PUSCH) using the uplink shared channel (PUSCH) to the user terminal in higher layer signaling (RRC, broadcast signal). Etc.). Further, the transmission / reception unit 103 can notify the user terminal of information on subframes for transmitting / receiving DL-PUSCH.
  • the transmitter / receiver 103 can employ a transmitter / receiver, a transmitter / receiver circuit, or a transmitter / receiver used in the technical field according to the present invention.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102.
  • Each transmitting / receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the transceiver 103 receives a DL-PUSCH delivery confirmation signal fed back from the user terminal at a predetermined timing.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Further, the transmission path interface 106 may transmit / receive a signal (backhaul signaling) to / from an adjacent radio base station via an interface between base stations (for example, an optical fiber or an X2 interface).
  • a signal backhaul signaling
  • FIG. 18 is a main functional configuration diagram of the baseband signal processing unit 104 included in the radio base station 10 according to the present embodiment. Note that FIG. 18 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the radio base station 10 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, and a reception processing unit 304.
  • the control unit (scheduler) 301 controls scheduling of downlink data transmitted on the PDSCH, downlink control signals transmitted on the PDCCH and / or extended PDCCH (EPDCCH) (transmission from the radio base station 10).
  • the control unit 301 also controls scheduling of downlink data (DL-PUSCH) transmitted on the PUSCH.
  • the control unit 301 also controls scheduling of system information, synchronization signals, downlink reference signals such as CRS and CSI-RS, and the like. In addition, the control unit 301 controls scheduling (transmission from the user terminal 20) of uplink reference signals, uplink data transmitted on the PUSCH, uplink control signals transmitted on the PUCCH and / or PUSCH, and the like.
  • the control unit 301 can be configured with a controller, a control circuit, or a control device used in the technical field according to the present invention.
  • control unit 301 can instruct the user terminal to receive DL-PUSCH using the downlink control channel (PDCCH and / or EPDCCH). For example, the control unit 301 transmits a DL-PUSCH in a subframe in which an uplink data transmission instruction by UL grant is not performed. In addition, the control unit 301 performs control so that DL-PUSCH is transmitted in the same subframe as the subframe instructing the DL-PUSCH grant or a subframe after a predetermined period.
  • PDCCH and / or EPDCCH downlink control channel
  • the control unit 301 transmits a DL-PUSCH in a subframe in which an uplink data transmission instruction by UL grant is not performed.
  • control unit 301 performs control so that DL-PUSCH is transmitted in the same subframe as the subframe instructing the DL-PUSCH grant or a subframe after a predetermined period.
  • control unit 301 sets a grant that instructs transmission of uplink data using PUSCH (for example, a UL grant of an existing system) and a grant that instructs reception of DL-PUSCH as one grant. May be used.
  • the user terminal 20 can determine the content of the UL grant based on other information (such as subframe information in which DL-PUSCH is transmitted).
  • the transmission signal generation unit 302 generates a DL signal (downlink control signal, downlink data, downlink reference signal, etc.) based on an instruction from the control unit 301 and outputs the DL signal to the mapping unit 303. For example, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a DL assignment (DL assignment) for notifying downlink signal allocation information and a UL grant (UL grant) for notifying uplink signal allocation information. Generate. Also, the downlink data is subjected to coding processing and modulation processing according to the coding rate, modulation scheme, and the like determined based on CSI from each user terminal 20 and the like.
  • the transmission signal generation unit 302 generates downlink data in the PUSCH format in a predetermined UL subframe. Downlink data (DL-PUSCH) generated in the PUSCH format is mapped to an uplink resource (PUSCH) by the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator or a signal generation circuit used in the technical field according to the present invention.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a radio resource based on an instruction from the control unit 301, and outputs the radio signal to the transmission / reception unit 103.
  • the mapping unit 303 maps downlink data to PDSCH or PUSCH based on an instruction from the control unit 301.
  • the mapping unit 303 can be configured by a mapping circuit or mapper used in the technical field according to the present invention.
  • the reception processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (uplink control signal, uplink data, uplink reference signal, etc.) transmitted from the user terminal 20. Further, the reception processing unit 304 may measure the received power (RSRP) and the channel state using the received signal (for example, SRS). The processing result and the measurement result may be output to the control unit 301.
  • the reception processing unit 304 can be configured by a signal processor or a signal processing circuit used in the technical field according to the present invention.
  • FIG. 19 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception unit 203 may include a transmission unit and a reception unit.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 receives the DL-PUSCH based on information for setting (enable / disable) DL-PUSCH reception. Further, the transmission / reception unit 203 (reception unit) transmits a delivery confirmation signal to the received DL-PUSCH.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device used in the technical field according to the present invention.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to the transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 20 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20. Note that FIG. 20 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception processing unit 404, and a determination unit 405.
  • the reception processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal transmitted from the radio base station 10. Also, the reception processing unit 404 can perform reception processing of DL-PUSCH transmitted using PUSCH based on information on subframes to which DL-PUSCH transmission / reception is applied.
  • the reception processing unit 404 can be configured by a signal processor or a signal processing circuit used in the technical field according to the present invention.
  • the reception processing unit 404 decodes a downlink control signal transmitted through the downlink control channel (PDCCH / EPDCCH), and outputs scheduling information to the control unit 401. Also, the reception processing unit 404 decodes downlink data transmitted on the downlink shared channel (PDSCH) and downlink data transmitted on the uplink shared channel (PUSCH), and outputs the decoded data to the determination unit 405. Further, the reception processing unit 404 may measure the received power (RSRP) and the channel state using the received signal. The processing result and the measurement result may be output to the control unit 401.
  • RSRP received power
  • the determination unit 405 performs retransmission control determination (ACK / NACK) based on the decoding result of the reception processing unit 404 and outputs the result to the control unit 401.
  • the retransmission control determination can be performed on downlink data transmitted on the PDSCH and downlink data (DL-PUSCH) transmitted on the PUSCH.
  • the control unit 401 generates / generates UL signals such as uplink control signals (feedback signals) and uplink data based on downlink control signals transmitted from the radio base stations and retransmission control determination results for PDSCH and / or DL-PUSCH. Control transmission. Specifically, the control unit 401 controls the transmission signal generation unit 402 and the mapping unit 403. The downlink control signal is output from the reception processing unit 404, and the retransmission control determination result is output from the determination unit 405.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device used in the technical field according to the present invention.
  • the control unit 401 controls to transmit a delivery confirmation signal for the DL-PUSCH at a predetermined timing. For example, the control unit 401, based on the timing of receiving a DL-PUSCH or the timing of receiving a downlink control channel (DL-PUSCH grant) instructing reception of the DL-PUSCH, Control transmission.
  • DL-PUSCH grant downlink control channel
  • control unit 401 confirms the delivery to the DL-PUSCH based on a table in which the transmission timing of the delivery confirmation signal is defined corresponding to the base UL / DL configuration and the reference UL / DL configuration. Signal transmission can be controlled (see FIGS. 6B and 7B). Alternatively, the control unit 401 can control transmission of a delivery confirmation signal to the DL-PUSCH after a certain period of time has elapsed from the timing of receiving the DL-PUSCH or the timing of receiving the DL-PUSCH grant.
  • control unit 401 when the control unit 401 receives the DL-PUSCH allocated to the UL resource of the FDD cell, the control unit 401 performs DL based on the table in which the transmission timing of the delivery confirmation signal is defined corresponding to the reference UL / DL configuration. -The transmission of the delivery confirmation signal to the PUSCH can be controlled (see FIG. 10A and FIG. 11).
  • control unit 401 allocates a delivery confirmation signal corresponding to the DL-PUSCH to a predetermined uplink control channel resource based on a downlink control channel (for example, a CCE index or the like) instructing reception of the DL-PUSCH.
  • the mapping unit 403 can be instructed.
  • control unit 401 instructs the mapping unit 403 to allocate a delivery confirmation signal corresponding to the DL-PUSCH to a predetermined uplink control channel resource based on the received DL-PUSCH information (for example, PRB number). Can be directed.
  • the transmission signal generation unit 402 generates a UL signal based on an instruction from the control unit 401 and outputs the UL signal to the mapping unit 403. For example, the transmission signal generation unit 402 generates an uplink control signal such as a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401.
  • HARQ-ACK delivery confirmation signal
  • CSI channel state information
  • the transmission signal generation unit 402 generates uplink data based on an instruction from the control unit 401. For example, when the UL grant is included in the downlink control signal notified from the radio base station 10, the control unit 401 instructs the transmission signal generation unit 402 to generate uplink data.
  • the transmission signal generation unit 402 can be configured by a signal generator or a signal generation circuit used in the technical field according to the present invention.
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource (for example, PUCCH or PUSCH), and outputs the radio signal to the transmission / reception unit 203.
  • a radio resource for example, PUCCH or PUSCH
  • the mapping unit 403 maps a delivery confirmation signal for DL-PUSCH to a predetermined PUCCH resource.
  • the mapping unit 403 can be configured with a mapping circuit or mapper used in the technical field according to the present invention.
  • each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 may be realized by a computer apparatus including a processor (CPU), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. Good.
  • the processor and memory are connected by a bus for communicating information.
  • the computer-readable recording medium is a storage medium such as a flexible disk, a magneto-optical disk, a ROM, an EPROM, a CD-ROM, a RAM, and a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 UL伝送とDL伝送を柔軟に制御して、無線通信におけるスループットや通信品質を向上すること。上り共有チャネルを用いて上りデータを送信する送信部と、無線基地局から送信される下り制御情報及び下りデータを受信する受信部と、受信した下りデータに対する送達確認信号の送信を制御する制御部と、を有し、受信部は、上り共有チャネルを用いて送信される下りデータ(DL-PUSCH)を受信し、制御部は、DL-PUSCHに対する送達確認信号を所定タイミングで送信するように制御する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代の通信システムに適用可能なユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTEではマルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。また、LTEからのさらなる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE-A」という))も検討され、仕様化されている(Rel.10/11)。
 LTE、LTE-Aシステムの無線通信における複信形式(Duplex-mode)として、上りリンク(UL)と下りリンク(DL)を周波数で分割する周波数分割複信(FDD)と、上りリンクと下りリンクを時間で分割する時間分割複信(TDD)とがある(図1A、1B参照)。TDDの場合、上りリンクと下りリンクの通信に同じ周波数領域が適用され、一つの送受信ポイントから上りリンクと下りリンクが時間で分けられて信号の送受信が行われる。
 また、LTEシステムのTDDにおいては、上りサブフレーム(ULサブフレーム)と下りサブフレーム(DLサブフレーム)間の送信比率が異なる複数のフレーム構成(UL/DL configuration(UL/DL構成))が規定されている。具体的には、図2に示すように、UL/DL構成0~6の7つのフレーム構成が規定されており、サブフレーム#0と#5は下りリンクに割当てられ、サブフレーム#2は上りリンクに割当てられる。
 また、LTE-Aシステム(Rel.10/11)のシステム帯域は、LTEシステムのシステム帯域を一単位とする少なくとも1つのコンポーネントキャリア(CC:Component Carrier)を含んでいる。複数のコンポーネントキャリア(セル)を集めて広帯域化することをキャリアアグリゲーション(CA:Carrier Aggregation)という。
 一般に、無線通信システムにおいて、DLのトラフィック量とULのトラフィック量は異なっており、ULトラフィック量に比較してDLトラフィック量が多くなることが想定される。また、DLトラフィック量とULトラフィック量の比率は一定ではなく、時間的に、あるいは、場所的に変動する。
 しかし、既存のLTE/LTE-Aシステムでは、無線リソースの有効活用(flexibility)には限界がある。例えば、FDDでは、UL用の周波数リソースをDL通信に利用することができない。TDDにおいても、UL用時間リソースを動的にDL通信に利用することはできない。
 このため、トラフィック量等を考慮してUL伝送(UL通信)とDL伝送(DL通信)を柔軟に制御することにより、無線通信におけるスループットや通信品質を向上する方法が望まれている。
 本発明はかかる点に鑑みてなされたものであり、UL伝送とDL伝送を柔軟に制御して、無線通信におけるスループットや通信品質を向上することができる無線基地局、ユーザ端末及び無線通信方法を提供することを目的の一とする。
 本発明のユーザ端末の一態様は、上り共有チャネルを用いて上りデータを送信する送信部と、無線基地局から送信される下り制御情報及び下りデータを受信する受信部と、受信した下りデータに対する送達確認信号の送信を制御する制御部と、を有し、前記受信部は、上り共有チャネルを用いて送信される下りデータ(DL-PUSCH)を受信し、前記制御部は、DL-PUSCHに対する送達確認信号を所定タイミングで送信するように制御することを特徴とする。
 本発明によれば、UL伝送とDL伝送を柔軟に制御して、無線通信におけるスループットや通信品質を向上することができる。
LTE/LTE-AにおけるDuplex-modeを説明するための図である。 既存システムのTDDセルで利用するUL/DL構成を示す図である。 DL-PUSCH送受信の一例を示す図である。 DL-PUSCHに対する送達確認信号の送信方法の一例を示す図である。 TDD UL/DL構成のHARQタイミングを規定したテーブル及びHARQタイミングの一例を示す図である。 ベースUL/DL構成及び参照用UL/DL構成に対応するHARQタイミングを規定したテーブル及びHARQタイミングの一例を示す図である。 ベースUL/DL構成及び参照用UL/DL構成に対応するHARQタイミングを規定したテーブルに基づくHARQタイミングの一例を示す図である。 DL-PUSCHのサブフレーム構成の一例を示す図である。 DL-PUSCHに対するHARQのタイミングの一例を示す図である。 参照用UL/DL構成に対応するHARQタイミングを規定したテーブル及びHARQタイミングの一例を示す図である。 FDDセルのUL周波数で送信されるDL-PUSCHに対するHARQタイミングの一例を示す図である。 DL-PUSCHに対する送達確認信号を割当てるPUCCHリソースの決定方法の一例を示す図である。 DL-PUSCHに対する送達確認信号を割当てるPUCCHリソースの決定方法の他の例を示す図である。 DL-PUSCHに対する送達確認信号を割当てるPUCCHリソースの決定方法の他の例を示す図である。 DL-PUSCHに対する送達確認信号を割当てるPUCCHリソースの決定方法の他の例を示す図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成の説明図である。 本実施の形態に係る無線基地局の機能構成の説明図である。 本実施の形態に係るユーザ端末の全体構成の説明図である。 本実施の形態に係るユーザ端末の機能構成の説明図である。
 上述したように、既存のLTEシステムでは、FDDにおいてUL用の周波数リソースをDL通信に利用することができず、TDDにおいてUL用時間リソースを動的にDL通信に利用することができないため、無線リソースの有効活用が困難となっている。
 このような問題を解決するために、TDDのUL/DL構成(UL/DL Configuration)をセル毎に準静的(semi-static)に変更することにより、TDDのUL用時間リソースをDL用時間リソースとして利用すること(eIMTA)が検討されている。例えば、無線基地局が、自セルの通信環境に応じてDLサブフレーム比率が高いUL/DL構成(例えば、上記図2におけるUL/DL構成4、5等)を選択することにより、DL通信用のリソースを確保することができる。
 しかし、TDDを利用するセル間で異なるUL/DL構成を適用する場合、地理的または周波数的に隣接するTDDセルとのUL-DL間干渉を抑制するために干渉制御技術が必要となる。したがって、eIMTAの他に、UL伝送とDL伝送を柔軟に制御してDL伝送のスループットを向上できる方法が望まれている。
 本発明者等は、D2D(Device to Device)通信では、ユーザ端末間でPUSCHフォーマットを用いた通信(D2D discovery/communication)がサポートされる点に着目した。つまり、D2D通信をサポートするユーザ端末は、ULリソースを用いてPUSCHと同じ形式(PUSCHフォーマット)で送信される信号(SC-FDMA信号)を受信できる機能を有する。
 現在検討されているD2D通信では、ユーザ端末が、通信可能な他のユーザ端末を見つけ出すためのD2Dディスカバリ(D2D discovery)を行う。D2Dディスカバリにおいて、ネットワークは、周期的な上りリンクリソース(PUSCH)を、D2Dディスカバリリソースとして準静的(semi-static)に各ユーザ端末に割当てる。ユーザ端末は、発見用信号(discovery signal)をD2Dディスカバリリソースに割り当てて送信する。また、ユーザ端末は、他のユーザ端末から送信された発見用信号を受信することにより、通信可能な他のユーザ端末を見つけ出すことができる。
 このように、D2D通信では、PUSCHリソースを利用してユーザ端末間で通信を行うことが検討されている。また、本発明者等は、キャリアアグリゲーション(CA)の適用がサポートされている場合、無線基地局とユーザ端末間で必ずしも所定のULリソースが常に必要とならない点に着目した。
 そこで、本発明者等は、無線基地局がUL用リソース(例えば、PUSCH)を用いて、PUSCHフォーマットでDL通信を行うことを着想した。つまり、無線基地局は、TDDセルのULサブフレームに設定される上り共有チャネル(PUSCH)、及び/又はFDDのUL周波数に設定されるPUSCHに下りデータを割当てて送信する。ユーザ端末は、PUSCHに割当てられる下りデータに対して受信処理を行う。なお、無線基地局がPUSCHを用いて送信する下り信号(例えば、下りデータ)を、DL-PUSCH(又は、DL-PUSCH信号)とも呼ぶ。
 図3に、UL用リソースを用いてDL通信を行う場合の一例を示す。図3Aでは、FDDの一部のUL用リソース(サブフレーム#2、#3、#6、#7)を用いてDL通信する場合を示している。つまり、一部のUL用リソースでは、無線基地局からユーザ端末に対してPUSCHを用いてDL信号(DL-PUSCH)を送信する。なお、その他のサブフレームでは、既存と同様にユーザ端末がPUSCHを用いてUL信号を送信する。
 図3Bでは、TDDの一部のUL用リソース(ここでは、ULサブフレーム#2、#3)を用いてDL通信を行う場合を示している。つまり、TDDの一部のULサブフレームでは、無線基地局からユーザ端末に対してPUSCHを用いてDL信号(DL-PUSCH)を送信する。なお、その他のサブフレーム(ここでは、ULサブフレーム#7、#8)では、既存のLTE/LTE-Aシステムと同様にユーザ端末がPUSCHを用いてUL信号を送信する。なお、図3Bでは、TDD UL/DL構成1について示したが、本実施の形態はこれに限られない。
 また、ユーザ端末は、あらかじめDL-PUSCHを受信する能力(PUSCH受信capability)を有していることをネットワークに通知する構成とすることができる。これにより、無線基地局は、所定のユーザ端末に対して選択的にDL-PUSCHを送信することが可能となる。当該PUSCH受信capabilityがユーザ端末の能力として定義された場合、無線基地局は、当該PUSCH受信capabilityを有するという通知を受け取ったら、当該ユーザ端末が任意の周波数バンドにおいて、DL-PUSCH受信が可能であると見なすことができる。一方、当該PUSCH受信capabilityは、特定の周波数バンドにおけるユーザ端末の能力として定義されてもよい。この場合、ユーザ端末は、自身が通信可能な周波数バンドそれぞれにおいて、PUSCH受信capabilityを有するか否かを無線基地局に通知する。無線基地局は、当該ユーザ端末がPUSCH受信capabilityを有する周波数バンドにおいて、DL-PUSCH受信を行うよう設定(configure)することができる。
 また、無線基地局はユーザ端末に対してULリソースにおけるPUSCH受信を設定(configure)する。例えば、無線基地局は上位レイヤシグナリング(RRCシグナリング、報知信号等)を用いて、ユーザ端末にDL-PUSCH受信を設定(enable/disable)する情報を通知すると共に、DL-PUSCH受信に必要な情報(例えば、DL-PUSCHの送信タイミングやスケジューリングに使用するDCI formatに関する情報等)を通知する。さらに、無線基地局は、DL-PUSCH受信指示に関する情報を動的に送信することができる。
 ユーザ端末は、DL-PUSCHの受信指示の有無を確認し、無線基地局からの指示の有無に応じて動作を制御する。また、ユーザ端末は、ULリソース(FDDにおけるUL周波数、TDDにおけるULサブフレーム)で無線基地局から受信したDL-PUSCHに受信処理(復調等)を行った後、下りデータとして物理レイヤから上位レイヤにわたすことができる。
 このように、ULリソース(PUSCH)を利用して無線基地局からユーザ端末にDL信号を送信することにより、ULとDLのトラフィック量に応じてULリソースを柔軟にDL通信に活用することが可能となる。また、TDDを適用する場合であっても、UL/DL構成の仕組みを変更せずに、柔軟な無線リソース活用が可能となる。
 また、本実施の形態では、送信時間間隔(例えば、サブフレーム)に相当する1ms単位で動的にULリソースをDL通信に利用することが可能となる。さらに、CAと組み合わせて適用することにより、FDDやTDDにおけるUL周波数を柔軟且つ動的にDL通信に利用することが可能となる。
 また、DL-PUSCH送信を行っている無線基地局は、物理的または周波数的に隣接するセルにおいて、ULリソースを用いてPUSCHのUL送信を行っているユーザ端末や、D2D通信を行っているユーザ端末と同等とみなすことができる。PUSCHに含まれる参照信号(UL DM-RS)は、物理的または周波数的に隣接するセル間で参照信号系列やスクランブル符号を違うものとすることにより、干渉をランダム化(または白色化)することができる。したがって、ULリソースを用いるDL通信にPUSCHを利用することにより、物理的または周波数的な周辺のセルのユーザ端末が送信するPUSCHとの衝突が発生した場合であっても、干渉ランダム化(または白色化)の効果が得られるため、干渉による劣化を最小に抑えることができる。
 ところで、無線通信システムにおける高品質なパケット通信の実現には、再送制御(Hybrid ARQ)の適用が必要となる。既存システム(LTE/LTE-A)のDL通信では、ユーザ端末が下り共有チャネル(PDSCH)に対する送達確認信号(HARQ-ACK)を上り制御チャネル(PUCCH)及び/又は上り共有チャネル(PUSCH)で送信する。具体的に、ユーザ端末は、PDSCH受信後の所定サブフレームにおいてHARQ-ACKを所定の方法で変調してフィードバックすることが規定されている。
 しかし、これまでユーザ端末が無線基地局から送信されるDL-PUSCHを受信することは想定されていないため、DL-PUSCHに対する下りHARQ-ACKのフィードバックの仕組み(メカニズム)は存在しない。このため、DL-PUSCH送受信の導入に伴い、DL-PUSCHに対してどのようにHybrid ARQを適用するかが問題となる。
 本発明者等は、DL-PUSCHのスケジューリング(リソース割当て)として、(1)下り制御チャネル(PDCCH及び/又はEPDCCH)等のL1/L2制御信号、及び/又は(2)RRC等の上位レイヤシグナリングを利用できる点に着目した。つまり、無線基地局は、ユーザ端末に対して、下り制御チャネルや上位レイヤシグナリングを用いて、DL-PUSCH受信指示(例えば、DL-PUSCHグラントとも呼ぶ)を送信することが考えられる。
 そこで、本発明者等は、ユーザ端末が受信したDL-PUSCHに対する送達確認信号(HARQ-ACK)を所定タイミングで送信するように制御することを着想した。例えば、ユーザ端末は、DL-PUSCHを受信してから所定期間(xms)後にフィードバックする、又はDL-PUSCHを指示する下り制御チャネル(DL-PUSCH用グラント)を受信してから所定期間(xms)後にフィードバックする。このように、DL-PUSCH送受信を行うと共に、DL-PUSCHに対して再送制御(Hybrid ARQ)を適用することにより、UL伝送とDL伝送を柔軟に制御して、無線通信におけるスループットや通信品質を向上することができる。
 以下に、本実施の形態について詳細に説明する。なお、本実施の形態では、DL-PUSCH送受信を適用するセルと、適用しないセルとの間でキャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)を適用することができる。例えば、DL-PUSCH送受信を行わないセルをプライマリセル(PCell)、DL-PUSCH送受信を行うセルをセカンダリセル(SCell)としてCAを適用することができる。
 CAは、複数のコンポーネントキャリア(CC、キャリア、セル等ともいう)を統合して広帯域化することをいう。各CCは、例えば、最大20MHzの帯域幅を有し、最大5つのCCを統合する場合には最大100MHzの広帯域が実現される。CAが適用される場合、1つの無線基地局のスケジューラが複数のCCのスケジューリングを制御する。このことから、CAは基地局内CA(intra-eNB CA)と呼ばれてもよい。
 デュアルコネクティビティ(DC)は、複数のCCを統合して広帯域化する点はCAと同様である。DCが適用される場合、複数のスケジューラが独立して設けられ、当該複数のスケジューラがそれぞれの管轄する1つ以上のセル(CC)のスケジューリングを制御する。このことから、DCは基地局間CA(inter-eNB CA)と呼ばれてもよい。なお、デュアルコネクティビティにおいて、独立して設けられるスケジューラ(すなわち、無線基地局)ごとにキャリアアグリゲーション(intra-eNB CA)を適用してもよい。
(第1の態様)
 第1の態様では、ユーザ端末が無線基地局から送信されるDL-PUSCHを受信してから所定タイミングでHybrid ARQを送信する場合について説明する。所定タイミングとしては、(1)参照用UL/DL構成(DL reference UL-DL configuration)で規定された値、(2)所定値(例えば、4ms)、又は(3)TDD-FDD CA(TDDがPCell)で規定されたHARQ-ACKのタイミング、に基づいて決定することができる。以下に、各タイミング(1)~(3)について説明する。なお、以下の(1)、(2)はTDD、(3)はFDDのDL-PUSCH送受信を想定しているがこれに限られない。
(1)参照用UL/DL構成に基づくHybrid ARQ
 DL-PUSCHを受信するユーザ端末は、受信したDL-PUSCHに対するHARQ-ACKを参照用UL/DL構成(DL reference UL-DL configuration)で規定されたタイミングで送信することができる(図4参照)。参照用UL/DL構成とは、HARQタイミング用に利用されるUL/DL構成を指す。例えば、ユーザ端末は、データ送信に設定されるUL/DL構成(ベースUL/DL構成)と参照用UL/DL構成に基づいてHARQタイミングが規定されたテーブルを用いて、DL-PUSCHのHARQ-ACKの送信タイミングを制御することができる。
 例えば、ユーザ端末は、参照用UL/DL構成として、eIMTAで規定されているHARQタイミングを利用することができる。eIMTAでは、ユーザ端末に設定されるTDD UL/DL構成(ベースUL/DL構成)とは別に、HARQタイミングに利用されるUL/DL構成(参照用UL/DL構成)が設定される。但し、eIMTAでは、ユーザ端末はPDSCHでDLデータを受信する場合を想定しているのに対し、本実施の形態では、PUSCHでDLデータを受信する点で異なっている。
 ここで、図5に既存のTDDのHARQタイミング、図6に本実施の形態で適用可能なHARQタイミングを示す。
 図5Aは、既存システム(LTE)のTDDにおけるHARQタイミングを示すテーブルである。図5Aのテーブルに示すように、各UL/DL構成のULサブフレーム毎にHARQ-ACKをフィードバックするDLサブフレームが関連付けられている。例えば、UL/DL構成3を適用する場合、ユーザ端末は、サブフレーム#2(ULサブフレーム)において、当該サブフレームから6、7、11サブフレーム前のDLサブフレームで送信されるPDSCHに対するHARQ-ACKを送信する(図5B参照)。
 図6Aは、図5AにおけるUL/DL構成3におけるHARQタイミングを抜き出したテーブルである。図6Bは、参照用UL/DL構成を用いる場合のHARQタイミングを示すテーブルである。例えば、ユーザ端末が利用するベースUL/DL構成と、当該ベースUL/DL構成に対して参照用UL/DL構成(2、4、5)が規定されている。
 ここで、UL/DL構成3を適用し、且つ参照用UL/DL構成5を適用する場合を想定する。この場合、ユーザ端末は、既存システムと同様にULサブフレーム#2でHARQ-ACKをフィードバックするサブフレームとして、当該ULサブフレーム#2から6、7、11サブフレーム前のサブフレームを選択する(図6A参照)。さらに、ユーザ端末は、ULサブフレーム#2において、当該ULサブフレーム#2から13、12、5、4、8、9サブフレーム前のサブフレームを選択する(図6B参照)。
 つまり、ユーザ端末は、ベースUL/DL構成と参照用UL/DL構成を考慮して、サブフレーム#2を用いて、当該サブフレームから4、5、6、7、8、9、11、12、13サブフレーム前のサブフレームに対するHARQ-ACKを送信する(図6C参照)。なお、図6Cは、参照用UL/DL構成に基づくHARQタイミングを示している。ベースUL/DL構成、及び/又は参照用UL/DL構成に関する情報は無線基地局からユーザ端末に通知される。
 このように、ユーザ端末は、無線基地局から通知されるベースUL/DL構成と、参照用UL/DL構成とに基づいて、受信した下りデータ(PDSCH、DL-PUSCH)のHARQタイミングを制御する。また、上述したように、eIMTAの参照用UL/DL構成で規定されたHARQタイミング(テーブル)を利用することができるが、eIMTAではPDSCHでDLデータを受信するのに対し(図7A参照)、本実施の形態では、PUSCHでDLデータを受信する(図7B参照)点で異なっている。
 以下に、参照UL/DL構成を利用する場合のHARQ-ACK動作の一例について説明する。
 まず、無線基地局は、ユーザ端末に対してTDDセルで適用するUL/DL構成(ベースUL/DL構成)を通知する。上記図7BではベースUL/DL構成3を通知する場合を示している。ユーザ端末への通知は、報知信号又はRRCシグナリング等の上位レイヤシグナリングを適用することができる。
 また、無線基地局は、ユーザ端末に対してDL-PUSCH受信と参照用UL/DL構成を通知/設定(configure)する。上記図7Bでは参照用UL/DL構成5を通知する場合を示している。ユーザ端末への通知/設定は、報知信号又はRRCシグナリング等の上位レイヤシグナリング、MAC制御要素、物理制御信号等を適用することができる。
 無線基地局は、DL-PUSCHが設定されたユーザ端末に対して、所定のサブフレームにおけるDL-PUSCH受信を指示する。上記図7Bでは、サブフレーム#3、#4をDL-PUSCH受信サブフレームとして指示する場合を示している。ユーザ端末への通知/設定は、報知信号又はRRCシグナリング等の上位レイヤシグナリング、MAC制御要素、物理制御信号等を適用することができる。
 ユーザ端末は、指定された所定サブフレームでDL-PUSCHの受信動作を行い、その結果(HARQ-ACK)を所定のタイミングで送信する。
 無線基地局は、ユーザ端末からACKを受信した場合、送信したDL-PUSCHがユーザ端末で受信成功したと仮定して次のデータ送信を行う。一方で、ユーザ端末からNACKを受信した場合、DL-PUSCHがユーザ端末で受信エラーと仮定して下りデータの再送を行う。
 このように、ベースUL/DL構成に加えて参照用UL/DL構成を用いてDL-PUSCHのHARQタイミングを制御することにより、DL-PUSCHを適用した場合であっても、適切にHARQ制御を行うことが可能となる。
 また、本実施の形態では、PUSCH(PUSCHフォーマット)を用いてDL通信(DL-PUSCH)を行うため、他セルにおけるユーザ端末のUL通信(UL-PUSCH)と信号構成が同じとなる。例えば、図8に示すように、PUSCHを用いたDL送信は、PUSCHを用いたUL送信と同様に、データ(DL-PUSCH)と当該データを復調する参照信号(DM-RS)で構成することができる。したがって、DL-PUSCHを利用しない隣接セルのUL送信に与える干渉をランダム化(例えば、DM-RS間のランダム化を適用)することができる。
 また、PUSCHを用いたDL通信(DL-PUSCH)では、既存システムのセル固有参照信号(CRS)やチャネル状態測定用信号(CSI-RS)等の送信を行わない構成とすることができる。このため、DL-PUSCHで利用する通信帯域を制御する(例えば、通信システムの両端に割当てを行わない)ことができ、隣接周波数のUL通信に与える干渉を低減することが可能となる。
 また、CRSやCSI-RS等の送信を行わず、サブフレーム毎にDL-PUSCHをDM-RSで復調するために、無線基地局はDLサブフレームよりも送信電力を下げて(例えば、ユーザ端末の最大送信電力で)DL-PUSCHを送信することができる。これにより、隣接セルや隣接周波数のUL通信に与える干渉を低減することができる。特に、PUSCHはシングルキャリアベースの信号であるため、PAPRが小さく電力利用効率が高いため、無線基地局の省電力化も図ることもできる。
(2)所定値に基づくHybrid ARQ
 ユーザ端末は、DL-PUSCH受信を行う場合、受信したDL-PUSCHに対するHARQ-ACKを所定期間経過後に送信することができる。例えば、ユーザ端末は、DL-PUSCHを受信してから4ms後にHARQ-ACKを送信する。
 この場合、ユーザ端末は、UL送信が連続して維持されるキャリアと通信を行う構成、例えば、UL周波数を有するFDDセルとキャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)を適用することが望ましい(図9参照)。図9では、TDDを適用するCC#1とFDDを適用するCC#0がCAを適用する場合を示している。なお、当該FDDセルは、PUCCHの割当て(送信)が可能となるPCell又はPSCellとすることができる。
 図9に示す場合、ユーザ端末は、DL-PUSCHを受信したサブフレームから4ms後のFDDのULサブフレームを用いて、当該DL-PUSCHに対応するHARQ-ACKをフィードバックする場合を示している。
 なお、ユーザ端末は、上記(1)参照UL/DL構成と同様に、無線基地局から通知される情報(DL-PUSCHの設定、DL-PUSCH受信指示)に基づいて、DL-PUSCHの受信やHARQ-ACK送信を制御する。
 このように、DL-PUSCHに対するHARQ-ACKを、他のFDDセルのULサブフレームを用いて送信することにより、DL-PUSCH通信を行うTDDセルにおいて全てのサブフレームをDL通信に適用することが可能となる(図9参照)。
(3)TDD-FDD CAにおけるHybrid ARQ
 ユーザ端末は、DL-PUSCH受信を行う場合、TDDをPCellとするTDD-FDD CAにおいて、SCellとなるFDD用に規定されたHARQタイミング(テーブル)に基づいてHARQタイミングを制御することができる。
 TDD-FDD CAにおいて、FDDがSCellの場合、FDDのDLで送信されたPDSCHに対するHARQ-ACKは、PCellとなるTDDのULサブフレームで送信される場合がある。かかる場合、ユーザ端末は、参照用UL/DL構成を利用して、当該HARQ-ACKのHARQタイミングを制御する。そのため、ULサブフレームがDL-PUSCHに用いられる場合、当該参照用UL/DL構成に基づいてHARQ-ACKのフィードバックを制御することができる。
 例えば、CAを適用しないFDDにおいてUL-PDSCHを送信する場合を想定する。通常、FDDではUL周波数とDL周波数が常に割当てられるため、ユーザ端末は、DLサブフレームで受信したPDSCHに対するHARQ-ACKを所定期間(例えば、4ms)後のULサブフレームを用いて送信することができる。
 しかし、FDDのULサブフレームの一部をUL-PDSCHの送信に利用する場合、各DLサブフレームのPDSCHに対するHARQ-ACKを4ms後のULサブフレームで通知することが困難となる。また、UL-PDSCHに対するHARQ-ACKをどのようなタイミングでフィードバックするかが問題となる。
 そこで、本実施の形態では、UL周波数ではDL-PUSCH送受信サブフレームを考慮して選択された参照用UL/DL構成に基づくHARQタイミングを適用する。また、DL周波数ではTDD-FDD CAでTDD-PCellのときにFDD-SCell向けに規定されたHARQタイミングを適用する。例えば、DL周波数では、UL周波数で設定される参照用UL/DL構成に対応するUL/DL構成を適用することができる。
 図10Aは、TDD-FDD CA(TDDがPCell)において、SCellとなるFDDのHARQタイミングを規定したテーブルを示している。図10Bは、TDD UL/DL構成3を適用するTDDセルをPCellとし、当該TDDセルとCAを行うFDD(SCell)のHARQタイミングを示している。図10Bに示すように、FDDセルの各DLサブフレームに対応するHARQ-ACKはTDDの所定のULサブフレームで送信される。
 図11は、FDDのULサブフレームの一部をUL-PDSCHの送信に利用する場合のHARQタイミングの一例を示している。図11では、FDDのUL周波数には参照用UL/DL構成3のHARQタイミングを適用し、DL周波数にはTDD-FDD CAでPCellとなるTDDがUL/DL構成3となる場合のHARQタイミングを適用している。なお、UL周波数に適用する参照用UL/DL構成は、DL-PUSCH送信を行うサブフレームをDLと仮定した場合に対応するUL/DL構成とすることができる。
 なお、ユーザ端末が適用するHARQタイミングの一部又は全部に関する情報は、無線基地局からユーザ端末に通知してもよいし、DL-PUSCH受信を行うサブフレームに基づいてユーザ端末が判断してもよい。HARQタイミングの一部又は全部に関する情報には、FDDのUL周波数に適用するUL/DL構成、FDDのDL周波数に適用する参照用UL/DL構成に関する情報等が含まれる。また、ユーザ端末は、FDDのUL周波数に設定されるUL/DL構成にあわせて、DL周波数に対するHARQタイミングを規定してもよい。
 このように、FDDのUL周波数を用いてDL-PUSCHの送受信を行うことにより、FDDペアバンドのDLリソースを増加することが可能となる。
(第2の態様)
 第2の態様では、ユーザ端末が、DL-PUSCH受信を指示する下り制御情報(DL-PUSCH用グラント)に基づいてHARQタイミングを制御する場合について説明する。
 例えば、ユーザ端末は、DL-PUSCHに対するHARQ-ACKを、当該DL-PUSCHを指示する下り制御情報(PDCCH/EPDCCH)を受信してから所定期間(xms)後のタイミングでフィードバックする。
 なお、第1の態様の(2)で示した場合、ユーザ端末は、無線基地局の指示に基づいて所定のULサブフレームで受信するDL-PUSCHの受信成否を判定し、そこから所定期間経過後(例えば、4ms以降)のサブフレームでHARQ-ACKをフィードバックする。
 一方、第2の態様では、ユーザ端末は、所定のDLサブフレームで受信する下り制御情報(PDCCH/EPDCCH)を検出した場合、検出後の所定のタイミングでDL-PUSCHの受信成否を判定し、当該下り制御情報の検出から所定期間経過後(例えば、4ms以降)のサブフレームでHARQ-ACKをフィードバックする。
 現在のLTEでは、DL受信を指示する制御信号とDLデータ信号とは、同一サブフレームに多重される。しかしDL-PUSCHの受信では、制御信号とデータ信号とが同一サブフレームに多重されるとは限らず、制御信号が送受信されるタイミングに対し、データ信号が送受信されるタイミングが遅れる(所定のサブフレーム遅れて行われる)可能性が高い。このように、DL-PUSCHを指示する下り制御情報(DL-PUSCH用グラント)に基づいて、当該DL-PUSCHのHARQタイミングを制御することにより、制御信号を検出した段階でHARQ送信の準備を開始することができるため、HARQのラウンドトリップ遅延を短縮することができ、ユーザ体感通信速度を改善することができる。
(第3の態様)
 上記第1の態様、第2の態様で示したように、ユーザ端末は、DL-PUSCHの送達確認信号(HARQ-ACK)のフィードバックを所定のタイミングで制御することができる。一方で、DL-PUSCHのHARQ-ACKの送信に利用するULリソース(例えば、HARQ-ACKを割当てるHARQリソース)を決定する必要がある。そこで、第3の態様では、DL-PUSCHのHARQ-ACKを無線リソースへ割当てる方法について説明する。
 無線リソースに対するDL-PUSCHのHARQ-ACKの割当て方法として、(1)DL-PUSCH受信を指示する下り制御チャネルに基づいて黙示的(Implicit)に定まる無線リソース、(2)DL-PUSCH受信を指示する下り制御チャネルで明示的(Explicit)に指示される無線リソース、(3)DL-PUSCHにより黙示的(Implicit)に定まる無線リソース、又は(4)上位レイヤシグナリング(RRCシグナリング等)で設定される無線リソース、等を利用することが考えられる。なお、DL-PUSCHを割当てる無線リソースとしては、ULリソースに割当てられるPUCCHリソースを利用することができる。
(1)下り制御チャネルによりImplicitに定まるPUCCHリソース
 ユーザ端末は、DL-PUSCH受信を指示する下り制御チャネル(PDCCH及び/又はEPDCCH)のリソース番号に基づいてPUCCHリソースを選択することができる。例えば、ユーザ端末は、DL-PUSCH受信を指示するPDCCH/EPDCCHを構成するCCEインデックス/ECCEインデックスに基づいて定まるPUCCHリソースでHARQ-ACKを送信する。
 つまり、DL-PUSCH受信を指示するグラント(例えば、ULグラント)とPUCCHリソースがImplicitに対応している(図12参照)。例えば、ユーザ端末がDL-PUSCH受信を指示するPDCCHを受信した場合、当該PUCCHを構成するCCEインデックス(nCCE)を用いてPUCCHリソースを決定する。例えば、以下の式(1)を用いて決定することができる。
Figure JPOXMLDOC01-appb-M000001
 また、ユーザ端末がDL-PUSCH受信を指示するEPDCCHを受信した場合、当該EPUCCHを構成するECCEインデックス(nECCE)を用いてPUCCHリソースを決定する。例えば、以下の式(2)を用いて決定することができる。
Figure JPOXMLDOC01-appb-M000002
 PDCCH(又はEPDCCH)を構成するCCEインデックス(又はECCEインデックス)が複数ある場合には、所定のCCEインデックス(番号が最も小さいCCEインデックス)を利用することができる。かかる方法は、既存LTEにおいて、DL assignmentが含まれるPDCCH/EPDCCHのリソース番号によりPUCCHリソースを定める方法をリユースするものである。
 PUCCHリソースを選択するために利用するImplicitな情報として、リソース番号の他に、PDCCH/EPDCCHのアンテナポート番号、参照信号のマッピング位置、PDCCH/EPDCCH又は参照信号をスクランブルセルIDに相当するパラメータ(仮想セルID(Virtual Cell ID))等を含めてもよい。
 このように、PDSCH受信を指示するDL割当て(DL assignment)に対するPUCCH割当て方法をDL-PUSCHのHARQ-ACK送信に利用することにより、ユーザ端末の回路構成を簡易化すると共に、容易に実装することができる。
(2)下り制御チャネルによりExplicitに定まるPUCCHリソース
 下り制御チャネル(PDCCH/EPDCCH)に、PUCCHリソースを指定するビット領域を導入してもよい。ユーザ端末は、当該ビット領域で指示される情報に基づいてPUCCHリソースを決定することができる。つまり、DL-PUSCH受信を指示するグラント(例えば、ULグラント)でPUCCHリソースをExplicitに指示する(図13A参照)。
 例えば、あらかじめ複数のPUCCHリソースを設定しておき、所定のPUCCHリソースをユーザ端末に指示することができる。具体的に、無線基地局は、RRC等の上位レイヤシグナリングを用いてあらかじめユーザ端末に複数のPUCCHリソース(1st~4th PUCCH resource value)を通知/設定する(図13B参照)。その後、無線基地局は、下り制御チャネルに含まれるPUCCHリソース指示ビット(PUCCH resource indicator)により、いずれのPUCCHリソースでHARQ-ACKを送信するかをユーザ端末に動的に指示する(図13B参照)。
 なお、所定のPUCCHリソースを指示するビット(ビット領域)は、下り制御情報(DCIフォーマット)中に新たに追加してもよいし、既存のビット領域をPUCCHリソース指示用のビットとして利用することも可能である。
(3)DL-PUSCHによりImplicitに定まるPUCCHリソース
 ユーザ端末は、受信したDL-PUSCHのリソースに関する情報等に基づいてHARQ-ACKを送信するPUCCHリソースを選択することができる。
 DL-PUSCHのリソースに関する情報等として、DL-PUSCHの割当てリソースブロック(PRB)番号及び/又はDM-RS系列番号等を用いることができる。つまり、受信したDL-PUSCHとPUCCHリソースがImplicitに対応している(図14)。
 また、DL-PUSCHのPRBは、MU-MIMO(Multi User-MIMO)しているユーザ端末間でしか重複が生じない点、MU-MIMOの場合、PRB番号は重複してもDM-RS系列番号が異なる点、を考慮すると、PRB番号とDM-RS系列番号をPUCCHリソースに関連づけることが好ましい。
 例えば、ユーザ端末は、DL-PUSCHのHARQ-ACKを第mサブフレームのPUCCHリソースに割当てる場合、以下の式(3)を用いてPUCCHリソース割当てを制御することができる。
Figure JPOXMLDOC01-appb-M000003
 このようにDL-PUSCHに関する情報(例えば、リソース番号やDM-RS系列等)に基づいてPUCCHリソースを決定することにより、同一PRB番号に割当てるユーザ端末を1つとすることによりPUCCHの衝突を抑制することができる。また、同一PRB番号に割当てるユーザ端末数が2以上の場合であっても、MU-MIMOを適用する場合に各ユーザ端末に異なるDM-RS系列番号を適用することにより、PUCCHの衝突を抑制することができる。
 また、DL-PUSCHを受信するサブフレームが異なるユーザ端末間では、サブフレームあたりのPUCCHリソース数(N_PUCCH)分のオフセットを加えることによりPUCCHの衝突を抑制することができる。
 例えば、図15に示すように、サブフレーム#8とサブフレーム#9でそれぞれ送信されるDL-PUSCHに対するHARQ-ACKを同一のULサブフレームでフィードバックする場合を想定する。この場合、ユーザ端末は、サブフレーム#8に対応するHARQ-ACK用のPUCCHリソースと、サブフレーム#9に対応するHARQ-ACK用のPUCCHリソースを決定する際に、異なるオフセット(オフセットが0の場合を含む)を加えることにより、PUCCHの衝突を回避することができる。なお、図15で示すサブフレーム番号は、HARQ-ACKをフィードバックするULサブフレームを基準として遡る場合のサブフレーム番号に相当する。
(無線通信システムの構成)
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記第1の態様~第3の態様のいずれか又はこれらの組み合わせが適用される。
 図16は、本発明の一実施の形態に係る無線通信システムの一例を示す概略構成図である。図16に示すように、無線通信システム1は、複数の無線基地局10(11及び12)と、各無線基地局10によって形成されるセル内にあり、各無線基地局10と通信可能に構成された複数のユーザ端末20と、を備えている。無線基地局10は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。
 図16において、無線基地局11は、例えば相対的に広いカバレッジを有するマクロ基地局で構成され、マクロセルC1を形成する。無線基地局12は、局所的なカバレッジを有するスモール基地局で構成され、スモールセルC2を形成する。なお、無線基地局11及び12の数は、図16に示す数に限られない。
 マクロセルC1及びスモールセルC2では、同一の周波数帯が用いられてもよいし、異なる周波数帯が用いられてもよい。また、無線基地局11及び12は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して互いに接続される。
 なお、マクロ基地局11は、無線基地局、eNodeB(eNB)、送信ポイント(transmission point)などと呼ばれてもよい。スモール基地局12は、ピコ基地局、フェムト基地局、Home eNodeB(HeNB)、送信ポイント、RRH(Remote Radio Head)などと呼ばれてもよい。
 ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでいてもよい。ユーザ端末20は、無線基地局10を経由して他のユーザ端末20と通信を実行できる。
 上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。
 無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。また、PBCHにより、同期信号や、MIB(Master Information Block)などが伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどを伝送するために用いられてもよい。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、本実施の形態では、所定のULリソース(ULサブフレームやUL周波数帯域)に設定されるPUSCHを用いてDL伝送(DL-PUSCH送受信)が行われる。
 また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号(HARQ-ACK)などが伝送される。DL-PUSCHに対する送達確認信号もPUCCHを用いて送信することができる。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブル(RAプリアンブル)が伝送される。また、上りリンクの参照信号として、チャネル品質測定用の参照信号(SRS:Sounding Reference Signal)、PUCCHやPUSCHを復調するための復調用参照信号(DM-RS:Demodulation Reference Signal)が送信される。
 図17は、本実施の形態に係る無線基地局10の全体構成図である。無線基地局10(無線基地局11及び12を含む)は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部から構成される。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 送受信部103(送信部)は、ユーザ端末に対して上り共有チャネル(PUSCH)を用いた下りデータ(DL-PUSCH)の受信を設定する情報(enable/disable)を上位レイヤシグナリング(RRC、報知信号等)で送信することができる。また、送受信部103は、DL-PUSCHの送受信を行うサブフレームに関する情報等をユーザ端末に通知することができる。なお、送受信部103は、本発明に係る技術分野で利用されるトランスミッター/レシーバー、送受信回路又は送受信装置を適用することができる。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅される。各送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。送受信部103は、ユーザ端末からフィードバックされるDL-PUSCHの送達確認信号を所定のタイミングで受信する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して隣接無線基地局と信号を送受信(バックホールシグナリング)してもよい。
 図18は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。なお、図18では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 図18に示すように、無線基地局10は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信処理部304と、を少なくとも含んで構成されている。
 制御部(スケジューラ)301は、PDSCHで送信される下りデータ、PDCCH及び/又は拡張PDCCH(EPDCCH)で伝送される下り制御信号のスケジューリング(無線基地局10からの送信)を制御する。また、制御部301は、PUSCHで送信される下りデータ(DL-PUSCH)のスケジューリングも制御する。
 また、制御部301は、システム情報、同期信号、CRS、CSI-RSなどの下り参照信号などのスケジューリングの制御も行う。また、制御部301は、上り参照信号、PUSCHで送信される上りデータ、PUCCH及び/又はPUSCHで送信される上り制御信号等のスケジューリング(ユーザ端末20からの送信)を制御する。なお、制御部301は、本発明に係る技術分野で用いられるコントローラ、制御回路又は制御装置で構成することができる。
 また、制御部301は、下り制御チャネル(PDCCH及び/又はEPDCCH)を用いて、ユーザ端末にDL-PUSCHの受信を指示することができる。例えば、制御部301は、ULグラントによる上りデータの送信指示を行わないサブフレームにおいて、DL-PUSCHの送信を行う。また、制御部301は、DL-PUSCH用グラントを指示するサブフレームと同一サブフレーム、又は所定期間後のサブフレームにおいて、DL-PUSCHの送信を行うように制御する。
 また、制御部301は、PUSCHを用いた上りデータの送信を指示するグラント(例えば、既存システムのULグラント)と、DL-PUSCHの受信を指示するグラントとを一つのグラントとして共通に設定して利用してもよい。この場合、ユーザ端末20は、他の情報(DL-PUSCHが送信されるサブフレーム情報等)に基づいてULグラントの内容を判断することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(下り制御信号、下りデータ、下り参照信号など)を生成して、マッピング部303に出力する。例えば、送信信号生成部302は、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント(DL assignment)及び上り信号の割り当て情報を通知するULグラント(UL grant)を生成する。また、下りデータには、各ユーザ端末20からのCSIなどに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 また、送信信号生成部302は、所定のULサブフレームにおいて、下りデータをPUSCHフォーマットで生成する。PUSCHフォーマットで生成された下りデータ(DL-PUSCH)は、マッピング部303で上りリソース(PUSCH)にマッピングされる。なお、送信信号生成部302は、本発明に係る技術分野で利用される信号生成器又は信号生成回路で構成することができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、制御部301からの指示に基づいて、下りデータをPDSCH又はPUSCHにマッピングする。なお、マッピング部303は、本発明に係る技術分野で利用されるマッピング回路又はマッパーで構成することができる。
 受信処理部304は、ユーザ端末20から送信されるUL信号(上り制御信号、上りデータ、上り参照信号など)に対して受信処理(例えば、デマッピング、復調、復号など)を行う。また、受信処理部304は、受信した信号(例えば、SRS)を用いて受信電力(RSRP)やチャネル状態について測定してもよい。なお、処理結果や測定結果は、制御部301に出力されてもよい。受信処理部304は、本発明に係る技術分野で利用される信号処理器又は信号処理回路で構成することができる。
 図19は、本実施の形態に係るユーザ端末20の全体構成図である。図19に示すように、ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 送受信部203(受信部)は、DL-PUSCH受信を設定(enable/disable)する情報に基づいて、DL-PUSCHの受信を行う。また、送受信部203(受信部)は、受信したDL-PUSCHに対する送達確認信号の送信を行う。なお、送受信部203は、本発明に係る技術分野で利用されるトランスミッター/レシーバー、送受信回路又は送受信装置で構成することができる。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 図20は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。なお、図20においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 図20に示すように、ユーザ端末20は、制御部401と、送信信号生成部402と、マッピング部403と、受信処理部404と、判定部405と、を少なくとも含んで構成されている。
 受信処理部404は、無線基地局10から送信されるDL信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。また、受信処理部404は、DL-PUSCH送受信が適用されるサブフレームに関する情報等に基づいて、PUSCHを用いて送信されるDL-PUSCHの受信処理を行うことができる。なお、受信処理部404は、本発明に係る技術分野で利用される信号処理器又は信号処理回路で構成することができる。
 例えば、受信処理部404は、下り制御チャネル(PDCCH/EPDCCH)で送信された下り制御信号を復号し、スケジューリング情報を制御部401へ出力する。また、受信処理部404は、下り共有チャネル(PDSCH)で送信された下りデータ、上り共有チャネル(PUSCH)で送信された下りデータを復号し、判定部405へ出力する。また、受信処理部404は、受信した信号を用いて受信電力(RSRP)やチャネル状態について測定してもよい。なお、処理結果や測定結果は、制御部401に出力されてもよい。
 判定部405は、受信処理部404の復号結果等に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部401に出力する。再送制御判定は、PDSCHで送信された下りデータと、PUSCHで送信された下りデータ(DL-PUSCH)に対して行うことができる。
 制御部401は、無線基地局から送信された下り制御信号や、PDSCH及び/又はDL-PUSCHに対する再送制御判定結果に基づいて、上り制御信号(フィードバック信号)や上りデータ等のUL信号の生成/送信を制御する。具体的には、制御部401は、送信信号生成部402及びマッピング部403の制御を行う。なお、下り制御信号は受信処理部404から出力され、再送制御判定結果は、判定部405から出力される。制御部401は、本発明に係る技術分野で利用されるコントローラ、制御回路又は制御装置で構成することができる。
 制御部401は、判定部405から、DL-PUSCHに対する再送制御判定が出力された場合、DL-PUSCHに対する送達確認信号を所定タイミングで送信するように制御する。例えば、制御部401は、DL-PUSCHを受信したタイミング、又はDL-PUSCHの受信を指示する下り制御チャネル(DL-PUSCH用グラント)を受信したタイミングに基づいて、DL-PUSCHに対する送達確認信号の送信を制御する。
 具体的に、制御部401は、ベースとなるUL/DL構成と、参照用UL/DL構成とに対応して送達確認信号の送信タイミングが規定されたテーブルに基づいて、DL-PUSCHに対する送達確認信号の送信を制御することができる(図6B、図7B参照)。あるいは、制御部401は、DL-PUSCHを受信したタイミング、又はDL-PUSCH用グラントを受信したタイミングから一定期間経過後にDL-PUSCHに対する送達確認信号の送信を制御することができる。
 あるいは、制御部401は、FDDセルのULリソースに割当てられたDL-PUSCHを受信する場合、参照用UL/DL構成に対応して送達確認信号の送信タイミングが規定されたテーブルに基づいて、DL-PUSCHに対する送達確認信号の送信を制御することができる(図10A、図11参照)。
 また、制御部401は、DL-PUSCHに対応する送達確認信号を、当該DL-PUSCHの受信を指示する下り制御チャネル(例えば、CCEインデックス等)に基づいて、所定の上り制御チャネルリソースに割当てるようにマッピング部403に指示することができる。あるいは、制御部401は、DL-PUSCHに対応する送達確認信号を、受信したDL-PUSCHに関する情報(例えば、PRB番号等)に基づいて、所定の上り制御チャネルリソースに割当てるようにマッピング部403に指示することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)などの上り制御信号を生成する。
 また、送信信号生成部402は、制御部401からの指示に基づいて上りデータを生成する。例えば、制御部401は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、送信信号生成部402に上りデータの生成を指示する。なお、送信信号生成部402は、本発明に係る技術分野で利用される信号生成器又は信号生成回路で構成することができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソース(例えば、PUCCHやPUSCH)にマッピングして、送受信部203へ出力する。例えば、マッピング部403は、DL-PUSCHに対する送達確認信号を所定のPUCCHリソースにマッピングする。なお、マッピング部403は、本発明に係る技術分野で利用されるマッピング回路又はマッパーで構成することができる。
 上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM、EPROM、CD-ROM、RAM、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2014年7月31日出願の特願2014-156893に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  上り共有チャネルを用いて上りデータを送信する送信部と、
     無線基地局から送信される下り制御情報及び下りデータを受信する受信部と、
     受信した下りデータに対する送達確認信号の送信を制御する制御部と、を有し、
     前記受信部は、上り共有チャネルを用いて送信される下りデータ(DL-PUSCH)を受信し、前記制御部は、DL-PUSCHに対する送達確認信号を所定タイミングで送信するように制御することを特徴とするユーザ端末。
  2.  前記制御部は、DL-PUSCHを受信したタイミングに基づいて、DL-PUSCHに対する送達確認信号の送信を制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、ベースとなるUL/DL構成と、参照用UL/DL構成とに対応して送達確認信号の送信タイミングが規定されたテーブルに基づいて、DL-PUSCHに対する送達確認信号の送信を制御することを特徴とする請求項2に記載のユーザ端末。
  4.  前記制御部は、DL-PUSCHを受信したタイミングから一定期間経過後にDL-PUSCHに対する送達確認信号の送信を制御することを特徴とする請求項2に記載のユーザ端末。
  5.  前記受信部が、FDDセルのULリソースに割当てられたDL-PUSCHを受信する場合、前記制御部は、参照用UL/DL構成に対応して送達確認信号の送信タイミングが規定されたテーブルに基づいて、DL-PUSCHに対する送達確認信号の送信を制御することを特徴とする請求項2に記載のユーザ端末。
  6.  前記制御部は、DL-PUSCHの受信を指示する下り制御チャネルを受信したタイミングに基づいて、DL-PUSCHに対する送達確認信号の送信を制御することを特徴とする請求項1に記載のユーザ端末。
  7.  前記制御部は、DL-PUSCHに対応する送達確認信号を、当該DL-PUSCHの受信を指示する下り制御チャネルに基づいて、所定の上り制御チャネルリソースに割当てるように制御することを特徴とする請求項1に記載のユーザ端末。
  8.  前記制御部は、DL-PUSCHに対応する送達確認信号を、受信したDL-PUSCHに関する情報に基づいて、所定の上り制御チャネルリソースに割当てるように制御することを特徴とする請求項1に記載のユーザ端末。
  9.  上り共有チャネルを用いて送信される上りデータと上り制御チャネルを用いて送信される上り制御情報を受信する受信部と、
     下り制御情報及び下りデータをユーザ端末に送信する送信部と、を有し、
     前記送信部は、上り共有チャネルを用いて下りデータを送信し、前記受信部は、上り共有チャネルを用いて送信される下りデータに対する送達確認信号を所定のタイミングで受信することを特徴とする無線基地局。
  10.  上り共有チャネルを用いて上りデータを送信する工程と、
     上り共有チャネルを用いて無線基地局から送信される下りデータ(DL-PUSCH)を受信する工程と、
     受信したDL-PUSCHに対する送達確認信号の送信を制御する工程と、を有し、
     DL-PUSCHに対する送達確認信号を所定タイミングで送信するように制御することを特徴とする無線通信方法。
PCT/JP2015/068992 2014-07-31 2015-07-01 ユーザ端末、無線基地局及び無線通信方法 WO2016017356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/500,112 US20170265207A1 (en) 2014-07-31 2015-07-01 User terminal, radio base station and radio communication method
EP15826656.9A EP3177090A4 (en) 2014-07-31 2015-07-01 User terminal, wireless base station, and wireless communication method
JP2016538232A JPWO2016017356A1 (ja) 2014-07-31 2015-07-01 ユーザ端末、無線基地局及び無線通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-156893 2014-07-31
JP2014156893 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017356A1 true WO2016017356A1 (ja) 2016-02-04

Family

ID=55217260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068992 WO2016017356A1 (ja) 2014-07-31 2015-07-01 ユーザ端末、無線基地局及び無線通信方法

Country Status (4)

Country Link
US (1) US20170265207A1 (ja)
EP (1) EP3177090A4 (ja)
JP (1) JPWO2016017356A1 (ja)
WO (1) WO2016017356A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164348A1 (ja) * 2016-03-25 2017-09-28 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2018507651A (ja) * 2015-03-05 2018-03-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレス通信におけるフレキシブル複信のための制御シグナリング
CN108347313A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 反馈方法及用户设备
JP2020537389A (ja) * 2017-10-10 2020-12-17 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 物理アップリンク制御チャネル(pucch)リソースを変更すること
CN112585879A (zh) * 2018-06-18 2021-03-30 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028739B (zh) * 2015-08-23 2021-02-09 Lg电子株式会社 在无线通信系统中使用灵活fdd帧执行通信的方法及其装置
JP6633889B2 (ja) * 2015-10-29 2020-01-22 Kddi株式会社 基地局装置、端末装置、通信方法及びプログラム
CN106961744A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 上行控制信息的发送方法及装置
US11452091B2 (en) * 2016-02-04 2022-09-20 Acer Incorporated Device and method of handling hybrid automatic repeat request transmission
EP3554122B1 (en) * 2016-12-14 2023-01-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Transmission methods and device
CN109275192B (zh) * 2017-07-18 2022-12-13 华为技术有限公司 用于传输信息的方法和设备
EP3695538A1 (en) 2017-10-11 2020-08-19 Telefonaktiebolaget LM Ericsson (PUBL) Acknowledgement signaling processes for radio access networks
US10779310B2 (en) * 2017-11-16 2020-09-15 Qualcomm Incorporated Uplink control channel resource allocation for new radio (NR)
JP7043518B2 (ja) * 2017-12-27 2022-03-29 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
WO2019215934A1 (ja) * 2018-05-11 2019-11-14 株式会社Nttドコモ ユーザ端末及び無線通信方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112561A1 (ja) * 2013-01-21 2014-07-24 シャープ株式会社 端末装置、基地局装置、通信方法、集積回路および通信システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9473982B2 (en) * 2012-10-21 2016-10-18 Mariana Goldhamer Utilization of the uplink FDD channel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112561A1 (ja) * 2013-01-21 2014-07-24 シャープ株式会社 端末装置、基地局装置、通信方法、集積回路および通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "BS Demodulation performance requirements for eIMTA", 3GPP TSG-RAN WG4 MEETING #70BIS R4-141691, pages 1 - 6, XP050822662 *
See also references of EP3177090A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507651A (ja) * 2015-03-05 2018-03-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレス通信におけるフレキシブル複信のための制御シグナリング
WO2017164348A1 (ja) * 2016-03-25 2017-09-28 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JPWO2017164348A1 (ja) * 2016-03-25 2019-01-31 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP7001583B2 (ja) 2016-03-25 2022-01-19 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11930501B2 (en) 2016-03-25 2024-03-12 Ntt Docomo, Inc. Terminal, communication method, base station, and system for receiving synchronization and/or broadcast signals in a given transmission time interval
CN108347313A (zh) * 2017-01-24 2018-07-31 华为技术有限公司 反馈方法及用户设备
EP3553985A4 (en) * 2017-01-24 2019-12-18 Huawei Technologies Co., Ltd. FEEDBACK AND USER DEVICE
JP2020507264A (ja) * 2017-01-24 2020-03-05 華為技術有限公司Huawei Technologies Co.,Ltd. フィードバック方法及びユーザ機器
CN108347313B (zh) * 2017-01-24 2021-08-13 华为技术有限公司 反馈方法及用户设备
JP2020537389A (ja) * 2017-10-10 2020-12-17 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 物理アップリンク制御チャネル(pucch)リソースを変更すること
JP7038806B2 (ja) 2017-10-10 2022-03-18 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 物理アップリンク制御チャネル(pucch)リソースを変更すること
CN112585879A (zh) * 2018-06-18 2021-03-30 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
EP3177090A1 (en) 2017-06-07
US20170265207A1 (en) 2017-09-14
EP3177090A4 (en) 2018-04-11
JPWO2016017356A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016017356A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6100829B2 (ja) ユーザ端末、無線基地局及び無線通信方法
CN107432015B (zh) 用户终端、无线基站以及无线通信方法
WO2016121913A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP5931828B2 (ja) ユーザ端末、基地局及び無線通信方法
JP6282831B2 (ja) ユーザ端末、基地局及び無線通信方法
JP6339739B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015108068A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2016031683A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6216592B2 (ja) ユーザ端末、基地局及び送信制御方法
JPWO2017038894A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015079926A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6235174B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6326160B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6425890B2 (ja) ユーザ端末、無線基地局および無線通信方法
CN108667574B (zh) 一种无线通信方法、用户终端、基站及系统
US11677521B2 (en) User terminal, radio base station and radio communication method
JP2018019416A (ja) ユーザ端末、基地局及び送信制御方法
JP6410779B2 (ja) ユーザ端末及び無線通信方法
WO2016017357A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP2019068460A (ja) ユーザ端末
JP2018137801A (ja) ユーザ端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538232

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15500112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015826656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826656

Country of ref document: EP