WO2016017271A1 - 無段変速機及びその制御方法 - Google Patents

無段変速機及びその制御方法 Download PDF

Info

Publication number
WO2016017271A1
WO2016017271A1 PCT/JP2015/066035 JP2015066035W WO2016017271A1 WO 2016017271 A1 WO2016017271 A1 WO 2016017271A1 JP 2015066035 W JP2015066035 W JP 2015066035W WO 2016017271 A1 WO2016017271 A1 WO 2016017271A1
Authority
WO
WIPO (PCT)
Prior art keywords
variator
transmission
ratio
gear ratio
primary pulley
Prior art date
Application number
PCT/JP2015/066035
Other languages
English (en)
French (fr)
Inventor
匡史 諏訪部
徹也 泉
昌幸 宮園
井上 拓市郎
邦宏 高橋
真琴 小松
有司 岡本
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to US15/329,718 priority Critical patent/US10228055B2/en
Priority to KR1020177001639A priority patent/KR101893710B1/ko
Priority to EP15827844.0A priority patent/EP3176473B1/en
Priority to CN201580041331.2A priority patent/CN106574715B/zh
Priority to JP2016538195A priority patent/JP6303011B2/ja
Publication of WO2016017271A1 publication Critical patent/WO2016017271A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/023CVT's provided with at least two forward and one reverse ratio in a serial arranged sub-transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means

Definitions

  • the present invention relates to a belt continuously variable transmission, and more particularly to a technique for reducing vehicle body vibration when hydraulic vibration occurs.
  • the belt continuously variable transmission changes the gear ratio steplessly by changing the groove width of the pulley with hydraulic pressure. Due to such a configuration, if the hydraulic pressure supplied to the pulley vibrates for some reason, the gear ratio varies, causing a change in driving force, and the vehicle body vibrates. Hydraulic vibration often occurs due to the structure of the oil pump, the structure of the oil passage, the characteristics of the valve, and the like.
  • JP2005-121127A discloses a technique in which an accumulator is connected to an oil passage from an oil pump to a pulley and hydraulic vibration is absorbed by the accumulator.
  • the present invention has been made in view of such technical problems, and an object thereof is to reduce vehicle body vibration caused by hydraulic vibration.
  • a continuously variable transmission is provided between a primary pulley and a secondary pulley, each of which can change a groove width according to a supplied hydraulic pressure, and the primary pulley and the secondary pulley.
  • the variator having the belt to be rotated, the stepped sub-transmission mechanism disposed on the input side or the output side of the variator, A mechanical low speed ratio, which is a speed ratio at which the hydraulic pressure supplied to the secondary pulley is increased and the hydraulic pressure supplied to the primary pulley is decreased so that the groove width of the primary pulley becomes the maximum value that can be taken in the structure of the primary pulley.
  • Control means for shifting the variator until the speed of the variator is changed by the control means.
  • a control release means for shifting the variator from the mechanical low speed ratio to the high side when downshifting the auxiliary speed change mechanism while controlling the speed to the mechanical low speed ratio.
  • the variator when the hydraulic pressure is oscillating, the variator is shifted to the mechanical low gear ratio, so that even if the primary pressure oscillates, the groove width of the primary pulley does not increase. That is, the change to the low side of the gear ratio of the variator is limited. Thereby, the change in the gear ratio of the variator is reduced, and the vehicle body vibration is reduced.
  • the variator when the subtransmission mechanism is downshifted, the variator is shifted from the mechanical low speed ratio to the high side, so that the speed change is performed as compared with the case where the subtransmission mechanism and the variator are shifted separately.
  • the ratio change is suppressed, and such a sense of incongruity can be prevented.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a partial schematic configuration diagram of the hydraulic control circuit.
  • FIG. 3 is an example of a shift map.
  • FIG. 4 is a diagram illustrating an example of the 2-1 shift permission area.
  • FIG. 5 is a flowchart showing the contents of the vehicle body vibration reduction control.
  • FIG. 6 is a time chart showing how the vehicle body vibration reduction control is performed.
  • the “transmission ratio” of a transmission mechanism is a value obtained by dividing the input rotational speed of the transmission mechanism by the output rotational speed of the transmission mechanism.
  • FIG. 1 is a schematic configuration diagram of a vehicle equipped with a continuously variable transmission according to an embodiment of the present invention.
  • This vehicle includes an engine 1 as a power source.
  • the output rotation of the engine 1 is transmitted to the drive wheels 7 via the torque converter 2, the first gear train 3, the transmission 4, the second gear train 5, and the differential device 6.
  • the second gear train 5 is provided with a parking mechanism 8 that mechanically locks the output shaft of the transmission 4 at the time of parking.
  • Engine 1 is an internal combustion engine such as a gasoline engine or a diesel engine.
  • the torque converter 2 includes a lock-up clutch 2a.
  • lockup clutch 2a When the lockup clutch 2a is engaged, slippage in the torque converter 2 is eliminated, and the transmission efficiency of the torque converter 2 can be improved.
  • the vehicle includes an oil pump 10 that is driven using a part of the power of the engine 1, a hydraulic control circuit 11 that regulates the hydraulic pressure from the oil pump 10 and supplies the hydraulic pressure to each part of the transmission 4, A transmission controller 12 that controls the hydraulic control circuit 11 is provided.
  • the transmission 4 is a continuously variable transmission including a variator 20 and an auxiliary transmission mechanism 30 provided in series with the variator 20. “Provided in series” means that the variator 20 and the auxiliary transmission mechanism 30 are provided in series in the power transmission path from the engine 1 to the drive wheels 7. In this example, the auxiliary transmission mechanism 30 is provided on the output side of the variator 20, but the auxiliary transmission mechanism 30 may be provided on the input side.
  • the variator 20 is a continuously variable transmission mechanism including a primary pulley 21, a secondary pulley 22, and a belt 23 wound around the pulleys 21 and 22.
  • the pulleys 21 and 22 are fixed conical plates 21f and 22f, and movable cones that are arranged with a sheave surface facing the fixed conical plates 21f and 22f, respectively, and form grooves between the fixed conical plates 21f and 22f. Plates 21m and 22m, and hydraulic cylinders 21p and 22p provided on the rear surfaces of the movable conical plates 21m and 22m and displacing the movable conical plates 21m and 22m in the axial direction are provided.
  • a stopper 25 that restricts the displacement of the movable conical plate 21m is provided on the side of the movable conical plate 21m of the primary pulley 21.
  • the auxiliary transmission mechanism 30 is a transmission mechanism having two forward speeds and one reverse speed.
  • the auxiliary transmission mechanism 30 includes a Ravigneaux type planetary gear mechanism 31 in which carriers of two planetary gears are connected, and a plurality of friction elements (Low brake 32, High clutch 33, Rev brake 34).
  • the gear position of the subtransmission mechanism 30 is changed by adjusting the hydraulic pressure supplied to the friction elements 32 to 34 and changing the engagement state of the friction elements 32 to 34.
  • the transmission 4 is expressed as “the transmission 4 is in the low speed mode” when the shift stage is the first speed, and “the transmission 4 is in the high speed mode” when the speed is the second speed. .
  • the transmission controller 12 includes a CPU, a storage device including a RAM / ROM, an input / output interface, and a bus for interconnecting them.
  • the transmission controller 12 includes an accelerator opening sensor 41 that detects an accelerator opening APO that represents an operation amount of an accelerator pedal, and a rotation that detects a primary rotation speed Npri that is a rotation speed of the primary pulley 21 via an input / output interface.
  • a signal from a rotation speed sensor 48 that detects the secondary rotation speed Nsec that is the rotation speed of the inhibitor switch 47 and the secondary pulley 22 is input.
  • the storage device of the transmission controller 12 stores a transmission control program for the transmission 4 and a transmission map (FIG. 3) used in the transmission control program.
  • the transmission controller 12 reads out a shift control program stored in the storage device and causes the CPU to execute it, thereby performing predetermined arithmetic processing on a signal input via the input interface, and thereby performing each operation of the transmission 4.
  • An instruction value for the hydraulic pressure supplied to the part is set, and the set instruction value is output to the hydraulic control circuit 11 via the input / output interface.
  • the hydraulic control circuit 11 includes a plurality of flow paths and a plurality of hydraulic control valves. Based on the instruction value from the transmission controller 12, the hydraulic control circuit 11 controls a plurality of hydraulic control valves to switch the hydraulic pressure supply path and generate a hydraulic pressure corresponding to the instruction value. Supply to the site. As a result, the variator 20 is shifted, the shift stage of the sub-transmission mechanism 30 is changed, the capacity of the friction elements 32 to 34 is controlled, and the lockup clutch 2a is engaged / released.
  • FIG. 2 shows a portion of the hydraulic control circuit 11 that is related to the shift of the variator 20.
  • the line pressure regulating valve 61 is a drain regulating pressure regulating valve that regulates the line pressure PL to the target line pressure tPL by draining and reducing a part of the discharge pressure of the oil pump 10.
  • the primary pressure regulating valve 62 and the secondary pressure regulating valve 63 drain and reduce a part of the line pressure PL using the line pressure PL as a source pressure, thereby reducing the primary pressure Ppri and the secondary pressure Psec to the target primary pressure tPpri and the target pressure, respectively. It is a drain pressure regulating valve that regulates the secondary pressure tPsec.
  • the line pressure regulating valve 61, the primary pressure regulating valve 62, and the secondary pressure regulating valve 63 each return a regulated hydraulic pressure to the regulating valve, and feedback control for feedback control of the regulated hydraulic pressure to a target hydraulic pressure. 61f, 62f, 63f.
  • the hydraulic control circuit 11 can independently regulate the primary pressure Ppri and the secondary pressure Psec using the line pressure PL as a source pressure.
  • FIG. 3 shows an example of the shift map.
  • the transmission controller 12 sets the variator 20 and the subtransmission mechanism 30 in accordance with the driving state of the vehicle (in this embodiment, the vehicle speed VSP, the primary rotational speed Npri, and the accelerator opening APO) while referring to the shift map. Control.
  • the operating point of the transmission 4 is defined by the vehicle speed VSP and the primary rotational speed Npri.
  • the slope of the line connecting the operating point of the transmission 4 and the zero point of the lower left corner of the transmission map is the transmission ratio of the transmission 4 (the overall transmission ratio obtained by multiplying the transmission ratio of the variator 20 by the transmission ratio of the subtransmission mechanism 30; Hereinafter, this corresponds to “through transmission ratio”.
  • a shift line is set for each accelerator opening APO, and the shift of the transmission 4 is selected according to the accelerator opening APO. Done according to the line.
  • the transmission 4 When the transmission 4 is in the low speed mode, the transmission 4 can be obtained by setting the low speed mode lowest line obtained by setting the speed ratio of the variator 20 to the lowest speed ratio and the speed ratio of the variator 20 being the highest speed ratio. The speed can be changed between the highest lines (A and B regions in the figure).
  • the transmission 4 when the transmission 4 is in the high speed mode, the transmission 4 is obtained by setting the maximum speed line of the high speed mode obtained by setting the transmission ratio of the variator 20 as the lowest transmission ratio and the transmission ratio of the variator 20 as the highest transmission ratio. The speed can be changed between the high-speed mode highest lines (B and C regions in the figure).
  • the lowest gear ratio here is the maximum value of the gear ratio range of the variator 20 used when gear shifting control is performed according to the gear map.
  • the variator 20 can adopt a transmission ratio that is lower than the lowest transmission ratio in terms of structure.
  • Mode switching for upshifting the auxiliary transmission mechanism 30 from the first speed to the second speed is executed when the target operating point of the transmission 4 crosses the 1-2 shift line from the B area side to the C area side. .
  • the 1-2 shift line is set so as to substantially overlap the low speed mode highest line.
  • the transmission controller 12 shifts the auxiliary transmission mechanism 30, the transmission controller 12 performs a coordinated shift in which the transmission ratio of the variator 20 is changed in a direction opposite to the direction in which the transmission ratio of the auxiliary transmission mechanism 30 changes. Specifically, the transmission controller 12 changes the speed of the variator 20 in accordance with the inertia phase of the subtransmission mechanism 30, and during the inertia phase, the engagement side friction element or the release side friction element (low brake) of the subtransmission mechanism 30 is provided. 32 or the high clutch 33) is controlled, and the input rotational speed of the auxiliary transmission mechanism 30 (corresponding to the actual transmission ratio of the auxiliary transmission mechanism 30) is continuously changed in accordance with the change of the transmission ratio of the variator 20. This prevents a step in the through gear ratio during the coordinated shift, and suppresses a shift shock during the shift of the auxiliary transmission mechanism 30.
  • the primary pressure Ppri and the secondary pressure Psec vibrate due to various factors, and when these hydraulic pressures vibrate, a change in the gear ratio of the variator 20 and, in turn, a change in driving force cause vibration of the vehicle body.
  • the vibration of the hydraulic pressure is caused by the structure of the oil pump 10, the structure of the oil passage of the hydraulic control circuit 11, the characteristics of the pressure regulating valves 61 to 63, and it is not easy to pinpoint the cause. Even if such hydraulic vibrations occur, it is possible to reduce such body vibrations if measures are taken in advance so that the gear ratio of the variator 20 is reduced.
  • the transmission controller 12 executes a vehicle body vibration reduction process described later, and when the hydraulic pressure vibrates, the secondary pressure Psec is increased and the primary pressure Ppri is decreased, and the groove width of the primary pulley 21 is set so that the groove width of the primary pulley 21 is increased.
  • the transmission gear ratio is the maximum value that can be adopted in the structure, and the transmission gear ratio is changed to the transmission gear ratio when the movable conical plate 21m of the primary pulley 21 abuts against the stopper 25 (hereinafter referred to as "mechanical low transmission gear ratio").
  • the transmission controller 12 further lowers the primary pressure Ppri from this state and presses the movable conical plate 21m against the stopper 25 by the tension of the belt 23, whereby the displacement of the movable conical plate 21m in the direction approaching the fixed conical plate 21f is also reduced. And the change of the gear ratio of the variator 20 to the high side is also suppressed.
  • FIG. 5 is a flowchart showing the contents of the vehicle body vibration reduction process executed by the transmission controller 12.
  • step S11 the transmission controller 12 determines whether hydraulic vibration has been detected. For example, the transmission controller 12 determines that the hydraulic vibration has been detected when the state where the amplitude of the line pressure PL exceeds a predetermined value continues for a predetermined time. In this embodiment, the hydraulic vibration is detected based on the line pressure PL, but the hydraulic vibration may be detected based on the primary pressure Ppri and the secondary pressure Psec. If the transmission controller 12 detects hydraulic vibration, the process proceeds to step S12, and if not detected, the process ends.
  • step S12 the transmission controller 12 determines whether it is permitted to change the gear ratio of the variator 20 to the mechanical low gear ratio. Shift to the mechanical low gear ratio is permitted, for example, when the gear ratio of the variator 20 is the lowest gear ratio. Whether the gear ratio of the variator 20 is the lowest gear ratio may be determined based on the ratio between the primary rotation speed Npri and the secondary rotation speed Nsec, or the shift control is performed on the shift map shown in FIG. As a precondition, the determination may be made based on the vehicle speed VSP and the shift speed of the auxiliary transmission mechanism 30.
  • the permission condition that the gear ratio of the variator 20 is the lowest gear ratio is that the change in the gear ratio when the gear ratio of the variator 20 is changed to the mechanical low gear ratio is suppressed, and the change in driving force is applied to the driver. This is to suppress the uncomfortable feeling given.
  • step S13 the transmission controller 12 raises the target secondary pressure tPsec above the hydraulic pressure necessary to maintain the current gear ratio (lowest gear ratio) and torque capacity (transmittable torque) of the variator 20.
  • the secondary pressure Psec is increased, and the speed ratio of the variator 20 is changed from the lowest speed speed ratio to the mechanical low speed ratio.
  • the transmission controller 12 decreases the target primary pressure tPpri as the target secondary pressure tPsec increases, and decreases the primary pressure Ppri to a pressure just before the belt 23 starts to slide (slip limit pressure PPmin).
  • step S14 the transmission controller 12 determines whether a predetermined time has elapsed since the target secondary pressure tPsec was increased in step S13.
  • the predetermined time is set to a time from when the target secondary pressure tPsec is increased to when the secondary pressure Psec is actually increased and the speed ratio of the variator 20 reaches the mechanical low speed ratio.
  • the transmission controller 12 repeats the determination in step S14 until it is determined that the predetermined time has elapsed, and if it is determined that the predetermined time has elapsed, the process proceeds to step S15.
  • step S15 the transmission controller 12 further lowers the target primary pressure tPpri from the slip limit pressure PPmin, and in this example, to zero.
  • the primary pressure Ppri falls below the slip limit pressure PPmin, but the movable conical plate 21m of the primary pulley 21 is pressed against the stopper 25 by the tension of the belt 23, and the reaction force causes the belt 23 to the primary pulley 21. Since it is pinched, the belt 23 does not slip.
  • the transmission controller 12 maintains the transmission ratio of the variator 20 at the mechanical low transmission ratio until it is determined in step S16 that the mechanical low transmission ratio cancellation condition is satisfied.
  • the transmission controller 12 proceeds to step S17 to increase the target primary pressure tPpri and decrease the target secondary pressure tPsec to correspond to the target operating point of the transmission 4.
  • the variator 20 is shifted to the gear ratio.
  • the mechanical low speed ratio canceling condition is satisfied because the target operating point of the transmission 4 enters the 2-1 shift permission region, the inertia phase when the subtransmission mechanism 30 is shifted from the second speed to the first speed.
  • the variator 20 is shifted at the same time (period in which the gear ratio of the subtransmission mechanism 30 changes to Low).
  • FIG. 6 shows how the vehicle body vibration reduction process is performed.
  • the secondary pressure Psec is increased and the primary pressure Ppri is decreased.
  • the variator 20 shifts toward the mechanical low gear ratio.
  • the belt 23 Since the belt 23 is clamped by the primary pulley 21 by the reaction force caused by the movable conical plate 21m being pressed against the stopper 25, the belt 23 will not slip even if the primary pressure Ppri is lowered below the slip limit pressure PPmin. .
  • the vibration of the primary pressure Ppri is reduced by lowering the primary pressure Ppri.
  • the vibration of the primary pressure Ppri can be completely eliminated, so the primary pressure Ppri vibrates.
  • the gear ratio change due to is further suppressed.
  • the variator 20 when the hydraulic vibration is generated, the variator 20 is shifted to the mechanical low gear ratio only when the gear ratio of the variator 20 is the lowest gear ratio. Thereby, it is possible to suppress the amount of change in the gear ratio when changing the gear ratio of the variator 20 to the mechanical low gear ratio, and to suppress the uncomfortable feeling that the driving force change gives to the driver.
  • the vehicle body vibration at the time of the occurrence of hydraulic vibration can be reduced.
  • this state continues for a long time from the viewpoint of fuel consumption. It is not preferable.
  • the target primary pressure tPpri is increased and the target secondary pressure tPsec is decreased to reduce the gear ratio of the variator 20.
  • the target primary pressure tPpri is increased and the target secondary pressure tPsec is decreased to reduce the gear ratio of the variator 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Transmission Devices (AREA)

Abstract

 変速機コントローラは、プライマリプーリ及びセカンダリプーリに供給される油圧が振動している場合に、セカンダリプーリに供給される油圧を上昇させるとともにプライマリプーリに供給される油圧を下げ、メカニカルLow変速比までバリエータを変速させる。また、変速機コントローラは、バリエータの変速比をメカニカルLow変速比に制御している時に副変速機構をダウンシフトさせる場合は、バリエータをメカニカルLow変速比からHigh側に変速させる。

Description

無段変速機及びその制御方法
 本発明は、ベルト無段変速機に関し、特に、油圧振動発生時の車体振動を低減する技術に関する。
 ベルト無段変速機は、プーリの溝幅を油圧によって変更することで変速比を無段階に変更する。このような構成のため、プーリに供給される油圧が何らかの原因で振動すると、変速比が変動して駆動力変化を引き起こし、車体が振動する。油圧の振動は、オイルポンプの構造、油路の構造、バルブの特性等が原因となって起こることが多い。
 この点に関し、JP2005-121127Aは、オイルポンプからプーリに至るまでの油路にアキュムレータを接続し、アキュムレータによって油圧振動を吸収する技術を開示している。
 しかしながら、アキュムレータを油路の途中に接続する構成を採用する場合、部品点数増によるコスト増と重量増とが問題となる。
 本発明は、このような技術的課題に鑑みてなされたもので、油圧振動が原因で発生する車体振動を低減することを目的とする。
 本発明のある態様によれば、無段変速機であって、供給される油圧に応じてそれぞれ溝幅を変更可能なプライマリプーリ及びセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリとの間に掛け回されるベルトとを有するバリエータと、前記バリエータの入力側又は出力側に配置される有段の副変速機構と、前記プライマリプーリ及び前記セカンダリプーリに供給される油圧が振動している場合に、前記セカンダリプーリに供給される油圧を上昇させるとともに前記プライマリプーリに供給される油圧を下げ、前記プライマリプーリの溝幅が前記プライマリプーリの構造上採りうる最大値となる変速比であるメカニカルLow変速比まで前記バリエータを変速させる制御手段と、前記制御手段によって前記バリエータの変速比を前記メカニカルLow変速比に制御している時に前記副変速機構をダウンシフトさせる場合は、前記バリエータを前記メカニカルLow変速比からHigh側に変速させる制御解除手段と、を備えた無段変速機が提供される。
 また、本発明の別の態様によれば、これに対応する制御方法が提供される。
 上記態様によれば、油圧が振動している場合は、バリエータがメカニカルLow変速比まで変速されるので、プライマリ圧が振動してもプライマリプーリの溝幅が広がらなくなる。すなわち、バリエータの変速比のLow側への変化が制限される。これにより、バリエータの変速比変化が小さくなり、車体振動が低減される。
 また、バリエータの変速比をメカニカルLow変速比に制御している時に副変速機構をダウンシフトさせる場合に、バリエータの変速比をメカニカルLow変速比に保持したまま副変速機構のみをダウンシフトさせると変速ショックが発生し、さらに、その後、バリエータをメカニカルLow変速比から離脱させる際には駆動力変化が発生し、運転者に違和感を与える。
 しかしながら、上記態様によれば、副変速機構をダウンシフトさせる場合はバリエータをメカニカルLow変速比からHigh側に変速させるようにしたので、副変速機構及びバリエータを別個に変速させる場合と比較して変速比変化が抑えられ、このような違和感を防止することができる。
図1は、本発明の実施形態に係る無段変速機を搭載した車両の概略構成図である。 図2は、油圧制御回路の部分概略構成図である。 図3は、変速マップの一例である。 図4は、2-1変速許可領域の一例を示す図である。 図5は、車体振動低減制御の内容を示したフローチャートである。 図6は、車体振動低減制御が行われる様子を示したタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。なお、以下の説明において、ある変速機構の「変速比」は、当該変速機構の入力回転速度を当該変速機構の出力回転速度で割って得られる値である。
 図1は本発明の実施形態に係る無段変速機を搭載した車両の概略構成図である。この車両は動力源としてエンジン1を備える。エンジン1の出力回転は、トルクコンバータ2、第1ギヤ列3、変速機4、第2ギヤ列5、差動装置6を介して駆動輪7へと伝達される。第2ギヤ列5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられている。
 エンジン1は、ガソリンエンジン、ディーゼルエンジン等の内燃機関である。
 トルクコンバータ2は、ロックアップクラッチ2aを備える。ロックアップクラッチ2aが締結されると、トルクコンバータ2における滑りがなくなり、トルクコンバータ2の伝達効率を向上させることができる。
 また、車両には、エンジン1の動力の一部を利用して駆動されるオイルポンプ10と、オイルポンプ10からの油圧を調圧して変速機4の各部位に供給する油圧制御回路11と、油圧制御回路11を制御する変速機コントローラ12とが設けられている。
 変速機4は、バリエータ20と、バリエータ20に対して直列に設けられる副変速機構30とを備えた無段変速機である。「直列に設けられる」とはエンジン1から駆動輪7に至るまでの動力伝達経路においてバリエータ20と副変速機構30とが直列に設けられるという意味である。この例では、副変速機構30がバリエータ20の出力側に設けられているが、副変速機構30は入力側に設けられていてもよい。
 バリエータ20は、プライマリプーリ21と、セカンダリプーリ22と、プーリ21、22の間に掛け回されるベルト23とを備えた無段変速機構である。プーリ21、22は、それぞれ固定円錐板21f、22fと、固定円錐板21f、22fに対してシーブ面を対向させた状態で配置され固定円錐板21f、22fとの間に溝を形成する可動円錐板21m、22mと、可動円錐板21m、22mの背面に設けられて可動円錐板21m、22mを軸方向に変位させる油圧シリンダ21p、22pとを備える。また、プライマリプーリ21の可動円錐板21mの側方には、可動円錐板21mの変位を規制するストッパ25が設けられている。
 プーリ21、22に供給される油圧(プライマリ圧Ppri及びセカンダリ圧Psec)を調整すると、プーリ21、22がベルト23を挟持する力が変化してバリエータ20のトルク容量(伝達可能な最大トルク)が変化し、また、溝幅が変化してベルト23と各プーリ21、22との接触半径が変化し、バリエータ20の変速比が無段階に変化する。
 副変速機構30は前進2段・後進1段の変速機構である。副変速機構30は、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構31と、複数の摩擦要素(Lowブレーキ32、Highクラッチ33、Revブレーキ34)とを備える。摩擦要素32~34への供給油圧を調整し、摩擦要素32~34の締結状態を変更することによって、副変速機構30の変速段が変更される。以下の説明では、副変速機構30の変速段が1速であるとき「変速機4が低速モードである」と表現し、2速であるとき「変速機4が高速モードである」と表現する。
 変速機コントローラ12は、CPUと、RAM・ROMからなる記憶装置と、入出力インターフェースと、これらを相互に接続するバスとから構成される。
 変速機コントローラ12には、入出力インターフェースを介して、アクセルペダルの操作量を表すアクセル開度APOを検出するアクセル開度センサ41、プライマリプーリ21の回転速度であるプライマリ回転速度Npriを検出する回転速度センサ42、車速VSPを検出する車速センサ43、ライン圧PLを検出する油圧センサ44、プライマリ圧Ppriを検出する油圧センサ45、セカンダリ圧Psecを検出する油圧センサ46、セレクトレバーの位置を検出するインヒビタスイッチ47、セカンダリプーリ22の回転速度であるセカンダリ回転速度Nsecを検出する回転速度センサ48等からの信号が入力される。
 変速機コントローラ12の記憶装置には、変速機4の変速制御プログラム、この変速制御プログラムで用いる変速マップ(図3)が格納されている。変速機コントローラ12は、記憶装置に格納されている変速制御プログラムを読み出してCPUに実行させることによって、入力インターフェースを介して入力される信号に対して所定の演算処理を施して変速機4の各部位に供給する油圧の指示値を設定し、設定した指示値を入出力インターフェースを介して油圧制御回路11に出力する。
 油圧制御回路11は複数の流路、複数の油圧制御弁で構成される。油圧制御回路11は、変速機コントローラ12からの指示値に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換えるとともに指示値に応じた油圧を生成し、これを変速機4の各部位に供給する。これにより、バリエータ20の変速、副変速機構30の変速段の変更、各摩擦要素32~34の容量制御、ロックアップクラッチ2aの締結・解放が行われる。
 図2は、油圧制御回路11のうち、バリエータ20の変速に関連のある部分を示している。
 ライン圧調圧弁61は、オイルポンプ10の吐出圧の一部をドレンして減圧することで、ライン圧PLを目標ライン圧tPLに調圧するドレン調圧式の調圧弁である。
 プライマリ圧調圧弁62及びセカンダリ圧調圧弁63は、ライン圧PLを元圧として、ライン圧PLの一部をドレンして減圧することでプライマリ圧Ppri及びセカンダリ圧Psecをそれぞれ目標プライマリ圧tPpri及び目標セカンダリ圧tPsecに調圧するドレン調圧式の調圧弁である。
 ライン圧調圧弁61、プライマリ圧調圧弁62及びセカンダリ圧調圧弁63は、それぞれ、調圧後の油圧を調圧弁に戻し、調圧後の油圧を目標とする油圧にフィードバック制御するためのフィードバック回路61f、62f、63fを有している。
 このような構成により、油圧制御回路11は、ライン圧PLを元圧としてプライマリ圧Ppriとセカンダリ圧Psecとを独立して調圧することができる。
 図3は変速マップの一例を示している。変速機コントローラ12は、この変速マップを参照しながら、車両の運転状態(この実施形態では車速VSP、プライマリ回転速度Npri、アクセル開度APO)に応じて、バリエータ20、及び、副変速機構30を制御する。
 この変速マップでは、変速機4の動作点が車速VSPとプライマリ回転速度Npriとにより定義される。変速機4の動作点と変速マップ左下隅の零点とを結ぶ線の傾きが変速機4の変速比(バリエータ20の変速比に副変速機構30の変速比を掛けて得られる全体の変速比、以下、「スルー変速比」という。)に対応する。変速マップには、従来のベルト無段変速機の変速マップと同様に、アクセル開度APO毎に変速線が設定されており、変速機4の変速はアクセル開度APOに応じて選択される変速線に従って行われる。
 変速機4が低速モードのときは、変速機4はバリエータ20の変速比を最Low変速比にして得られる低速モード最Low線とバリエータ20の変速比を最High変速比にして得られる低速モード最High線の間(図中A、B領域)で変速することができる。一方、変速機4が高速モードのときは、変速機4はバリエータ20の変速比を最Low変速比にして得られる高速モード最Low線とバリエータ20の変速比を最High変速比にして得られる高速モード最High線の間(図中B、C領域)で変速することができる。
 なお、ここで言う最Low変速比は、変速マップに従って変速制御を行う場合に使用するバリエータ20の変速比範囲の最大値である。バリエータ20は、後述するように、構造上、最Low変速比よりもLow側の変速比を採ることが可能である。
 副変速機構30を1速から2速へのアップシフトさせるモード切換は、目標とする変速機4の動作点が1-2変速線をB領域側からC領域側に横切った場合に実行される。1-2変速線は、低速モード最High線上に略重なるように設定される。
 これに対し、副変速機構30を2速から1速へのダウンシフトさせるモード切換は、副変速機構30の変速段が2速の状態でアクセルペダルが大きく踏み込まれ、目標とする変速機4の動作点が図4に示す2-1変速許可領域に入った場合に実行される。
 さらに、変速機コントローラ12は、副変速機構30を変速させる際、バリエータ20の変速比を副変速機構30の変速比が変化する方向と逆の方向に変更する協調変速を行う。具体的には、変速機コントローラ12は、副変速機構30のイナーシャフェーズに合わせてバリエータ20を変速させ、かつ、イナーシャフェーズ中、副変速機構30の締結側摩擦要素又は解放側摩擦要素(Lowブレーキ32又はHighクラッチ33)の容量を制御し、副変速機構30の入力回転速度(副変速機構30の実変速比に対応)をバリエータ20の変速比変化に合わせて連続的に変化させる。これにより、協調変速中、スルー変速比に段差が生じないようにし、副変速機構30変速時の変速ショックを抑制する。
 ところで、プライマリ圧Ppri、セカンダリ圧Psecは様々な要因で振動を起こし、これらの油圧が振動するとバリエータ20の変速比変化、ひいては駆動力変化を引き起こし、車体が振動する原因となる。
 油圧の振動は、オイルポンプ10の構造、油圧制御回路11の油路の構造、調圧弁61~63の特性等が原因となって起こり、その原因を正確に突き止めるのは容易ではないが、このような油圧の振動が起こったとしてもバリエータ20の変速比が少なくなるように予め対策しておけば、このような車体振動を低減することが可能である。
 そこで、変速機コントローラ12は、後述する車体振動低減処理を実行し、油圧が振動した場合には、セカンダリ圧Psecを上昇させるとともにプライマリ圧Ppriを下げ、プライマリプーリ21の溝幅がプライマリプーリ21の構造上採りうる最大値となる変速比、本実施形態では、プライマリプーリ21の可動円錐板21mがストッパ25に当接するときの変速比(以下、「メカニカルLow変速比」という。)まで変速させるようにする。バリエータ20の変速比がメカニカルLow変速比に到達すると、可動円錐板21mが固定円錐板21fから離れる方向に変位できなくなるので、バリエータ20の変速比がLow側に変化するのを抑えることができる。
 さらに、変速機コントローラ12は、この状態からプライマリ圧Ppriをさらに下げてベルト23の張力によって可動円錐板21mをストッパ25に押し付けることによって、固定円錐板21fに近づく方向の可動円錐板21mの変位も抑え、バリエータ20の変速比がHigh側に変化するのも抑える。
 図5は、変速機コントローラ12が実行する車体振動低減処理の内容を示したフローチャートである。
 これによると、ステップS11では、変速機コントローラ12は、油圧振動を検知したか判断する。変速機コントローラ12は、例えば、ライン圧PLの振幅が所定値を超える状態が所定時間継続した場合に油圧振動を検知したと判断する。本実施形態ではライン圧PLに基づき油圧振動を検知するようにしているが、プライマリ圧Ppri、セカンダリ圧Psecに基づき油圧振動を検知するようにしてもよい。変速機コントローラ12は、油圧振動を検知した場合は処理をステップS12に進め、検知しなかった場合は処理を終了する。
 ステップS12では、変速機コントローラ12は、バリエータ20の変速比をメカニカルLow変速比まで変速させることが許可されているか判断する。メカニカルLow変速比への変速は、例えば、バリエータ20の変速比が最Low変速比である場合に許可される。バリエータ20の変速比が最Low変速比であるかどうかは、プライマリ回転速度Npriとセカンダリ回転速度Nsecとの比に基づき判断してもよいし、図3に示した変速マップに変速制御が行われていることを前提として、車速VSPと副変速機構30の変速段とに基づき判断するようにしてもよい。
 バリエータ20の変速比が最Low変速比であることを許可条件にするのは、バリエータ20の変速比をメカニカルLow変速比まで変化させる際の変速比変化量を抑え、駆動力変化が運転者に与える違和感を抑えるためである。
 ステップS13では、変速機コントローラ12は、目標セカンダリ圧tPsecをバリエータ20の現在の変速比(最Low変速比)及びトルク容量(伝達可能なトルク)を維持するのに必要な油圧よりも上昇させてセカンダリ圧Psecを上昇させ、バリエータ20の変速比を最Low変速比からメカニカルLow変速比まで変化させる。このとき、変速機コントローラ12は、目標セカンダリ圧tPsecの上昇に合わせて目標プライマリ圧tPpriを下げ、プライマリ圧Ppriをベルト23が滑り始める直前の圧(滑り限界圧PPmin)まで下げる。
 ステップS14では、変速機コントローラ12は、ステップS13で目標セカンダリ圧tPsecを上昇させてから所定時間が経過したか判断する。所定時間は、目標セカンダリ圧tPsecを上昇さてからセカンダリ圧Psecが実際に上昇し、バリエータ20の変速比がメカニカルLow変速比に到達するまでの時間に設定される。変速機コントローラ12は、所定時間が経過したと判断するまでステップS14の判断を繰り返し、所定時間が経過したと判断したら処理をステップS15に進める。
 ステップS15では、変速機コントローラ12は、目標プライマリ圧tPpriを滑り限界圧PPminからさらに下げ、この例ではゼロまで下げる。これにより、プライマリ圧Ppriが滑り限界圧PPminよりも下がることになるが、ベルト23の張力によってプライマリプーリ21の可動円錐板21mがストッパ25に押し付けられ、その反力によってベルト23がプライマリプーリ21に挟持されるので、ベルト23が滑ることはない。
 その後、変速機コントローラ12は、ステップS16においてメカニカルLow変速比解除条件が成立したと判断するまでバリエータ20の変速比をメカニカルLow変速比に保持する。変速機コントローラ12は、以下のいずれか:
 ・目標とする変速機4の動作点に対応するバリエータ20の変速比<最Low変速比
 (車速VSPが所定車速以上)
 ・車速VSP=0
 ・セレクトレバー位置が非走行用位置(Pポジション、Nポジション)
 ・目標とする変速機4の運転点が2-1変速許可領域に移動
を満たした場合にメカニカルLow変速比解除条件が成立したと判断する。
 メカニカルLow変速比解除条件が成立したら、変速機コントローラ12は、処理をステップS17に進め、目標プライマリ圧tPpriを上昇させるとともに目標セカンダリ圧tPsecを下げ、目標とする変速機4の運転点に対応する変速比までバリエータ20を変速させる。目標とする変速機4の運転点が2-1変速許可領域に入ったことでメカニカルLow変速比解除条件が成立した場合は、副変速機構30を2速から1速に変速させる際のイナーシャフェーズ(副変速機構30の変速比がLow側に変化する期間)に時期を合わせてバリエータ20を変速させるようにする。
 続いて上記車体振動低減処理を行うことによる作用効果について説明する。
 図6は、上記車体振動低減処理が行われる様子を示している。時刻t1で油圧振動が検知されると、セカンダリ圧Psecが高められ、プライマリ圧Ppriが下げられる。これにより、バリエータ20がメカニカルLow変速比に向けて変速する。
 時刻t2でバリエータ20の変速比がメカニカルLow変速比に到達すると、プライマリ圧Ppriが振動しても、プライマリプーリ21の溝幅が広がることが無くなる、すなわち、バリエータ20の変速比がLow側に変化しなくなる。これにより、バリエータ20の変速比変化が少なくなり、車体振動が抑えられる。
 そして、この状態からさらにプライマリ圧Ppriを下げると(時刻t2~t3)、ベルト23の張力によってプライマリプーリ21の可動円錐板21mがストッパ25に押し付けられる。これにより、プライマリプーリ21の溝幅が狭まる方向への可動円錐板21mの変位、すなわち、バリエータ20の変速比のHigh側への変化も抑えられる。バリエータ20の変速比変化がさらに少なくなるので、車体振動がさらに抑えられる。
 なお、ベルト23は、可動円錐板21mがストッパ25に押し付けられることによる反力によってプライマリプーリ21に挟持されるので、プライマリ圧Ppriを滑り限界圧PPminよりも下げてもベルト23が滑ることはない。
 さらに、プライマリ圧Ppriを下げたことでプライマリ圧Ppriの振動が小さくなり、特に、プライマリ圧Ppriをゼロまで下げればプライマリ圧Ppriの振動を完全になくすことができるので、プライマリ圧Ppriが振動することによる変速比変化がより一層抑えられる。
 また、油圧振動発生時にバリエータ20をメカニカルLow変速比まで変速させるのは、バリエータ20の変速比が最Low変速比である場合に限定した。これにより、バリエータ20の変速比をメカニカルLow変速比まで変化させる際の変速比変化量を抑え、駆動力変化が運転者に与える違和感を抑えることができる。
 また、上記車体振動低減処理によれば油圧振動発生時の車体振動を低減することができるが、セカンダリ圧Psecを上昇させた状態が継続するので、この状態が長く継続することは燃費の観点から好ましくない。
 この点に関しては、上記車体振動低減処理では、目標とする変速機4の動作点に対応するバリエータ20の変速比が最Low変速比よりもHigh側になった場合や、駆動輪7が回転しない状態やエンジンの動力が駆動輪7に伝達されない状態のように車体振動が問題にならない状態になった場合には、目標プライマリ圧tPpriを上昇させるとともに目標セカンダリ圧tPsecを下げてバリエータ20の変速比をメカニカルLow変速比から離脱させ、目標とする変速機4の運転点に対応する変速比まで所定移行率で変化させるようにした(時刻t4~)。これにより、セカンダリ圧Psecを上昇させた状態が継続することによる燃費の悪化を抑えることができる。
 また、副変速機構30の変速段が2速の状態で上記車体振動低減処理が行われている状況で、目標とする変速機4の動作点が2-1変速許可領域に入った場合に、バリエータ20の変速比をメカニカルLow変速比に保持したまま副変速機構30のみを2速から1速に変速させると変速ショックが発生し、さらに、その後、バリエータ20をメカニカルLow変速比から離脱させる際には、スルー変速比が変化することによる駆動力変化が発生し、運転者に違和感を与える。
 しかしながら、上記車体振動低減処理によれば、このような場合もメカニカルLow変速比離脱条件が成立したと判断されて、目標とする変速機4の運転点に対応する変速比までバリエータ20を変速させるので、変速ショック及び駆動力変化が続けて起こることによる違和感を防止することができる。
 また、バリエータ20の変速比をメカニカルLow変速比から離脱させる場合、副変速機構30が2速から1速に変速する際のイナーシャフェーズ(副変速機構30の変速比がLow側に変化する期間)に時期を合わせて離脱させるようにした。バリエータ20の変速比が単独で変化するとそれがそのままスルー変速比の変化に現れ、それによって起こる駆動力変化が運転者に違和感を与える可能性がある。しかしながら、副変速機構30のイナーシャフェーズにタイミングを合わせてバリエータ20の変速比をメカニカルLow変速比から離脱させるようにすれば、バリエータ20はHigh側への変速、副変速機構30はLow側への変速なので、これらを別個に変速させる場合と比較してスルー変速比の変化を抑えることができ、駆動力変化が運転者に与える違和感を低減することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は日本国特許庁に2014年7月29日に出願された特願2014-154079号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (3)

  1.  無段変速機であって、
     供給される油圧に応じてそれぞれ溝幅を変更可能なプライマリプーリ及びセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリとの間に掛け回されるベルトとを有するバリエータと、
     前記バリエータの入力側又は出力側に配置される有段の副変速機構と、
     前記プライマリプーリ及び前記セカンダリプーリに供給される油圧が振動している場合に、前記セカンダリプーリに供給される油圧を上昇させるとともに前記プライマリプーリに供給される油圧を下げ、前記プライマリプーリの溝幅が前記プライマリプーリの構造上採りうる最大値となる変速比であるメカニカルLow変速比まで前記バリエータを変速させる制御手段と、
     前記制御手段によって前記バリエータの変速比を前記メカニカルLow変速比に制御している時に前記副変速機構をダウンシフトさせる場合は、前記バリエータを前記メカニカルLow変速比からHigh側に変速させる制御解除手段と、
    を備えた無段変速機。
  2.  請求項1に記載の無段変速機であって、
     前記制御解除手段は、前記制御手段によって前記バリエータの変速比を前記メカニカルLow変速比に制御している時に前記副変速機構をダウンシフトさせる場合は、前記副変速機構の変速比が変化する時期に合わせて前記バリエータを前記メカニカルLow変速比からHigh側に変速させる、
    無段変速機。
  3.  供給される油圧に応じてそれぞれ溝幅を変更可能なプライマリプーリ及びセカンダリプーリと、前記プライマリプーリ及び前記セカンダリプーリとの間に掛け回されるベルトとを有するバリエータと、前記バリエータの入力側又は出力側に配置される有段の副変速機構とを備えた無段変速機の制御方法であって、
     前記プライマリプーリ及び前記セカンダリプーリに供給される油圧が振動している場合に、前記セカンダリプーリに供給される油圧を上昇させるとともに前記プライマリプーリに供給される油圧を下げ、前記プライマリプーリの溝幅が前記プライマリプーリの構造上採りうる最大値となる変速比であるメカニカルLow変速比まで前記バリエータを変速させ、
     前記バリエータの変速比を前記メカニカルLow変速比に制御している時に前記副変速機構をダウンシフトさせる場合は、前記バリエータを前記メカニカルLow変速比からHigh側に変速させる、
    無段変速機の制御方法。
PCT/JP2015/066035 2014-07-29 2015-06-03 無段変速機及びその制御方法 WO2016017271A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/329,718 US10228055B2 (en) 2014-07-29 2015-06-03 Continuously variable transmission and method for controlling the same
KR1020177001639A KR101893710B1 (ko) 2014-07-29 2015-06-03 무단 변속기 및 그 제어 방법
EP15827844.0A EP3176473B1 (en) 2014-07-29 2015-06-03 Continuously variable transmission and method for controlling the same
CN201580041331.2A CN106574715B (zh) 2014-07-29 2015-06-03 无级变速器及其控制方法
JP2016538195A JP6303011B2 (ja) 2014-07-29 2015-06-03 無段変速機及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154079 2014-07-29
JP2014-154079 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017271A1 true WO2016017271A1 (ja) 2016-02-04

Family

ID=55217176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066035 WO2016017271A1 (ja) 2014-07-29 2015-06-03 無段変速機及びその制御方法

Country Status (6)

Country Link
US (1) US10228055B2 (ja)
EP (1) EP3176473B1 (ja)
JP (1) JP6303011B2 (ja)
KR (1) KR101893710B1 (ja)
CN (1) CN106574715B (ja)
WO (1) WO2016017271A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY167369A (en) * 2015-03-20 2018-08-16 Nissan Motor Damping control device for electric vehicle
WO2017043459A1 (ja) * 2015-09-09 2017-03-16 ジヤトコ株式会社 車両用無段変速機の油圧制御装置および油圧制御方法
JP6848874B2 (ja) * 2015-10-14 2021-03-24 日本電産トーソク株式会社 油振診断装置および油振診断方法
CN109654186B (zh) * 2017-10-12 2022-03-22 上海汽车集团股份有限公司 重刹车工况下无极变速器的速比控制方法
JP2019120307A (ja) * 2017-12-28 2019-07-22 日産自動車株式会社 動力伝達装置の制御方法及び動力伝達装置の制御装置
WO2020261918A1 (ja) * 2019-06-24 2020-12-30 ジヤトコ株式会社 車両の制御装置及び車両の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130320A (ja) * 1997-07-11 1999-02-02 Nissan Motor Co Ltd 自動変速機の油圧制御装置
JP2004125037A (ja) * 2002-10-01 2004-04-22 Jatco Ltd 無段変速機の変速制御装置
JP2004183715A (ja) * 2002-11-29 2004-07-02 Aisin Aw Co Ltd 車輌用自動変速機の制御装置
JP2012077840A (ja) * 2010-10-01 2012-04-19 Jatco Ltd コーストストップ車両

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558522B2 (ja) * 1989-05-25 1996-11-27 愛知機械工業株式会社 Vベルト式無段変速機
JPH0469448A (ja) * 1990-07-06 1992-03-04 Jatco Corp 変速機の入力回転速度検出装置
JP3460573B2 (ja) * 1998-04-08 2003-10-27 トヨタ自動車株式会社 無段変速機を備えた車両の制御装置
JP4003963B2 (ja) 2003-10-16 2007-11-07 本田技研工業株式会社 無段変速機の油圧制御装置
JP2006017247A (ja) * 2004-07-02 2006-01-19 Toyota Motor Corp 変速機の制御装置
CN102414484B (zh) * 2009-04-30 2014-10-22 加特可株式会社 带式无级变速器的控制装置和控制方法
US8914200B2 (en) * 2009-04-30 2014-12-16 Nissan Motor Co., Ltd. Controller and control method of belt type continuously variable transmission
WO2010125668A1 (ja) * 2009-04-30 2010-11-04 ジヤトコ株式会社 ベルト式無段変速機の制御装置と制御方法
JP2011122671A (ja) 2009-12-10 2011-06-23 Toyota Motor Corp 車両用動力伝達装置
KR101325321B1 (ko) * 2009-12-15 2013-11-08 쟈트코 가부시키가이샤 차량용 벨트식 무단 변속기의 제어 장치와 제어 방법
BR112012021711B1 (pt) * 2010-02-23 2020-12-08 Nissan Motor Co., Ltd. dispositivo de controle de uma transmissão continuamente variável para um veículo
US9303762B2 (en) * 2010-04-26 2016-04-05 Toyota Jidosha Kabushiki Kaisha Hydraulic pressure controller for continuously variable transmission
JP5084870B2 (ja) * 2010-06-07 2012-11-28 ジヤトコ株式会社 車両のトルクダウン制御装置
JP5548599B2 (ja) * 2010-12-02 2014-07-16 ジヤトコ株式会社 コーストストップ車両およびその制御方法
JP5740293B2 (ja) * 2011-12-08 2015-06-24 ジヤトコ株式会社 車両制御装置および車両の制御方法
JP5756002B2 (ja) * 2011-12-09 2015-07-29 ジヤトコ株式会社 車両制御装置および車両の制御方法
JP5767958B2 (ja) * 2011-12-12 2015-08-26 ジヤトコ株式会社 コーストストップ車両およびコーストストップ車両の制御方法
WO2014042032A1 (ja) * 2012-09-13 2014-03-20 ジヤトコ株式会社 自動変速機の制御装置及び制御方法
JP5816607B2 (ja) * 2012-12-20 2015-11-18 ジヤトコ株式会社 自動変速機及びその高油温制御方法
KR101894196B1 (ko) * 2014-07-29 2018-08-31 쟈트코 가부시키가이샤 무단 변속기 및 그 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130320A (ja) * 1997-07-11 1999-02-02 Nissan Motor Co Ltd 自動変速機の油圧制御装置
JP2004125037A (ja) * 2002-10-01 2004-04-22 Jatco Ltd 無段変速機の変速制御装置
JP2004183715A (ja) * 2002-11-29 2004-07-02 Aisin Aw Co Ltd 車輌用自動変速機の制御装置
JP2012077840A (ja) * 2010-10-01 2012-04-19 Jatco Ltd コーストストップ車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176473A4 *

Also Published As

Publication number Publication date
CN106574715B (zh) 2018-09-14
CN106574715A (zh) 2017-04-19
US10228055B2 (en) 2019-03-12
US20170211697A1 (en) 2017-07-27
JP6303011B2 (ja) 2018-03-28
KR20170023984A (ko) 2017-03-06
KR101893710B1 (ko) 2018-08-30
EP3176473A4 (en) 2017-08-09
EP3176473A1 (en) 2017-06-07
JPWO2016017271A1 (ja) 2017-04-27
EP3176473B1 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6211704B2 (ja) 無段変速機及びその制御方法
KR101662844B1 (ko) 무단 변속기 및 그 제어 방법
JP4923080B2 (ja) 無段変速機及びその制御方法
US8585542B2 (en) Control of and control method for vehicle continuously variable transmission
JP6303011B2 (ja) 無段変速機及びその制御方法
KR101706898B1 (ko) 무단 변속기 및 그 제어 방법
KR101667818B1 (ko) 무단 변속기 및 그 제어 방법
JP5244875B2 (ja) 無段変速機及びその制御方法
KR101691232B1 (ko) 차량용 무단 변속기의 제어 장치
KR101607040B1 (ko) 무단 변속기 및 그 제어 방법
JP6437125B2 (ja) 車両用無段変速機の油圧制御装置および油圧制御方法
JP5863982B2 (ja) 無段変速機及びその制御方法
JP5379056B2 (ja) 無段変速機及びその制御方法
JP5977271B2 (ja) 無段変速機及びその制御方法
JP2017078474A (ja) 自動変速機の制御装置、及び自動変速機の制御方法
JP6633920B2 (ja) 車両の制御装置、及び車両の制御方法
KR20170008259A (ko) 자동 변속기의 유압 제어 장치, 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177001639

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015827844

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016538195

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE