WO2016016960A1 - 移動体 - Google Patents

移動体 Download PDF

Info

Publication number
WO2016016960A1
WO2016016960A1 PCT/JP2014/069994 JP2014069994W WO2016016960A1 WO 2016016960 A1 WO2016016960 A1 WO 2016016960A1 JP 2014069994 W JP2014069994 W JP 2014069994W WO 2016016960 A1 WO2016016960 A1 WO 2016016960A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
wheels
drive motor
posture
steer
Prior art date
Application number
PCT/JP2014/069994
Other languages
English (en)
French (fr)
Inventor
亮介 中村
梓 網野
泰士 上田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/069994 priority Critical patent/WO2016016960A1/ja
Publication of WO2016016960A1 publication Critical patent/WO2016016960A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K17/00Cycles not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a moving object.
  • a two-wheel moving body that includes two wheels and moves by rotating each wheel is known.
  • the moving body by the wheel can travel more safely by taking a behavior corresponding to the ground contact condition of the wheel and the posture change.
  • Patent Document 1 describes a two-wheel moving body that can realize stable traveling by changing a steering characteristic in accordance with road friction and steady or unsteady turning.
  • Patent Document 2 describes a saddle type vehicle such as a motorcycle having a mechanism for suppressing wheel slip.
  • This vehicle has load distribution changing means that can change the posture of the vehicle, monitors slip conditions of the front wheels or rear wheels, and prevents slip by changing the load distribution when slipping is likely to occur. It is configured as follows.
  • Patent Documents 1 and 2 are effective in a scene where the road surface friction is reduced, the jumping generated when the two-wheeled mobile body travels on the unevenness such as pebbles existing on the road surface, etc. , When the wheel is completely off the road surface, there is a problem that the vehicle cannot be stabilized sufficiently and falls easily.
  • an object of the present invention is to provide a moving body capable of stabilizing the posture when a floating state of a wheel occurs during turning.
  • a moving body includes an upper body, two wheels connected to the lower side of the upper body via an arm, and arranged in front and rear with respect to the traveling direction, and the 2 A wheel drive motor that drives each of the two wheels, a steer drive motor that adjusts the steering angle of each of the two wheels, a posture detection unit that detects posture information of the upper body, and the two wheels during the turning operation When the idling of at least one of the wheels is detected, it is determined whether any one of the two wheels has bounced based on the posture information detected by the posture detection unit, and the bounce occurs.
  • the time required for the wheel to contact the ground is determined based on the posture information, and the wheel drive is compensated for the influence on maintaining the posture when the wheel contacts the ground according to the time.
  • Motor and characterized in that it and a computer for controlling the steering drive motor.
  • FIG. 1A is a right side view of the two-wheel moving body
  • FIG. 1B is a top view.
  • the two-wheel moving body 1 includes two wheels 4f and r at the front and rear of the lower part, and is a moving body that moves by rotating these.
  • the wheels 4f and r have a rotation axis so as to be orthogonal to the wheel rotation axis, You can move on the plane by cutting the steer.
  • the two-wheel moving body 1 includes an upper body 2, arms 3 f and r, wheels 4 f and r, steer driving motors 5 f and r, wheel driving motors 6 f and r, a calculator 10, and a gyro 11.
  • FIG. 1 (a), (b), the one side of the wheel 4f is disposed on the lower side of the arm 3f, the steering angle [delta] f is adjusted by steering drive motor 5f.
  • the arm 3f is installed downward from the front of the upper body 2.
  • a wheel drive motor 6f shown in FIGS. 1 (a) and 1 (b) is a motor that rotates a wheel 4f in response to a command from the computer 10, and is built in the wheel 4f, and only the axle is connected to the arm 3f.
  • the wheel drive motor 6f includes a rotating angle zeta f wheels 4f, (not shown) encoder for detecting the a rotation angular velocity Dizeta f showing the temporal change in the rotation angle zeta f is installed.
  • Steering motor 5f is intended to adjust the steering angle [delta] f the arm 3f, it is installed in the vicinity of the lower end previous report of the body 2.
  • the steer motor 5f is accommodated in the arm 3f.
  • the front wheels 4f is rotated by the wheel drive motor 6f, the steering angle [delta] f is adjusted as part of the arms 3f by steering drive motor 5f.
  • the wheel 4r of rear side the front side rotates by another wheel drive motor 6r, the steering angle [delta] r is adjusted as part of the arms 3r by steering drive motor 5r.
  • the upper body is a housing that houses devices including the steer drive motors 5f, r, the posture detection unit 11, and the computer 10. As described above, the arms 3 f and r are arranged at the lower part of the upper body 2.
  • the posture detection unit 11 is, for example, a gyroscope, and is a sensor that acquires information related to the posture of the two-wheeled mobile body 1.
  • the information described above includes the tilt angle ⁇ in the traveling direction of the two-wheeled vehicle 1, the tilt angular velocity d ⁇ indicating the temporal change of the tilt angle ⁇ , the tilt angle ⁇ in the left-right direction of the two-wheeled vehicle 1, and the time of the tilt angle ⁇ .
  • An inclination angular velocity d ⁇ indicating a change in temperature, an angle ⁇ indicating a turning direction of the two-wheeled vehicle 1, and a turning direction angular velocity d ⁇ indicating a temporal change in the angle ⁇ are included.
  • the posture detection unit 11 outputs each detection result to the computer 10.
  • the computer 10 executes arithmetic processing in accordance with information input from the posture detection unit 11, an operation by an operator, and the like, and controls the wheel drive motors 4f and 4r and the steer drive motors 5f and 5r.
  • the computer 10 is, for example, a microcomputer (not shown), reads out a program stored in a ROM (Read Only Memory), expands it in a RAM (Random Access Memory), and a CPU (Central Processing Unit) performs various processes. It is supposed to run.
  • FIG. 2 is a configuration diagram of a control unit provided in the two-wheel mobile body 1.
  • the computer 10 includes a storage device 30 that stores various programs and an arithmetic processing device 31 that executes programs stored in the storage device.
  • the storage device is a hard disk, ROM, RAM, or the like, and the arithmetic processing device is a CPU.
  • the target value generation unit 21, the stabilization operation generation unit 22, and the mechanism control unit 23 are represented as functional blocks as programs executed by the arithmetic processing device 31.
  • the target value generating unit 21 moves the two-wheeled vehicle 1 based on the current position / orientation of the two-wheeled vehicle 1, the coordinates of the target position that is the destination, the speed upper limit value, the acceleration upper limit value, and the like (x 0t , y0t , ⁇ 0t ) and the target moving speed v0t .
  • x 0t and y 0t are the coordinates of the center of gravity X G of the two-wheel moving body 1
  • ⁇ 0t is an angle representing the turning direction of the two-wheel moving body 1.
  • the target position, speed upper limit value, and acceleration upper limit value described above are stored in the storage device 30 in advance.
  • the current position and orientation of the two-wheeled vehicle 1 may be calculated based on past movement history, or may be input from the outside and stored in the storage unit.
  • the target value generation unit 21 specifies the above-described trajectory based on a plurality of times (current time + k ⁇ t: ⁇ t is a control cycle, k is a natural number) and the coordinates of the two-wheeled vehicle 1 at each time.
  • the target moving speed v 0t is specified in the same manner.
  • the target value generation unit 21 outputs the calculated trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t to the stabilization operation generation unit 22.
  • the stabilization operation generation unit 22 corresponds to the trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t input from the target value generation unit 91 and the information input from the posture detection unit 11.
  • the target steering angles ⁇ f0 and ⁇ r0 of the steering drive motors 5 f and r and the driving torques ⁇ fo and ⁇ ro of the wheel drive motors 6 f and 6 r are calculated and output to the mechanism control unit 23.
  • the mechanism control unit 23 controls the steer drive motors 5f and 4r and the wheel drive motors 6f and 6r based on the information input from the stabilization operation generation unit 33 and each of the encoders (not shown).
  • the target value generation unit 21 first sets a route toward the target point. In route setting, a waypoint and a target point stored in the storage device 30 are used. The start position (current position at the time of generation) when generating the target value, the via point, and the target point are smoothly connected by a cubic spline curve.
  • the speed plan is planned with a trapezoidal speed pattern based on the speed upper limit value and acceleration upper limit value stored in the storage unit and the path length of the generated path.
  • the position for each control cycle is calculated from the route and speed plan, and Frenet-Serret is calculated for the trajectory (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t , and the target moving speed v 0t and the trajectory.
  • the target turning angular velocity ⁇ 0t is generated by applying the formula.
  • the mechanism control unit 23 calculates the current position based on the encoder information of the front and rear steering drive motors 5f and r and the front and rear wheel drive motors 6f and r and the wheel slip information acquired from the stable operation generation unit 22.
  • the current speed v is calculated by Equation 1.
  • R is the wheel radius
  • the current position (x, y) is calculated by Equation 2 where the coordinates at the point where the measurement is started are (x o , yo ) and the direction parallel to the coordinate x is the turning direction 0.
  • V (j) and ⁇ (j) in Equation 2 are the speed and turning direction at time j in the past. Further, the turning direction ⁇ can be acquired directly from the attitude detection unit 11, and when only one wheel is idle, the speed is obtained only from the ground wheel, and when both wheels are idle, the value before idling is held. Can be obtained.
  • the mechanism control unit 23 obtains the target steer angles ⁇ f0 and ⁇ r0 of the steer drive motors 5f and r and the drive torques ⁇ fo and ⁇ ro of the wheel drive motors 6f and r from the stabilization operation generation unit 22, and uses them. Output to the motor.
  • the steer drive motors 5f and r can be position-controlled by the motors themselves, and the wheel drive motors 6f and r can be torque-controlled by the motors themselves.
  • FIG. 3 is a flowchart of processing performed by the stabilization operation generation unit 22. Note that the series of processing shown in FIG. 3 is executed in one control cycle of the computer 10.
  • step S22_1 the target value (x 0t , y 0t , ⁇ 0t ) and the target moving speed v 0t , the target turning angular speed d ⁇ 0t , the steering angle ⁇ f , ⁇ r and the wheel angle from the mechanism control unit 23 are obtained.
  • step S22_2 basic wheel target torques ⁇ fb and ⁇ rb and basic steer target values ⁇ fb and ⁇ rb that are equal to the target values when the wheels are completely grounded are calculated.
  • the basic steer target values ⁇ fb and ⁇ rb and the basic wheel target torques ⁇ fb and ⁇ rb are obtained from Equation 3.
  • K ⁇ 1 , K ⁇ 2 and K v are preset constant gains.
  • step S22_3 the idling state of the wheel is detected.
  • the idling state can be detected from the difference between the wheel behavior estimated from the wheel inertia moment and the wheel torque and the actual wheel behavior using a disturbance observer generally known as a part of the traction control system. Further, at the time when it is determined that the vehicle is idling, whether the wheel is idling on the road surface from the angular velocity d ⁇ in the traveling direction acquired from the attitude detection unit 11 is spun up by the road surface convex portion and is idling away from the road surface Is determined based on the table of FIG.
  • FIG. 4 is a determination table for determining the idling state of the wheel, and is stored in the storage device 30.
  • C ⁇ is a preset value.
  • the traveling direction inclination angle ⁇ is positive in the direction in which the front wheels are raised.
  • step S22_4 the subsequent processing is branched based on the idling state. According to Table 1, the process proceeds to S22_7 when the wheel is not idling, the process proceeds to S22_6 when only one wheel is flipped up, and the process proceeds to S22_5 in the other cases.
  • step S22_5 when the wheel grip is lost and only one wheel is not flipped up, the target values of the steering drive motors 5f and r and the wheels 4f and r are changed according to a generally known traction control method.
  • the rotation surface direction of the wheel 4 is changed to the turning direction angle.
  • Step S22_6 the operation at the time of single wheel jumping will be described with reference to the flowchart of FIG.
  • ⁇ c and d ⁇ c are the angle ⁇ and the angular velocity d ⁇ in the traveling direction immediately after the idling detection
  • ⁇ ⁇ is the moment of inertia in the forward / backward tilt direction when the grounded wheel of the autonomous mobile two-wheeled vehicle is used as an axis.
  • step S30_2 the right / left inclined posture angle ⁇ A , the turning direction angle ⁇ A , the angular velocity d ⁇ A , and the path deviation D A when the wheel flipped up comes into contact with the ground are calculated.
  • Formula 5 is used by using the left-right direction angle ⁇ c , the angular velocity d ⁇ c , the turning direction angle ⁇ c , and the angular velocity d ⁇ c immediately after the wheel jumps up.
  • a target steer angle ⁇ A of the wheel flipped up in step S30_3 is calculated. Calculation follows Formula 6.
  • P 1 , P 2 , K 1 , K 2 are constant gains, and the signs of P 1 , P 2 are reversed when the idle wheel is the front wheel and the rear wheel. Further, the calculated target steer angle is overwritten with the basic target steer angle of the idle wheel, and the motion generation at the time of one-wheel jumping is completed.
  • step S22_7 no change is made to the target drive torque of the wheels 4f, r and the target steer angle of the steer drive motors 6f, r as motion generation during normal running.
  • step S22_8 all target values obtained from the mode-specific stabilization operation are output to the mechanism control unit 23.
  • ⁇ Effect> in an autonomous mobile two-wheeled vehicle that rides on unevenness on the road surface and the wheel frequently leaves the road surface, the non-grip period in which the wheel is separated from the road surface is predicted, and the two-wheel movement is performed according to the prediction period.
  • the steering angle of the front and rear wheels is controlled so as to reduce the influence on the vehicle path deviation and posture maintenance.
  • an optimum steering operation can be realized at least in a floating state in which the slip and the wheel are separated from the road surface, and two improvements in posture stability and path followability can be achieved.
  • Second Embodiment In the operation generation at the time of single wheel jumping according to the first embodiment, the steering wheel is steered so that the angular velocity d ⁇ in the turning direction is 0 toward the outside in the turning direction when the single wheel operation is flipped up. In addition, correction for the amount of steer cut is performed with respect to the prediction of the turning direction angle performed in Formula 5 at this time.
  • the deviation between the turning direction ⁇ and the target turning angle ⁇ 0t when the wheel is grounded when one wheel is flipped up is suppressed, and the path following control and posture stabilization control after all the wheels are grounded Can converge quickly and achieve stable running.
  • the time until the wheel contacts the ground at the time of one-wheel jumping increases, all deviations are suppressed, and the path follow-up control and posture stabilization control after all the wheels contact the ground are quick. Convergence and stable driving can be realized.
  • the wheel idling detection means and the vehicle body posture detection means are provided, the wheel floating state detection and the duration time of the floating state are predicted, and the driving force of the wheel according to the predicted wheel floating state duration time. And control the steering angle. This makes it possible to stabilize the posture and reduce the deviation from the expected route when a wheel levitation occurs when driving on uneven roads while turning. it can.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 本発明は、旋回中において車輪の浮上状態が発生した際に,姿勢を安定させることが可能な移動体を提供することを課題とする。この課題を解決するために、上体と、前記上体の下方にアームを介して接続され、進行方向に対して前後に配置される2つの車輪と、前記2つの車輪それぞれを駆動する車輪駆動モータと、前記2つの車輪それぞれのステア角を調整するステア駆動モータと、前記上体の姿勢情報を検出する姿勢検出部と、旋回動作中に前記2つの車輪のうち少なくとも一方の車輪の空転を検出すると、前記2つの車輪のうちいずれかの車輪に跳ね上がりが発生しているかを判断し、車輪が接地するまでの時間を求め、当該時間に応じて車輪接地時に姿勢維持に与える影響を補償するよう前記車輪駆動モータ、及び、前記ステア駆動モータを制御する計算機と、を備えることを特徴とする。

Description

移動体
 本発明は、移動体に関する。
 二つの車輪を備え、各車輪を回転させることで移動する二輪移動体が知られている。
車輪による移動体は、車輪の接地条件や姿勢変化に対応する挙動をとることで,より安全に走行することができる。
 例えば特許文献1には、路面の摩擦と定常旋回か非定常旋回かに応じてステア特性を変化させることで安定した走行を実現できる二輪移動体について記載されている。
 また、特許文献2には、車輪スリップを抑制するための機構を備えた自動二輪車のような鞍乗り型の乗り物が記載されている。この乗り物では乗り物の姿勢を変化させることのできる荷重分布変更手段を備え、前輪または後輪のスリップ条件を監視し,スリップが発生しそうになった場合に荷重分布を変更することでスリップを防止するように構成されている。
特開2005-271819号公報 特開2013-28279号公報
 ところで,特許文献1、2記載の旋回技術では路面摩擦が低下するような場面においては有効ではあるが、路面に存在する小石などの凹凸上を二輪移動体が走行した際に発生する跳ね上げなど,車輪が完全に路面から離れるような場合では安定化を十分に行えず転倒しやすいという問題がある。
 そこで本発明は、旋回中において車輪の浮上状態が発生した際に,姿勢を安定させることが可能な移動体を提供することを課題とする。
 前記課題を解決するために、本発明にかかわる移動体は、上体と、前記上体の下方にアームを介して接続され、進行方向に対して前後に配置される2つの車輪と、前記2つの車輪それぞれを駆動する車輪駆動モータと、前記2つの車輪それぞれのステア角を調整するステア駆動モータと、前記上体の姿勢情報を検出する姿勢検出部と、旋回動作中に前記2つの車輪のうち少なくとも一方の車輪の空転を検出すると、前記姿勢検出部により検出された姿勢情報に基づいて、前記2つの車輪のうちいずれかの車輪に跳ね上がりが発生しているかを判断し、跳ね上がりが発生していると判断した場合には、前記姿勢情報に基づいて車輪が接地するまでの時間を求め、当該時間に応じて車輪接地時に姿勢維持に与える影響を補償するよう前記車輪駆動モータ、及び、前記ステア駆動モータを制御する計算機と、を備えることを特徴とする。
 本発明によれば、旋回中において車輪の浮上状態が発生した際に,姿勢を安定させることが可能な移動体を提供できる。
本発明に係る二輪移動体の外観図であり、(a)は二輪移動体の右側面図であり、(b)は二輪移動体の上面図である。 二輪移動体が備えるシステムの構成図である。 計算部が備える安定化動作生成部のフローチャート図である。 車輪の空転状態を判断する判断テーブル 片輪跳ね上げ時の動作を表すフロー図である。
≪第1実施形態≫
<二輪移動体の構成>
 図1(a)は二輪移動体の右側面図であり、図1(b)は上面図である。
 二輪移動体1は下部の前後に二輪の車輪4f、rを備え、これらを回転させることで移動する移動体であり、車輪4f、rは車輪回転軸と直交するように回転軸を有し、ステアを切ることによって平面上を移動することができる。二輪移動体1は上体2と、アーム3f、rと、車輪4f、rと、ステア駆動モータ5f、r、と車輪駆動モータ6f、rと計算機10とジャイロ11を備えている。
 図1(a)、(b)に示すように、片側の車輪4fはアーム3fの下側に設置され、ステア駆動モータ5fによってそのステア角δfが調整される。アーム3fは上体2の前方より下に向かって設置される。
 図1(a)、(b)に示す車輪駆動モータ6fは、計算機10からの指令に応じて車輪4fを回転させるモータであり、車輪4fに内蔵され、車軸のみアーム3fに接続されている。
 なお、車輪駆動モータ6fには、車輪4fの回転角ζfと、この回転角ζfの時間的変化を示す回転角速度dζfと、を検出するエンコーダ(図示せず)が設置されている。
 ステアモータ5fはアーム3fのステア角δfを調整するものであり、上体2の下端前報付近に設置されている。ステアモータ5fは、アーム3fに収容されている。
 なお、ステア駆動モータ5fには、アーム3fのステア角δfを検出するエンコーダが設置されている。
 このように、前側の車輪4fは、車輪駆動モータ6fによって回転し、そのステア角δfがステア駆動モータ5fによってアーム3fの一部として調整される。一方、後側の車輪4rは、前側とは別の車輪駆動モータ6rによって回転し、そのステア角δrがステア駆動モータ5rによってアーム3rの一部として調整される。
 なお、後ろ側の車輪4r、車輪駆動モータ6r、アーム3r、及びステア駆動モータ5rについては前側と同様であるから、その説明を省略する。
上体はステア駆動モータ5f、r、姿勢検出部11及び計算機10を含む機器を収納する筐体である。前記したように、アーム3f、rは、上体2の下部に配置される。
 姿勢検出部11は、例えば、ジャイロスコープであり、二輪移動体1の姿勢に関する情報を取得するセンサである。
 前記した情報には、二輪移動体1の進行方向への傾斜角θ、傾斜角θの時間的変化を示す傾斜角速度dθ、二輪移動体1の左右方向への傾斜角φ、傾斜角φの時間的変化を示す傾斜角速度dφ、二輪移動体1の旋回方向を示す角度ω、及び、角度ωの時間的変化を示す旋回方向角速度dωが含まれる。姿勢検出部11は、各検出結果を計算機10に出力する。
 計算機10は、姿勢検出部11から入力される情報や、操作者による操作等に応じて演算処理を実行し、車輪駆動モータ4f、4rと、ステア駆動モータ5f、5rを制御する。計算機10は、例えばマイコン(Microcomputer:図示せず)であり、ROM(Read Only Memory)に記憶されたプログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が各種処理を実行するようになっている。
 <制御部の構成>
図2は、二輪移動体1が備える制御部の構成図である。図2に示すように、計算機10は、各種プログラムを記憶する記憶装置30と、記憶装置に記憶されるプログラムを実行する演算処理装置31とによって構成される。具体的には、記憶装置は、ハードディスクや、ROM、RAM等であり、演算処理装置は、CPUである。また図2では、演算処理装置31が実行するプログラムとして、目標値生成部21と、安定化動作生成部22と、機構制御部23と、を機能ブロック図として表している。
 目標値生成部21は、二輪移動体1の現在位置・向き、移動先である目標位置の座標、速度上限値、加速度上限値等に基づいて、二輪移動体1を移動させる際の軌道(x0t,y0t,ω0t)及び目標移動速度v0tを生成する。ここで、x0t,y0tは、二輪移動体1の重心XGの座標であり、ω0tは、二輪移動体1の旋回方向を表す角度である。
 前記した目標位置、速度上限値、及び加速度上限値は、予め記憶装置30に格納されている。二輪移動体1の現在位置及び向きに関しては、過去の移動履歴に基づいて算出してもよいし、外部から入力して記憶部に格納してもよい。
 目標値生成部21は、複数の時刻(現在時刻+kΔt:Δtは制御周期、kは自然数)と、各時刻における二輪移動体1の座標と、によって、前記した軌道を特定する。なお、目標移動速度v0tについても同様に特定される。
 目標値生成部21は、算出した軌道(x0t,y0t,ω0t)及び目標移動速度v0tを安定化動作生成部22に出力する。
 安定化動作生成部22は、目標値生成部91から入力される軌道(x0t,y0t,ω0t)及び目標移動速度v0tと、姿勢検出部11から入力される情報に対応して、ステア駆動モータ5f、rの目標ステア角度δf0、δr0と車輪駆動モータ6f、6rの駆動トルクτfo、τroを算出し機構制御部23に出力する。
 機構制御部23は、安定化動作生成部33から入力される情報と、前記した各エンコーダ(図示せず)に基づいて、ステア駆動モータ5f、4r及び車輪駆動モータ6f、6rを制御する。
 <目標値生成部の動作>
目標値生成部21は第一に目標地点に向かって,経路を設定する。経路設定では,記憶装置30に格納されている,経由点と目標地点を用いる。目標値を生成する際の開始位置(生成時の現在位置)と経由点及び目標地点は3次のスプライン曲線で滑らかに接続される。
 第二に速度計画を生成する。速度計画は記憶部に格納された速度上限値及び加速度上限値,生成した経路の経路長に基づき,台形速度パターンで計画される。
 最後に経路と速度計画より,制御周期ごとの位置を算出し,軌道(x0t,y0t,ω0t)及び目標移動速度v0t、また目標移動速度v0tと軌道に対してFrenet-Serretの公式を適用することで目標旋回角速度ω0tを生成する。
 <機構制御部の動作>
機構制御部23は前後ステア駆動モータ5f、rと前後車輪駆動モータ6f、rのエンコーダ情報、安定動作生成部22より取得した車輪空転情報に基づき現在位置を算出する。現在の速度vは数式1で計算される。
Figure JPOXMLDOC01-appb-I000001
 rは車輪半径である。
 現在位置(x,y)は計測を始めた地点での座標を(xo,yo)とし,座標xに平行な方向を旋回方向0とすると数式2で算出される。
Figure JPOXMLDOC01-appb-I000002
 数式2中のv(j)およびω(j)は過去の時刻j時点での速度、旋回方向である。また旋回方向ωは姿勢検出部11より直接取得でき,1輪のみ車輪空転が発生している場合では速度は接地車輪からのみ取得,2輪とも空転している場合では空転前の値を保持することで得られる。
 機構制御部23は安定化動作生成部22よりステア駆動モータ5f、rの目標ステア角度δf0、δr0と車輪駆動モータ6f、rの駆動トルクτfo、τroを取得し、それを各々のモータへ出力する。ステア駆動モータ5f、rはモータ自身で位置制御、車輪駆動モータ6f、rはモータ自身でトルク制御が可能である。
 <安定化動作生成部の構成>
図3は、安定化動作生成部22が行っている処理のフローチャートである。なお、図3に示す一連の処理は、計算機10の一回分の制御周期で実行される。
 ステップS22_1において、目標値生成部21より目標軌跡(x0t,y0t,ω0t)及び目標移動速度v0t、目標旋回角速度dω0t、機構制御部23よりステア角度δf、δr及び車輪角度ζf、ζr角速度dζf、dζr、現在位置(x、y)姿勢検出部11より二輪移動体1の進行方向への傾斜角θ、傾斜角速度dθ、左右方向への傾斜角φ、傾斜角速度dφ、旋回方向を示す角度ω、旋回方向角速度dωを取得する。
 ステップS22_2において、車輪が完全に接地している場合での目標値に等しい、基礎車輪目標トルクτfb、τrb、および基本ステア目標値δfb、δrbを算出する。
 基本ステア目標値δfb、δrbおよび基礎車輪目標トルクτfb、τrbは数式3より求められる。
Figure JPOXMLDOC01-appb-I000003
ω1、Kω2、Kvは予め設定された定数ゲインである。
 ステップS22_3において、車輪の空転状態を検出する。空転状態は一般にトラクションコントロールシステムの一部として知られている外乱オブサーバを用いて車輪の慣性モーメントと車輪トルクから推定される車輪の挙動と実際の車輪の挙動の差から検出できる。また、空転状態と判定した時刻において姿勢検出部11より取得された進行方向への角速度dθより車輪が路面上で空転しているのか,路面凸部により跳ね上げられ,路面から離れて空転しているかを図4のテーブルに基づき判断する。
 図4は、車輪の空転状態を判断する判断テーブルであり記憶装置30に記憶されている。図4中Cθは予め設定された値である。また進行方向傾斜角度θは前輪が上がる方向の傾斜を正とした。
ステップS22_4で空転状態に基づき以後の処理を分岐させる。表1に従い,車輪が空転していない場合は処理をS22_7へ、片輪のみ跳ね上げの場合は処理をS22_6へ、その他の場合は処理をS22_5へ処理を進める。
 ステップS22_5において、車輪のグリップが喪失し、かつ片輪のみが跳ね上げられていない場合は、一般に知られているトラクション制御方法に従い、ステア駆動モータ5f、r及び車輪4f、rの目標値を変更する。例えば,空転している車輪4の目標駆動トルクを0に近づけるように変更する、空転している車輪4に相当するステア駆動モータ5に対して、当該車輪4の回転面方向を、旋回方向角度ωおよび角速度dω、から算出される当該車輪4の対地方向に平行になるように目標ステア角度を徐々に変更する手法が知られている。
 ステップS22_6において、行う片輪跳ね上げ時の動作を図5のフローチャートを用いて説明する。
 S30_1において、車輪が跳ね上げられている場合は車輪接地までの時間tcを数式4に従って算出する。
Figure JPOXMLDOC01-appb-I000004
ここでθc、dθcは空転検出直後の進行方向への角度θ、角速度dθであり,αθは自律移動二輪車の接地している車輪を軸とした場合の前後傾斜方向の慣性モーメントである。
 ステップS30_2において跳ね上げられた車輪が接地時した場合の左右傾斜姿勢角度φA、旋回方向角度ωA、角速度dωA、経路偏差DAを算出する。算出には車輪が跳ね上がれた直後の左右方向角度φc,角速度dφc、旋回方向角度ωc,角速度dωcを用いて数式5を用いる。
Figure JPOXMLDOC01-appb-I000005
 ステップS30_3において跳ね上げられた車輪の目標ステア角度δAを算出する。算出は数式6に従う。
Figure JPOXMLDOC01-appb-I000006
ここでP1、P2、K1、K2は定数ゲインであり,P1、P2は空転車輪が前輪の場合と後輪の場合において符号が逆転する。また算出した目標ステア角度を空転した車輪の基本目標ステア角度に上書きし,片輪跳ね上げ時の動作生成が終了する。
 ステップS22_7において、通常走行時の動作生成として、車輪4f、rの目標駆動トルク、及びステア駆動モータ6f、rの目標ステア角度に変更を加えない。
 ステップS22_8において、モード別安定化動作から得られた全ての目標値を機構制御部23に出力する。
 <効果>
本実施形態によれば、路面の凹凸に乗り上げ、頻繁に車輪が路面と離れるような自律移動二輪車において、車輪が路面から離れている非グリップ期間を予測し、その予測期間に応じて、二輪移動車の経路ずれ、姿勢維持、に与える影響が少なくなるように前後輪のステア角を制御する。
 これにより、少なくともスリップと車輪が路面から離れている浮上状態に対して最適なステア操作が実現でき、姿勢安定性と経路追従性の2つの向上が行える。
 ≪第2実施形態≫
実施例1の片輪跳ね上げ時の動作生成において,片輪動作跳ね上げ時に接地車輪を旋回方向外側に旋回方向角速度dωが0になるようにステアを切る動作を行う。またこの時の数式5で行った旋回方向角度予測に対して切ったステアの分の補正を行う。
 <効果>
本実施形態によれば、片輪跳ね上げ時の車輪が接地した際の旋回方向ωと目標旋回角度ω0tの偏差が抑えられ、すべての車輪が接地した後の経路追従制御と姿勢安定化制御が早く収束し、安定した走行が実現できる。
 ≪第3実施形態≫
実施例1または2の片輪跳ね上げ時の動作生成において、空転車輪が前車輪4fの場合、車輪駆動モータ6rに対して進行方向に対して負のトルクを,空転車輪が後ろ車輪4rの場合では車輪駆動モータ6fに対して進行方向に対して正の方向のトルクを発生させるように指示する。
 <効果>
本実施形態によれば、片輪跳ね上げ時において車輪が接地するまでの時間をたんしゅつく、全ての偏差が抑えられ、すべての車輪が接地した後の経路追従制御と姿勢安定化制御が早く収束し、安定した走行が実現できる。
 以上のように本実施例では、車輪空転検知手段と車体姿勢検出手段を備え、車輪浮上状態検出とその浮上状態持続時時間を予測し、予測された車輪浮上状態持続時間に従い、車輪の駆動力およびステア角度を制御する。これによって、旋回中において路面の凹凸の上を走行した場合に発生する車輪の浮上状態が発生した際に,姿勢を安定させ,想定していた経路からのズレを抑えた走行を実現することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 1 二輪移動体
 2 上体
 3f、3r アーム
 4f、4r 車輪
 5f、5r ステア駆動モータ
 5f、6r 車輪駆動モータ
 5R,5L 脚
 10 計算機
 11 姿勢検出部

Claims (5)

  1.  上体と、
     前記上体の下方にアームを介して接続され、進行方向に対して前後に配置される2つの車輪と、
     前記2つの車輪それぞれを駆動する車輪駆動モータと、
     前記2つの車輪それぞれのステア角を調整するステア駆動モータと、
     前記上体の姿勢情報を検出する姿勢検出部と、
     旋回動作中に前記2つの車輪のうち少なくとも一方の車輪の空転を検出すると、前記姿勢検出部により検出された姿勢情報に基づいて、前記2つの車輪のうちいずれかの車輪に跳ね上がりが発生しているかを判断し、跳ね上がりが発生していると判断した場合には、前記姿勢情報に基づいて車輪が接地するまでの時間を求め、当該時間に応じて車輪接地時に姿勢維持に与える影響を補償するよう前記車輪駆動モータ、及び、前記ステア駆動モータを制御する計算機と、
     を備える移動体。
  2.  請求項1において、
     前記計算機は、前記2つの車輪のうちいずれか片方の車輪のみの空転を検知し、かつ、
    進行方向に対する傾斜角度の角速度が所定の値以上であった場合に、片方の車輪の跳ね上がりによる姿勢維持の影響を補償するよう前記車輪駆動モータ、及び、前記ステア駆動モータを制御することを特徴とする移動体。
  3.  請求項2において、
     前記計算機は、前記2つの車輪の両方の空転を検出した場合、または、前記2つの車輪のうち少なくとも一方の車輪の空転を検出し、かつ、進行方向に対する傾斜角度の角速度が所定の値よりも小さい場合には、空転している車輪の目標駆動トルクをゼロに近づけるよう前記車輪駆動モータを制御することを特徴とする移動体。
  4.  請求項1において、
     前記計算機は、接地している車輪を旋回方向外側に切るよう前記ステア駆動モータを制御することを特徴とする移動体。
  5.  請求項1において、
     前記計算機は、
     前記2つの車輪のうち前方の車輪に跳ね上がりが発生した場合には、後方の車輪に進行方向に対して負のトルクを発生するよう前記車輪駆動モータを制御し、
     前記2つの車輪のうち後方の車輪に跳ね上がりが発生した場合には、前方の車輪に進行方向に対して正のトルクを発生するよう前記車輪駆動モータを制御することを特徴とする移動体。
PCT/JP2014/069994 2014-07-30 2014-07-30 移動体 WO2016016960A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069994 WO2016016960A1 (ja) 2014-07-30 2014-07-30 移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069994 WO2016016960A1 (ja) 2014-07-30 2014-07-30 移動体

Publications (1)

Publication Number Publication Date
WO2016016960A1 true WO2016016960A1 (ja) 2016-02-04

Family

ID=55216905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069994 WO2016016960A1 (ja) 2014-07-30 2014-07-30 移動体

Country Status (1)

Country Link
WO (1) WO2016016960A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016001843A1 (de) * 2016-02-18 2017-08-24 Technische Hochschule Köln Zweirad
CN109229229A (zh) * 2018-10-23 2019-01-18 深圳市喜开壹科技有限公司 两轮车
WO2020016675A1 (ja) * 2018-06-21 2020-01-23 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 制御装置及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145207A (ja) * 1999-11-16 2001-05-25 Hitachi Ltd 電気車の制御装置
JP2004094417A (ja) * 2002-08-30 2004-03-25 Daifuku Co Ltd 走行体の走行制御方法
JP2007318941A (ja) * 2006-05-26 2007-12-06 Toyota Motor Corp 走行装置及びその制御方法
JP2009159792A (ja) * 2007-12-27 2009-07-16 Yamaha Motor Co Ltd 車両の駆動装置、及びそれを備える鞍乗型車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145207A (ja) * 1999-11-16 2001-05-25 Hitachi Ltd 電気車の制御装置
JP2004094417A (ja) * 2002-08-30 2004-03-25 Daifuku Co Ltd 走行体の走行制御方法
JP2007318941A (ja) * 2006-05-26 2007-12-06 Toyota Motor Corp 走行装置及びその制御方法
JP2009159792A (ja) * 2007-12-27 2009-07-16 Yamaha Motor Co Ltd 車両の駆動装置、及びそれを備える鞍乗型車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016001843A1 (de) * 2016-02-18 2017-08-24 Technische Hochschule Köln Zweirad
DE102016001843B4 (de) 2016-02-18 2018-05-09 Technische Hochschule Köln Zweirad
WO2020016675A1 (ja) * 2018-06-21 2020-01-23 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 制御装置及び制御方法
US11603091B2 (en) 2018-06-21 2023-03-14 Robert Bosch Gmbh Controller and control method
CN109229229A (zh) * 2018-10-23 2019-01-18 深圳市喜开壹科技有限公司 两轮车

Similar Documents

Publication Publication Date Title
CN111655346B (zh) 遥控车辆
JP2016505447A (ja) ダブルジャイロスコープ装置を備える自動二輪車の走行を安定させるための方法および装置
US8935050B2 (en) Moving body control system, moving body control method, and non-transitory computer readable medium storing control program
US8738259B2 (en) Movable body, travel device, and movable body control method
US9045157B2 (en) Electric power steering apparatus
US9889743B2 (en) Vehicle control device and vehicle control method
EP2783959B1 (en) Inverted pendulum type vehicle
JP2008189089A (ja) 移動体及び移動体の制御方法
JP4625859B2 (ja) 倒立振子型移動機構
JP5913766B2 (ja) 姿勢制御付き無人二輪車
JPWO2007086176A1 (ja) 二輪車の転倒防止制御装置
JP5919889B2 (ja) 車両姿勢制御装置
JPWO2017109615A1 (ja) ウイリー制御装置及びその制御方法
WO2022059714A1 (ja) 二輪車
JP6382761B2 (ja) 自走車両
WO2016016960A1 (ja) 移動体
JP2012201254A (ja) 2輪車の姿勢制御システム
JP2009113729A (ja) 車両制御装置
US10358137B2 (en) Vehicle control device and vehicle control method
JP5907037B2 (ja) 移動体
JP4264399B2 (ja) 無人搬送車
JP2004338507A (ja) 自動二輪車
JP2012051460A (ja) 車両
JP6225869B2 (ja) 倒立二輪型移動体システム
JP2006096230A (ja) 車両運動制御装置および車両運動制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP