WO2016015191A1 - 一种氧化锆陶瓷结构件及其成型方法 - Google Patents

一种氧化锆陶瓷结构件及其成型方法 Download PDF

Info

Publication number
WO2016015191A1
WO2016015191A1 PCT/CN2014/083115 CN2014083115W WO2016015191A1 WO 2016015191 A1 WO2016015191 A1 WO 2016015191A1 CN 2014083115 W CN2014083115 W CN 2014083115W WO 2016015191 A1 WO2016015191 A1 WO 2016015191A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia ceramic
structural member
insert
ceramic structural
zirconia
Prior art date
Application number
PCT/CN2014/083115
Other languages
English (en)
French (fr)
Inventor
徐逢
黄平柳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/083115 priority Critical patent/WO2016015191A1/zh
Priority to CN201480003487.7A priority patent/CN105473313B/zh
Publication of WO2016015191A1 publication Critical patent/WO2016015191A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites

Definitions

  • the invention relates to the technical field of ceramic products, in particular to a zirconia ceramic structural member and a forming method thereof. Background technique
  • Zirconium oxide ceramic is a ceramic structural part which is completed by injection molding and sintering, and has high toughness, high bending strength, high wear resistance, excellent heat insulation performance and thermal expansion coefficient. Close to steel and other advantages, it is widely used in the field of structural ceramics, especially in structural parts such as traditional high-end watch cases, smart watches and smart wrist shells.
  • the ceramic structural parts have the following problems in the design and production process: (1) For some complicated reverse buckle positions in the ceramic structural parts, the mold cannot be directly realized; (2) For the relatively simple reverse buckle position It can be realized by mould row decoration, but the row position modification is more restrictive, and often requires computer numerical control machine tool to assist the realization.
  • computer digital control machine tools are difficult to process, resulting in ceramic structural parts.
  • the molding process is complicated, which reduces the production efficiency of ceramic structural parts. Summary of the invention
  • the first aspect of the embodiments of the present invention provides a method for forming a zirconia ceramic structural member, which is used to solve the problem that the complicated reverse buckle position of the zirconia ceramic structural member in the prior art is difficult to be realized by the mold and is simply reversed.
  • the molding process is complicated, the production efficiency of ceramic structural parts is low, and the problem of zirconia ceramic structural parts that can achieve certain specific functions is difficult to obtain.
  • an embodiment of the present invention provides a method for forming a zirconia ceramic structural member, comprising the following steps: Providing an insert; the insert includes a body portion, and one or more protrusions protruding from a surface of the body portion;
  • an injection mold comprising a hollow cavity body and one or more positioning holes, the insert being placed in the hollow cavity of the injection mold, and the protrusion of the insert Inserting into the positioning hole of the injection mold;
  • the insert in the zirconia ceramic structural member body is melted during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic
  • the structural member has one or more reversed positions, or
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and insert.
  • the material of the insert is solid paraffin.
  • the material of the insert has a melting point of 2500 ° C or higher.
  • the material of the insert is molybdenum or tungsten.
  • the zirconia ceramic billet in the injection molding, is injected into the mold under a temperature of 24 ton - 50 ton (T) and a temperature of 140 ° C - 280 °C.
  • the zirconia ceramic billet comprises zirconia ceramic powder, a stabilizer, and a binder.
  • the sintering time is 2-3 days.
  • the insert is obtained by 3D printing or computer numerically controlled machine tool machining (CNC).
  • a method for molding a zirconia ceramic structural member provided by the first aspect of the present invention by sintering the zirconia ceramic structural member body formed by the insert and the zirconia ceramic blank, using the material melting point of the insert and the zirconia
  • the principle of different melting points of ceramic materials gives zirconia ceramic structural members.
  • the material of the insert has a melting point lower than the sintering temperature
  • the insert in the zirconia ceramic structural body body is melted to obtain a zirconia ceramic structural member, the zirconia ceramic structural member having one or more
  • the modification of the row position and the assistance of the CNC are not required in the molding process, the molding process is simple, and the production efficiency is high.
  • the invention solves the problems that the complicated reverse buckle position in the ceramic structural member in the prior art is difficult to be realized by the mold, the simple reverse buckle forming process is complicated, and the production efficiency of the ceramic structural member is low.
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and an insert, which can improve the strength and rigidity of the zirconia ceramic structural member, and the obtained zirconia ceramic structural member can realize a specific function such as an antenna function and connection with other parts.
  • an embodiment of the present invention provides a zirconia ceramic structural member produced by the molding method according to the first aspect.
  • the zirconia ceramic structural member has one or more inverted positions.
  • the zirconia ceramic structural member is a combination of zirconia ceramic and an insert.
  • a zirconia ceramic structural member is obtained by sintering a zirconia ceramic structural member body formed by an insert and a zirconia ceramic blank to obtain a zirconia having an inverted position.
  • a method for molding a zirconia ceramic structural member provided by the first aspect of the present invention by sintering the zirconia ceramic structural member body formed by the insert and the zirconia ceramic blank, using the melting point of the material of the insert.
  • the principle of different melting point of the material of the zirconia ceramic is obtained to obtain a zirconia ceramic structural member.
  • the insert in the zirconia ceramic structural body body is melted to obtain a zirconia ceramic structural member, the zirconia ceramic structural member having one or more In the forming process of the zirconia ceramic structural member, the modification of the row position and the assistance of the CNC are not required, and the molding process is simple and the production efficiency is high.
  • the invention solves the problems that the complicated reverse buckle position in the ceramic structural member in the prior art is difficult to be realized by the mold, the simple reverse buckle forming process is complicated, and the ceramic structural member has low production efficiency.
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and an insert, which can improve the strength and rigidity of the zirconia ceramic structural member, and the obtained zirconia ceramic structural member can realize a specific function such as an antenna function and connection with other parts.
  • a zirconia ceramic structural member provided by the second aspect of the present invention is obtained by sintering a zirconia ceramic structural member body formed by an insert and a zirconia ceramic blank to obtain a zirconia ceramic structural member having an inverted position or Zirconia ceramic structural parts that can perform specific functions such as antenna function and connection.
  • FIG. 1 is a flow chart of forming a zirconia ceramic structural member according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing a molding process of a zirconia ceramic structural member according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing a molding process of a zirconia ceramic structural member according to Embodiment 2 of the present invention.
  • a method for molding a zirconia ceramic structural member provided by the first aspect of the present invention by sintering the zirconia ceramic structural member body formed by the insert and the zirconia ceramic blank, using the material melting point of the insert and the zirconia
  • the principle of different melting points of ceramic materials gives zirconia ceramic structural members.
  • the material of the insert has a melting point lower than the sintering temperature
  • the insert in the zirconia ceramic structural body body is melted to obtain a zirconia ceramic structural member, the zirconia ceramic structural member having one or more
  • the modification of the row position and the assistance of the CNC are not required in the molding process, the molding process is simple, and the production efficiency is high.
  • the invention solves the problems that the complicated reverse buckle position in the ceramic structural member in the prior art is difficult to be realized by the mold, the simple reverse buckle forming process is complicated, and the production efficiency of the ceramic structural member is low.
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and an insert, which can improve the strength and rigidity of the zirconia ceramic structural member, and the obtained zirconia ceramic structural member can realize a specific function such as an antenna function and connection with other parts.
  • an embodiment of the invention provides a method for forming a zirconia ceramic structural member, comprising the steps of:
  • the insert includes a body portion, and one or more protrusions protruding from a surface of the body portion;
  • an injection mold comprising a hollow cavity body and one or more positioning holes, the insert being placed in the hollow cavity of the injection mold, and the protrusion of the insert Insert the said — — in the positioning hole of the injection mold;
  • the insert in the zirconia ceramic structural member body is melted during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic
  • the structural member has one or more reversed positions, or
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and insert.
  • the material of the insert is solid paraffin.
  • the solid paraffin has a melting point of 47 ° C to 64 ° C and a boiling point of 322 ° C.
  • the sintering temperature is higher than the boiling point of the material of the insert, and the insert will directly vaporize and disappear during the sintering process.
  • the material of the insert has a melting point of 2500 ° C or higher.
  • the insert is not easily damaged during the sintering process.
  • the material of the insert is molybdenum or tungsten.
  • the high hardness of the molybdenum and tungsten can increase the strength and rigidity of the zirconia ceramic structural member.
  • the zirconia ceramic billet comprises zirconia, a stabilizer and a binder.
  • the stabilizer and the binder is not particularly limited and may be conventionally used.
  • the stabilizer may be antimony trioxide
  • the binder may be polyethylene.
  • the zirconia ceramic blank is in the injection molding process.
  • the sintering time is 2-3 days.
  • the insert is machined by 3D printing or computer numerically controlled machine tool.
  • a method for molding a zirconia ceramic structural member provided by the first aspect of the present invention by sintering the zirconia ceramic structural member body formed by the insert and the zirconia ceramic blank, using the material melting point of the insert and the zirconia
  • the principle of different melting points of ceramic materials gives zirconia ceramic structural members.
  • the material of the insert has a melting point lower than the sintering temperature
  • the insert in the zirconia ceramic structural body body is melted to obtain a zirconia ceramic structural member, the zirconia ceramic structural member having one or more
  • the boring of the zirconia ceramic structural parts does not require the modification of the row position and the assistance of the CNC, the molding process is simple, and the production efficiency of the zirconia ceramic structural parts is high.
  • the invention solves the problems that the complicated reverse buckle position in the ceramic structural parts in the prior art is difficult to be realized by the mold, the simple reverse buckle forming process is complicated, and the ceramic structural parts are inefficiently produced.
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and an insert, which can improve the strength and rigidity of the zirconia ceramic structural member, and the obtained zirconia ceramic structural member can realize a specific function such as an antenna function and connection with other parts.
  • an embodiment of the present invention provides a zirconia ceramic structural member produced by the molding method according to the first aspect.
  • the zirconia ceramic structural member has one or more inverted positions.
  • the zirconia ceramic structural member is a combination of zirconia ceramic and an insert.
  • a zirconia ceramic structural member provided by the second aspect of the present invention is obtained by sintering a zirconia ceramic structural member body formed by an insert and a zirconia ceramic blank to obtain a zirconia ceramic structural member having an inverted position or Zirconia ceramic structural parts that can perform specific functions such as antenna function and connection.
  • a method for molding a zirconia ceramic structural member provided by the first aspect of the present invention by sintering the zirconia ceramic structural member body formed by the insert and the zirconia ceramic blank, using the melting point of the material of the insert.
  • the principle of different melting point of the material of the zirconia ceramic is obtained to obtain a zirconia ceramic structural member.
  • the insert in the zirconia ceramic structural body body is melted to obtain a zirconia ceramic structural member, the zirconia ceramic structural member having one or more
  • the reverse position of the zirconia ceramic structural member does not require the modification of the row position and the assistance of the CNC, the molding process is simple, and the production efficiency of the zirconia ceramic structural member is high.
  • the invention solves the problems that the complicated reverse buckle position in the ceramic knot member in the prior art is difficult to be realized by the mold, the simple reverse buckle forming process is complicated, and the ceramic structural member has low production efficiency.
  • the zirconia ceramic blank is combined with the insert during the sintering process to obtain a zirconia ceramic structural member, the zirconia ceramic structure
  • the piece is a combination of zirconia ceramic and an insert, which can improve the strength and rigidity of the zirconia ceramic structural member, and the obtained zirconia ceramic structural member can realize a specific function such as an antenna function and connection with other parts.
  • a zirconia ceramic structural member provided by the second aspect of the present invention is obtained by sintering a zirconia ceramic structural member body formed by an insert and a zirconia ceramic blank to obtain a zirconia ceramic structural member having an inverted position or Zirconia ceramic structural members with high strength and stiffness and specific functions such as antenna function and connection.
  • the embodiment provides a method for molding a zirconia ceramic structural member, comprising the following steps:
  • the insert is made by computer numerically controlled machine tool, the insert material is solid paraffin, the insert comprises a main body portion, and a convex portion protruding from the surface of the main body portion;
  • the zirconia ceramic structural member body is sintered at a sintering temperature of 1300 ° C, and the insert is vaporized to form a zirconia ceramic structural member.
  • the zirconia ceramic structural member has an inverted position.
  • FIG. 1 is a flow chart showing a molding process of a zirconia ceramic structural member according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing a molding process of a zirconia ceramic structural member according to Embodiment 1 of the present invention, wherein "a” is a main body portion of the insert, " b" is the convex portion of the insert.
  • a is a main body portion of the insert
  • b is the convex portion of the insert.
  • the embodiment provides a method for forming a zirconia ceramic structural member, comprising the following steps: (1) manufacturing an insert by computer numerical control of a machine tool, the material of the insert being metal molybdenum, the insert comprising a main body portion, and a raised portion protruding from a surface of the body portion;
  • the zirconia ceramic structural member body is sintered at a sintering temperature of 1300 ° C to form a zirconia ceramic structural member. Since the material of the insert is molybdenum having a melting point of 2500 ° C or higher, the insert does not melt during the sintering process, and the zirconia ceramic billet is combined with the insert to obtain a zirconia ceramic structural member, and the zirconia ceramic structural member is an insert. A combination with zirconia ceramics.
  • FIG. 3 is a schematic view showing a molding process of a zirconia ceramic structural member according to Embodiment 2 of the present invention, and it can be seen from FIG. 3 that the zirconia ceramic blank and the insert are combined, and the obtained zirconia ceramic structural member is an insert and the same.
  • a combination of zirconia ceramics, the insert can improve the strength and rigidity of the zirconia ceramic structural member, and the obtained zirconia ceramic structural member has a specific function such as an antenna and connection with other parts.
  • the method for forming a zirconia ceramic structural member provided by the embodiment of the present invention can realize the preparation of a zirconia ceramic structural member having a complex inverted buckle position by using the principle that the melting point of the material of the insert is different from the melting point of the material of the zirconia ceramic. It can realize the preparation of zirconia ceramic structural parts with specific functions such as antenna function and connection with other parts, simple molding process, high production efficiency of zirconia ceramic structural parts, and solve the complicated inversion of ceramic structural parts in the prior art.
  • the buckle position is difficult to achieve through the mold, the simple reverse buckle forming process is complicated, and the production efficiency of the ceramic structural member is low, and it is difficult to obtain the problem of the zirconia ceramic structural member that can achieve certain specific functions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种氧化锆陶瓷结构件的成型方法,包括以下步骤:提供一嵌件;所述嵌件包括一主体部,及一个或多个突出于所述主体部表面的凸起部;提供一注塑模具,所述注塑模具包括一中空腔体,及一个或多个定位孔,将所述嵌件置于注塑模具的中空腔体中,并将所述嵌件的凸起部插入模具的定位孔中;以注塑成型方式于所述中空腔体中填充氧化锆陶瓷坯料,所述氧化锆陶瓷坯料包覆所述嵌件的主体部,形成一氧化锆陶瓷结构件坯体;在1200℃-1500℃烧结所述氧化锆陶瓷结构件坯体,形成所述氧化锆陶瓷结构件。氧化锆陶瓷结构件的成型方法解决了现有技术中陶瓷结构件中复杂倒扣位难以通过模具实现、简单倒扣位成型过程复杂和生产效率低的问题。

Description

一 一 一种氧化锆陶瓷结构件及其成型方法 技术领域
本发明涉及陶瓷制品技术领域,特别是涉及一种氧化锆陶瓷结构件及其成 型方法。 背景技术
氧化锆陶瓷是以氧化锆粉体为基体,经过注塑和烧结等工艺完成的陶瓷结 构件,由于氧化锆陶瓷具有高韧性、 高抗弯强度、 高耐磨性、 优异的隔热性能 和热膨胀系数接近于钢等优点,被广泛应用于结构陶瓷领域,特别被广泛用于 传统高档手表表壳、智能手表和智能手环的外壳等结构件中。但是现有技术中 陶瓷结构件在设计及生产的过程中存在以下问题: ( 1 )对于陶瓷结构件中一 些复杂的倒扣位,模具上不能直接实现; ( 2 )对于比较简单的倒扣位,可通 过模具行位装饰来实现,但行位修饰限制较多,且常常需要计算机数字控制机 床辅助实现,但由于氧化锆陶瓷硬度高,计算机数字控制机床加工难度较大, 导致陶瓷结构件的成型过程复杂,降低了陶瓷结构件的生产效率。 发明内容
有鉴于此,本发明实施例第一方面提供了一种氧化锆陶瓷结构件的成型方 法,用以解决现有技术中氧化锆陶瓷结构件中复杂倒扣位难以通过模具实现、 简单倒扣位成型过程复杂,陶瓷结构件生产效率低的问题,以及难以得到可实 现某些特定功能的氧化锆陶瓷结构件的问题。
第一方面,本发明实施例提供了一种氧化锆陶瓷结构件的成型方法,包括 以下步骤: — — 提供一嵌件;所述嵌件包括一主体部,及一个或多个突出于所述主体部表 面的凸起部;
提供一注塑模具,所述注塑模具包括一中空腔体,及一个或多个定位孔, 将所述嵌件置于所述注塑模具的中空腔体中 ,并将所述嵌件的凸起部插入所述 注塑模具的定位孔中 ;
以注塑成型的方式于所述中空腔体中填充氧化锆陶瓷坯料,所述氧化锆陶 瓷坯料包覆所述嵌件的主体部,形成一氧化锆陶瓷结构件坯体;
在 1200°C-1500°C的烧结温度下烧结所述氧化锆陶瓷结构件坯体,形成氧 化锆陶瓷结构件;
当所述嵌件的材料熔点低于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷结构件坯体中的嵌件熔化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件具有一个或多个倒扣位,或
当所述嵌件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷坯料与所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件为氧化锆陶瓷与嵌件的组合体。
本发明实施方式中 ,所述嵌件的材料为固体石蜡。
本发明实施方式中 ,所述嵌件的材料熔点为 2500°C以上。
本发明实施方式中 ,所述嵌件的材料为钼或钨。
本发明实施方式中 ,所述注塑成型时,所述氧化锆陶瓷坯料在 24 吨 -50 吨( T )压力和 140°C-280°C温度条件下注射进入模具。
本发明实施方式中 ,所述氧化锆陶瓷坯料包括氧化锆陶瓷粉、稳定剂和粘 结剂。 — — 本发明实施方式中 ,烧结的时间为 2-3天。
本发明实施方式中 ,所述嵌件通过 3D 打印或计算机数字控制机床加工 ( CNC )得到。
本发明实施例第一方面提供的一种氧化锆陶瓷结构件的成型方法,通过将 嵌件和氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,利用嵌件的材 料熔点和氧化锆陶瓷的材料熔点不同的原理,得到氧化锆陶瓷结构件。当所述 嵌件的材料熔点低于所述烧结温度时,所述氧化锆陶瓷结构件坯体中的嵌件熔 化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件具有一个或多个倒扣位, 所述氧化锆陶瓷结构件成型过程中不需要行位修饰和 CNC的辅助,成型过程 简单,生产效率较高。解决了现有技术中陶瓷结构件中复杂倒扣位难以通过模 具实现、简单倒扣位成型过程复杂和陶瓷结构件生产效率低的问题。当所述嵌 件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化锆陶瓷坯料与 所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件为氧化 锆陶瓷与嵌件的组合体,所述嵌件可以提高氧化锆陶瓷结构件的强度和刚度, 制得的氧化锆陶瓷结构件可以实现天线功能和与其它零件的连接等特定功能。
第二方面,本发明实施例提供了一种氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件为按照第一方面所述的成型方法制得。
本发明实施方式中 ,所述氧化锆陶瓷结构件具有一个或多个倒扣位。
本发明实施方式中 ,所述氧化锆陶瓷结构件为氧化锆陶瓷与嵌件的组合 体。
本发明实施例第二方面提供的一种氧化锆陶瓷结构件,通过将嵌件和氧化 锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,得到具有倒扣位的氧化锆 — — 陶瓷结构件或可以实现天线功能和连接等特定功能的氧化锆陶瓷结构件。
综上,本发明实施例第一方面提供的一种氧化锆陶瓷结构件的成型方法, 通过将嵌件和氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,利用嵌 件的材料熔点和氧化锆陶瓷的材料熔点不同的原理,得到氧化锆陶瓷结构件。 当所述嵌件的材料熔点低于所述烧结温度时,所述氧化锆陶瓷结构件坯体中的 嵌件熔化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件具有一个或多个 倒扣位,所述氧化锆陶瓷结构件成型过程中不需要行位修饰和 CNC的辅助, 成型过程简单,生产效率较高。解决了现有技术中陶瓷结构件中复杂倒扣位难 以通过模具实现、 简单倒扣位成型过程复杂和陶瓷结构件生产效率低的问题。 当所述嵌件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化锆陶 瓷坯料与所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构 件为氧化锆陶瓷与嵌件的组合体,所述嵌件可以提高氧化锆陶瓷结构件的强度 和刚度,制得的氧化锆陶瓷结构件可以实现天线功能和与其它零件的连接等特 定功能。本发明实施例第二方面提供的一种氧化锆陶瓷结构件,通过将嵌件和 氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,得到具有倒扣位的氧 化锆陶瓷结构件或可以实现天线功能和连接等特定功能的氧化锆陶瓷结构件。
本发明实施例的优点将会在下面的说明书中部分阐明 ,一部分根据说明书 是显而易见的,或者可以通过本发明实施例的实施而获知。 附图说明
图 1为本发明实施例 1的氧化锆陶瓷结构件的成型流程图 ;
图 2为本发明实施例 1的氧化锆陶瓷结构件的成型过程示意图 ; 图 3为本发明实施例 2的氧化锆陶瓷结构件的成型过程示意图。 — — 具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出 ,对于本技术领域的 普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改 进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
本发明实施例第一方面提供的一种氧化锆陶瓷结构件的成型方法,通过将 嵌件和氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,利用嵌件的材 料熔点和氧化锆陶瓷的材料熔点不同的原理,得到氧化锆陶瓷结构件。当所述 嵌件的材料熔点低于所述烧结温度时,所述氧化锆陶瓷结构件坯体中的嵌件熔 化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件具有一个或多个倒扣位, 所述氧化锆陶瓷结构件成型过程中不需要行位修饰和 CNC的辅助,成型过程 简单,生产效率较高。解决了现有技术中陶瓷结构件中复杂倒扣位难以通过模 具实现、简单倒扣位成型过程复杂和陶瓷结构件生产效率低的问题。当所述嵌 件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化锆陶瓷坯料与 所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件为氧化 锆陶瓷与嵌件的组合体,所述嵌件可以提高氧化锆陶瓷结构件的强度和刚度, 制得的氧化锆陶瓷结构件可以实现天线功能和与其它零件的连接等特定功能。
第一方面,本发明实施例提供了一种氧化锆陶瓷结构件的成型方法,包括 以下步骤:
提供一嵌件;所述嵌件包括一主体部,及一个或多个突出于所述主体部表 面的凸起部;
提供一注塑模具,所述注塑模具包括一中空腔体,及一个或多个定位孔, 将所述嵌件置于所述注塑模具的中空腔体中 ,并将所述嵌件的凸起部插入所述 — — 注塑模具的定位孔中 ;
以注塑成型的方式于所述中空腔体中填充氧化锆陶瓷坯料,所述氧化锆陶 瓷坯料包覆所述嵌件的主体部,形成一氧化锆陶瓷结构件坯体;
在 1200°C-1500°C的烧结温度下烧结所述氧化锆陶瓷结构件坯体,形成氧 化锆陶瓷结构件;
当所述嵌件的材料熔点低于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷结构件坯体中的嵌件熔化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件具有一个或多个倒扣位,或
当所述嵌件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷坯料与所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件为氧化锆陶瓷与嵌件的组合体。
优选的 ,在本发明实施方式中 ,所述嵌件的材料为固体石蜡。 所述固体石 蜡的熔点为 47°C-64°C ,沸点为 322°C ,所述烧结温度高于嵌件的材料沸点, 在所述烧结过程中 ,所述嵌件会直接气化消失。
优选的 ,在本发明实施方式中 ,所述嵌件的材料熔点为 2500°C以上。 所 述嵌件在烧结过程中不容易损坏。
优选的 ,在本发明实施方式中 ,所述嵌件的材料为钼或钨。所述钼和钨硬 度较高,能够提高氧化锆陶瓷结构件的强度和刚度。
优选的 ,在本发明实施方式中 ,所述氧化锆陶瓷坯料包括氧化锆、 稳定剂 和粘结剂。
所述稳定剂和粘结剂的选择不作特殊限定,现有常规使用的均可,例如所 述稳定剂可以是三氧化二钇,所述粘结剂可以是聚乙烯。 — — 优选的,在本发明实施方式中 ,所述注塑成型时,所述氧化锆陶瓷坯料在
24-50吨 (T)压力和 140°C-280°C温度条件下注射进入模具。
优选的,在本发明实施方式中 ,烧结的时间为 2-3天。
优选的,在本发明实施方式中 ,所述嵌件通过 3D打印或计算机数字控制 机床加工得到。
本发明实施例第一方面提供的一种氧化锆陶瓷结构件的成型方法,通过将 嵌件和氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,利用嵌件的材 料熔点和氧化锆陶瓷的材料熔点不同的原理,得到氧化锆陶瓷结构件。当所述 嵌件的材料熔点低于所述烧结温度时,所述氧化锆陶瓷结构件坯体中的嵌件熔 化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件具有一个或多个倒扣位, 氧化锆陶瓷结构件成型过程中不需要行位修饰和 CNC的辅助,成型过程简单, 氧化锆陶瓷结构件生产效率较高。解决了现有技术中陶瓷结构件中复杂倒扣位 难以通过模具实现、 简单倒扣位成型过程复杂和陶瓷结构件生产效率低的问 题。 当所述嵌件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷坯料与所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件为氧化锆陶瓷与嵌件的组合体,所述嵌件可以提高氧化锆陶瓷结构件的 强度和刚度,制得的氧化锆陶瓷结构件可以实现天线功能和与其它零件的连接 等特定功能。
第二方面,本发明实施例提供了一种氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件为按照第一方面所述的成型方法制得。
优选的,在本发明实施方式中 ,所述氧化锆陶瓷结构件具有一个或多个倒 扣位。 — — 优选的,在本发明实施方式中 ,所述氧化锆陶瓷结构件为氧化锆陶瓷与嵌 件的组合体。
本发明实施例第二方面提供的一种氧化锆陶瓷结构件,通过将嵌件和氧化 锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,得到具有倒扣位的氧化锆 陶瓷结构件或可以实现天线功能和连接等特定功能的氧化锆陶瓷结构件。
综上,本发明实施例第一方面提供的一种氧化锆陶瓷结构件的成型方法, 通过将嵌件和氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结,利用嵌 件的材料熔点和氧化锆陶瓷的材料熔点不同的原理,得到氧化锆陶瓷结构件。 当所述嵌件的材料熔点低于所述烧结温度时,所述氧化锆陶瓷结构件坯体中的 嵌件熔化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷结构件具有一个或多个 倒扣位,所述氧化锆陶瓷结构件成型过程中不需要行位修饰和 CNC的辅助, 成型过程简单,氧化锆陶瓷结构件的生产效率较高。解决了现有技术中陶瓷结 构件中复杂倒扣位难以通过模具实现、简单倒扣位成型过程复杂和陶瓷结构件 生产效率低的问题。当所述嵌件的材料熔点高于所述烧结温度时,所述烧结过 程中 ,所述氧化锆陶瓷坯料与所述嵌件结合在一起,得到氧化锆陶瓷结构件, 所述氧化锆陶瓷结构件为氧化锆陶瓷与嵌件的组合体,所述嵌件可以提高氧化 锆陶瓷结构件的强度和刚度,制得的氧化锆陶瓷结构件可以实现天线功能和与 其它零件的连接等特定功能。本发明实施例第二方面提供的一种氧化锆陶瓷结 构件,通过将嵌件和氧化锆陶瓷坯料形成的氧化锆陶瓷结构件坯体进行烧结, 得到具有倒扣位的氧化锆陶瓷结构件或具有高强度和刚度以及可以实现天线 功能和连接等特定功能的氧化锆陶瓷结构件。
下面分多个实施例对本发明实施例进行进一步的说明。本发明实施例不限 — — 定于以下的具体实施例。 在不变主权利的范围内 ,可以适当的进行变更实施。
实施例一
本实施例提供一种氧化锆陶瓷结构件的成型方法,包括以下步骤:
( 1 )通过计算机数字控制机床加工制得嵌件,嵌件的材料为固体石蜡, 该嵌件包括一主体部,和一个突出于该主体部表面的凸起部;
( 2 )提供一注塑模具,该注塑模具包括一中空腔体和一个定位孔,将嵌 件置于注塑模具的中空腔体中 ,并将嵌件的凸起部插入注塑模具的定位孔中 ; 然后合模,将氧化锆、稳定剂和粘结剂混合在一起形成浆料,得到氧化锆陶瓷 坯料,以注塑成型的方式于中空腔体中填充氧化锆陶瓷坯料,氧化锆陶瓷坯料 包覆嵌件的主体部,形成一氧化锆陶瓷结构件坯体,然后进行开模,将氧化锆 陶瓷结构件坯体和模具分离;
( 3 )在 1300°C的烧结温度下烧结氧化锆陶瓷结构件坯体,嵌件气化后, 形成氧化锆陶瓷结构件。 该氧化锆陶瓷结构件具有一个倒扣位。
图 1为本发明实施例 1的氧化锆陶瓷结构件的成型流程图 ,图 2为本发明 实施例 1的氧化锆陶瓷结构件的成型过程示意图 ,其中 "a"为嵌件的主体部 ,"b" 为嵌件的凸起部,在烧结过程中 ,由于烧结温度高于固体石蜡的沸点,嵌件气 化消失,制得的氧化锆陶瓷结构件具有倒扣位结构,成型过程简单。
实施例二
本实施例提供一种氧化锆陶瓷结构件的成型方法,包括以下步骤: ( 1 )通过计算机数字控制机床加工制得嵌件,嵌件的材料为金属钼,该 嵌件包括一主体部,和一个突出于该主体部表面的凸起部;
( 2 )提供一注塑模具,该注塑模具包括一中空腔体和一个定位孔,将嵌 — — 件置于注塑模具的中空腔体中 ,并将嵌件的凸起部插入注塑模具的定位孔中 ; 然后合模,将氧化锆、稳定剂和粘结剂混合在一起形成浆料,得到氧化锆陶瓷 坯料,以注塑成型的方式于中空腔体中填充氧化锆陶瓷坯料,氧化锆陶瓷坯料 包覆嵌件的主体部,形成一氧化锆陶瓷结构件坯体,然后进行开模,将氧化锆 陶瓷结构件坯体和模具分离;
( 3 )在 1300°C的烧结温度下烧结氧化锆陶瓷结构件坯体,形成氧化锆陶 瓷结构件。 由于嵌件的材料为熔点在 2500°C以上的钼,嵌件在烧结过程不熔 化,氧化锆陶瓷坯料与嵌件结合在一起,得到氧化锆陶瓷结构件,该氧化锆陶 瓷结构件为嵌件与氧化锆陶瓷的组合体。
图 3为本发明实施例 2的氧化锆陶瓷结构件的成型过程示意图 ,从图 3中 可以看出 ,氧化锆陶瓷坯料与嵌件结合在一起,制得的氧化锆陶瓷结构件为嵌 件与氧化锆陶瓷的组合体,嵌件可以提高氧化锆陶瓷结构件的强度和刚度,得 到的氧化锆陶瓷结构件具有天线和与其它零件的连接等特定功能。
本发明实施例提供的一种氧化锆陶瓷结构件的成型方法,利用嵌件的材料 熔点和氧化锆陶瓷的材料熔点不同的原理,可实现具有复杂倒扣位的氧化锆陶 瓷结构件的制备或可实现具有天线功能和与其它零件的连接等特定功能的氧 化锆陶瓷结构件的制备,成型过程简单,氧化锆陶瓷结构件的生产效率较高, 解决了现有技术中陶瓷结构件中复杂倒扣位难以通过模具实现、简单倒扣位成 型过程复杂和陶瓷结构件生产效率低的问题,以及难以得到可实现某些特定功 能的氧化锆陶瓷结构件的问题。
以上所述是本发明的优选实施方式,应当指出的是,对于本技术领域的普 通技术人员来说,应用本发明同样的原理制备具有其他复杂结构的氧化锆陶瓷 — — 件也属于本发明的保护范围。

Claims

权 利 要 求
1、 一种氧化锆陶瓷结构件的成型方法,其特征在于,包括以下步骤: 提供一嵌件;所述嵌件包括一主体部,及一个或多个突出于所述主体部表 面的凸起部;
提供一注塑模具,所述注塑模具包括一中空腔体,及一个或多个定位孔, 将所述嵌件置于所述注塑模具的中空腔体中 ,并将所述嵌件的凸起部插入所述 注塑模具的定位孔中 ;
以注塑成型的方式于所述中空腔体中填充氧化锆陶瓷坯料,所述氧化锆陶 瓷坯料包覆所述嵌件的主体部,形成一氧化锆陶瓷结构件坯体;
在 1200°C-1500°C的烧结温度下烧结所述氧化锆陶瓷结构件坯体,形成氧 化锆陶瓷结构件;
当所述嵌件的材料熔点低于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷结构件坯体中的嵌件熔化后,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件具有一个或多个倒扣位,或
当所述嵌件的材料熔点高于所述烧结温度时,所述烧结过程中 ,所述氧化 锆陶瓷坯料与所述嵌件结合在一起,得到氧化锆陶瓷结构件,所述氧化锆陶瓷 结构件为氧化锆陶瓷与嵌件的组合体。
2、 如权利要求 1所述的氧化锆陶瓷结构件的成型方法,其特征在于,所 述嵌件的材料为固体石蜡。
3、 如权利要求 1所述的氧化锆陶瓷结构件的成型方法,其特征在于,所 述嵌件的材料熔点为 2500°C以上。
4、如权利要求 1或 3所述的氧化锆陶瓷结构件的成型方法,其特征在于, 所述嵌件的材料为钼或钨。
5、 如权利要求 1-4任一项所述的氧化锆陶瓷结构件的成型方法,其特征 在于所述注塑成型时所述氧化锆陶瓷坯料在 24吨 -50吨压力和 140°C-280°C 温度条件下注射进入模具。
6、 如权利要求 1-5任一项所述的氧化锆陶瓷结构件的成型方法,其特征 在于,所述氧化锆陶瓷坯料包括氧化锆陶瓷粉、 稳定剂和粘结剂。
7、 如权利要求 1-6任一项所述的氧化锆陶瓷结构件的成型方法,其特征 在于,烧结的时间为 2-3天。
8、 如权利要求 1-7任一项所述的氧化锆陶瓷结构件的成型方法,其特征 在于,所述嵌件通过 3D打印或计算机数字控制机床加工得到。
9、 一种氧化锆陶瓷结构件,其特征在于,所述氧化锆陶瓷结构件为按照 权利要求 1-8任一项所述的成型方法制得。
10、 如权利要求 9所述的氧化锆陶瓷结构件,其特征在于,所述氧化锆陶 瓷结构件具有一个或多个倒扣位。
11、 如权利要求 9所述的氧化锆陶瓷结构件,其特征在于,所述氧化锆陶 瓷结构件为氧化锆陶瓷与嵌件的组合体。
PCT/CN2014/083115 2014-07-28 2014-07-28 一种氧化锆陶瓷结构件及其成型方法 WO2016015191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/083115 WO2016015191A1 (zh) 2014-07-28 2014-07-28 一种氧化锆陶瓷结构件及其成型方法
CN201480003487.7A CN105473313B (zh) 2014-07-28 2014-07-28 一种氧化锆陶瓷结构件及其成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083115 WO2016015191A1 (zh) 2014-07-28 2014-07-28 一种氧化锆陶瓷结构件及其成型方法

Publications (1)

Publication Number Publication Date
WO2016015191A1 true WO2016015191A1 (zh) 2016-02-04

Family

ID=55216560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083115 WO2016015191A1 (zh) 2014-07-28 2014-07-28 一种氧化锆陶瓷结构件及其成型方法

Country Status (2)

Country Link
CN (1) CN105473313B (zh)
WO (1) WO2016015191A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180973B (zh) * 2021-12-27 2023-05-26 重庆石墨烯研究院有限公司 一种石墨烯陶瓷发热板的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191156A (ja) * 1993-12-27 1995-07-28 Kyocera Corp ジルコニア製腕時計用ケースおよびジルコニアセラミックスの射出成形方法
CN102351542A (zh) * 2011-07-12 2012-02-15 中南大学 一种中空结构金属或陶瓷零部件的制备方法
CN102623112A (zh) * 2011-01-27 2012-08-01 吕宝林 一种无机复合陶瓷接线柱的制备方法
CN102981392A (zh) * 2012-11-30 2013-03-20 邓湘凌 镂空陶瓷表壳的制作方法
CN103476209A (zh) * 2013-08-29 2013-12-25 东莞劲胜精密组件股份有限公司 一种陶瓷外壳及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191156A (ja) * 1993-12-27 1995-07-28 Kyocera Corp ジルコニア製腕時計用ケースおよびジルコニアセラミックスの射出成形方法
CN102623112A (zh) * 2011-01-27 2012-08-01 吕宝林 一种无机复合陶瓷接线柱的制备方法
CN102351542A (zh) * 2011-07-12 2012-02-15 中南大学 一种中空结构金属或陶瓷零部件的制备方法
CN102981392A (zh) * 2012-11-30 2013-03-20 邓湘凌 镂空陶瓷表壳的制作方法
CN103476209A (zh) * 2013-08-29 2013-12-25 东莞劲胜精密组件股份有限公司 一种陶瓷外壳及其制作方法

Also Published As

Publication number Publication date
CN105473313A (zh) 2016-04-06
CN105473313B (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
US9079803B2 (en) Additive manufacturing hybrid core
CN103990761B (zh) 一种带有冲击孔结构的空心涡轮叶片制造方法
CN102451882B (zh) 一种金属件快速复合精密制造方法
JP6268380B2 (ja) 内部孔構造を有するパーツの製造方法
JP2015517450A (ja) セラミック物品およびセラミック物品用の付加処理方法
CN112789128B (zh) 从预制件开始通过加压烧结制造复杂形状的部件的方法
US11701708B2 (en) Method for fabrication of a composite part
US20150096713A1 (en) Rapid tooling insert manufacture
CN106607587B (zh) 形成具有一体的通道的熔覆层的方法
CN105689712A (zh) 金属基复合材料结构件激光直接制造方法及装置
CN102554234A (zh) 一种金属注塑成型结构件的加工方法及其支撑治具
US20150136350A1 (en) Casting investment composition and casting process using same
CN101564809B (zh) 一种包覆结构金属零部件的制备方法
CN107056257A (zh) 三维网络互穿60°互交陶瓷骨架‑金属基复合材料及其制备方法
WO2016015191A1 (zh) 一种氧化锆陶瓷结构件及其成型方法
US11097345B2 (en) Method for producing a part consisting of a composite material
US20180117674A1 (en) Eutectic Alloy Bonding for Foreign Parts or Items During the Additive Manufacturing Process
CN105109040B (zh) 三维结构成形方法
JP2016159324A (ja) 鋳型の製造方法
JP6985118B2 (ja) 金属部材の製造方法
CN104385440B (zh) 一种嵌入玻璃管/陶瓷管成型陶瓷型芯的方法
JP3702406B2 (ja) 粉体焼結成形体の製造方法、粉体焼結成形体、粉体射出成形体の製造方法、粉体射出成形体及び粉体射出成形用金型
JP5303708B2 (ja) 成形型の製造方法
JP2002292613A (ja) セラミック成形体の製造方法
KR102091199B1 (ko) 주조용 사형 몰드 및 이의 접합방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480003487.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898665

Country of ref document: EP

Kind code of ref document: A1