WO2016013683A1 - 車両駆動用モータの積層鉄心の製造方法 - Google Patents

車両駆動用モータの積層鉄心の製造方法 Download PDF

Info

Publication number
WO2016013683A1
WO2016013683A1 PCT/JP2015/071291 JP2015071291W WO2016013683A1 WO 2016013683 A1 WO2016013683 A1 WO 2016013683A1 JP 2015071291 W JP2015071291 W JP 2015071291W WO 2016013683 A1 WO2016013683 A1 WO 2016013683A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
circumferential direction
laminated
shaped
core pieces
Prior art date
Application number
PCT/JP2015/071291
Other languages
English (en)
French (fr)
Inventor
安藤 修司
道信 平間
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to US15/327,347 priority Critical patent/US10193426B2/en
Priority to CN201580039866.6A priority patent/CN106688166B/zh
Priority to JP2016536010A priority patent/JP6486930B2/ja
Publication of WO2016013683A1 publication Critical patent/WO2016013683A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys

Definitions

  • the present invention relates to a method for manufacturing a laminated core of a vehicle drive motor.
  • Patent Document 1 listed below describes a laminated core formed by sequentially caulking and laminating annular core pieces made of a plurality of segment core pieces arranged in a ring.
  • an object of the present invention is to provide a method for manufacturing a laminated core of a vehicle drive motor that can reduce the manufacturing cost and reduce the number of parts and the number of assembly steps of the vehicle drive motor. .
  • a method of manufacturing a laminated iron core for a motor for driving a vehicle wherein a plurality of arc-shaped iron cores having different key protrusions and different key protrusions are formed by pressing a strip-shaped magnetic steel sheet.
  • the laminated iron core of the vehicle drive motor can be manufactured by the above pressing process, laminating process and welding process, dedicated equipment for simultaneously performing caulking and laminating is not required. As a result, the manufacturing cost can be reduced.
  • the vehicle drive is compared to a configuration in which key parts are attached to the key recess. The number of motor parts and assembly man-hours can be reduced.
  • the arc-shaped iron core piece has a short key convex portion in which the length along the circumferential direction is 1 ⁇ 2 the key convex portion in the circumferential direction.
  • two types of arc-shaped core pieces in which short key convex portions whose length along the circumferential direction is 1 ⁇ 2 of the key convex portion are formed on different ones at both ends in the circumferential direction
  • the key convex part can be formed in the connecting part of the arc-shaped iron core pieces.
  • the manufacturing cost can be reduced, and the number of parts and the number of assembly steps of the vehicle drive motor can be reduced.
  • FIG. 3 is a schematic cross-sectional view showing a cut surface along a 3-3 cross-sectional line in FIG. 1.
  • FIG. 1 It is a front view which shows the lamination
  • laminated core manufactured by the method for manufacturing a laminated core of a vehicle drive motor according to the present embodiment (hereinafter simply referred to as “laminated core”) will be described.
  • this laminated core 10 is a laminated rotor core used on the rotor side of a vehicle drive motor (electric motor), and is a constituent element of a rotor with magnets.
  • a laminated core body 16 formed by laminating a plurality of annular core pieces 14 in which arc-shaped core pieces 12 (divided core pieces) divided into four are arranged in a ring shape is formed by a plurality of welded portions 18. It is formed by being integrated.
  • Each arc-shaped iron core piece 12 has an arc angle ⁇ set to 90 degrees in this embodiment.
  • a plurality of (here, four) arc-shaped magnet mounting portions 20 (magnetic pole pieces) arranged in the circumferential direction are formed on the outer peripheral portion of each arc-shaped core piece 12. These magnet mounting portions 20 have an arc angle ⁇ of 22.5 degrees, and each magnet mounting portion 20 has a magnet mounting hole 22 for mounting a magnet.
  • a plurality (four in this case) of circular guide holes 24 arranged in the circumferential direction are formed in the intermediate portion in the width direction (intermediate portion between the outer periphery and the inner periphery) of each arc-shaped core piece 12.
  • These guide holes 24 are guide pins 68 (see FIG. 7) provided in an alignment jig 62 (see FIGS. 7 and 8) used when the plurality of annular core pieces 14 are laminated and when the laminated core body 16 is welded. It is a pilot hole for inserting.
  • the guide hole 24 and the magnet mounting portion 20 are provided so as to be arranged every 22.5 degrees in a state where the circular core pieces 14 are arranged by arranging the circular core pieces 12 in a ring shape.
  • the hole 24 is provided in the same phase as the magnet mounting portion 20 in the circumferential direction of the annular core piece 14.
  • the annular core pieces 14 that are overlapped with each other are laminated in a so-called brick pile with the joints 26 between the arc-shaped core pieces 12 in the circumferential direction being phase-shifted in the circumferential direction.
  • the phase shift angle is set to 22.5 degrees, which is the same as the arc angle ⁇ of the magnet mounting portion 20.
  • the magnet mounting portion 20 and the guide hole 24 are arranged every 22.5 degrees, and therefore each of the magnet mounting portion 20 and the guide hole 24 is provided.
  • the position of coincides with the stacking direction. Therefore, the magnet mounting part 20 and the guide hole 24 penetrate from the one axial end side of the laminated core body 16 to the other axial end side.
  • a plurality of welded portions 18 for integrating the plurality of annular core pieces 14 laminated as described above are provided in the inner peripheral portion of the laminated core body 16 side by side in the circumferential direction.
  • the plurality of welds 18 are provided in the same number as the number of magnetic poles of the laminated core body 16 (here, 16 poles), and the arc-shaped core pieces 12 of each layer that are out of phase in the circumferential direction are arranged in the lamination direction. Welding (joining) along.
  • the plurality of welded portions 18 are located on the opposite side of the magnet mounting portion 20 through the guide holes 24, and are provided on the inner peripheral portion of the laminated core body 16 every 22.5 degrees.
  • a pair of key convex portions 28 are formed at opposing positions on the inner peripheral portion, and these key convex portions 28 are formed at intermediate positions between the adjacent welded portions 18.
  • the pair of key convex portions 28 serve as a connecting portion when the laminated core 10 can be assembled to the rotor of the vehicle drive motor.
  • the arc-shaped iron core pieces 12 are six kinds of arc-shaped iron core pieces 12 ⁇ / b> A, 12 ⁇ / b> B, 12 ⁇ / b> C, 12 ⁇ / b> D, 12 ⁇ / b> E, 12 ⁇ / b> F that have different key protrusions 28 and different key protrusions 28. Yes.
  • the arc-shaped iron core piece 12A is formed with a short key convex portion 29 whose circumferential length is 1 ⁇ 2 of the key convex portion 28 at one end (upper end in FIG. 9) of both ends in the circumferential direction. .
  • the arc-shaped iron core piece 12B has a key convex portion 28 formed at a position of 22.5 degrees from the center in the circumferential direction to one end (upper end in FIG. 9).
  • the arc-shaped iron core piece 12C has a key convex portion 28 formed at the center in the circumferential direction.
  • the arc-shaped iron core piece 12D has a key convex portion 28 formed at a position of 22.5 degrees from the center in the circumferential direction to the other end (lower end in FIG. 9).
  • the arc-shaped iron core piece 12E has a short key convex portion 29 whose circumferential length is 1 ⁇ 2 of the length of the key convex portion 28 at the other end (the lower end in FIG.
  • the key-shaped convex part 28 is not formed in the arc-shaped iron core piece 12F.
  • the key convex portion 28 is formed by connecting the short key convex portion 29 of the arc-shaped core piece 12A and the short key convex portion 29 of the arc-shaped core piece 12E in the circumferential direction.
  • the manufacturing method of the laminated core 10 is comprised by the press process which is the 1st process, the lamination process which is the 2nd process, the welding process which is the 3rd process, and the inspection process which is the 4th process.
  • the presence or absence of the key convex portion 28 and the key convex portion are formed on the single plate 30 with the carrier by controlling on / off of five slit cut portions (not shown) provided in the press machine.
  • Six types of arc-shaped core pieces 12A, 12B, 12C, 12D, 12E, and 12F are press-formed.
  • the arc-shaped core pieces 12 are sequentially separated from the single plate 30 with the carrier to be conveyed, and the plurality of annular core pieces 14 are formed while arranging the separated arc-shaped core pieces 12 in a ring shape to form the annular core pieces 14.
  • the laminated core body 16 is manufactured by laminating with the phases shifted in the circumferential direction. Specifically, first, the reel 34 is attached to the reel stand 36 shown in FIG. 4, and the single plate 30 with the carrier wound around the reel 34 is unwound so that the laminated assembly apparatus 38 shown in FIG. 4 and FIG. It is wound around the guide roller 40 and inserted into the laminated assembly apparatus 38.
  • a feed feeder 42 In the laminating and assembling apparatus 38, a feed feeder 42, a servo press 46, an electric index machine 48, a robot cylinder 50, and a control panel 52 for controlling these operations are provided.
  • the feed feeder 42 holds the single plate 30 with the carrier inserted into the stacking assembly apparatus 38 and conveys it to the servo press 46 and the electric index machine 48 side.
  • the direction shown by the arrow A in FIG.4 and FIG.5 is a conveyance direction of the single plate 30 with a carrier.
  • the arc-shaped iron core piece 12 is arranged at a right angle with respect to the carrier conveying direction in order to improve material collection efficiency and avoid deformation of the arc-shaped iron core piece 12 when the carrier is wound and stored. Is done.
  • the servo press 46 is provided with a connecting portion cut type punch 54, and the carrier-attached single plate 30 conveyed between the servo press 46 and the connecting portion cut type die 56 disposed on the lower side of the punch 54.
  • the arc-shaped core pieces 12 are sequentially cut off from the connecting portion 32.
  • the connecting portion 32 from which the arc-shaped core piece 12 is cut is discharged out of the laminating and assembling apparatus 38 through the inside of the transport pipe 58 (not shown in FIGS. 4 and 5) shown in FIG. It is conveyed to the cutting machine.
  • the alignment jig 62 includes a ring-shaped lower plate 64 and a plurality of (here, 16) guide pins 68 (pilot pins) protruding upward from the lower plate 64. And a plurality (eight in this case) of columns 70 protruding upward from the alignment jig 62.
  • pillars 70 can be changed suitably.
  • the 16 guide pins 68 are arranged at equal intervals (interval of 22.5 degrees) in the circumferential direction of the lower plate 64, and are firmly fixed to the lower plate 64. Further, the eight struts 70 are arranged at equal intervals (intervals of 45 degrees) in the circumferential direction of the lower plate 64 on the inner peripheral side of the lower plate 64 relative to the 16 guide pins 68, and are firmly attached to the lower plate 64. It is fixed to.
  • the alignment jig 62 includes the ring-shaped upper plate 72 shown in FIG. 8, but is used in a state where the upper plate 72 is removed in the stacking process.
  • the arcuate core pieces 12 pushed onto the alignment jig 62 are held on the alignment jig 62 with the guide pins 68 inserted into the four guide holes 24, respectively.
  • the alignment jig 62 is rotated about the vertical axis by the rotary table 60 of the electric index machine 48 in conjunction with the feed feeder 42 and the servo press 46 and is lowered by the ROBO cylinder 50 at a predetermined timing.
  • the aligning jig 62 is shown in FIG. Is rotated 90 degrees (the arc angle ⁇ of the arc-shaped core piece 12) in the direction of arrow B of 5. By repeating this 90-degree rotation three times, one layer of the core piece 14 is completed.
  • the alignment jig 62 is lowered by the thickness of the arc-shaped iron core piece 12 by the ROBO cylinder 50 and rotated 22.5 degrees (phase shift angle ⁇ ) in the direction of arrow B in FIG. Is done.
  • the plurality of annular core pieces 14 are laminated (rotated and laminated) with the phases shifted in the circumferential direction, and the laminated core body 16 is manufactured.
  • the circular core pieces 12C, 12F, 12C, and 12F are annularly arranged in the circumferential direction in this order, and the first-layer annular core pieces 14 are completed.
  • the circular core pieces 14F, 12B, 12F, and 12B are arranged in a ring in the circumferential direction in this order, and the second-layer annular core pieces 14 are completed.
  • the circular core pieces 12A, 12E, 12A, and 12E are arranged in a ring in the circumferential direction in this order, and the third-layer annular core pieces 14 are completed.
  • the annular core pieces 12D, 12F, 12D, and 12F are arranged in an annular shape in the circumferential direction in this order, and the fourth-layer annular core pieces 14 are completed.
  • the circular core pieces 14F, 12C, 12F, and 12C are arranged in a ring in the circumferential direction in this order, and the fifth-layer annular core pieces 14 are completed.
  • the arc-shaped core pieces 12B, 12F, 12B, and 12F are annularly arranged in the circumferential direction in this order, and the sixth-layer annular core pieces 14 are completed.
  • the circular core pieces 12E, 12A, 12E, and 12A are arranged in an annular shape in the circumferential direction in this order, and the seventh-layer annular core pieces 14 are completed.
  • the circular core pieces 14F, 12D, 12F, and 12D are annularly arranged in the circumferential direction in this order to complete the eighth-layer annular core pieces 14. Note that the direction indicated by the arrow A in FIG. 10 is the conveying direction of the arc-shaped core pieces 12.
  • the annular core pieces 14 are laminated by the above-described lamination step, and the position of the key convex portion 28 coincides with the lamination direction. Then, the manufactured laminated core body 16 is detached from the turntable 60 together with the alignment jig 62, and the process proceeds to the next welding process.
  • the arc-shaped iron cores of the respective layers that are out of phase in the circumferential direction at a plurality of portions arranged in the circumferential direction in the inner circumferential portion of the laminated core body 16 (here, 16 locations: refer to the welded portions 18 in FIGS. 1 and 3).
  • the pieces 12 are welded along the stacking direction.
  • the upper plate 72 is attached to the alignment jig 62.
  • the upper plate 72 is fixed to the upper ends of the eight columns 70 by, for example, bolt fastening, and holds the laminated core body 16 at a predetermined thickness.
  • the laminated core body 16 is held at a predetermined thickness by a dedicated holding device that holds the upper plate 72 and the lower plate 64 up and down with eight columns 70 interposed therebetween.
  • an alignment jig 62 is mounted on a turntable 60 provided in the fiber laser welder, and the above-described welding is performed by the fiber laser welder.
  • subjected in FIG. 8 is the torch of a fiber laser welding machine.
  • the laminated iron core 10 is completed.
  • the completed laminated iron core is subjected to a predetermined inspection in the inspection process of the next process.
  • the laminated iron core 10 is manufactured by the press process, the lamination process, and the welding process described above.
  • the laminated core body 16 is formed by laminating a plurality of annular core pieces 14 each constituted by a plurality of circular arc-shaped core pieces 12 arranged in a ring with a phase shifted in the circumferential direction.
  • a plurality of welded portions 18 are arranged in the circumferential direction on the inner peripheral portion of the laminated core body 16. In these welds 18, the arc-shaped core pieces 12 of the respective layers that are out of phase in the circumferential direction are welded along the stacking direction.
  • the laminated iron core 10 provided with the key convex part 28 aligned in the lamination direction can be manufactured.
  • the key convex portion 28 on the inner periphery of the laminated core 10, no key parts are required when assembling the rotor of the vehicle drive motor. For this reason, compared with the structure which attaches key parts to a key recessed part, the number of parts of a vehicle drive motor and an assembly man-hour can be reduced.
  • the two types of arcuate shapes in which the short key convex portion 29 whose length along the circumferential direction is half the length of the key convex portion is formed on one of the opposite ends of the circumferential direction.
  • Iron core pieces 12A and 12E are used.
  • the short key convex portion 29 of the arc-shaped core piece 12A and the short key convex portion 29 of the arc-shaped core piece 12E are connected in the circumferential direction, thereby connecting the arc-shaped core piece 12A and the arc-shaped core piece 12E.
  • the key convex part 28 can be formed in the part.
  • the pair of key convex portions 28 are formed at opposing positions on the inner peripheral portion of the laminated core 10.
  • the present invention is not limited to this, and the number of the key convex portions 28 of the laminated core body 16 is appropriately changed. can do.
  • the arc-shaped iron core piece 12 was made into six types from which the presence or absence of the key convex part 28 and the arrangement
  • the arc-shaped iron core piece 12 is used as a key. It can change suitably other than the six types from which the presence or absence of the convex part 28 and the arrangement
  • the arc-shaped iron core piece 12 is separated from the inner core diameter of the key convex portion 28 in order to avoid interference with a member incorporated on the inner peripheral side of the arc-shaped laminated core. Is also cut off excessively so as to be offset to the outer peripheral side.
  • the laminated core body 16 has 16 poles.
  • the present invention is not limited to this, and the number of magnetic poles of the laminated core body 16 can be changed as appropriate.
  • the number of welds 18 is the same as the number of magnetic poles of the laminated core body 16.
  • the present invention is not limited to this, and the number of welds can be changed as appropriate.
  • a configuration may be employed in which half the number of magnetic poles of the laminated core body is provided.

Abstract

 製造コストを低減すると共に、車両用駆動モータの部品点数及び組付け工数を削減する。 積層鉄心(10)の製造方法では、環状に並ぶ複数の円弧状鉄心片(12)によって各々が構成された複数の環状鉄心片(14)が、周方向に位相をずらして積層され、積層鉄心本体(16)が製造される。次いで、この積層鉄心本体(16)の内周部又は外周部における周方向に並ぶ複数の部位(複数の溶接部(18))において、周方向に位相ずれした各層の円弧状鉄心片(12)が積層方向に沿って溶接される。また、積層鉄心(10)の内周部における対向する位置には一対のキー凸部(28)が形成されており、車両用駆動モータの回転子を組み立てる際に、キー部品を必要としない。このため、キー凹部にキー部品を取り付ける構成に比べて、車両用駆動モータの部品点数及び組付け工数を削減できる。

Description

車両駆動用モータの積層鉄心の製造方法
 本発明は、車両駆動用モータの積層鉄心の製造方法に関する。
 下記特許文献1には、環状に並ぶ複数のセグメント鉄心片からなる環状鉄心片が、順次かしめ積層されることにより形成された積層鉄心が記載されている。
特開2013-5628号公報
 上述の如き積層鉄心では、かしめと積層を同時に行うための専用設備が高価であるため、製造コストを低減する観点で改善の余地がある。また、車両用駆動モータの回転子を組み立てる際に、キー凹部にキー部品を取り付ける構成のため、部品点数及び組付け工数が増加する。
 本発明は上記事実を考慮し、製造コストを低減することができると共に、車両用駆動モータの部品点数及び組付け工数を削減できる車両駆動用モータの積層鉄心の製造方法を得ることを目的とする。
 本発明の第1の態様の車両駆動用モータの積層鉄心の製造方法は、帯状の磁性鋼板をプレス加工することにより、キー凸部の有無及び前記キー凸部の配置の異なる複数の円弧状鉄心片を連結部で連結したキャリア付き単板を製造するプレス工程と、搬送される前記キャリア付き単板から前記円弧状鉄心片を順次切り離すと共に、切り離した前記円弧状鉄心片を環状に並べて環状鉄心片を形成しつつ、複数の前記環状鉄心片を周方向に位相をずらして積層することにより、前記キー凸部が積層方向に整列した積層鉄心本体を製造する積層工程と、前記積層鉄心本体の内周部又は外周部における周方向に並ぶ複数の部位において、周方向に位相ずれした各層の前記円弧状鉄心片を積層方向に沿って溶接する溶接工程と、を有している。
 第1の態様では、上記のプレス工程、積層工程及び溶接工程によって車両駆動用モータの積層鉄心を製造することができるので、かしめと積層を同時に行うための専用設備が不要になる。その結果、製造コストを低減することができる。また、積層方向に整列したキー凸部を備えた積層鉄心を製造することができるため、車両用駆動モータの回転子を組み立てる際に、キー凹部にキー部品を取り付ける構成に比べて、車両用駆動モータの部品点数及び組付け工数を削減できる。
 本発明の第2の態様は、第1の態様において、前記円弧状鉄心片は、周方向に沿った長さが前記キー凸部の1/2の長さとされた短キー凸部が周方向の両端部の異なる一方に形成された2種類の円弧状鉄心片を有する。
 第2の態様では、周方向に沿った長さがキー凸部の1/2の長さとされた短キー凸部が周方向の両端部の異なる一方に形成された2種類の円弧状鉄心片を使用することで円弧状鉄心片の連結部にキー凸部を形成することができる。
 以上説明したように、本発明に係る車両駆動用モータの積層鉄心の製造方法では、製造コストを低減することができると共に、車両用駆動モータの部品点数及び組付け工数を削減できる。
本発明の実施形態に係る車両駆動用モータの積層鉄心の斜視図である。 同積層鉄心の部分的な構成を示す分解斜視図である。 図1の3-3断面線に沿った切断面を示す概略的な断面図である。 積層工程に用いられる積層組立装置及びその周辺の構成を示す正面図である。 同積層組立装置の内部を上方側から見た平面図である。 同積層組立装置の主要部を拡大して示す斜視図である。 整列治具上に積層された積層鉄心本体を示す斜視図である。 溶接工程において積層鉄心本体が溶接されている状況を示す斜視図である。 キー凸部の有無及びキー凸部の配置の異なる6種類の円弧状鉄心片を示す平面図である。 積層組立装置へ送られる6種類の円弧状鉄心片の配列を示す平面図である。
 以下、図1~図10を用いて本発明の実施形態に係る車両駆動用モータの積層鉄心の製造方法について説明する。
 (積層鉄心の構成)
 先ず、本実施形態に係る車両用駆動モータの積層鉄心の製造方法によって製造された積層鉄心(以下、単に「積層鉄心」という)について説明する。
 図1に示すように、この積層鉄心10は、車両駆動用モータ(電動機)の回転子側に用いられる積層回転子鉄心であり、磁石付き回転子の構成要素である。この積層鉄心10は、4つに分割された円弧状鉄心片12(分割鉄心片)を環状に並べた環状鉄心片14を複数積層して構成された積層鉄心本体16が、複数の溶接部18によって一体化されることにより形成されている。
 各円弧状鉄心片12は、本実施形態では円弧角θが90度に設定されている。各円弧状鉄心片12の外周部には、周方向に並ぶ複数(ここでは4つ)の円弧状の磁石装着部20(磁極片部)が形成されている。これらの磁石装着部20は、円弧角δが22.5度に設定されており、各磁石装着部20には、磁石を装着するための磁石装着孔22が形成されている。
 また、各円弧状鉄心片12の幅方向中間部(外周と内周との間の中間部)には、周方向に並ぶ複数(ここでは4つ)の円形のガイド孔24が形成されている。これらのガイド孔24は、複数の環状鉄心片14の積層時及び積層鉄心本体16の溶接時に用いられる整列治具62(図7及び図8参照)に設けられたガイドピン68(図7参照)を挿入するためのパイロット孔である。
 上記のガイド孔24および磁石装着部20は、円弧状鉄心片12を環状に並べて環状鉄心片14を構成した状態で、22.5度毎に配置されるように設けられており、上記のガイド孔24は、環状鉄心片14の周方向において磁石装着部20と同位相で設けられている。
 図2に示すように、互いに重なる環状鉄心片14は、周方向の円弧状鉄心片12同士の繋ぎ目26が周方向に位相ずれされて、いわゆるレンガ積みに所定枚数積層されている。そして、本実施形態では、上記の位相ずれ角が、磁石装着部20の円弧角δと同じ22.5度に設定されている。
 22.5度の位相ずれを有して環状鉄心片14を積層すると、磁石装着部20およびガイド孔24が22.5度毎に配置されているため、磁石装着部20およびガイド孔24のそれぞれの位置が、積層方向に一致する。したがって、磁石装着部20およびガイド孔24は、積層鉄心本体16の軸線方向一端側から軸線方向他端側へ貫通する。
 図1に示すように、上記の如く積層された複数の環状鉄心片14を一体化する複数の溶接部18は、積層鉄心本体16の内周部に周方向に並んで設けられている。これら複数の溶接部18は、本実施形態では、積層鉄心本体16の磁極数と同数(ここでは16極)設けられており、周方向に位相ずれした各層の円弧状鉄心片12を積層方向に沿って溶接(接合)している。
 また、上記複数の溶接部18は、ガイド孔24を介して磁石装着部20とは反対側に位置しており、積層鉄心本体16の内周部に22.5度毎に設けられている。
 本実施形態の積層鉄心10では、内周部における対向する位置に一対のキー凸部28が形成されており、これらのキー凸部28は隣接する溶接部18の中間位置に形成されている。なお、一対のキー凸部28は、積層鉄心10を車両用駆動モータの回転子に組みける際の連結部となる。
(円弧状鉄心片の種類)
 図9に示すように、円弧状鉄心片12は、キー凸部28の有無及びキー凸部28の配置の異なる6種類の円弧状鉄心片12A、12B、12C、12D、12E、12Fとなっている。円弧状鉄心片12Aは周方向の両端のうちの一端(図9の上端)に、周方向の長さがキー凸部28の長さの1/2の短キー凸部29が形成されている。また、円弧状鉄心片12Bは、周方向の中央より一端(図9の上端)方向へ22.5度の位置に、キー凸部28が形成されている。また、円弧状鉄心片12Cは周方向の中央に、キー凸部28が形成されている。また、円弧状鉄心片12Dは周方向の中央より他端(図9の下端)方向へ22.5度の位置に、キー凸部28が形成されている。また、円弧状鉄心片12Eは周方向の両端のうちの他端(図9の下端)に、周方向の長さがキー凸部28の長さの1/2の短キー凸部29が形成されている。さらに、円弧状鉄心片12Fにはキー凸部28が形成されていない。なお、円弧状鉄心片12Aの短キー凸部29と円弧状鉄心片12Eの短キー凸部29とが周方向に連結されることで、キー凸部28が形成されるようになっている。
 (積層鉄心10の製造方法)
 次に、上記構成の積層鉄心10の製造方法について説明する。
 積層鉄心10の製造方法は、第1工程であるプレス工程と、第2工程である積層工程と、第3工程である溶接工程と、第4工程である検査工程とによって構成されている。
(プレス工程)
 図4~図6に示すように、プレス工程においては、帯状の磁性鋼板を、金型装置によりプレス加工することにより、複数の円弧状鉄心片12を一対の連結部32で連結したキャリア付き単板30を製造する。そして、製造したキャリア付き単板30をリール34に巻き回し、次工程の積層工程へと移行する。
 また、このプレス工程においては、プレス機械に設けられた5箇所のスリットカット部(図示省略)をオン・オフ制御することで、キャリア付き単板30に、キー凸部28の有無及びキー凸部28の配置の異なる6種類の円弧状鉄心片12A、12B、12C、12D、12E、12F(図9参照)がプレス形成されるようになっている。
(積層工程)
 積層工程では、搬送されるキャリア付き単板30から円弧状鉄心片12を順次切り離すと共に、切り離した円弧状鉄心片12を環状に並べて環状鉄心片14を形成しつつ、複数の環状鉄心片14を周方向に位相をずらして積層することにより積層鉄心本体16を製造する。具体的には、先ず、図4に示されるリールスタンド36にリール34を取り付けると共に、リール34に巻き回されたキャリア付き単板30を解いて図4及び図5に示される積層組立装置38の案内ローラ40に巻きかけ、当該積層組立装置38内に挿入する。
 積層組立装置38内には、送りフィーダー42、サーボプレス46、電気式インデックス機48、ロボシリンダー50、及びこれらの作動を制御する制御盤52が設けられている。送りフィーダー42は、積層組立装置38内に挿入されたキャリア付き単板30を保持してサーボプレス46および電気式インデックス機48側へ搬送する。なお、図4及び図5に矢印Aで示される方向が、キャリア付き単板30の搬送方向である。また、円弧状鉄心片12は、材料取り効率を良くするため及びキャリアを巻きつけて保管する際に円弧状鉄心片12の反り等の変形を避けるために、キャリアの搬送方向に対し直角に配置される。
 サーボプレス46には、つなぎ部カット型のパンチ54が取り付けられており、当該パンチ54の下方側に配設されたつなぎ部カット型のダイス56との間で、搬送されるキャリア付き単板30の連結部32から円弧状鉄心片12が順次切り離される。なお、円弧状鉄心片12が切り離された連結部32は、図6に示される搬送パイプ58(図4及び図5では図示省略)内を通って積層組立装置38外へ排出され、図示しないスクラップカット機へと搬送される。
 切り離された円弧状鉄心片12は、電気式インデックス機48の回転台60上に着脱可能に取り付けられた整列治具62上に、上記のパンチ54によって押し込まれる。この整列治具62は、図6及び図7に示すように、リング形の下板64と、当該下板64から上方へ突出した複数本(ここでは16本)のガイドピン68(パイロットピン)と、整列治具62から上方へ突出した複数本(ここでは8本)の支柱70とを備えている。なお、ガイドピン68及び支柱70の数は適宜変更可能である。
 16本のガイドピン68は、下板64の周方向に等間隔(22.5度の間隔)に並んでおり、下板64に強固に固定されている。また、8本の支柱70は、16本のガイドピン68よりも下板64の内周側で下板64の周方向に等間隔(45度の間隔)に並んでおり、下板64に強固に固定されている。なお、この整列治具62は、図8に示されるリング形の上板72を含んで構成されているが、積層工程では上板72が取り外された状態で使用される。
 上記の整列治具62上に押し込まれた円弧状鉄心片12は、4つのガイド孔24にそれぞれガイドピン68が挿入された状態で整列治具62上に保持される。この整列治具62は、電気式インデックス機48の回転台60によって、送りフィーダー42及びサーボプレス46と連動して垂直軸回りに回転されると共に、ロボシリンダー50によって所定のタイミングで下降される。
 具体的には、先ず、円弧状鉄心片12を環状に並べて環状鉄心片14を形成すべく、1枚の円弧状鉄心片12が整列治具62上に押し込まれる毎に整列治具62が図5の矢印B方向へ90度(円弧状鉄心片12の円弧角θ)回転される。この90度の回転が3回繰り返されることにより、一層の環状鉄心片14が完成する。次いで、整列治具62がロボシリンダー50によって円弧状鉄心片12の板厚分だけ下降されると共に、電気式インデックス機48によって図5の矢印B方向へ22.5度(位相ずれ角δ)回転される。上記の処理が順次繰り返されることにより、複数の環状鉄心片14が周方向に位相をずらされて積層(回転積層)され、積層鉄心本体16が製造される。
 図10に示すように、本実施形態では、円弧状鉄心片12C、12F、12C、12Fの順に周方向に環状に並べ、1層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12F、12B、12F、12Bの順に周方向に環状に並べ、2層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12A、12E、12A、12Eの順に周方向に環状に並べ、3層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12D、12F、12D、12Fの順に周方向に環状に並べ、4層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12F、12C、12F、12Cの順に周方向に環状に並べ、5層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12B、12F、12B、12Fの順に周方向に環状に並べ、6層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12E、12A、12E、12Aの順に周方向に環状に並べ、7層目の環状鉄心片14が完成する。次いで、円弧状鉄心片12F、12D、12F、12Dの順に周方向に環状に並べて8層目の環状鉄心片14が完成する。なお、図10に矢印Aで示される方向が、円弧状鉄心片12の搬送方向である。
 従って、本実施形態では、上記積層工程によって環状鉄心片14が積層され、キー凸部28の位置が積層方向に一致する。そして、製造された積層鉄心本体16を整列治具62ごと回転台60から取り外し、次工程の溶接工程へと移行する。
(溶接工程)
 溶接工程では、積層鉄心本体16の内周部における周方向に並ぶ複数の部位(ここでは16箇所:図1及び図3の溶接部18参照)において、周方向に位相ずれした各層の円弧状鉄心片12を積層方向に沿って溶接する。具体的には、先ず、図8に示すように、整列治具62に上板72が取り付けられる。この上板72は、例えばボルト締結によって8本の支柱70の上端に固定され、積層鉄心本体16を所定の厚さに保持する。或いは、上板72と下板64を8本の支柱70を間に挟んで上下に挟持する専用の挟持装置によって、積層鉄心本体16を所定の厚さに保持する。
 次いで、図4に示すように、ファイバーレーザー溶接機が備える回転台60上に整列治具62が取り付けられ、当該ファイバーレーザー溶接機によって上記の溶接が行われる。なお、図8において符号76が付された部材は、ファイバーレーザー溶接機のトーチである。これにより、積層鉄心10が完成する。完成した積層鉄心は、次工程の検査工程において所定の検査を受ける。
 (作用および効果)
 次に、本実施形態の作用及び効果について説明する。
 本実施形態では、上述したプレス工程、積層工程及び溶接工程によって積層鉄心10が製造される。この積層鉄心10では、積層鉄心本体16は、環状に並ぶ複数の円弧状鉄心片12によって各々が構成された複数の環状鉄心片14が、周方向に位相をずらして積層されている。この積層鉄心本体16の内周部には、複数の溶接部18が周方向に並んで設けられている。これらの溶接部18においては、周方向に位相ずれした各層の円弧状鉄心片12が積層方向に沿って溶接されている。また、本実施形態では、積層方向に整列したキー凸部28を備えた積層鉄心10を製造することができる。
 これにより、各層の円弧状鉄心片12を一体的に結合することができるので、かしめと積層を同時に行うための専用設備が不要になるその結果、製造コストを低減することができる。
 また、積層鉄心10の内周部にキー凸部28を備えことで、車両用駆動モータの回転子を組み立てる際に、キー部品を必要としない。このため、キー凹部にキー部品を取り付ける構成に比べて、車両用駆動モータの部品点数及び組付け工数を削減できる。
 また、本実施形態では、キー凸部28を備え、環状鉄心片14を複数の円弧状鉄心片12に分割しない従来の構成からの置き換えが容易である。
 また、本実施形態では、周方向に沿った長さがキー凸部の1/2の長さとされた短キー凸部29が周方向の両端部の異なる一方に形成された2種類の円弧状鉄心片12A、12Eを使用している。このため、円弧状鉄心片12Aの短キー凸部29と円弧状鉄心片12Eの短キー凸部29とを周方向に連結することで、円弧状鉄心片12Aと円弧状鉄心片12Eとの連結部にキー凸部28を形成することができる。
 (実施形態の補足説明)
 上記実施形態では、積層鉄心10の内周部における対向する位置に一対のキー凸部28を形成したが、本発明はこれに限らず、積層鉄心本体16のキー凸部28の数は適宜変更することができる。
 また、上記実施形態では、円弧状鉄心片12を、キー凸部28の有無及びキー凸部28の配置の異なる6種類としたが、本発明はこれに限らず、円弧状鉄心片12をキー凸部28の有無及びキー凸部28の配置の異なる6種類以外に適宜変更することができる。また、周方向に沿った長さがキー凸部の1/2の長さとされた短キー凸部29を有する円弧状鉄心片12A、12Eが無い構成とすることもできる。なお、キー凸部28が無しの場合には、円弧状鉄心片12は、円弧状積層鉄心の内周側に組み込まれる部材との干渉をさけるために、キー凸部28の内芯部径よりも外周側にオフセットするように余分に切り取られている。
 また、上記実施形態では、積層鉄心本体16が16極とされた構成にしたが、本発明はこれに限らず、積層鉄心本体16の磁極数は適宜変更することができる。
 また、上記実施形態では、積層鉄心本体16の磁極数と同数の溶接部18が設けられた構成にしたが、本発明はこれに限らず、溶接部の数は適宜変更することができる。例えば、積層鉄心本体の磁極数の半数の溶接部が設けられる構成にしてもよい。
 また、上記実施形態では、溶接部18と磁石装着部20とがガイド孔24を介して互いに反対側に設けられた構成にしたが、本発明はこれに限らず、溶接部とガイド孔とが円弧状鉄心片の周方向にずれて設けられた構成にしてもよい。
 また、上記実施形態では、溶接部18が積層鉄心本体16の内周部に設けられた構成にしたが、本発明はこれに限らず、溶接部が積層鉄心本体の外周部に設けられた構成にしてもよい。
 その他、本発明は、その要旨を逸脱しない範囲で種々変更して実施できる。また、本発明の権利範囲が上記実施形態に限定されないことは勿論である。
 また、日本出願である特願2014-152094の開示は、その全体が参照により、本明細書中に取り込まれる。また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが、具体的かつ個別に記載された場合と同程度に、本明細書中に参照により取り込まれる。
  10   車両駆動用モータの積層鉄心
  12   円弧状鉄心片
  14   環状鉄心片
  16   積層鉄心本体
  18   溶接部
  28   キー凸部
  29   短キー凸部
  30   キャリア付き単板
  32   連結部

Claims (2)

  1.  帯状の磁性鋼板をプレス加工することにより、キー凸部の有無及び前記キー凸部の配置の異なる複数の円弧状鉄心片を連結部で連結したキャリア付き単板を製造するプレス工程と、
     搬送される前記キャリア付き単板から前記円弧状鉄心片を順次切り離すと共に、切り離した前記円弧状鉄心片を環状に並べて環状鉄心片を形成しつつ、複数の前記環状鉄心片を周方向に位相をずらして積層することにより、前記キー凸部が積層方向に整列した積層鉄心本体を製造する積層工程と、
     前記積層鉄心本体の内周部又は外周部における周方向に並ぶ複数の部位において、周方向に位相ずれした各層の前記円弧状鉄心片を積層方向に沿って溶接する溶接工程と、
     を有する車両駆動用モータの積層鉄心の製造方法。
  2.  前記円弧状鉄心片は、周方向に沿った長さが前記キー凸部の1/2の長さとされた短キー凸部が周方向の両端部の異なる一方に形成された2種類の円弧状鉄心片を有する請求項1に記載の車両駆動用モータの積層鉄心の製造方法。
PCT/JP2015/071291 2014-07-25 2015-07-27 車両駆動用モータの積層鉄心の製造方法 WO2016013683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/327,347 US10193426B2 (en) 2014-07-25 2015-07-27 Method for manufacturing a stacked iron core of a vehicle drive motor
CN201580039866.6A CN106688166B (zh) 2014-07-25 2015-07-27 车辆驱动用马达的层叠铁心的制造方法
JP2016536010A JP6486930B2 (ja) 2014-07-25 2015-07-27 車両駆動用モータの積層鉄心の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152094 2014-07-25
JP2014152094 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013683A1 true WO2016013683A1 (ja) 2016-01-28

Family

ID=55163204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071291 WO2016013683A1 (ja) 2014-07-25 2015-07-27 車両駆動用モータの積層鉄心の製造方法

Country Status (4)

Country Link
US (1) US10193426B2 (ja)
JP (1) JP6486930B2 (ja)
CN (1) CN106688166B (ja)
WO (1) WO2016013683A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216496A1 (ja) * 2017-05-26 2018-11-29 株式会社三井ハイテック 治具及び積層体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965465B2 (ja) * 2018-12-28 2021-11-10 日本発條株式会社 積層鉄心及び積層鉄心の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028929A (ja) * 2008-07-16 2010-02-04 Mitsui High Tec Inc 積層鉄心及びその製造方法
EP2395636A2 (en) * 2006-06-16 2011-12-14 LG Electronics Inc. Stator of motor and washing apparatus having the same
JP2014072988A (ja) * 2012-09-28 2014-04-21 Yaskawa Electric Corp 固定子コア、分割コアブロック、固定子の製造方法、および回転電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293471A (en) * 1963-10-28 1966-12-20 Gen Electric Laminated core construction for electric inductive device
JP4040202B2 (ja) * 1999-04-01 2008-01-30 三菱電機株式会社 車両用交流発電機の固定子コア及び車両用交流発電機の固定子コアの製造方法
BR0002188A (pt) * 2000-03-30 2001-11-13 Brasil Compressores Sa Processo de formação do pacote de lâminasmetálicas de estator de motor elétrico e pacotede lâminas metálicas
CN1960137A (zh) * 2005-10-31 2007-05-09 川乐机电股份有限公司 旋转电机用铁芯及其组装方法
JP5338190B2 (ja) 2008-08-12 2013-11-13 日産自動車株式会社 積層鉄心の製造装置および製造方法
US9178403B2 (en) * 2010-09-29 2015-11-03 Honda Motor Co., Ltd. Laminated body manufacturing method
JP2013005628A (ja) * 2011-06-17 2013-01-07 Mitsui High Tec Inc 積層鉄心の製造方法及びこの方法によって製造された積層鉄心
JP2013169044A (ja) * 2012-02-14 2013-08-29 Nhk Spring Co Ltd モータの分割ステータ・コア

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395636A2 (en) * 2006-06-16 2011-12-14 LG Electronics Inc. Stator of motor and washing apparatus having the same
JP2010028929A (ja) * 2008-07-16 2010-02-04 Mitsui High Tec Inc 積層鉄心及びその製造方法
JP2014072988A (ja) * 2012-09-28 2014-04-21 Yaskawa Electric Corp 固定子コア、分割コアブロック、固定子の製造方法、および回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216496A1 (ja) * 2017-05-26 2018-11-29 株式会社三井ハイテック 治具及び積層体の製造方法
JP2018201300A (ja) * 2017-05-26 2018-12-20 株式会社三井ハイテック 熱処理用治具及び積層体の製造方法

Also Published As

Publication number Publication date
JP6486930B2 (ja) 2019-03-20
US10193426B2 (en) 2019-01-29
US20170179797A1 (en) 2017-06-22
JPWO2016013683A1 (ja) 2017-04-27
CN106688166A (zh) 2017-05-17
CN106688166B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
US10411568B2 (en) Method of manufacturing laminated core
JP4176121B2 (ja) 回転子積層鉄心およびその製造方法
JP5971418B2 (ja) 回転電機用同期ロータと回転電機用同期ロータの製造方法
JP5327257B2 (ja) 巻鉄心、電磁部品とその製造方法および電磁機器
CN102326316A (zh) 转子及其制造方法
JP2017108578A (ja) 固定子積層鉄心及びその製造方法
JP2012178920A (ja) 固定子鉄心の製造方法
WO2011037087A1 (ja) 電機子用磁芯及び磁芯の製造方法
JP6486930B2 (ja) 車両駆動用モータの積層鉄心の製造方法
JP2007228720A (ja) コア
JP2005020972A (ja) 積層鉄心の製造方法及び製造装置
JP2013090386A (ja) 回転電機用コアの製造方法及びコア板の打ち抜き装置
JP6469355B2 (ja) 車両駆動用モータの積層鉄心の製造方法
JP2019103219A (ja) 回転電機および回転電機の製造方法
JP7046265B2 (ja) 電機子鉄心の製造方法、電気機械の製造方法、及び電気機械
JP6917325B2 (ja) 車両駆動用モータの積層鉄心の製造方法及び積層鉄心
JP6400458B2 (ja) 打抜き方法及び積層鉄心の製造方法
JP5432311B2 (ja) 回転子積層鉄心及びその製造方法
JP2008043130A (ja) アキシャル型コンデンサ電動機の固定子鉄心およびその製造方法
WO2018163852A1 (ja) 回転電機の積層コア、回転電機の積層コアの製造方法、および回転電機
CN113491058B (zh) 层叠铁芯以及层叠铁芯的制造方法
JP2024060339A (ja) 積層鉄心及びその製造方法
JP5511711B2 (ja) ステータコア
JP4291205B2 (ja) 積層型鉄心及びその製造方法
KR100519114B1 (ko) 리니어 모터용 코어의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536010

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824064

Country of ref document: EP

Kind code of ref document: A1