WO2016011892A1 - 分段式保持架及其应用 - Google Patents

分段式保持架及其应用 Download PDF

Info

Publication number
WO2016011892A1
WO2016011892A1 PCT/CN2015/083565 CN2015083565W WO2016011892A1 WO 2016011892 A1 WO2016011892 A1 WO 2016011892A1 CN 2015083565 W CN2015083565 W CN 2015083565W WO 2016011892 A1 WO2016011892 A1 WO 2016011892A1
Authority
WO
WIPO (PCT)
Prior art keywords
concave curved
curved surface
spacer
pocket
segmented cage
Prior art date
Application number
PCT/CN2015/083565
Other languages
English (en)
French (fr)
Inventor
安洪元
阿贾伊·S·沃德瓦
Original Assignee
斯凯孚公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 斯凯孚公司 filed Critical 斯凯孚公司
Priority to US15/326,888 priority Critical patent/US20170211629A1/en
Priority to DE112015003361.0T priority patent/DE112015003361T5/de
Publication of WO2016011892A1 publication Critical patent/WO2016011892A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the present invention relates to a segmented cage and a ball bearing to which the segmented cage is applied.
  • a segmented cage allows for a smaller circumferential spacing between the rolling bodies, thus allowing bearings of the same size to fit into more rolling bodies. Such a cage can significantly improve the load carrying capacity of the bearing, especially in the case of low speed and heavy load.
  • the segmented cage currently on the market is composed of a plurality of independent spacers 1, which are spaced apart between an equal number of rolling bodies 2.
  • Each of the spacers 1 is formed with pocket slots 3 at positions on both sides thereof (in the circumferential direction of the bearing) in contact with the rolling bodies 2, and the adjacent pockets 3 are matched to form a rolling element for winding 2's pocket pocket 4.
  • each spacer 1 is also formed at its axis N position with a main oil hole 5 extending through its interior and opening to the side pockets 3.
  • the main oil hole 5 is used for the circulation and storage of the lubricant.
  • FIG 2b is a partial enlarged view of the area A of Figure 2a.
  • a concave curved surface 6 for holding the rolling elements 2 is formed in the pocket 3.
  • the concave curved surface 6 actually employs a concave spherical surface slightly larger than the rolling body 2.
  • the purpose of using a concave spherical surface is to create an ideal mode of "big ball enveloping small ball" in an attempt to achieve the best match and guidance between the spacer 1 and the roller 2.
  • the penetrating design of the main oil hole 5 causes the rolling bodies 2 to actually only contact the opening edge 7 of the main oil hole 5 on the inner concave spherical surface 6.
  • This edge contact causes the contact stress between the roller 2 and the spacer 1 to concentrate at the position of the opening edge 7 of the main oil hole 5, which exacerbates the wear between the components and is disadvantageous to the rolling elements and the cage.
  • the present invention provides a segmented cage composed of a plurality of independent spacers. These separate spacers are spaced between an equal number of rolling elements.
  • Each of the spacers is formed with a pocket at a position where the two sides of the spacer are in contact with the rolling body, and a concave curved surface suitable for holding the rolling body is formed in the pocket, and the adjacent pockets are matched to form a rolling element for winding Pocket.
  • Each of the spacers is also formed with at least one pair of main oil holes extending through the inner side of the pockets on both sides. The concave curved surface maintains the rolling bodies in such a manner that the rolling bodies do not contact the opening edges of the main oil holes in the pockets.
  • the segmented cage adopting the above structure can effectively avoid the stress concentration problem caused by the edge contact between the rolling element and the pocket (main oil hole), thereby effectively alleviating the wear between the components and the resulting bearing prematurely.
  • the problem of premature failure From a lubrication point of view, the sharp edge contact itself means a lubricant starvation at the contact location. Therefore, avoiding edge contact itself means improvement in lubrication and mitigation of wear.
  • the present invention further provides a ball bearing, in particular an angular contact ball bearing, a deep groove ball bearing and a four-point contact ball type slewing.
  • a ball bearing in particular an angular contact ball bearing, a deep groove ball bearing and a four-point contact ball type slewing.
  • Four-point contact ball slewing bearing Experiments have shown that ball bearings using the above cages have lower temperature rise, increased efficiency and extended life.
  • FIG. 1 is a schematic cross-sectional view of a ball bearing using a segmented cage in the prior art
  • FIG. 2a is a schematic cross-sectional view of a spacer body and a rolling element on both sides thereof in the prior art
  • Figure 2b is a partial enlarged view of the area A in Figure 2a;
  • Figure 3a is a schematic cross-sectional view of the spacer ring and the rolling elements on both sides thereof;
  • Figure 3b is a partial enlarged view of the area A in Figure 3a;
  • Figure 4a is a two-dimensional plan view of a plane circle and a straight line for forming a spindle ring
  • Figure 4b is a three-dimensional schematic view of the spindle ring
  • 5a is a three-dimensional model diagram of a concave curved surface of the spacer of the present invention formed by an integral annular surface;
  • FIG. 5b is a three-dimensional model diagram of a concave curved surface of the spacer of the present invention which is assembled by two-part annular surface;
  • Figure 5c is a schematic cross-sectional view showing the mutual fitting of the concave curved surface of the spacer of the present invention and the rolling bodies;
  • Figure 6a is a schematic cross-sectional view of the concave curved surface independently formed by the paraboloid, wherein the main oil hole is opened at the bottom of the paraboloid, and the rolling body abuts at a position other than the bottom of the paraboloid;
  • Figure 6b is a schematic cross-sectional view of the concave curved surface independently formed by the ellipsoidal surface, wherein the main oil hole is opened at the bottom of the ellipsoidal surface, and the rolling element abuts at other positions than the bottom of the ellipsoid;
  • Figure 7a is a schematic cross-sectional view of the concave curved surface independently formed by the paraboloid, wherein the rolling body abuts against the bottom of the paraboloid, and the main oil hole is opened at a position other than the bottom of the paraboloid;
  • Figure 7b is a schematic cross-sectional view of the concave curved surface independently formed by the ellipsoidal surface, wherein the rolling body abuts against the bottom of the ellipsoidal surface, and the main oil hole is opened at a position other than the bottom of the ellipsoid;
  • Figure 8a is a schematic view of the spacer ring as viewed in the circumferential direction of the bearing
  • Figure 8b is an exemplary diagram of lubrication grooves of different shapes
  • Figure 9a is a schematic cross-sectional view of the spacer having an auxiliary oil hole therein;
  • Figure 9b is a partial enlarged view of the area A of Figure 8a.
  • the present invention mainly adopts the following two embodiments in the structure: 1 Similar to the background art, the main oil hole 5 is still open. In the deepest concave portion of the pocket 3, but the rolling body 2 only abuts the concave curved surface 6 at a position other than the deepest portion of the concave portion (so that the opening edge 7 of the main oil hole 5 is not contacted); The concave curved surface 6 is formed to cover the deepest portion of the concave groove of the pocket 3, and the rolling body 2 also actually abuts at the deepest portion of the concave portion, but the main oil hole 5 is opened at a position other than the deepest portion of the pocket 3 ( Therefore, the rolling elements are not in contact with the opening edge of the main oil hole).
  • Figure 3a is a schematic cross-sectional view of the spacer ring of the present invention and the spherical roller on both sides thereof;
  • Figure 3b is a partial enlarged view of the area A of Figure 3a. 2b and 3b, it can be seen that the position of the rolling body 2 against the concave curved surface 6 has been moved from the opening edge 7 of the main oil hole 5 shown in Fig. 2b to the concave curved surface 6 shown in Fig. 3b.
  • the "hinterland" (the inland area outside the edge). Theoretically, any inland area is feasible as long as the rolling body 2 avoids the open edge 7 of the main oil hole 5. However, it is a better choice if the rolling body 2 actually abuts the concave curved surface 6 at a substantially halfway position 8 within the range of its slope length.
  • the present invention firstly adopts a technical scheme in which a concave curved surface is formed by two-part annular surface.
  • the toroidal surface described herein is a geometric concept and refers to a spatial surface obtained by rotating a circle around a line coplanar with the circle.
  • such torus is similar to the shape of doughnuts or lifebuoys.
  • the straight line is a chord on a circle
  • the resulting torus is a non-porous ring, commonly known as a "spindle torus.” Because of its thick middle shape, the ends are thin, similar to the spindle, hence the name.
  • the spindle ring can be further subdivided into two types: one is formed by rotating a small arc a 1 having an arc length smaller than a semicircle around the straight line l, and is shaped like a rugby. The other is formed by rotating a large arc a 2 with an arc length greater than a semicircle around the straight line l, and the shape is similar to a pumpkin.
  • the straight line l further passes through the center of the circle, the annulus will fade to a spherical surface. In this sense, the sphere is actually a special case of the torus.
  • the circle described herein will be defined herein as a "cross-sectional circle" of the torus.
  • Figure 5a is a three-dimensional model diagram of a concave surface formed by a one-piece torus.
  • the torus shown in the figures is only a spindle ring, but the possibility of other types of annulus as a concave curved surface is not excluded.
  • Fig. 5a is an intermediate state for illustrating a specific technical solution in the forming process of the first embodiment of the present invention
  • Fig. 5b shows the final state of the solution.
  • FIG. 5a shows that the concave curved surface 6 is formed independently of the integral annular surface t.
  • FIG. 5c is a schematic cross-sectional view of the concave curved surface and the rolling body in the technical solution.
  • the concave curved surface 6 in the figure, as described above, is formed by splicing two partial annular faces t 1 and t 2 symmetrically distributed around the axis N of the spacer 1 .
  • the two partial toroids t 1 and t 2 have the same diameter and are larger than the cross-sectional circle diameter of the rolling elements 2, and the centers O 1 and O 2 of the respective cross-section circles respectively pass the axis N of the spacer 1 into the opposite side torus
  • An appropriate distance within the spatial extent defined by t 2 and t 1 such that the position of the rolling body 2 against the concave curved surface 6 can be moved from the open edge 7 of the main oil hole 5 to the inland region of the concave curved surface 6 (Schand).
  • a spherical surface is a special case of a torus.
  • the two-part annulus t 1 and t 2 shown in Figures 5a - 5c may actually be a two-part spherical surface (hereinafter also indicated by t 1 and t 2 ).
  • the concave curved surface 6 is formed by splicing two partial spherical surfaces t 1 and t 2 symmetrically distributed around the axis N of the spacer 1 .
  • the two partial spherical surfaces t 1 and t 2 have the same and are larger than the diameter of the rolling body 2, and the respective spherical cores O 1 and O 2 both pass the spacer axis N, and are defined by the contralateral partial spherical surfaces t 2 and t 1 .
  • the appropriate distance within the spatial extent allows the position of the rolling body 2 against the concave curved surface 6 to be moved from the open edge 7 of the main oil hole 5 to the inland region (the hinterland) of the concave curved surface 6.
  • the concave curved surface is formed by two-part annular surface or spherical surface of a symmetrical structure.
  • the concave curved surface does not have to be formed by two-part torus, and can also be independently formed by various types of integral curved surfaces. Composition.
  • Figures 6a and 6b show schematic cross-sectional views of a concave curved surface formed independently of a paraboloidal surface and an ellipsoid surface.
  • the main oil hole 5 is opened at the bottom of these curved surfaces, and the rolling elements 2 abut against these surfaces at other positions than the bottom thereof. It is easy to understand that as long as the rolling element 2 is kept away from the opening edge 7 of the main oil hole 5 located at the deepest portion of the pocket 3, for example, the rolling body 2 and the concave curved surface 6 are kept in two points as shown in Figs. 6a and 6b.
  • the object of the invention can be achieved. In this sense, any other type of surface, such as a conical surface, a hyperboloid surface, an ovoid surface, etc., can keep the rolling elements out of contact as long as it maintains the rolling elements.
  • the main oil hole can achieve the object of the present invention at the edge of the opening at the deepest point of the pocket.
  • the opening edge of the main oil hole may be rounded, as shown in FIG. 5c.
  • the rolling elements can only touch the inland area (the hinterland) where the concave curved surface is outside the opening edge of the main oil hole.
  • the difference between this solution and the first two technical solutions is that it is not effective by reshaping the geometry of the concave curved surface, but by performing a sufficient degree of rounding on the opening edge region of the main oil hole. Avoid touching the rolling element directly against the edge of the opening of the main oil hole.
  • the so-called sufficient degree of rounding treatment can be expressed mathematically as r/R 1 ⁇ 5%, where r is the radius of curvature of the main oil hole 5 subjected to the rounding treatment at its edge 7, and R 1 is concave
  • the curved surface 6 contacts the radius of curvature at the position of the rolling element 2. From a technical point of view, this method is simple and easy, except for the rounding of the oil hole edge, there is no need to make any shape improvement on the concave spherical design of the existing pocket. Therefore, the solution is inexpensive and the effect is acceptable.
  • a second embodiment of the invention is set forth below.
  • the essence of the second embodiment is to make the rolling body directly abut against the deepest concave portion of the pocket (ie, the bottom of the concave curved surface), and the main oil hole is opened in the groove of the spacer ring.
  • Other locations. 7a and 7b are schematic cross-sectional views of the rolling body 2 directly abutting against the bottom of the paraboloid 6 or the ellipsoidal surface 6, and the main oil hole 5 opening at a position other than the bottom of the concave curved surface 6.
  • This embodiment does not have too much limitation on the shape of the concave curved surface, such as a toroidal surface, a spherical surface, a paraboloid, an ellipse. Spherical surface, oval surface, etc., as long as the bottom can achieve envelope contact with the rolling element, and the main oil hole is opened at other positions in the pocket, the opening of the rolling body and the main oil hole can be avoided Contact at the edge.
  • the concave spherical surface including the case of multi-part spherical combination
  • the temperature rise experimental data is the lowest, indicating The spacer and the roller are in an optimally fitted state and lubricated state.
  • Figure 8a is a front elevational view of the spacer as viewed from a circumferential perspective of the bearing.
  • the three petal-shaped lubricating grooves 9 are equally spaced around the axis N of the spacer 1 on the concave curved surface 6, and the center of each of the lubricating grooves 9 is distributed on the concave curved surface 6 to contact the rolling elements 2
  • the position is on line 10.
  • the position line 10 corresponds to the previously described concave curved surface 6 at a half position 8 within the range of its slope length (see Fig. 3b).
  • the position line 10 can also be at other locations within the range of the slope of the concave curved surface 6.
  • the number of the lubrication grooves 9 is not limited to three, and may be appropriately set to 1 to 6 according to actual needs.
  • the shape of the lubrication groove 9 may be stripe-like or intersecting stripe shape as shown in Fig. 8b as needed.
  • Figure 9a is a cross-sectional view of the sub-oil hole in the spacer;
  • Figure 9b is a partial enlarged view of the area A in Figure 9a.
  • the sub-oil hole 11 penetrates the spacer 1 and opens into the pocket 3 on both sides of the spacer 1.
  • the sub-oil hole 11 may be opened at the bottom of the lubrication groove 9. As shown in Fig. 8a, at this time, the sub-oil hole 11 penetrates the spacer 1, and is kept in communication with the two lubrication grooves 9 at the corresponding positions in the pockets 3 on both sides of the spacer.
  • the spacer 1 can also have different choices in material.
  • the spacer 1 may be selected from carbon steel, steel alloys, copper alloys, aluminum alloys, sintered materials, and composite materials. (composite materials), engineering plastics, polymers, etc. as materials for their manufacture.
  • segmented cage described above can be widely applied to various types of ball bearings, especially angular contact ball bearings, deep groove ball bearings, four-point contact ball type slewing bearings and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种用于球轴承的分段式保持架,包含多个独立的隔圈(1),间隔分布在同等数量的滚动体(2)之间。每一个隔圈(1)在其两侧与滚动体(2)接触的位置处均形成有兜槽(3),兜槽(3)内形成有适于保持滚动体(2)的内凹曲面(6),相邻隔圈(1)的相向兜槽(3)匹配形成用于裹挟滚动体(2)的兜孔(4)。每一个隔圈(1)都形成有贯穿其内部且开口于两侧兜槽(3)的至少一副主油孔(5)。内凹曲面(6)保持滚动体(2)的方式使得滚动体(2)接触不到至少一副主油孔(5)在兜槽(3)内的开口边缘(7)。另外,还公开了采用以上分段式保持架的球轴承,尤其是角接触球轴承、深沟球轴承或者四点接触球式回转轴承。

Description

分段式保持架及其应用 技术领域
本发明涉及一种分段式保持架以及应用该分段式保持架的球轴承。
背景技术
采用一体式保持架(one-piece cage)的球轴承,其滚动体(rolling elements)的数量受到保持架在圆周方向上的梁宽(width of cage bar)的限制,因而其负荷承载能力(load carrying capability)也受到相应的限制。分段式保持架(segmented cage)允许滚动体之间采用更小的圆周间距,因而允许相同尺寸的轴承装入更多的滚动体。这样的保持架能够显著提高轴承的负荷承载能力,尤其在低速重载的条件下具有广阔的应用前景。
目前市场上的分段式保持架,如图1所示,由多个独立的隔圈(spacer)1共同构成,这些隔圈1间隔分布在同等数量的滚动体2之间。每一个隔圈1在其(轴承圆周方向上的)两侧与滚动体2接触的位置处均形成有兜槽(pocket slots)3,相邻的兜槽3之间匹配形成用于裹挟滚动体2的兜孔(cage pocket)4。出于润滑之目的,每一个隔圈1在其轴线N位置处还形成有贯穿其内部且开口于两侧兜槽3的主油孔5。所述主油孔5用于润滑剂的流通和贮存。上述结构在图2a所示的隔圈1的截面放大图中能够以更清晰的方式加以显示。
图2b是图2a中A区域的局部放大图。如图2b所示,兜槽3内形成有用于保持滚动体2的内凹曲面6。在现有技术中,内凹曲面6实际采用的是尺寸略大于滚动体2的内凹球面。采用内凹球面的目的是营造一种“大球包络小球”的理想模式,试图实现隔圈1与滚子2之间的最佳匹配和引导。然而,主油孔5的贯穿式设计导致滚动体2实际上只能接触到主油孔5在内凹球面6上的开口边缘7。这种边缘式接触导致滚子2与隔圈1之间的接触应力(contact stress)集中在主油孔5的开口边缘7位置处,加剧了部件之间的磨损,不利于滚动体与保持架之间润滑油膜的形成,因此在相当程度上降低了整个轴承的机械效率和预期寿命。
发明内容
为避免上述边缘接触所带来的诸多问题,本发明提供一种分段式保持架,由多个独立的隔圈构成。这些独立的隔圈间隔分布在同等数量的滚动体之间。每一个隔圈在其两侧与滚动体接触的位置处均形成有兜槽,兜槽内形成有适于保持滚动体的内凹曲面,相邻兜槽之间匹配形成用于裹挟滚动体的兜孔。每一个隔圈还形成有贯穿其内部开口于两侧兜槽的至少一副主油孔。所述内凹曲面保持滚动体的方式使得滚动体接触不到所述主油孔在兜槽内的开口边缘。
采用上述结构的分段式保持架能够有效避免滚动体与兜孔(主油孔)之间因边缘接触所导致的应力集中问题,因而能够有效缓解部件之间磨损以及由此导致的轴承过早失效(premature failure)的问题。从润滑的角度而言,边缘接触(sharp edge contact)本身就意味着在接触位置处润滑剂的不足(lubricant starvation)。因此,避免边缘接触本身就意味着润滑的改善和磨损的缓解。
在上述分段式保持架的基础上,本发明进一步提供一种球轴承,尤其是角接触球轴承(angular contact ball bearing)、深沟球轴承(deep groove ball bearing)和四点接触球式回转支撑轴承(four-point contact ball slewing bearing)。实验证明,采用上述保持架的球轴承拥有较低的温升、提高的效率和延长的寿命。
以下结合附图详细描述本发明的各种实施方式和有益的技术效果。
附图说明
图1为现有技术中采用分段式保持架的球轴承的截面示意图;
图2a为现有技术中隔圈及其两侧的滚动体的截面示意图;
图2b为图2a中A区域的局部放大图;
图3a为本发明所述隔圈及其两侧滚动体的截面示意图;
图3b为图3a中A区域的局部放大图;
图4a为用以形成纺锤环的平面圆和直线的二维平面示意图;
图4b为纺锤环的三维示意图;
图5a为本发明所述隔圈的内凹曲面由一体环面构成的三维模型示意图;
图5b为本发明所述隔圈的内凹曲面由两部分环面拼合而成的三维模型示意图;
图5c是本发明所述隔圈的内凹曲面与滚动体之间相互适配的截面示意图;
图6a为内凹曲面由抛物面独立构成的截面示意图,其中主油孔开设在抛物面的底部,而滚动体抵靠在抛物面在底部以外的其他位置处;
图6b为内凹曲面由椭球面独立构成的截面示意图,其中主油孔开设在椭球面的底部,而滚动体抵靠在椭球面在底部以外的其他位置处;
图7a为内凹曲面由抛物面独立构成的截面示意图,其中滚动体抵靠在抛物面的底部,而主油孔开设在抛物面在底部以外的其他位置处;
图7b为内凹曲面由椭球面独立构成的截面示意图,其中滚动体抵靠在椭球面的底部,而主油孔开设在椭球面在底部以外的其他位置处;
图8a为沿轴承圆周方向观察所述隔圈的示意图;
图8b为不同形状润滑槽的示范图;
图9a为内部设有副油孔的所述隔圈的截面示意图;以及
图9b为图8a中A区域的局部放大图。
具体实施方式
为使滚动体2触碰不到主油孔5在隔圈兜槽3内的开口边缘7,本发明在结构上主要采用以下两种实施方式:①与背景技术类似,主油孔5仍然开口于兜槽3的内凹最深处,但滚动体2只抵靠内凹曲面6在所述内凹最深处以外的其他位置处(从而接触不到主油孔5的开口边缘7);②内凹曲面6形成为覆盖兜槽3的内凹最深处,滚动体2也实际抵靠在该内凹最深处,但主油孔5开口于兜槽3在其内凹最深处以外的其他位置(因而滚动体接触不到主油孔的开口边缘)。
以下结合图3a和3b详细描述上述第一种实施方式。图3a为本发明所述隔圈及其两侧球心滚子的截面示意图;图3b为图3a中A区域的局部放大图。对比图2b和图3b可以看出,滚动体2抵靠内凹曲面6的位置已由图2b中所示的主油孔5的开口边缘7处移至图3b中所示的内凹曲面6的“腹地”(hinderland,即边缘以外的内陆地区)。理论上讲,只要滚动体2避开主油孔5的开口边缘7,任何内陆区域都是可行的。但假若滚动体2实际抵靠内凹曲面6在其坡长(slope length)范围内的大致半程位置8处,则不失为一种更佳的选择。
为实现上述目的,本发明首先采用一种内凹曲面由两部分环面拼合而成的技术方案。这里所述的环面(toroidal surface)是一个几何学上的概念,是指由一个圆围绕与该圆共面的一根直线旋转一周所得的空间曲面。通常情况下,此类环面类似于面包圈(doughnuts)或者救生圈(lifebuoys)的形状。但当所述直线是圆上的一根弦(chord)时,所得的环面则是一种无孔环,俗称“纺锤环(spindle torus)”。因其形状中间粗,两端细,与纺锤类似,故而得名。如图4a和4b所示,所述纺锤环可进一步细分为两种类型:一种是由弧长小于半圆的小段圆弧a1围绕所述直线l旋转形成,形状类似于橄榄球(rugby);另一种是由弧长大于半圆的大段圆弧a2围绕直线l旋转形成,形状类似于南瓜(pumpkin)。当所述直线l进一步穿越所述圆的圆心时,环面将褪化成为一个球面。从这个意义上讲,球面实际上是环面的一种特殊情形。顺便指出,此处所述的圆在本文中将被定义为环面的“截面圆(cross-sectional circle)”。
图5a为内凹曲面由一体环面(one-piece torus)构成的三维模型示意图。出于示意之目的,图中显示的环面仅为一种纺锤环,但不排除其他类型的环面作为内凹曲面应用的可能。有必要指出,图5a是用来图解本发明第一种实施方式下一种具体技术方案在形成过程中的一个中间状态,图5b显示的才是所述方案的最终状态。具体而言,图5a显示的是内凹曲面6由一体环面t独立构成。为使滚动体2触碰不到兜槽3内凹最深处的主油孔5的开口边缘7,需要进一步将图5a中所示的位于隔圈1轴线N上方的部分环面t1与位于轴线下方的部分环面t2向彼此相向(如图5b中箭头所示)的方向靠近适当的距离,才能形成图5b中所示的最终的技术方案。
以下将从几何学的角度进一步阐述上述技术方案的结构特征。图5c为该技术方案下内凹曲面与滚动体配合的截面示意图。图中的内凹曲面6,如前所述,是由围绕隔圈1的轴线N对称分布的两部分环面t1和t2拼合而成。这两部分环面t1和t2具有彼此相等且均大于滚动体2的截面圆直径,且各自截面圆的圆心O1和O2分别越过隔圈1的轴线N,进入对侧部分环面t2和t1所限定出的空间范围内适当的距离,使得滚动体2抵靠内凹曲面6的位置能够从主油孔5的开口边缘7处移至内凹曲面6的内陆区域(腹地)。
如前所述,球面是环面的一种特殊情形。从这个意义上讲,图5a~5c中所示的两部分环面t1和t2实际上也可以是两部分球面(以下仍以t1和t2表示)。在这种情况下,内凹曲面6则由围绕隔圈1的轴线N对称分布的两部分球面t1和t2拼合而成。这两 部分球面t1和t2具有相同且均大于滚动体2的直径,且各自的球心O1和O2均越过隔圈轴线N,进入对侧部分球面t2和t1所限定出的空间范围内适当的距离,使得滚动体2抵靠内凹曲面6的位置能够从主油孔5的开口边缘7处移至内凹曲面6的内陆区域(腹地)。
以上描述的仅仅是第一种实施方式下的一种具体技术方案,即所述内凹曲面由对称结构的两部分环面或者球面拼合而成。然而,为使内凹曲面的支撑滚动体的位置从其底部转移至底部以外的其他位置,内凹曲面不见得非得由两部分环面拼合而成才行,也可以由各种类型的一体曲面独立构成。图6a和6b显示的是由抛物面(paraboloidal surface)和椭球面(ellipsoid surface)独立构成内凹曲面的截面示意图。如图中所示,主油孔5开设在这些曲面的底部,而滚动体2则抵靠在这些曲面在其底部以外的其他位置处。容易理解,只要让滚动体2避开位于兜槽3最深处的主油孔5的开口边缘7,比如令滚动体2与内凹曲面6如图6a和6b中所示保持两点接触,就都能够实现本发明的目的。从这个意义上讲,任何其他类型的曲面,例如锥面(conical surface)、双曲面(hyperboloid surface)、卵形面(ovoid surface)等,只要其保持滚动体的方式能够使滚动体接触不到主油孔在兜槽最深处的开口边缘,就都能够实现本发明的目的。
作为第一种实施方式下的另外一种技术方案,为避免滚动体与主油孔的开口边缘直接接触,也可以对主油孔的开口边缘进行圆曲化处理,如图5c所示,使滚动体只能接触到内凹曲面在主油孔的开口边缘以外的内陆区域(腹地)。这种方案与前两种技术方案的区别在于,并非是通过对内凹曲面的几何形状进行重新塑造,而是通过对主油孔的开口边缘区域进行足够程度的圆曲化处理,就能够有效避免滚动体直接触碰主油孔的开口边缘。所谓足够程度的圆曲化处理在数学上可表述为r/R1≥5%,其中,r为经过圆曲化处理的主油孔5在其边缘7处的曲率半径,R1为内凹曲面6接触滚动体2位置处的曲率半径。从工艺层面来讲,这种方法简便易行,除了对油孔边缘进行圆曲化处理以外,不需要对现有兜槽的内凹球面设计进行任何形状上的改进。因此,该方案成本低廉,而且效果也可以接受。
以下阐述本发明的第二种实施方式。如前所述,第二种实施方式的实质内容是令滚动体直接抵靠在兜槽的内凹最深处(即内凹曲面的底部),而令主油孔开口于隔圈凹槽内的其他位置处。图7a和7b是滚动体2直接抵靠在抛物面6或者椭球面6的底部,而主油孔5开口于内凹曲面6在其底部以外的其他位置处的截面示意图。这种实施方式对内凹曲面的形状并无过多限制,常规的内凹曲面,例如环面、球面、抛物面、椭 球面、卵形面等,只要其底部能够与滚动体实现包络式接触(envelope curve contact),且主油孔开口于兜槽内的其他位置,就都能够避免滚动体与主油孔的开口边缘发生接触。
以上描述了本发明的两种实施方式。无论在哪一种实施方式下,内凹曲面在其与球心滚子接触位置处的曲率半径与后者的半径在一定范围内越接近,就越有利于消除应力集中和润滑不充分。以内凹球面(包含多部分球面组合的情形)为例,当其球面半径R1与滚动体半径R2的比值满足关系式1.01≤R1/R2≤1.09时,温升实验数据最低,表明隔圈与滚子之间处于最佳的适配状态和润滑状态。上述尺寸关系对其他类型的内凹曲面也具有同样重要的意义。即当内凹曲面在其与滚动体接触位置处的曲率半径与滚动体半径之间的比值范围处于101%~109%时,隔圈与滚子之间处于最佳的适配状态。
为进一步改善润滑,还可以在内凹曲面接触滚动体的位置处增设润滑槽。图8a为沿轴承圆周视角观察隔圈的正视图。从图中可以看出,三处花瓣状的润滑槽9围绕隔圈1的轴线N等间隔地分布在内凹曲面6上,各处润滑槽9的中心分布在内凹曲面6接触滚动体2的位置线10上。所述位置线10与之前所述内凹曲面6在其坡长范围内的半程位置8处相对应(参见图3b)。当然,位置线10也可以处于内凹曲面6在其坡长范围内的其他位置处。润滑槽9的数量也不限于3处,可根据实际需要而适宜设置1~6处。润滑槽9的形状也可以根据需要采用图8b所示的条纹状或者交叉的条纹状。
作为另外一种选择,也可以在润滑槽9的位置处设置副油孔11,用于润滑剂的储存和流通。图9a是隔圈中开设有副油孔的截面图;图9b为图9a中A区域的局部放大图。从图中可以看出,副油孔11贯穿隔圈1,开口于隔圈1两侧的兜槽3内。作为进一步的选择,副油孔11也可以开设于润滑槽9的底部。如图8a所示,此时副油孔11贯穿隔圈1,与隔圈两侧兜槽3内相应位置处的两处润滑槽9保持连通。
在上述结构的基础上,隔圈1在材质上也可以有不同的选择。例如,视工况条件和负载特性的不同,隔圈1可选择碳钢(carbon steel)、合金钢(steel alloys)、铜合金(copper alloys)、铝合金、烧结材料(sintered materials)、复合材料(composite materials)、工程塑料(engineering plastics)、聚合物(polymer)等作为其制造材料。
以上描述的分段式保持架可广泛应用于各种类型的球轴承,尤其是角接触球轴承、深沟球轴承、四点接触球式回转轴承等领域。
所述领域的技术人员应当理解,有关该保持架及其应用的各种形式的变化和改进,只要符合随附权利要求书的限定,均属于本发明的保护范围。

Claims (19)

  1. 一种用于球轴承的分段式保持架,包含多个独立的隔圈(1),间隔分布在同等数量的滚动体(2)之间,其中
    每一个隔圈(1)在其两侧与滚动体(2)接触的位置处均形成有兜槽(3),所述兜槽(3)内形成有适于保持所述滚动体(2)的内凹曲面(6),相邻隔圈(1)的相向兜槽(3)匹配形成用于裹挟滚动体(2)的兜孔(4);并且
    每一个隔圈(1)都形成有贯穿其内部且开口于两侧兜槽(3)的至少一副主油孔(5);
    其特征在于:所述内凹曲面(6)保持滚动体(2)的方式使得滚动体(2)接触不到所述至少一副主油孔(5)在兜槽(3)内的开口边缘(7)。
  2. 如权利要求1所述的分段式保持架,其特征在于:所述至少一副主油孔(5)开口于所述兜槽(3)的内凹最深处,滚动体(2)抵靠在内凹曲面(6)在所述兜槽(3)内凹最深处以外的内陆区域。
  3. 如权利要求2所述的分段式保持架,其特征在于:
    所述内凹曲面(6)是由围绕隔圈(1)的轴线(N)对称分布的两部分环面(t1和t2)拼合而成,这两部分环面(t1和t2)具有相同且均大于滚动体(2)的截面圆直径;并且
    所述两部分环面(t1和t2)的截面圆圆心(O1和O2)分别越过隔圈(1)的轴线(N),进入对方部分环面(t2和t1)所限定的空间范围内预定的距离。
  4. 如权利要求3所述的分段式保持架,其特征在于:所述两部分环面(t1和t2)实际为两部分球面(t1和t2),这两部分球面(t1和t2)具有相同且均大于滚动体(2)的直径,且两者的球心(O1和O2)分别越过隔圈(1)的轴线(N),进入对侧部分球面(t2和t1)所限定的空间范围内预定的距离。
  5. 如权利要求2所述的分段式保持架,其特征在于:所述内凹曲面(6)由一体抛物面、一体椭球面或者一体卵形面独立构成。
  6. 如权利要求2所述的分段式保持架,其特征在于:所述至少一副主油孔(5)的开口边缘(7)经过圆曲化处理,使滚动体(2)只能接触到内凹曲面(6)在所述主油孔(5)的开口边缘(7)以外的其内陆区域。
  7. 如权利要求6所述的分段式保持架,其特征在于:所述开口边缘(7)位置处经圆曲化处理以后其曲率半径为r,与内凹曲面(6)接触滚动体(2)位置处的曲率半径R1之间的比值r/R2不小于5%。
  8. 如权利要求1所述的分段式保持架,其特征在于:所述内凹曲面(6)形成为覆盖兜槽(3)的内凹最深处,滚动体(2)抵靠在内凹曲面(6)的底部,所述至少一副主油孔(5)开口于兜槽(3)内除内凹最深处以外的其他位置。
  9. 如权利要求8所述的分段式保持架,其特征在于:所述内凹曲面(6)由一体环面、一体球面、一体抛物面、一体椭球面或者一体卵形面独立构成。
  10. 如权利要求2至5中任一项所述的分段式保持架,其特征在于:所述滚动体(2)抵靠在内凹曲面(6)自身坡长范围内的大致半程位置(8)处。
  11. 如权利要求1至9中任一项所述的分段式保持架,其特征在于:所述内凹曲面(6)在其与滚动体(2)接触位置处的曲率半径R1与滚动体(2)的半径R2之间的比值满足关系式1.01≤R1/R2≤1.09。
  12. 如权利要求1至9中任一项所述的分段式保持架,其特征在于:所述内凹曲面(6)在其与滚动体(2)接触的位置处形成有润滑槽(9)。
  13. 如权利要求12所述的分段式保持架,其特征在于:所述润滑槽(9)在隔圈(1)一侧兜槽(3)内的设置数量为1至6处,且在内凹曲面(6)与滚动体(2)的接触位置线(10)上均匀分布。
  14. 如权利要求13所述的分段式保持架,其特征在于:所述润滑槽(9)形状为花瓣状、条纹状或者交叉的条纹状。
  15. 如权利要求12所述的分段式保持架,其特征在于:所述润滑槽(9)的底部形成有贯穿所述隔圈(1)的副油孔(11),与所述隔圈(1)另外一侧兜槽(3)内相应位置处的润滑槽(9)保持连通。
  16. 如权利要求1至9中任一项所述的分段式保持架,其特征在于:所述隔圈(1)形成有贯穿其内部至少一副副油孔(11),所述副油孔(11)开口于两侧的兜槽(3)内。
  17. 如权利要求1至9中任一项所述的分段式保持架,其特征在于:所述隔圈(1)的生产材质采用碳钢、合金钢、铜合金、铝合金、烧结材料、复合材料、工程塑料和聚合物中的至少一种。
  18. 一种球轴承,采用以上任一项权利要求中所述的分段式保持架。
  19. 如权利要求18所述的球轴承,其特征在于:所述球轴承为角接触球轴承、深沟球轴承或者四点接触球式回转轴承。
PCT/CN2015/083565 2014-07-21 2015-07-08 分段式保持架及其应用 WO2016011892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/326,888 US20170211629A1 (en) 2014-07-21 2015-07-08 Segmented cage and use thereof
DE112015003361.0T DE112015003361T5 (de) 2014-07-21 2015-07-08 Käfig in segmentierter Ausführung und dessen Anwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410345857.7A CN105443580A (zh) 2014-07-21 2014-07-21 分段式保持架及其应用
CN201410345857.7 2014-07-21

Publications (1)

Publication Number Publication Date
WO2016011892A1 true WO2016011892A1 (zh) 2016-01-28

Family

ID=55162500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083565 WO2016011892A1 (zh) 2014-07-21 2015-07-08 分段式保持架及其应用

Country Status (4)

Country Link
US (1) US20170211629A1 (zh)
CN (1) CN105443580A (zh)
DE (1) DE112015003361T5 (zh)
WO (1) WO2016011892A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035410B2 (en) * 2017-09-08 2021-06-15 Liebherr-Components Biberach Gmbh Rolling bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240347B (zh) * 2019-07-17 2024-10-15 斯凯孚公司 轴承保持架及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310169A (ja) * 2001-04-12 2002-10-23 Nsk Ltd 転がり軸受
JP2008261478A (ja) * 2007-03-19 2008-10-30 Nsk Ltd ラジアル玉軸受用保持器及びラジアル玉軸受
JP2011220454A (ja) * 2010-04-09 2011-11-04 Ihi Corp グリース潤滑式玉軸受の保持器
DE202013104039U1 (de) * 2013-09-06 2013-09-12 Guanlian Zhang Kugellager mit guter Schmierfähigkeit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2890473Y (zh) * 2006-04-14 2007-04-18 姜玉玺 超静音异形兜孔深沟球轴承保持架
JP2007333022A (ja) * 2006-06-13 2007-12-27 Ntn Corp 深溝玉軸受
CN201982512U (zh) * 2011-01-27 2011-09-21 浙江天马轴承股份有限公司 非标薄壁角接触球轴承的保持架
CN201982513U (zh) * 2011-04-22 2011-09-21 洛阳美航汽车零部件有限公司 一种易润滑隔离块
CN202194946U (zh) * 2011-07-12 2012-04-18 邓树堂 静音深沟球轴承保持架
CN202215602U (zh) * 2011-08-22 2012-05-09 上虞市万里汽车轴承有限公司 一种轴承保持架

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310169A (ja) * 2001-04-12 2002-10-23 Nsk Ltd 転がり軸受
JP2008261478A (ja) * 2007-03-19 2008-10-30 Nsk Ltd ラジアル玉軸受用保持器及びラジアル玉軸受
JP2011220454A (ja) * 2010-04-09 2011-11-04 Ihi Corp グリース潤滑式玉軸受の保持器
DE202013104039U1 (de) * 2013-09-06 2013-09-12 Guanlian Zhang Kugellager mit guter Schmierfähigkeit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035410B2 (en) * 2017-09-08 2021-06-15 Liebherr-Components Biberach Gmbh Rolling bearing

Also Published As

Publication number Publication date
US20170211629A1 (en) 2017-07-27
CN105443580A (zh) 2016-03-30
DE112015003361T5 (de) 2017-04-13

Similar Documents

Publication Publication Date Title
US8858086B2 (en) Rolling bearing
JP5926971B2 (ja) セパレータを備えた旋回軸受
US9683605B2 (en) Tapered roller bearing
CN105358884A (zh) 滑动部件
US7771122B2 (en) Cage for rolling bearing and rolling bearing having the same
JP2009520936A (ja) 転がり軸受
CN101365889A (zh) 具有改进的凸边几何形状的滚动轴承
US9970478B2 (en) Sliding parts
WO2016011892A1 (zh) 分段式保持架及其应用
US20160010688A1 (en) Low friction multi stage thrust bearing
JPH01169118A (ja) クロスローラ軸受のスペーサ
WO2013080824A1 (ja) ころ軸受
JP3934277B2 (ja) 転がり軸受
TWI708018B (zh) 流體動壓軸承及具有該流體動壓軸承之凸輪機構
TWI576522B (zh) Bearing with holder
JP5893421B2 (ja) 旋回軸受
US11698103B2 (en) Cage segment of a rolling bearing
JP5149783B2 (ja) トロイダル型無段変速機
CN108368876A (zh) 交叉滚子轴承
RU2006115272A (ru) Роликовый сферический трехрядный подшипник
JP2015064086A (ja) 玉軸受用冠型保持器および玉軸受
CN108350942B (zh) 球轴承保持架
CN206874667U (zh) 圆柱滚子轴承保持架引导新结构
JP2010025191A (ja) 自動調心ころ軸受
JP2004092799A (ja) リニアガイド装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326888

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003361

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825101

Country of ref document: EP

Kind code of ref document: A1